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The spacetime around astrophysical black holes is thought to be described by the Kerr solution.
However, even within general relativity, there is not yet a proof that the final product of the complete
collapse of an uncharged body can only be a Kerr black hole. We can thus speculate on the possibility that
the spacetime around astrophysical black holes may be described by other solutions of the Einstein
equations and we can test such a hypothesis with observations. In this work, we consider the δ-Kerr metric,
which is an exact solution of the field equations in vacuum and can be obtained from a nonlinear
superposition of the Kerr metric with a static axially symmetric solution, often referred to as the δ-metric.
The parameter δ ¼ 1þ q quantifies the departure of the source from the Kerr metric and for q ¼ 0 we
recover the Kerr solution. From the analysis of the reflection features in the x-ray spectrum of the Galactic
black hole in EXO 1846–031, we find −0.1 < q < 0.7 (90% CL), which is consistent with the hypothesis
that the spacetime around the compact object in EXO 1846–031 is a Kerr black hole but does not entirely
rule out the δ-Kerr metric.
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I. INTRODUCTION

When a star exhausts all its nuclear fuel, the thermal
pressure of the plasma cannot compensate the star’s own
weight and the body shrinks to find a new equilibrium
configuration. If the collapsing part of the star exceeds the
Oppenheimer-Volkoff limit, which is about 3M⊙ and
corresponds to the maximum mass for a neutron star, there
is no known mechanism to stop the collapse and we have
the formation of a “gravitationally collapsed object” [1,2].
It is generally assumed that the final outcome of complete
collapse should be a black hole. However, the exact nature
of such a gravitationally collapsed object is not yet
completely understood and therefore theoretical and obser-
vational studies to address this question are active lines of
research nowadays [3–5].
In 4-dimensional general relativity, the only vacuum

metric that is stationary, regular on and outside an event
horizon, and asymptotically flat is the Kerr black hole
solution. This is the celebrated result of a family of unique-
ness theorems, which were pioneered in Refs. [6–8] and
whose final version is still an ongoing research program [9].
In the ’60s, Roger Penrose proposed the cosmic censorship
conjecture, according to which all singularities must be

hidden behind an event horizon [10]. If this is true, within
general relativity all gravitationally collapsed objects must
be Kerr black holes. However, even within general relativity,
the cosmic censorship conjecture is still unproven and, at
the same time, we know exact solutions of the Einstein
equations that violate the cosmic censorship conjecture and
in which the complete collapse of a body leads to a
spacetime with naked singularities [11]. A viewpoint that
is widely accepted today regarding the appearance of
singularities in solutions of Einstein’s equations is that they
signal a regime where the theory fails and needs to be
replaced by a new theory of gravity. In this sense, the study
of singularities in general relativity may provide hints at the
features that such a new theory must posses and how it may
manifest in astrophysical phenomena [12].
From astrophysical observations, we know at least two

classes of gravitationally collapsed objects: stellar-mass
compact objects with a mass exceeding the Oppenheimer-
Volkoff limit and supermassive objects in galactic nuclei.
The latter are simply too massive, compact, and old to be
clusters of nonluminous bodies like neutron stars [13]. For
both object classes, we have even a body of observations
suggesting that these objects do not have a normal surface
but an event horizon [14,15]. The past few years have
seen a tremendous progress in our capability of testing the
nature of these compact objects and today we can use*Corresponding author: bambi@fudan.edu.cn
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gravitational wave data from the LIGO-Virgo-KAGRA
Collaboration [16–20], x-ray observations from a number
of x-ray missions [21–27], and the mm images of the
supermassive objects in M87� and Sgr A� from the Event
Horizon Telescope Collaboration [28–33].
In the present paper, we want to explore the possibility

that the spacetime around these gravitationally collapsed
objects is described by the δ-Kerr metric [34,35], which is
an exact solution of the Einstein equations that can be
obtained from a nonlinear superposition of the δ-metric
(sometimes called Zipoy-Voorhees or γ-metric) [36–39]
and the Kerr metric. Such a solution, which can be
understood as a stationary extension of the δ-metric or a
deformed extension of the Kerr metric, has three indepen-
dent parameters: the mass parameter M, which is related to
the mass of the compact object, the spin parameter J, which
is related to the angular momentum of the source, and a
deformation parameter, q ¼ 1 − δ, which quantifies the
departure from the Kerr solution. For q ¼ 0 and J ≠ 0, the
δ-Kerr metric reduces to the Kerr solution. For J ¼ 0 and
q ≠ 0, it reduces to the δ-metric, while a nonvanishing
value of q and J corresponds to a stationary, axisymmetric,
and asymptotically flat vacuum solution of the Einstein
equations with a naked singularity.
The observational properties of the static δ-metric have

been widely studied in the past few years [40–47].
However, since the δ-metric is static it does not constitute
a good candidate for the gravitational field outside an
astrophysical source. On the other hand, the δ-Kerr metric
is stationary and continuously linked to the Kerr metric
through the value of the deformation parameter and
therefore it is an ideal candidate to test the validity of
the Kerr hypothesis around astrophysical compact objects.
The shadow of the δ-Kerr spacetime was studied in
Ref. [48], while its quasinormal modes were considered
in Ref. [49].
The δ-metric and the δ-Kerr metric violate the cosmic

censorship conjecture, and for this reason they are normally
not considered as viable solutions for the description of
the spacetime around gravitationally collapsed objects.
Therefore in the absence of a proof of the cosmic censorship
conjecture and/or adopting the idea that quantum gravity
effects may resolve spacetime singularities and make
the cosmic censorship conjecture unnecessary [50,51], it
is worth to check whether we can test and rule out the δ-Kerr
metric via astrophysical observations. To this aim, in this
article we construct a reflection model for the δ-Kerr metric
and we analyze aNuSTAR spectrum of the x-ray binary EXO
1846–031 with strong reflection features. From the analysis
of this observation, we can constrain the value of the
deformation parameter q of the source and thus test the
δ-Kerr spacetime.
The content of the paper is as follows. In Sec. II, we

briefly review the δ-Kerr metric and, in Sec. III, the analysis
of the reflection features as a tool for testing the nature of

gravitationally collapsed objects. In Sec. IV, we consider a
NuSTAR observation of the x-ray binary EXO 1846–031
and we describe its data reduction. In Sec. V, we present the
spectral analysis of the NuSTAR observation and from the
analysis of the reflection features we constrain the defor-
mation parameter q of the δ-Kerr metric. Summary and
conclusions are reported in Sec. VI. In the present manu-
script, we adopt natural units with GN ¼ c ¼ 1 and the
convention of a metric with signature ð−þþþÞ.

