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We consider the steady-state density and velocity dispersion profiles of collisionless matter around a
Schwarzschild black hole (BH) and its associated rate of accretion onto the BH. We treat matter, which
could be stars or dark matter particles, whose orbits are unbound to the BH, but still governed by its
gravitational field. We consider two opposite spatial geometries for the matter distributions: an infinite,
three-dimensional cluster and a two-dimensional razor-thin disk, both with zero net angular momentum.
We demonstrate that the results depend critically on the adopted geometry, even in the absence of angular
momentum. We adopt a simple monoenergetic, isotropic, phase-space distribution function for the matter
as a convenient example to illustrate this dependence. The effect of breaking strict isotropy by
incorporating an unreplenished loss cone due to the BH capture of low-angular momentum matter is
also considered. Calculations are all analytic and performed in full general relativity, though key results are
also evaluated in the Newtonian limit. We consider one application to show that the rate of BH accretion
from an ambient cluster can be significantly less than that from a thin disk to which it may collapse,
although both rates are considerably smaller than Bondi accretion for a (collisional) fluid with a similar
asymptotic particle density and velocity dispersion (i.e., sound speed).
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I. INTRODUCTION

A black hole (BH), and especially a supermassive black
hole (SMBH), typically will steepen the density profile of
stars and/or dark matter (DM) within the hole’s sphere of
influence, i.e., within a radius rh ≈GM=v2∞. Here,M is the
mass of the hole and v∞ is the velocity dispersion in the
cluster or galaxy core outside rh. The density profile of this
spike depends on the properties of the matter, as well as the
formation and evolution history of the BH. Most of the
treatments to date focus on matter bound to the BH and
hence moving on orbits that are confined inside rh. In some
analyses the matter is treated as completely collisionless, as
was assumed for stars in typical galaxies in Refs. [1,2], and
for cold DM in galaxies and halos in Ref. [3], where in both
of these cases the orbiting species were assumed bound to
adiabatically growing BHs. In other cases the matter is
assumed to be weakly collisional and slowly evolving on
long relaxation timescales. Such relaxation may be gov-
erned by distant, cumulative, two-body, gravitational
encounters (Coulomb scattering) for stars bound to a
central, massive BH in a globular cluster or to a SMBH
in a dense galaxy core [4–8]. For collisionless DM bound to
a SMBH in a galaxy core, relaxation may occur due to
gravitational encounters with ambient stars [9–11], or, in
the case of self-interacting DM, to particle self-interactions
[12–14], and/or annihilations [15,16]. In all of these
instances the orbiting matter forms power-law density
spikes inside rh.

Here we consider collisionless matter, either dark matter
or stars (both of which we shall refer to as “particles”) that
move on orbits unbound to the BH. These unbound orbits
can take particles infinitely far away from the BH, but
particles that plunge inside rh on such orbits also may, in
some instances, generate a density spike around the BH.
Those particles traveling inward with sufficiently low
angular momentum about the BH are eventually captured.
By collisionless here we mean that the particles interact
solely with the gravitational field of the central BH and that
any scattering due to, or collisions with, their neighbors,
themselves, or other intruders remain generally unimportant
over the age of the system. We take the BH to be a
nonspinning Schwarzschild BH with a mass M fixed in
time, and we determine the density profile and accretion rate
of the unbound ambient matter. Collisionless particles move
on geodesic orbits about the BH, and for this analysis we
assume their self-gravity is unimportant. We take all of the
particles to have the same mass, and to describe them we
adopt a simple, monoenergetic, phase-space distribution
function of the form f ¼ fðEÞ, where E is the conserved
“energy at infinity” per unit mass of a particle. Such a
distribution function has been adopted in several previous
investigations of unbound particles about a BH [17–20], and,
though idealized, it is sufficient to illustrate our main
conclusions. Any distribution function that depends solely
on conserved integrals of the motion, such as E, automati-
cally satisfies the time-independent, collisionless Boltzmann
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(Vlasov) equation. Hence the profiles and accretion rates we
determine from our adopted distribution function yield
steady-state solutions.
Given our adopted distribution function we compare two

opposite spatial geometries for the unbound matter—
infinite three-dimensional (3D) clusters and two-
dimensional (2D) razor-thin disks. The adopted disks,
though extreme, serve to highlight the differences between
extended, spherical-like vs thin disklike density distributions
for unbound, collisionless particles orbiting a central BH and
their associated rates of accretion. We note that collisionless
darkmatter in the early universe, and even the first generation
stars, may, in fact, form thin sheets or “pancakes” [21,22], so
our extreme disks may mimic some of their features, should
massive BHs residewithin them. In both our cluster and disk
cases we analyze the case where the orbital velocities are
isotropic at every point. We then consider the anisotropic
velocity distribution associated with an unreplenished loss
cone that can arise from BH capture of particles with
sufficiently low angular momentum. In all cases the net
angular momentum of the orbiting matter is assumed to be
zero, sowe are only examining the effect of spatial geometry
on the profiles and accretion rates.
Infinite, unbound collisionless clusters around