II. δ-KERR METRIC

Exact solutions of Einstein’s field equations in vacuum
describe the exterior of gravitating objects. There exist
several classes of physically viable solutions besides the
well known Schwarzschild and Kerr solutions. One of
these is the so-called “Weyl” class that describes stationary,
axially symmetric, vacuum solutions of the field equa-
tions [52,53]. In cylindrical coordinates ft; ρ; z;ϕg the
general line element of Weyl’s class takes the form

ds2 ¼ e−2Λ
�
e2Ψðdρ2 þ dz2Þ þ ρ2dϕ2

�
þ −e2Λðdt − ωdϕÞ2; ð1Þ

where Λ ¼ Λðρ; zÞ, Ψ ¼ Ψðρ; zÞ and ω ¼ ωðρ; zÞ are
functions to be found from the field equations. In the
static case, i.e. for ω ¼ 0, the field equations reduce to

0 ¼ Λ;ρρ þ
Λ;ρ

ρ
þ Λ;zz; ð2Þ

Ψ;ρ ¼ ρðΨ2
;ρ − Ψ2

;zÞ; ð3Þ

Ψ;z ¼ 2ρΨ;ρΨ;z; ð4Þ

where we used the notation Λ;x ¼ ∂Λ=∂x. Notice that (2) is
nothing but the Laplace equation in flat space in cylindrical
coordinates. Then once a solution of (2) is obtained, (3)
and (4) are immediately integrated to obtain Ψ with the
integration constant fixed by requiring regularity of the
metric at the center [54]. Therefore there exists a one to one
correspondence between solutions of Laplace equation and
static solutions of the vacuum Einstein’s equations in axial
symmetry. One of the most well known solutions of the
static equations is the δ-metric [36,37] which is given by

Λ ¼ δ

2
ln

�
Rþ þ R− − 2M
Rþ þ R− þ 2M

�
; ð5Þ

Ψ ¼ δ2

2
ln

�ðRþ þ R−Þ2 − 4M2

4RþR−

�
; ð6Þ

with
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R� ¼ ρ2 þ ðz�MÞ2: ð7Þ

The δ-metric describes the field in the exterior of a static
oblate or prolate object, with the parameter δ related to the
departure from spherical symmetry. The Schwarzschild
solution is obtained from the above for δ ¼ 1 and it is
the only solution of (2) describing a static black hole. In
fact it is easy to show that for δ ≠ 1 the δ-metric exhibits
a curvature singularity at the location where the
Schwarzschild metric has the event horizon, i.e., r ¼ 2M
in the spherical coordinates obtained from the coordinate
change ρ2 ¼ ð1 − 2M=rÞr2 sin2 θ and z ¼ ðr −MÞ cos θ.
Given the presence of a naked singularity at r ¼ 2M one
may question the physical interpretation of the spacetime in
the whole range of allowed coordinates with r > 2M. Since
at present we do not know whether a new island of stability
may exist for compact objects beyond the neutron star
equation of state it is possible that the collapse of a
nonspherical object may settle to a non spherical final
state without forming a black hole. Therefore it is worth
to investigate the possibility that spacetimes such as the
δ-metric may describe exotic compact objects with boun-
dary slightly larger than the Schwarzschild radius.
Of course there exist infinite static axially symmetric

solutions of the field equations. This can be easily under-
stood by thinking about the multipole expansion of the
field of the exterior of a source [55–57]. The (spherical)
Schwarzschild solution is unique and it corresponds to the
choice of a nonvanishing monopole, i.e., M, and vanishing
higher order multipoles at every order. Since there is an
infinite number of terms in the multipole expansion, each
choice of the set of multipole moments will yield a corres-
ponding solution. The δ-metric is of particular interest
because all of the higher order multipole moments depend
only on one continuous parameter δ, which is directly
related to the Schwarzschild solution and thus makes the
interpretation of the geometry much easier [38,39]. Of
course astrophysical objects rotate. Therefore when con-
sidering model that should potentially describe astrophysi-
cal sources it is imperative to consider a nonvanishing
angular momentum.
To obtain stationary solutions of the vacuum field

equations one may apply some general techniques, such
as the one proposed by Hoenselaers, Kinnersley, and
Xanthopoulos (HKX) [58] or the Newman-Janis algorithm
]59 ], which use known static solutions as “seeds” to obtain

new corresponding stationary solutions. For example, the
Kerr metric can be obtained in this manner starting from the
Schwarzschild solution and, as expected, it is the only black
hole solution of the stationary vacuum equations. Similarly,
one may take the δ-metric as a seed to obtain a stationary
generalization. However, one needs to be careful, since
depending on the technique used one may obtain different,
possibly non physically realistic, solutions for the sta-
tionary equations. For example, in [60] the stationary

metric obtained is a generalization of the δ-metric to
include a NUT-like parameter [61] and thus does not
describe a rotating object. On the other hand, the δ-Kerr
metric considered in this paper describes the exterior of a
rotating deformed object which reduces to the δ-metric in
the static case and to the Kerr metric in the case of no
deformation. Similarly to the δ-metric, the departure from
the Kerr spacetime is entirely controlled by the value of
one continuous parameter. This is a feature that makes the
δ-Kerr spacetime particularly interesting to study possible
astrophysical applications. Of course there exist other
stationary line elements that generalize Kerr and can be
obtained from different static seed metrics. For example,
one of the most widely known is the so-called Manko-
Novikov spacetime [62]. However, the Manko-Novikov
solution depends of the “full set of mass-multipole
moments,” which makes constraining its validity from
observations much more complicated.
The δ-Kerr metric was derived in Refs. [34,35] and can

be thought of as a nonlinear superposition of the δ-metric
and the Kerr metric. In Boyer-Lindquist-like coordinates
ðt; r; θ;ϕÞ, the line element of the δ-Kerr metric is [49]

ds2 ¼ −Fdt2 þ 2Fωdtdϕþ e2γ

F
B
A
dr2 þ r2

e2γ

F
Bdθ2

þ
�
r2

F
Asin2θ − Fω2

�
dϕ2; ð8Þ

where

A ¼ 1 −
2M
r

þ a2

r2
;

B ¼ Aþ σ2sin2θ
r2

: ð9Þ

Here M is the mass parameter, which is related to the
gravitational mass of the compact object, J is its spin
parameter, related to the object’s angular momentum, a ¼
J=M (while the dimensionless spin parameter is a� ¼
a=M), and σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
> 0 is a constant length. F,

ω, and γ are functions of the prolate spheroidal coordinates
x ¼ ðr −MÞ=σ and y ¼ cos θ:

F ¼ A
B
;

ω ¼ 2

�
a − σ

C
A

�
;

e2γ ¼ 1

4

�
1þM

σ

�
2 A
ðx2 − 1Þδ

�
x2 − 1

x2 − y2

�
δ2

; ð10Þ

where
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A ¼ aþa− þ bþb−;

B ¼ a2þ þ b2þ;

C ¼ ðxþ 1Þq½xð1 − y2Þðλþ ηÞaþ þ yðx2 − 1Þð1 − ληÞbþ�;
ð11Þ

a� ¼ ðx� 1Þq½xð1 − ληÞ � ð1þ ληÞ�;
b� ¼ ðx� 1Þq½yðλþ ηÞ ∓ ðλ − ηÞ�; ð12Þ

λ ¼ αðx2 − 1Þ−qðxþ yÞ2q;
η ¼ αðx2 − 1Þ−qðx − yÞ2q; ð13Þ

q ¼ δ − 1;

α ¼ M − σ

a
¼ a

M þ σ
: ð14Þ

Contrary to the Schwarzschild solution, for q ≠ 0 the
δ-Kerr spacetime has a nonvanishing mass quadrupole
moment even when a ¼ 0 [48]. For q ¼ 0, we have
λ ¼ η ¼ α, a� ¼ 2αðr −M �MÞ=a, and b� ¼ 2α cos θ.
Therefore, we can get

A ¼ 4α2

a2
ðΣ − 2MrÞ;

B ¼ 4α2

a2
Σ;

C ¼ 4α2

aσ

�
Σ −Mrð1þ cos2θÞ�; ð15Þ

and

F ¼ 1 −
2Mr
Σ

;

ω ¼ −
2Marsin2θ
Σ − 2Mr

;

e2γ ¼ Σ − 2Mr
Σ − 2MrþM2sin2θ

; ð16Þ

where Σ ¼ r2 þ a2cos2θ. If we plug these expressions in
the line element in Eq. (8), we recover the familiar Kerr
solution in Boyer-Lindquist coordinates. Finally note that
for a ¼ 0 and q ¼ 0 we retrieve the Schwarzschild metric.
In order to relate the parameters M, a and q to

measurable quantities, it is useful to consider the multipole
expansion of the mass and angular momentum of the source
[54]. Looking only at the first two nonvanishing multipoles,
we have that the mass monopole and mass quadrupole are

M0 ¼ M þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð17Þ

M2 ¼
σ3q
3

ð7− q2Þ þMσ2ð1− q2Þ−M2ðMþ 3σqÞ; ð18Þ

while for the angular momentum we have

J1 ¼ aM þ 2aq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð19Þ

J3 ¼ −a3M − aMσqð3σqþ 4MÞ − 2

3
aσ3qðq2 − 4Þ: ð20Þ

Notice that they reduce to the values for the Zipoy-
Voorhees metric in the nonrotating case a ¼ 0, and they
reduce to the values for Kerr when q ¼ 0.
From the above discussion it should be clear that the

δ-Kerr metric represents an ideal candidate to test possible
deviations from the Kerr metric of the geometry in the
surroundings of extreme compact objects. In particular it
may be possible to devise measurements to estimate the
value of δ for real astrophysical black hole candidates and
thus constrain, confirm or exclude the physical validity of
such solutions.

III. X-RAY REFLECTION SPECTROSCOPY

Relativistically blurred reflection features are common in
the x-ray spectra of accreting black holes [63–65]. These
features are produced by illumination of a “cold” disk by a
“hot” corona [66]. The astrophysical system is shown in
Fig. 1. The accretion disk around the black hole is optically
thin and geometrically thick. The gas in the disk is in local
thermal equilibrium1 and every point on the surface of the
disk emits a blackbodylike spectrum. The whole disk has
a multi-temperature blackbody-like spectrum because the
temperature of the gas increases approaching the central
object. The thermal spectrum of the accretion disk is
normally peaked in the soft x-ray band (0.1–10 keV) in
the case of stellar-mass black holes in x-ray binary systems
and in the UV band (1–100 eV) in the case of supermassive

FIG. 1. Disk-corona system. Figure from Ref. [67] under the
terms of the Creative Commons Attribution 4.0 International
License.

1We note that this is a common assumption in current
theoretical models. In reality, nonequilibrium conditions may
exist.
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black holes in active galactic nuclei. The corona is some
hotter plasma (∼100 keV) near the black hole. Thermal
photons from the accretion disk can inverse Compton
scatter off free electrons in the corona. The Comptonized
photons can illuminate the disk: Compton scattering and
absorption followed by fluorescent emission generate the
reflection spectrum.
In the rest-frame of the gas in the disk, the reflection

spectrum is characterized by narrow fluorescent emission
lines below 10 keV and a Compton hump peaking at
20–30 keV [68,69]. The reflection spectrum of the whole
disk detected by a distant observer is blurred because it is
the result of photons coming from all points of the accretion
disk and every point of the disk is characterized by its own
redshift factor, resulting from the combination of gravita-
tional redshift and Doppler boosting [5]. X-ray reflection
spectroscopy refers to the analysis of the reflection features
in the x-ray spectra of accreting black holes. In the presence
of high-quality data and the correct astrophysical model,
x-ray reflection spectroscopy can be a powerful technique
to probe the strong gravity regions around black hole
candidates [66].
The idea of using the analysis of reflection features to