Schwarzschild BHs have been previously investigated with
a different approach in Refs. [23,24], who adopted a
Maxwell-Jünter phase-space distribution function as an
application. A treatment involving thin (equatorial plane)
disks around Kerr black holes was recently provided by
Ref. [25], again with a Maxwell-Jünter distribution function
and a different approach from the one adopted here. We
compare the accretion rates found by these studies with the
ones calculated here.
The significance of determining the density profiles and

accretion rates of stars and DM near BHs is that it provides
clues as to the nature, formation history, and evolution of
the systems in which they are found. The presence of a
sufficiently steep density spike not only conveys the
presence of a massive, central BH but, in the case of
DM, may lead to an observable excess of gamma rays or
other form of radiation, if particle annihilation occurs at a
sufficient rate in the innermost regions where the density is
highest (see [3,26–31] and references therein). These
applications motivate our adopting a simple illustration
to point out the importance of unbound collisionless
particles and their global spatial geometry in determining
the existence of a stellar, or DM, spike around a BH and
their consumption rate by the BH.
In Sec. II we consider an infinite, unbound, monoener-

getic, 3D cluster of collisionless particles that orbit a
Schwarzschild BH. We derive the particle density and
velocity profiles and the associated particle accretion rate
onto the BH. We consider both an isotropic velocity
distribution and one with an unreplenished loss cone.
The derivations and quoted quantities are analytic and

fully general relativistic, but the final expressions are also
quoted for the slow-velocity, weak-field (i.e., Newtonian)
limit. In Sec. III we repeat the analysis in Sec. I, but now for
particles confined to a 2D razor-thin disk. In Sec. IV we
compare the accretion rates found for the clusters and disks.
In the Appendix we provide two alternative derivations for
the cluster accretion rate, all arriving at the same answer.
We adopt geometric units throughout, setting G ¼ 1 ¼ c,
unless otherwise noted.

II. UNBOUND, MONOENERGETIC CLUSTER

A. Isotropic distribution

The gravitational field of our system is governed by the
Schwarzschild BH, and we adopt the following familiar
form for the spacetime metric:

ds2¼−ð1−2M=rÞdt2þ dr2

1−2M=r
þ r2dθ2þ r2 sin2 θdϕ2:

ð1Þ

The monoenergetic phase-space distribution function we
shall employ everywhere in space is given by

fðEÞ ¼ KδðE − E∞Þ; K; E∞ const; ð2Þ

where E ¼ −p · et is the “energy at infinity” of a particle
per unit mass, p is the particle energy-momentum 4-vector,
divided by its rest mass, and et ¼ ∂=∂t is the time
coordinate basis vector. All particles are assumed to have
the same rest mass m. The constant E∞ satisfies E∞ > 1,
appropriate for an unbound orbit, while the constant K,
given E∞, is determined by the asymptotic density at
infinity [see Eq. (9) below]. This distribution function,
specifically chosen to describe a homogeneous density of
unbound, collisionless particles moving randomly at the
same speed far from the BH in fact applies everywhere as a
consequence of Liouville’s theorem. Our adopted function,
though simple, may also be thought of as a Green’s
function for other energy distribution functions (e.g.,
Maxwellians or power laws) and our results below in
which E∞ appears can always be integrated over E∞ for
these alternative energy distributions.

1. Density

We now repeat the derivation of the number density of
particles at all radii r we provided previously (see
Appendix in Ref. [19]), so that we may refer to and modify
some of the equations in subsequent sections where we
change the boundary conditions or contrast the results with
other cases. The particle energy per unit mass measured by
a local, static, orthonormal observer with 4-velocity u ¼ et̂
at radius r is given by

STUART L. SHAPIRO PHYS. REV. D 108, 083037 (2023)

083037-2



Elocal ≡ pt̂ ¼ −p · et̂ ¼
E

ð1 − 2M=rÞ1=2 ; ð3Þ

where a caret on a variable denotes an orthonormal
component. The number density of particles at r measured
by this observer is then

nðrÞ ¼
Z

fðEÞd3p̂ ð4Þ

¼ 4π

Z
fðEÞp̂2dp̂; ð5Þ

where

p̂ ¼ ½ðpt̂Þ2 − 1�1=2 ð6Þ

is the particle 3-momentum per unit mass. Using Eqs. (3)
and (6) we obtain

p̂2dp̂ ¼ p̂EdE
1 − 2M=r

¼ ðE2 − 1þ 2M=rÞ1=2
ð1 − 2M=rÞ3=2 EdE: ð7Þ

Substituting Eqs. (2) and (7) into (5) gives

nðrÞ ¼ 4πK
ðE2

∞ − 1þ 2M=rÞ1=2E∞

ð1 − 2M=rÞ3=2 : ð8Þ

Evaluating Eq. (8) at r ¼ ∞ determines K:

K ¼ n∞
4πðE2

∞ − 1Þ1=2E∞
: ð9Þ

So in general the density profile is

nðrÞ
n∞

¼ ðE2
∞ − 1þ 2M=rÞ1=2

ðE2
∞ − 1Þ1=2ð1 − 2M=rÞ3=2 : ð10Þ

An important special case applies to nonrelativistic
particles at infinity moving with velocity v̂∞ ≪ 1, for
which

E∞ ≈ 1þ 1

2
v̂2∞; E2

∞ − 1 ≈ 2ðE∞ − 1Þ ≈ v̂2∞: ð11Þ

In this limit Eq. (9) reduces to

K ≈
n∞

4πv̂∞
ðv̂∞ ≪ 1Þ; ð12Þ

and Eq. (8) becomes

nðrÞ
n∞

≈
½1þ 2M=ðrv̂2∞Þ�1=2
ð1 − 2M=rÞ3=2 ðv̂∞ ≪ 1Þ: ð13Þ

We note that Eq. (13) in the weak-field domain, wherein
M=r ≪ 1, is consistent with earlier Newtonian derivations
in Refs. [17,18].

2. Velocity dispersion

The velocity dispersion may be calculated formally from

hv̂2ðrÞi ¼
R
v̂2fðEÞd3p̂R
fðEÞd3p̂ ; ð14Þ

where the locally measured velocity is v̂ ¼ p̂=Elocal or,
using Eqs. (3) and (6),

v̂ ¼ ðE2 − 1þ 2M=rÞ1=2
E

: ð15Þ

Substituting Eqs. (2) and (15) into (14) and integrating
yields

hv̂2ðrÞi ¼ v̂2ðE∞Þ ¼
ðE2

∞ − 1þ 2M=rÞ1=2
E∞

: ð16Þ

The first equality in Eq. (16) also may be arrived at trivially
by noting that all particles move on geodesics with the same
specific energy E∞, and the second equality also can be
obtained by invoking Elocal ¼ γ ¼ 1=ð1 − v̂2Þ12, replacing
Elocal by E using Eq. (3), and inverting for v̂.

3. Accretion rate

Here we generalize our earlier Newtonian derivation of
the DM accretion rate onto the BH [see Ref. [18],
Eqs. (14.2.13)–(14.2.20)] to one that is fully general
relativistic. The phase-space momentum element d3p̂
may be expressed as

d3p̂ ¼ 2πp⊥̂dp⊥̂dpr̂ ¼ 4πJdJdE

ð1 − 2M=rÞ1=2jvr̂jr2 ; ð17Þ

where ⊥ denotes directions perpendicular to the radial
direction (whereby J ¼ rp⊥̂ is the particle angular momen-
tum per unit mass) and where Eqs. (12.4.9), (12.4.13), and
(12.4.16) of Ref. [18] were employed to relate dpr̂ to dE:

dpr̂ ¼ dE

ð1 − 2M=rÞ1=2jvr̂j : ð18Þ

An additional factor of 2 arises in Eq. (17) since for a given
E, pr̂ can be either positive or negative. Let N−ðr; E; JÞ be
the number of particles per interval dr; dE, and dJ with
inward-directed radial velocity:
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N−ðr; E; JÞdrdEdJ ¼ 1

2
fðE; JÞd3rd3p̂

¼ 8π2JfðE; JÞ
jvr̂jð1 − 2M=rÞ1=2 drdEdJ: ð19Þ

The resulting total capture rate for particles onto the
central BH as measured by the local observer is then

dNtot

dτ
¼

Z
∞

ð1−2M
r Þ

1
2

dE
Z

JminðEÞ

0

dJjvr̂jN−ðr; E; JÞ

¼ 8π2
Z

∞

ð1−2M
r Þ

1
2

dE
Z

JminðEÞ

0

dJ
Jf

ð1 − 2M
r Þ1=2

; ð20Þ

where particles moving with specific angular momentum
less than a critical value Jmin will be captured by BH as they
approach the pericenter. The region J < Jmin thus defines a
capture loss cone. For nonrelativistic (NR) particles at large
distances with E − 1 ≪ 1, which is the case for typical stars
in clusters of galaxies, and cold dark matter, we note that

JminðEÞ ¼ 4M ðNRparticles; v̂∞ ≪ 1Þ: ð21Þ

Substituting Eqs. (2) and (9) into Eq. (20) and evaluating
the integral yields

dNtot

dτ
¼ πn∞J2minðE∞Þ

E∞ðE2
∞ − 1Þ1=2

1

ð1 − 2M=rÞ1=2 : ð22Þ

The particle capture rate as measured by a static observer
at infinity is then given by

dNtot

dt
¼ dNtot

dτ
dτ
dt

¼ dNtot

dτ

�
1 −

2M
r

�
1=2

ð23Þ

or

dNtot

dt
¼ πn∞J2minðE∞Þ

E∞ðE2
∞ − 1Þ1=2 : ð24Þ

It is this observer who measures the steady depletion of
particles from the ambient cluster and their acquisition by
the BH.
The corresponding rest-mass accretion rate measured by