test the nature of gravitationally collapsed objects and the
Kerr black hole hypothesis was discussed for the first time
in Ref. [70] and further explored by other authors in
Refs. [71–75]. In those early works, it was only studied
the shape of the iron Kα line, which is often one of the most
prominent features in the reflection spectrum and certainly
its most informative part about the spacetime metric in the
strong gravity region around the compact object. However,
none of those models was suitable to analyze real data.
A breakthrough in this field was the development of the
reflection model relxill_nk [76–78], which is an
extension of the popular relxill package [79,80] for
non-Kerr spacetimes. relxill_nk has been extensively
used in the past few years to test the Kerr black hole
hypothesis and specific modified theories of gravity in
which rotating compact objects are not described by the
Kerr solution (e.g., [81–84]). The state-of-the-art in the
field is reviewed in Ref. [27].
In general, the observed flux of an accretion disk around

a compact object can be calculated as

FðEoÞ ¼
1

D2

Z
dX dY IoðX; YÞ

¼ 1

D2

Z
dX dY g3IeðEo; re; ϑeÞ; ð21Þ

where Io and Ie are the specific intensity of the radiation as
measured, respectively, by the distant observer and in the
rest-frame of the gas in the disk. X and Y are the Cartesian
coordinates of the image of the disk in the plane of the
distant observer and D is the distance of the observer from
the source. Io ¼ g3Ie follows from Liouville’s theorem,

g ¼ Eo=Ee is the redshift factor, and Eo and Ee are the
photon energies as measured, respectively, by the distant
observer and in the rest-frame of the gas. Here re is the
emission radius on the disk and ϑe is the emission angle,
which may differ from the inclination angle of the disk with
respect to the line of sight of the distant observer, i, because
of light bending. The natural way to calculate the observed
flux FðEoÞ is to consider a grid on the plane of the distant
observer and follow the trajectories of photons backwards
in time from every point of the grid to the disk [85,86]. In
this way, we connect every point of the image of the disk on
the plane of the distant observer with its actual emission
point on the disk, we can calculate the redshift factor g,
and, if we know the local spectrum, we can calculate the
integral.
In practice, this approach is not doable because the ray-

tracing calculations are too time consuming to be done
during the data analysis process. The current strategy in
most reflection models, including also relxill_nk, is to
introduce the “transfer function” and rewrite Eq. (21) as
(see, e.g., Refs. [5,76])

FðEoÞ ¼
1

D2

Z
rout

rin

dre

Z
1

0

dg�
πreg2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ð1 − g�Þp

× fðg�; re; iÞIeðEo; re; ϑeÞ; ð22Þ

where rin and rout are, respectively, the inner and the outer
edges of the disk, f is the transfer function [87]

fðg�; re; iÞ ¼
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ð1 − g�Þp
πre

JðX; Y; g�; reÞ; ð23Þ

g� is the relative redshift at the emission radius re for an
observer with viewing angle i

g� ¼ g − gmin

gmax − gmin
; ð24Þ

and gmin ¼ gminðre; iÞ and gmax ¼ gmaxðre; iÞ are, respec-
tively, the minimum and the maximum values of the
redshift factor g for photons emitted at the emission radius
re and detected by an observer with viewing angle i. Finally
JðX; Y; g�; reÞ is the Jacobian between the Cartesian
coordinates of the image of the disk in the plane of the
distant observer and the two variables re and g� used to map
the emission points on the accretion disk.
The transfer function and the nonrelativistic reflection

spectrum can be calculated before the data analysis process
on a computer cluster and tabulated in FITS files for a grid
of their input parameters. During the data analysis process,
the model calls the FITS files and can quickly calculate the
integral to obtain the observed spectrum. If we want to
construct a model for a different spacetime metric, we just
need to replace the old FITS file of the transfer function
with a new one, which is calculated for the new metric of
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interest. This is what we have done to implement the δ-Kerr
metric in relxill_nk: we have considered a grid of spin
parameters a�, viewing angles i, and deformation param-
eters q and for every point of the grid we have calculated
the transfer function with a ray-tracing code for 100 values
of re and 40 values of g�.
If, instead of the full nonrelativistic reflection spectrum,

we consider only a narrow iron line at 6.4 keV in Ie, the
calculation of FðEoÞ produces relativistically broadened
iron lines. While any precise measurement from the
analysis of the reflection features requires to consider
the full reflection spectrum and not only an iron line, a
single iron line can show better the impact of the parameter
q on the shape of the spectrum. Figure 2 shows some
relativistically broadened iron lines for two values of
the inclination angle (i ¼ 30° and 60°) and two values of
the spin parameter (a� ¼ 0.7 and 0.998). For every line, the
emissivity profile is supposed to be a power law with
emissivity index p ¼ 8; in reality, a very steep emissivity
profile can only be expected in the inner part of the
accretion disk [88], but here we want to show the impact
of the deformation parameter q on an iron line profile and
we consider a simple case that maximizes the effect. The
inner edge of the disk is set at the radius of the innermost
stable circular orbit (ISCO) and the outer edge of the disk is

set at 400 gravitational radii. In every panel, we show the
iron line for q ¼ 0 (Kerr spacetime), �0.5, and �1. Notice
that the value q ¼ −1, corresponding to δ ¼ 0 is the
limiting case of an extremely flattened source, which in
the static case corresponds to the Curzon solution [89].

IV. OBSERVATION AND DATA REDUCTION

A. Selection of the source

With the δ-Kerr metric implemented in relxill_nk,
we can select reflection dominated spectra of accreting
black holes and fit these spectra to measure the deformation
parameter q of the selected sources. Since our goal is to test
fundamental physics, not to study the astrophysical envi-
ronment of specific sources, we need to select sources and
observations that can permit us to get robust measurements
of the spacetime geometry. This issue is already discussed
in the literature; see, for example, Ref. [27] for tests of the
Kerr hypothesis and Refs. [79,90] for black hole spin
measurements, but the conclusions are the same. It turns
out that it is extremely important to select suitable sources
and observations. We clearly need to select spectra with
strong reflection features, but it is also crucial that most of
the reflection component is generated very close to the
black hole in order to maximize the relativistic effects in the

FIG. 2. Iron line profiles in δ-Kerr spacetimes. The inclination angle of the disk with respect to the line of sight of the distant observer
is i ¼ 30° (left panels) and 60° (right panels). The dimensionless spin parameter is a� ¼ 0.7 (top panels) and 0.998 (bottom panels).
These profiles are calculated assuming that the emissivity profile is described by a power law with emissivity index p ¼ 8, the inner
edge of the disk is at the ISCO radius, and the outer edge is at 400 rg, where rg is the gravitational radius.
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spectrum. This requires to select sources in which the inner
edge of the disk is very close to the black hole (which, in
turn, requires to select very-fast rotating sources) and that
the emissivity profile in the inner part of the accretion disk
is very steep. It is also necessary to select sources with
geometrically thin accretion disks [20,91,92] (which, in
turn, requires sources with an accretion luminosity lower
than about 30% of their Eddington limit), bright (to have a
good statistics), with constant flux and hardness (otherwise,
the morphology of the accretion flow and/or the corona
may change during the observation), and the data should
not be affected by pile-up. It is also very important to have
data covering the whole x-ray spectrum (and not only the
iron line region).
From past studies, we know the sources and observations

most suitable to test the spacetime metric using x-ray
reflection spectroscopy. From the sole analysis of the
reflection features, the spectrum of EXO 1846–031
observed by NuSTAR on August 3, 2019 is certainly one
of the best options [27], nicely meeting the selection criteria
listed above. The source was in a hard intermediate state,
with very strong reflection features, inner edge of the disk
very close to the central object, steep emissivity profile,
and quite a high count rate. The analysis of the reflection
features in this spectrum can provide very stringent con-
straints on the spacetime metric around EXO 1846–031
and systematic effects seem to be under control, so any
measurement is also accurate.

B. EXO 1846–031
EXO 1846–031 is a low mass x-ray binary [93]. It was

discovered by the European X-ray Observatory Satellite
(EXOSAT) on April 3, 1985 [94]. A second outburst was
detected by CGRO/BATSE in 1994 [95]. After being in
quiescence for about 25 years, the source had a new outburst
in 2019, which was first detected by MAXI on July 23 [96].
This third outburst was then observed by other instruments;
e.g., Swift/XRT [97], VLA [98], and MeerKAT [99]. The
Nuclear Spectroscopic Telescope Array mission (NuSTAR)
[100] observed EXO 1846–031 on August 3, 2019 (obser-
vation ID 90501334002) with a 22.2 ks exposure time. In
what follows, we will consider this NuSTAR observation,
which was first analyzed in Ref. [101].

C. Data reduction

For the data reduction, we follow Ref. [101]. NuSTAR has
two detectors, which are called Focal Plane Modules (FPM)
A and B. We download the raw data from the HEASARC
website and use the HEASOFT module nupipeline
to convert the raw data into cleaned event files with
NuSTARDAS and the CALDB 20220301 calibration data-
base, so that we can get the source and background
information. For the source, we select a 180 arcseconds
radius circular region at the center of the source for both
FPMA and FPMB. For the background, we take a region of

the same size of the source as far as possible from the source
but on the same detector, so that the influence of the source’s
photons can be ignored. Afterwards, we use the HEASOFT
module nuproducts to generate the source and back-
ground spectra, the response matrix file, and the ancillary
file. Last, we use grppha to group the spectra to have at
least 30 counts per bin. Since the new CALDB corrects the
calibration in the 3–7 keVenergy range, we do not need the
table nuMLIv1.mod used in Ref. [101].

V. SPECTRAL ANALYSIS

For the spectral analysis, we use XSPEC v12.12.1 [102].
First, we fit the data with an absorbed power law to see the
reflection features in the spectrum. In XSPEC language, the
model reads

const × tbabs × ðdiskbbþ cutoffplÞ:

const is used to have a cross-calibration constant between
the detectors FPMA and FPMB: the constant is frozen to 1
for FPMA and is free for FPMB. tbabs describes the
Galactic absorption [103]: the hydrogen column density,
NH, is the only parameter of the model and is left free in the
fit. diskbb describes the thermal spectrum of the accre-
tion disk [104]: the temperature at the inner edge of the
disk, T in, and the normalization of the component are left
free in the fit. cutoffpl describes the continuum from
the corona: the photon index, Γ, the high energy cutoff,
Ecut, and the normalization of this component are left free
in the fit. The ratio between the data and the best-fit model is
shown in Fig. 3 and we clearly see unresolved strong
reflection features: a broadened iron Kα line peaking around
7 keV and a Compton hump peaking at 20–30 keV. Such a
strong blurred reflection features suggest that this NuSTAR

FIG. 3. Data to best-fit model ratio for an absorbed power law.
We clearly see a broadened iron line peaking around 7 keVand a
Compton hump peaking at 20–30 keV.
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spectrum is suitable to test the nature of the gravitationally
collapsed object in EXO 1846–031 with relxill_nk.
To fit the reflection features, we add relxill_nk to

the total model. We employ the flavor relxillion_nk,
which describes the relativistically blurred reflection spec-
trum of an accretion disk with a nontrivial ionization
gradient [105,106]. In XSPEC language, the total model
now reads

const × tbabs × ðdiskbbþ relxillion nkÞ:

relxill_nk has several parameters. The spacetime
metric is described by the spin a� and the deformation
parameter q of the δ-Kerr metric and both parameters are
left free in the fit. The inner edge of the accretion disk is set
at the ISCO and therefore it is not a free parameter but
directly depends on the values a� and q. The outer edge of
the disk is fixed to 900 rg, where rg is the gravitational
radius and 900 rg is the maximum value allowed by the
model. The emissivity profile of the accretion disk can
potentially be described by a twice broken power law and
there are thus five parameters: the emissivity indices of the
inner, central, and outer regions (p1, p2, and p3, respec-
tively) and the breaking radii between the inner and the
central parts, Rbr1, and between the central and outer parts,
Rbr2.