this observer, dM0=dt ¼ mdNtot=dt, is then given by

dM0

dt
¼ πρ∞J2minðE∞Þ

E∞ðE2
∞ − 1Þ1=2 ; ð25Þ

where ρ∞ ≡mn∞ is the asymptotic rest-mass density.
Equation (25) agrees with the result obtained by a different
route in Ref. [20] [see their Eq. (76), setting γ∞ ¼ E∞ and
LcðE∞Þ ¼ mJminðE∞Þ]. The rate of accretion of total
mass-energy onto the black hole is then given by dM=dt ¼
mE∞dN=dt or

dM
dt

¼ πρ∞J2minðE∞Þ
ðE2

∞ − 1Þ1=2 : ð26Þ

Evaluating Eqs. (25) and (26) for NR particles at infinity,
using Eqs. (11) and (21), yields

dM
dt

≈
dM0

dt
≈
16πM2ρ∞

v̂∞
ðNRparticles; v̂∞ ≪ 1Þ; ð27Þ

which agrees with the previous Newtonian result we
derived in Ref. [18] [see Eq. (14.2.20)]. Since the
steady-state accretion rate can be evaluated at large
r ≫ M, as we did in Ref. [18], it is no surprise that the
Newtonian derivation for the rate provided there for non-
relativistic particles at infinity yields the exact same result
derived in General Relativity (GR) for the limiting case
given by Eq. (27). Note that to convert back from geometric
to physical units, one simply multiplies the right-hand sides
of Eqs. (25)–(27) by G2=c2.
It is interesting to note that the particle density as

measured by a locally static observer blows up when the
observer is stationed arbitrarily close to the BH horizon [see
Eq. (10) as r → 2M]. (However, recall that static observers
cannot exist at or inside the horizon.) Using Eq. (12.4.17)
of Ref. [18], for the particle radial velocity, i.e.,

jvr̂j ¼
�
1 −

1

E2

�
1 −

2M
r

��
1þ J2

r2

��
1=2

; ð28Þ

it is seen that the particles all have velocities which are
measured by this observer to approach the speed of light
and move in the radial direction as they approach the
horizon. Based on these observations one might naively
take the radial matter flux to be ∼nðrÞv̂, and then estimate
the accretion rate by multiplying this product by the
invariant area 4πr2. Doing so yields a rate that blows up
near the horizon. However, this estimate is too naive, as the
actual steady-state depletion rate of unbound particles from
the ambient gas must be obtained by more careful con-
siderations, such as those we incorporated above, leading to
the net accretion rates onto the BH as measured by a
distant, static observer, Eqs. (24)–(26). The latter remain
perfectly finite. This contrast is sufficiently striking that we
are motivated to provide two alternative derivations in the
Appendix for the net accretion rate, leading to the same
equations obtained above.
The integration of an isotropic distribution function fðEÞ

over all phase space allows for so-called “white hole”
orbits, i.e., outgoing trajectories at the horizon. Eliminating
these orbits leads to a density profile of the form nðrÞ ∼
1=ð1 − 2M=rÞ1=2 as r → 2M. Thus, we still have nðrÞ
blowing up near the horizon, but only with a mild (“red-
shift") factor instead of the 1=ð1 − 2M=rÞ3=2 behavior
exhibited by Eq. (10). Using this “modified” density near
the horizon to measure the inward flux then yields the
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correct locally measured accretion rate, Eq. (22).
Furthermore, choosing to measure the density by an
observer comoving with the net flow should lead to a
finite density at the horizon [23,24]. However, as these
modifications do not affect our computations of the
accretion rates, which are our primary targets, we do not
implement them here.

4. Massless and extremely relativistic particles

To evaluate Eq. (26) for massless particles (e.g., pho-
tons), we may first set E∞ ¼ ð1 − v̂2∞Þ−1=2 and then note
that Jmin ¼ bðE2

∞ − 1Þ1=2 ¼ v̂∞ð1 − v̂2∞Þ−1=2, where b is
the critical impact parameter for particle capture. Now b ¼
3

ffiffiffi
3

p
is the critical impact parameter for massless particles

[see, e.g., Ref. [18], Eqs. (12.4.36) and (12.5.11)]. Next let
n∞mE∞ ≡ ϵr∞ be the energy density of particles far from
the BH. Then taking the limit as v̂∞ → 1 with these
substitutions gives

dM
dt

¼ 27πM2ϵr∞ ðm ¼ 0Þ; ð29Þ

which agrees with the result quoted in Exercise 14.4 in
Ref. [18] that was obtained by an alternative approach.
We also note that Eq. (29) also applies to extremely

relativistic (ER) particles with nonzero rest mass m. For
such particles the accretion rates may also be written as

dM
dt

¼E∞
dM0

dt
≈27πM2E∞ρ∞ ðER particles; v̂∞≫ 1Þ:

ð30Þ
B. Loss-cone effect

Given that particles having nearly radial, inward veloc-
ities result in their being captured by the BH, it is
interesting to examine a scenario in which, after a sufficient
time has passed and steady state is achieved, there is a
depletion of particles in a low-angular momentum capture
loss cone about the BH. For perfectly collisionless gas in
the complete absence of perturbations, the loss cone cannot
be replenished, since particle self-interactions and gravi-
tational scattering by stars or other perturbers are assumed
absent. (For scenarios in which self-interactions of dark
matter particles around BHs may be important, see, e.g.,
Refs. [12–14], and where their gravitational scattering off
stars may be significant, see, e.g., Refs. [9–11] and
references therein.) In reality, the slightest gravitational
perturbations, at large distances, due, for example, to small
density anisotropies or to intruders, or the weakest self-
interactions, will likely be sufficient to replenish the narrow
loss cone. Our analysis above of the matter profiles and
accretion rate will thus apply in these situations. But
immediately below we will consider a perturbation-free,
perfectly collisionless cluster that has depleted its loss cone
and cannot refill it.