2 To model the emissivity profile with a broken power
law (instead of a twice broken power law), we simply set
p2 ¼ p3 and Rbr1 ¼ Rbr2 (i.e., the central region collapses
and we have only the inner and outer regions). The viewing
angle, i, the iron abundance, AFe, the ionization at the inner
edge of the disk, ξin, and the ionization index, αξ, are all
free parameters in the fit. The model includes the con-
tinuum from the corona and the reflection fraction, Rf ,
regulates the relative strength between the reflection
component and the continuum. The photon index, Γ,
and the high-energy cutoff, Ecut, of the continuum illumi-
nating the disk are free in the fit.
From previous analyses [105,106], we know that this

spectrum requires a nonvanishing ionization gradient and
for this reason we use the flavor relxillion_nk.
If we fit the data with a model with a disk with constant
ionization, we need to add a Gaussian to the total

model [101]. We fit the data with four models (models
1–4), which are listed in Table I.
In our first fit (model 1), we fit the data assuming that

the emissivity profile of the disk is described by a broken
power law (so p2 ¼ p3 and Rbr1 ¼ Rbr2). The best-fit
values are reported in Table II. The best-fit model and
the data to best-fit model ratio are shown in the top-left
panel in Fig. 4. As we can see from Table II, we find a
very high emissivity index for the inner region of the
accretion disk and an almost vanishing emissivity index for
the outer part. Such an emissivity profile may be generated
by a corona covering a large portion of the accretion
disk [107–110] and the data may prefer a twice broken
power law. As model 2, we thus fit the spectrum with a
twice broken power law. The best-fit values are reported in
the third column of Table II and the best-fit model and the
data to best-fit model ratio are shown in the top-right panel
in Fig. 4. We do not see any improvement in the fit and
Rbr2 is stuck at the outer edge of the accretion disk.
Unfortunately, for the outer edge of the disk we have
already chosen the maximum value allowed by the model
and we cannot fit the data with a larger disk; such a value
for Rbr2 should thus be understood as a lower limit. As
model 3, we reconsider an emissivity profile described by a
broken power law, but this time we freeze the emissivity
index of the outer region of the disk to 3, which is the value
normally expected for the outer emissivity index when the
corona is compact. The results are still shown in Table II
and Fig. 4, but the fit is clearly worse with Δχ2 ¼ þ65
with respect to model 1. Last, we consider the possibility
of the presence of a distant cold reflector and we add
xillver [111] to the total model. As shown in Table II,
these data clearly do not require any distant reflector.
To compare the quality of the fits of models 1–4, we con-

sider the Akaike information criterion (AIC) [112], which is a
more robust method than the comparison of the minima of χ2.
Since the sample size is not large with respect to the number
of free parameters, we calculate the Akaike information
criterion corrected for small sample sizes (AICc) [113]

AICc ¼ χ2min þ 2Np þ
2NpðNp þ 1Þ
ðNb − Np − 1Þ ; ð25Þ

where Np is the number of free parameters and Nb is the
number of bins. The AICc values for models 1–4 are
reported in the last row of Table II. The best model is that

TABLE I. Summary of the models used in the spectral analysis of this work.

Model XSPEC model Emissivity profile

1 tbabs × ðdiskbb þ relxillion nkÞ p1, p2, Rbr 1

2 tbabs × ðdiskbb þ relxillion nkÞ p1, p2, p3 ¼ 3, Rbr 1, Rbr 2

3 tbabs × ðdiskbb þ relxillion nkÞ p1, p2 ¼ 3, Rbr 1

4 tbabs × ðdiskbbþ relxill nkþ xillverÞ p1, p2, Rbr 1

2This means that the emission of the disk scales as r−p1 in the
inner part (r < Rbr1), as r−p2 in the central part (Rbr1 < r < Rbr2),
and as r−p3 in the outer part (r > Rbr2).
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with the lowest AICc (model 1). As a general and empirical
rule, models with ΔAICc > 5 are less favored by the data
and models with ΔAICc > 10 can be ruled out and omitted
from further consideration [113]. With such a criterion, we
can rule out model 3, while model 2 and model 4 are still
acceptable and can be used to estimate our modeling
uncertainties in the measurements of the parameters of
the system.
Since we simultaneously fit several parameters, it is

useful to check possible parameter degeneracy. To do this,
we run a Markov Chain Monte-Carlo (MCMC) analysis of
model 1. The corner plot showing possible correlations
among the parameters p1, p2, a�, i, and q is reported in

Fig. 5. The deformation parameter q is clearly correlated to
the spin parameter a�, as both regulate the location of the
ISCO radius. However, thanks to the high quality data of
this spectrum, we can simultaneously constrain q and a�.
On the other hand, we do not see any apparent correlation
of the measurement of q with the estimates of p1, p2, and i.

VI. DISCUSSION AND CONCLUSIONS

As discussed in Sec. IV, it is extremely important to
select the right sources and observations to get precise and
accurate measurements of the spacetime metric. From
previous studies, we know that the 2019 NuSTAR spectrum

TABLE II. Best-fit table of models 1–4. The reported uncertainties correspond to the 90% confidence level for one
relevant parameter (Δχ2 ¼ 2.71). When there is no lower/upper uncertainty, the boundary of the range in which the
parameter is allowed to vary is within the 90% confidence limit.