To describe this idealized situation a minimal modifi-
cation to our adopted distribution function will suffice:

fðEÞ ¼ KδðE − E∞Þ; JminðEÞ ≤ J ≤ JmaxðEÞ;
¼ 0; 0 ≤ J ≤ JminðEÞ; ð31Þ

where again K and E∞ > 1 are constants.

1. Density

To determine the density profile we again evaluate
Eq. (4), employing Eq. (17), which yields

nðrÞ ¼
Z

∞

ð1−2M
r Þ

1
2

fðEÞdE
Z

JmaxðEÞ

JminðEÞ

4πJdJ

r2jvr̂jð1 − 2M
r Þ1=2

; ð32Þ

where jvr̂j is given by Eq. (28) and JmaxðEÞ is the
maximum specific angular momentum that a particle
moving on a geodesic with specific energy E can have,

JmaxðEÞ ¼ r

�ðE2 − 1þ 2M
r Þ

ð1 − 2M
r Þ

�
1=2

ð33Þ

[set dr=dτ ¼ 0 and l̃ ¼ JmaxðEÞ in Eq. (12.4.13) in
Ref. [18]]. Substituting Eq. (31) into (32) and integrating
yields

nðrÞ
n∞

¼ ½E2
∞ − ð1 − 2M=rÞð1þ ðJminðEÞ=rÞ2Þ�1=2

ðE2
∞ − 1Þ1=2ð1 − 2M=rÞ3=2 ; ð34Þ

where the normalization constant K is again given by
Eq. (9). Comparing Eqs. (10) and (34) shows that the spike
density is somewhat lower everywhere, but mostly around
r≲ Jmin, if a loss cone is established and unreplenished.
Equation (34) reduces to Eq. (10) in the absence of a loss

cone, i.e., when the captured particle distribution is
assumed to be continually replenished so that JminðEÞ ¼
0 in Eq. (31). For nonrelativistic particles with v̂∞ ≪ 1 and
an empty loss cone with Jmin ¼ 4M the density becomes

nðrÞ
n∞

≈
½1þ 2M=ðrv̂2∞Þð1 − 8M

r þ ð4Mr Þ2Þ�1=2
ð1 − 2M=rÞ3=2

ðNRparticles; v̂∞ ≪ 1Þ: ð35Þ

For sufficiently small v̂∞ ≪ 1 the density exhibits a
minimum at r ≈ 4M outside the event horizon.

2. Velocity dispersion

As all particles have the same energy E∞, they have the
same velocity and velocity dispersion profile as in the
absence of a loss cone, i.e., Eq. (16).
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3. Accretion rate

Given a loss cone that is unreplenished with particles
once they have been captured, the accretion rate becomes
zero in steady state.

III. UNBOUND, MONOENERGETIC,
RAZOR-THIN DISK

A. Isotropic distribution

We now derive the surface density profile around the BH
for unbound, collisionless particles assumed to reside in a
razor-thin disk. Since the distribution function is zero
outside of the disk, we will simply work in the plane of
the disk and drop the vertical dependence of any quantity.
For comparison purposes we adopt the same distribution
function adopted for the large 3D cluster, but now confined
to the 2D disk plane, i.e., we again use Eq. (2) to describe
unbound particles moving isotropically in the plane of
the disk.

1. Density

The surface number density Σ�ðrÞ measured by a locally
static observer is then given by

Σ�ðrÞ ¼
Z

fðEÞd2p̂ ¼ 2π

Z
fðEÞ EdE

1 − 2M=r
; ð36Þ

where we used Eq. (7) to evaluate d2p̂ ¼ 2πp̂dp̂.
Substituting Eq. (2) in (36) and integrating yields

Σ�ðrÞ
Σ�
∞

¼ ΣðrÞ
Σ∞

¼ 1

1 − 2M=r
; ð37Þ

where ΣðrÞ ¼ mΣ�ðrÞ is the surface rest-mass density, m is
the particle rest mass, andK ¼ Σ∞=ð2πmE∞Þ. Far from the
BH the surface density is thus seen to be flat. Once again,
eliminating the “white hole” orbits softens the blowup near
the horizon, whereby the modified surface density scales as
ΣðrÞ ∼ 1=ð1 − 2M=rÞ1=2 as r → 2M.

2. Velocity dispersion

As all particles again have the same energy E∞, they
have the same velocity and velocity dispersion profile given
by Eq. (16).

3. Accretion rate

To derive the accretion rate we adapt Eq. (19) to a plane,
yielding

N−ðr; E; JÞdrdEdJ ¼ 1

2
fðE; JÞd2rd2p̂

¼ 4π
dJdEdr

ð1 − 2M=rÞ1=2
fðE; JÞ
jvr̂j ; ð38Þ

where we used d2r ¼ 2πrdr, J ¼ p⊥̂r, Eq. (18), and

d2p̂ ¼ dp⊥̂dpr̂ ¼ 4
dJ
r

dE

ð1 − 2M=rÞ1=2jvr̂j : ð39Þ

The factor of 4 is inserted since for a given E and J, both pr̂

and p⊥̂ can be either positive or negative.
The resulting capture rate measured by the local observer

is then given by

dNtot

dτ
¼

Z
∞

ð1−2M
r Þ

1
2

dE
Z

JminðEÞ

0

dJjvr̂jN−ðr; E; JÞ

¼ 4π

Z
∞

ð1−2M
r Þ

1
2

dE
Z

JminðEÞ

0

dJ
f

ð1 − 2M
r Þ1=2

; ð40Þ

yielding

dNtot

dτ
¼ 2Σ�

∞JminðE∞Þ
E∞

1

ð1 − 2M=rÞ1=2 : ð41Þ

The depletion rate of the disk as measured by a distant static
observer is then obtained using Eq. (23), which gives

dNtot

dt
¼ 2Σ�

∞JminðE∞Þ
E∞

: ð42Þ

The corresponding rates of accretion of rest mass and total
mass-energy onto the BH are then

dM0

dt
¼ 2Σ∞JminðE∞Þ

E∞
ð43Þ

and

dM
dt

¼ 2Σ∞JminðE∞Þ; ð44Þ

respectively. The rate for NR particles at infinity, using
Eq. (21), is then

dM=dt ≈ 8MΣ∞ ðNRparticles; v̂∞ ≪ 1Þ: ð45Þ

We note that Eq. (45) agrees with Eq. (93) in Ref. [25] for
Maxwell-Jüttner particle temperatures approaching zero
and Schwarzschild BHs [set α≡ a=M ¼ 0 and note ρs;∞ ≡
Σ∞ in Eq. (93)].
It is interesting to observe that in this slow-velocity limit,

the above rate of mass-energy accretion for a 2D razor-thin
disk depends only on the surface density of distant particles
and not on their velocity dispersion, in contrast to accretion
from a large 3D cluster, which depends on both the
asymptotic density and the velocity dispersion [see Eq. (27)].
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We note that to convert back from geometric to physical
units, one simply multiplies the right-hand sides of
Eqs. (43)–(45) by G2=c.

4. Massless and extremely relativistic particles

Defining the asymptotic particle surface energy density
to be Er

∞ ≡ Σ∞E∞ and noting that Jmin ≈ 3
ffiffiffi
3

p
ME∞ when

E∞ ≫ 1, we can evaluate Eq. (44) for massless particles,
yielding

dM
dt

¼ 6
ffiffiffi
3

p
MEr

∞ ðm ¼ 0Þ: ð46Þ

We again note that Eq. (46) also applies to ER particles with
nonzero m. For such particles the accretion rates may also
be written as

dM
dt

¼ E∞
dM0

dt
≈ 6

ffiffiffi
3

p
MΣ∞E∞ ðERparticles; v̂∞ ≫ 1Þ:

ð47Þ

We point out that Eq. (47) agrees with Eqs. (124) and (125)
in Ref. [25] for Maxwell-Jüttner particle temperatures
approaching infinity and Schwarzschild BHs [again set α≡
a=M ¼ 0 and note ρs;∞ ≡ Σ∞ in Eq. (124) and ϵs;∞ ¼
Σ∞E∞ in Eq. (125)].

B. Loss-cone effect

1. Density

Here we treat the scenario whereby collisionless particles
in the loss cone are never replenished once captured,
whereby the distribution function may again be represented
by Eq. (31). Using Eq. (39), the surface density is then
given by

Σ�ðrÞ ¼
Z

fðEÞd2p̂

¼
Z

∞

ð1−2M
r Þ

1
2

fðEÞdE
Z

JmaxðEÞ

JminðEÞ

4dJ

rjvr̂jð1 − 2M
r Þ1=2

: ð48Þ

Substituting Eqs. (31) and (33) and integrating yields

ΣðrÞ
Σ∞

¼
1 − 2

π arctan

�
Jmin=r�

E2∞−1þ2M=r
1−2M=r − ðJmin=rÞ2Þ

�1=2
�

1 − 2M=r
: ð49Þ

For NR particles in Newtonian gravitation, Eq. (49)
reduces to

ΣðrÞ
Σ∞

≈ 1−
2

π
arcsin

�
4M
rv̂∞

�
ðv̂∞ ≪ 1;M=r≪ 1Þ: ð50Þ

2. Velocity dispersion

As all particles again have the same energy E∞, they
have the same velocity and velocity dispersion profile given
by Eq. (16).

3. Accretion rate

Given a loss cone that is unreplenished with particles
once they have been captured, the accretion rate becomes
zero in steady state.