Model 1 2 3 4

tbabs
NH=1022 cm−2 4.3þ0.3

−0.4 4.2þ0.5
−0.4 5.8þ0.4

−0.4 4.2þ0.3
−0.4

diskbb
T in [keV] 0.31þ0.10

−0.08 0.31þ0.09
−0.09 0.497þ0.013

−0.012 0.31þ0.09
−0.09

Norm=105 1.4þ10
−1.2 1.1þ8

−0.9 0.084þ0.018
−0.009 1.2þ8

−1.1

relxillion_nk

p1 10.0−2.4 10.0−2.3 10.0−0.4 10.0−2.3
p2 0.5þ0.7 0.4þ0.6 3a 0.5þ0.7

p3 � � � 3a � � � � � �
Rbr1 [rg] 5.2þ2.1

−1.5 5.5þ2.9
−1.5 2.86þ0.16

−0.10 5.1þ2.8
−2.3

Rbr2 [rg] � � � 900−490 � � � � � �
a� 0.998−0.004 0.998−0.004 0.998−0.007 0.998−0.004
i [deg] 78.2þ0.6

−1.2 78.0þ0.9
−1.2 69.3þ1.6

−0.9 78.2þ0.7
−1.1

Γ 2.04þ0.05
−0.09 2.01þ0.05

−0.06 1.84þ0.02
−0.03 2.02þ0.07

−0.07

log ξin [erg · cm · s−1] 3.00þ0.08
−0.14 3.05þ0.07

−0.19 3.61þ0.11
−0.07 3.03þ0.09

−0.17

AFe 1.5þ0.4
−0.5 1.5þ0.5

−0.5 2.7þ0.7
−0.3 1.5þ0.5

−0.5
Ecut [keV] 110þ18

−25 103þ22
−6 80þ5

−7 106þ19
−12

Rf 0.237þ0.019
−0.015 0.222þ0.014

−0.014 0.25þ0.06
−0.04 0.25þ0.12

−0.02

αξ 0.19þ0.06
−0.05 0.19þ0.04

−0.03 0.00þ0.07 0.19þ0.06
−0.04

q 0.57þ0.11
−0.7 0.57þ0.10

−0.5 1.89−0.21 0.57þ0.10
−0.5

Norm=10−2 2.58þ0.18
−0.34 2.48þ0.19

−0.21 1.72þ0.16
−0.08 2.3þ0.4

−0.5

xillver
Norm=10−3 � � � � � � � � � 2þ5

constant

FPMA 1a 1a 1a 1a

FPMB 1.0152þ0.0014
−0.0014 1.0152þ0.0014

−0.0014 1.0152þ0.0014
−0.0014 1.0152þ0.0014

−0.0014

χ2=ν 2659.62=2599 2659.59=2598 2724.98=2600 2659.41=2598
¼ 1.02332 ¼ 1.02371 ¼ 1.04807 ¼ 1.02364

AICc 2693.86 2695.85 2757.19 2695.67
aThe value of the parameter is frozen during the fit.
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of EXO 1846–031 is a good choice for our goal. The
observation has been already analyzed and extensively
discussed in the literature [101,105,106,114]: the system-
atic effects seem to be well understood and the final
measurement of the deformation parameter is robust.
With this spirit, here we have reported the analysis of this
single but well-understood spectrum. There are a few other
well understood spectra of other sources, and their analysis
can presumably lead to similar constraints on q [27]. The
situation is different from, for example, black hole spin
measurements, where one wants to understand the spin
distribution of the whole black hole population to figure out
the gravitational collapse process behind the formation of
black holes while the measurement of a single source
cannot address general questions.
Model 1 is the simplest model and fits the data well. Our

constraint on q is (90% confidence level, only statistical
uncertainty)

−0.1 < q < 0.7; ð26Þ

and therefore our analysis is consistent with the hypothesis
that the gravitationally collapsed object in the x-ray binary
EXO 1846–031 is a Kerr black hole (for which q ¼ 0).
However, our analysis does not exclude q ¼ Oð0.1Þ and
therefore natural values3 of the deformation parameter are
allowed. We note that positive values of q implies that a
nonrotating source is oblate, which is more physically
realistic than a prolate (i.e., q < 0) one. In the case of a
rotating source, q > 0 implies that the object is more oblate

FIG. 4. Best-fit model and data to best-fit model ratio for models 1–4.

3Here we adopt the point of view widely accepted in
theoretical physics, where the dimensionless fundamental param-
eters of a theory should be expected all of order 1. Parameters
with values much larger or smaller than 1 are “unnatural” (and
presumably they are not fundamental, but derived quantities from
a more fundamental theory).
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than a Kerr black hole and q < 0 implies that it is more
prolate than a Kerr black hole (but not necessarily that it is a
prolate object).
The constraint in Eq. (26) can be rewritten in terms of a

constraint on the mass quadrupole of the source. For
a� ¼ 0.998, we find

−0.955 < M2=M3 < −1.131; ð27Þ

while for a Kerr black hole we have M2=M3 ¼ −0.996.
Objects with equations of state similar to neutron stars
would be significantly more oblate and the value ofM2=M3

would be in the range −3 to −10 [115].

From model 1, we find that the emissivity profile is very
steep around the central object and almost flat at larger
radii. While this is not the emissivity profile expected from
a compact corona, it is common in Galactic black holes;
see, for instance, the discussion in [110] and references
therein. If we try to fit the data with a twice broken power
law (model 2) or by adding a nonrelativistic reflection
component (model 4), we do not see any significant
difference: the value of the second breaking radius would
be large and the normalization of the nonrelativistic
reflection component would be very low. The estimate
of the model parameters are thus consistent with the
measurements inferred with model 1. If we model the
emissivity profile with a broken power law and we impose

FIG. 5. Corner plot for p1, p2, a�, i, and q in model 1 after the MCMC run. The 2D plots show the 1-, 2-, and 3-σ confidence level
contours.
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that the outer emissivity index is 3, the estimate of some
model parameters would be different (and we find that the
spacetime significantly deviates from the Kerr solution!),
but the fit is definitively worse and model 3 can be ruled out
(ΔAICc ¼ 63 with respect to model 1).
Systematic uncertainties related to simplifications in our

theoretical model to fit the data are under control and cannot
significantly change our results in Eqs. (26) and (27). In
Appendix A, we show the results of some simulations
created with models with a disk of finite thickness, a non-
vanishing electron density gradient, and a corona of specific
geometry. We fit the simulated data with our theoretical
model and we do not see any significant bias in the estimate
of most parameters, in particular in the estimate of the black
hole spin and the parameter q.
We are not aware of other tests of the δ-Kerr metric