IV. COMPARISON OF ACCRETION RATES

Comparing the accretion rates of 3D clusters and 2D thin
disks with filled loss cones is not entirely straightforward,
given their different geometries and defining parameters.
The results will depend on the different physical systems
that are compared. To give one example, let us consider a
large, homogeneous spherical cluster of particles with
density ρ∞, isotropic velocity dispersion v∞, radius
Rc ≫ rh, and total mass Mc. Imagine that it undergoes
collapse parallel to the z-axis to a thin pancake in the x-y
plane, preserving its surface density along cylinders. This
scenario might mimic one way that thin sheets of collision-
less particles form in the early universe. We will compare
the unbound, collisionless particle accretion rates for the
large spherical cluster and the pancake for NR particles
with v∞ ≪ 1.
The surface density in the pancake is

Σ∞ðr⊥Þ ¼ 2ρ∞Rc

�
1 −

r2⊥
R2
c

�
1=2

; ð51Þ

where r⊥ is the radius in the x-y plane measured from the
center of the pancake. Taking the surface density at r⊥ in
the central core, requiring rh ≪ r⊥ ≪ Rc, whereby the
particles remain largely unperturbed by the central BH,
gives

Σ∞ ≈ 2ρ∞Rc: ð52Þ

The ratio of BH accretion rates in the spherical cluster vs
the thin disk is then approximated by

Ṁc

Ṁd
≈ π

M
Rc

1

v∞
; ð53Þ

where Ṁc is given by Eq. (27) and Ṁd is given by Eq. (45),
substituting Eq. (52) for Σ∞. We can evaluate v∞ if we
assume that it is some fraction of the virial value, whereby

v2∞ ≈
Mc

Rc
: ð54Þ

Equation (53) then yields
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Ṁc

Ṁd
≈ π

�
M
Mc

�
1=2

�
M
Rc

�
1=2

≪ 1: ð55Þ

The strong inequality above for this one extreme example
shows the dominance of disk vs cluster accretion, thereby
demonstrating that the rate of unbound, collisionless
particles can depend significantly on the geometry of the
ambient particle cloud, other parameters being equal.
It is also interesting to compare the collisionless particle

rates to the standard spherical Bondi accretion rate for
particles comprising a true fluid. The Bondi rate for an
adiabatic gas with 1 ≤ Γ ≤ 5=3 [32] (see also [18] for a
relativistic treatment) is given by

dM
dt

¼ Ṁb ¼ 4πλ
M2ρ∞
a3∞

; ð56Þ

where a∞ is the asymptotic sound speed of the fluid and λ is
a constant of order unity that depends on Γ. We will equate
a∞ to v∞ for comparison below, obtaining

Ṁb

Ṁc
≈
λ

4

1

v2∞
≫ 1 ð57Þ

and

Ṁb

Ṁd
≈
πλ

4

M
Rc

1

v3∞
≈
πλ

4

�
M
Mc

��
Rc

Mc

�
1=2

; ð58Þ

where we used Eq. (54) to obtain the second equality in
Eq. (58). Equation (57) shows that Bondi accretion domi-
nates collisionless particle accretion for a large 3D cluster.
However, Eq. (58) suggests that the ratio for an extended 2D
thin disk depends on the particular system, since the first
factor in parentheses on the right-hand side may be much
smaller than unity, but the second factor is much bigger than
unity. Once again, spatial geometry counts.

A. Applications

There may exist a near “universal” value of the surface
density for DM that spans, within a factor of 2, over at least
nine (and possibly more) galaxy magnitudes and across
several different Hubble types [33,34]:

Σu
∞ ≈ 140M⊙ pc−2: ð59Þ

The cosmological implications of this observation are not
yet resolved, but Eq. (45) suggests that a thin disk with the
surface density Σu

∞ and a central BH would have an
accretion rate given by

dMu
d

dt
≈ 3.3 × 10−2M⊙ yr−1

�
M

106M⊙

��
Σu
∞

140M⊙ yr−1

�
:

ð60Þ

The surface density Σu
∞ is also within a factor of 2 of

estimates of DM in the Galactic neighborhood, where ρD ∼
0.008M⊙ pc−3 andD ∼ 8.5 kpc [35], yieldingΣGal

∞ ∼ ρDD≈
68M⊙ pc−2. Since ρD may scale as r−1 should it obey an
NFWprofile [36], theGalacticDMsurface density estimated
as∼ρDrwould be constant all thewaydown to theBHsphere
of influence at rh. If it were to reside in a thin disk near the
Galactic Center, its accretion ratewould be comparable to the
universal value given by Eq. (60) for a BH of mass 4.3 × 106

[37,38]. If instead it were to occupy a large spherical cluster
outside rh and move with a velocity dispersion of
∼100 km s−1, then Eq. (27) suggests it will accrete at a
much smaller rate of dMc=dt ≈ 2.4 × 10−7M⊙ yr−1 .
By comparison the Bondi value for the baryon accretion

rate onto Sgr A* at the Galactic Center, which is
determined from the gas density and temperature inferred
from the diffuse x-ray emission observed by Chandra
at ∼2 arcsec (∼0.1 pc) from the black hole, is dMb=
dt ∼ 2 × 10−5M⊙ yr−1. In fact, the baryon accretion rate is
believed to be ∼10−8M⊙ yr−1, or roughly 3 orders of
magnitude below the Bondi value as determined from
polarization measurements [39] and models of the near-
horizon accretion flow and emitted luminosity [40,41].
This difference may be due to the angular momentum of
the stellar winds that may be supplying the gas, or
possibly to more exotic effects such as the heating of
the gas by DM annihilation in the spike about the BH [42].

V. SUMMARY AND CONCLUSIONS

We have examined the steady-state density and velocity
profiles, and the associated accretion rates, of collisionless
particles (e.g., stars or DM) moving around a central
Schwarzschild black hole in unbound orbits. We consid-
ered two distinct spatial geometries for the particle: an
infinite 3D cluster and a 2D razor-thin disk, both without
net angular momentum. We adopted the same simple
monoenergetic, phase-space distribution function for the
particles for both cases, arguing that, though idealized, this
assignment was sufficient to illustrate the features that
might distinguish nonrotating spherical-like and disklike
collisionless systems orbiting a black hole. We treated both
a totally isotropic velocity profile at each point and one in
which an empty loss cone is present due to the capture of
low-angular momentum particles that are captured by the
BH and not replenished. In all cases the net angular
momentum of the systems was assumed to be zero so that
the only differences were due to the different spatial
geometries and velocity anisotropies adopted.
We found that even in the weak-field region, where

r ≫ M, a mild spike arises in the locally measured particle
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density nðrÞ for the 3D cluster but that the surface density
Σ� remains constant with r for the 2D razor-thin disk. We
also found that, at least for one simple application, the rate
of accretion of the disk was much larger than that of the
cluster. However, both rates were much lower than the
Bondi accretion rate for a fluid with a comparable particle
density and velocity dispersion (i.e., sound speed) far from
the BH.
While these differences may not be so striking when

more realistic phase-space distribution functions and geom-
etries are considered, the results do suggest that the spatial
distribution of particles around a black hole is a feature that
affects the resulting steady-state particle profiles and
accretion rates significantly. So this is just one other factor
that must be accounted for, in addition to knowing what the
nature of the particles are (e.g., collisionless or collisional
fluid matter, or mildly collisional by virtue of self-
interactions and/or annihilations) and the global properties
of their distributions (bound or unbound, with or without
net angular momentum, subject or not to gravitational
intruders, etc.) in assessing their profiles and capture rates
about a black hole.
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APPENDIX: CLUSTER ACCRETION RATES:
ALTERNATIVE DERIVATIONS

1. Alternative derivation 1

Here we obtain the accretion rate for an unbound,
monoenergetic, nonrotating cluster as measured by a
locally static observer by calculating the total inward
particle flux across a sphere of radius r× the area of the
sphere × the fraction of these particles that move within the
loss cone and are thus captured:

dNtot

dτ
¼

�
1

4
nv̂

�
× ð4πr2Þ × P; ðA1Þ

where v̂ is the magnitude of the isotropic 3-velocity at r
given by Eq. (16) andP is the fraction of particles captured.
For P we have

P ¼
R JminðE∞Þ
0 dJJR JmaxðE∞Þ
0 dJJ

¼ J2minðE∞Þ
J2maxðE∞Þ

; ðA2Þ

while the density n is given by Eq. (10) and JmaxðEÞ is
given by Eq. (33). Assembling the factors in Eq. (A1) then
yields Eq. (22) for the locally measured accretion rate at r,
dNtot=dτ, from which, using Eq. (23), the rates measured
by a distant observer, Eqs. (24)–(26) for dNtot=dt, dM0=dt,
and dM=dt, respectively, follow immediately.

2. Alternative derivation 2

Here we provide yet another derivation of the accretion
rate found above. The maximum impact parameter bmax for
a particle of energy E∞ falling inward from infinity to be
captured by the BH is given by

b2max ¼
J2minðE∞Þ
E2
∞ − 1

ðA3Þ

[see, e.g., Ref. [18], Eq. (12.4.35), with the typo corrected
for the missing square on E∞], whereby the capture cross
section is

σcap ¼ πb2max ¼
πJ2minðE∞Þ
E2
∞ − 1

: ðA4Þ

So far from the BH the accretion rate is obtained as the
intensity of particles for an isotropic distribution × the area
of a large sphere about the BH × the solid angle within
which a particle is captured:

dNtot

dt
¼

�
n∞v̂∞
4π

�
ð4πr2ÞðΔΩcapÞ; ðA5Þ

where using Eq. (16) at r → ∞, we have

v̂∞ ¼ ðE2
∞ − 1Þ1=2
E∞

ðA6Þ

and where

ΔΩcap ¼
σcap
r2

: ðA7Þ

Assembling the factors in Eq. (A5) again yields Eq. (24) for
dNtot=dt, from which Eq. (22) for dNtot=dτ and Eqs. (25)
and (26) for dM0=dt and dM=dt, respectively, again follow
immediately.
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