published in the literature and observational constraints on
the deformation parameter q, though models for the shadow
and quasinormal modes have been studied in Refs. [48,49].
Since the δ-Kerr spacetime is an exact vacuum solutions
of the field equations in general relativity which relates to
the Kerr black hole through the variation of one continuous
parameter with a clear physical interpretation, we would
argue that experimental tests to constrain the allowed
values of q from observations are important toward a
possible resolution of the Kerr hypothesis. We could
certainly constrain q from the available gravitational wave
data from the LIGO-Virgo-KAGRA Collaboration follow-
ing the approach employed in Refs. [19,20] for testing other
non-Kerr metrics. The deformation parameter q may also
be constrained from the available mm black hole images
from the Event Horizon Telescope Collaboration (see, e.g.,
Ref. [33]). While these three techniques (x-ray, gravitational
waves, and black hole imaging) are sensitive to different
relativistic effects, in general, x-ray tests are those that can
provide the most stringent constraints on possible deviations
from the Kerr solution, while gravitational wave constraints
are normally a bit weaker and black hole imaging constraints
are more than an order of magnitude weaker; see, for
example, Ref. [27]. This is the typical situation with the
current data. However, gravitational wave constraints are
expected to improve quickly in the coming years.
Concerning x-ray tests, the constraint reported in the

present work is likely close to the best that we can do today.
Somewhat more stringent constraints may be obtained from
sources in which we can test the Kerr metric from the
simultaneous analysis of the reflection features and the
thermal spectrum, as done in Refs. [23,25,26]. This is not
possible for the NuSTAR spectrum analyzed here because
the thermal component is too weak and we do not have
independent measurements of the mass and distance of the
compact object. More stringent constraints on the defor-
mation parameter q require higher quality data, which will
be available from the next generation of x-ray missions,
starting from eXTP [116], which is currently scheduled to

be launched in 2027. The analysis of a simulated obser-
vation of a source like EXO 1846–031 with the LAD
instrument on board eXTP is reported in Appendix B and
we find that we can improve the constraint on q in Eq. (26)
by an order of magnitude.
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APPENDIX A: SIMULATED OBSERVATIONS
WITH NuSTAR

In this appendix, we want to show that simplifications
in our theoretical model to fit the data should not have a
significant impact on the estimate of the parameters of the
object, so our results in Eqs. (26) and (27) are robust. We
simulate three observations of a source like EXO 1846–031
with NuSTAR, assuming q ¼ 0 (Kerr metric) and the best-
fit values of model 1 in Table II as input parameters. The
exposure time of each simulation is 30 ks. We have to run
simulations and we cannot use these models to fit the
NuSTAR spectrum of EXO 1846–031 because we do not
have these models for the δ-Kerr metric and their con-
struction would be beyond the scope of the present work.
In our analysis of EXO 1846–031, the electron density is

supposed to be constant over the disk. In our first simulation,
we replace relxillion_nk with relxilldgrad_nk,
where the electron density profile is modeled with a power
law and the ionization profile is calculated self-consistently
from the emissivity and the electron density at every
radius [106]. We assume that the electron density at the
inner edge of the accretion disk is nin ¼ 1017 cm−3 and the
electron density profile scales as 1=r2.
In our second simulation, we consider a disk of finite

thickness, while our analysis of EXO 1846–031 is based on
a model with an infinitesimally thin disk. We employ the
flavor of relxill_nk described in Ref. [78] and we
assume that the Eddington-scaled mass accretion rate
is ṁ ¼ 0.2.
Last, in our third simulation we employ a corona of

specific geometry. We use the model described in Ref. [109],
where the corona is a disk at a height hcorona above the
accretion disk and with a radius Rcorona. We assume hcorona ¼
5 rg and Rcorona ¼ 15 rg, where rg is the gravitational radius
of the source.
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TABLE III. Best-fit table of simulated 30 ks observation of EXO 1846–031 with NuSTAR. The reported uncertainties correspond to
the 90% confidence level for one relevant parameter (Δχ2 ¼ 2.71).

Input Fit Input Fit Input Fit

tbabs
NH=1022 cm−2 4.3 4.3a 4.3 4.3a 4.3 4.3a

diskbb
T in [keV] 0.31 0.400þ0.020

−0.020 0.31 0.290þ0.020
−0.070 0.31 0.25þ0.06

−0.04

relxilldgrad_nk relxillslimdisk_nk relxilldisk_nk

hcorona [rg] � � � � � � � � � � � � 5 � � �
Rcorona [rg] � � � � � � � � � � � � 15 � � �
p1 10 10−0.4 10 10−2.0 � � � 7.0−7.0þ2.1

p2 0.5 0.030þ1.000
−0.020 0.5 0.0004þ0.3713

−0.0002 � � � 3.325þ0.035
−0.036

Rbr1 [rg] 5.2 9.0þ7.0
−0.7 5.2 7.2þ2.7

−2.5 � � � 12.0þ0.5
−1.1

a� 0.998 0.998−0.003 0.998 0.993−0.002 0.998 0.998−0.010
i [deg] 78.2 69.4þ0.5

−1.5 78.2 69.7þ1.1
−1.3 78.2 78.43þ0.16

−0.16

Γ 2.04 1.820þ0.025
−0.004 2.04 2.034þ0.050

−0.040 2.04 2.041þ0.007
−0.007

log ξin
[erg · cm · s−1]

3 2.800þ0.050
−0.020 3 3.017þ0.035

−0.012 3 3.0024þ0.0015
−0.0013

AFe 1.5 5.00þ0.40
−0.20 1.5 1.50þ0.23

−0.30 1.5 1.442þ0.011
−0.013

Ecut [keV] 110 104.0þ2.0
−2.0 110 104þ8

−5 110 140.7þ1.4
−1.1

Rf 0.237 0.248þ0.006
−0.010 0.237 0.238þ0.045

−0.036 0.237 3.68þ0.20
−0.20

log nin [cm−3] 17 15a 15 15a 15 15a

αn 2 0a � � � � � � � � � � � �
ṁ � � � � � � 0.2 0a � � � � � �
q � � � 0.40þ0.04

−0.50 � � � 0.013þ0.230
−0.845 � � � 0.32þ0.76

−0.32

constant
FPMA � � � 1a � � � 1a � � � 1a

FPMB � � � 0.9997þ0.0012
−0.0012 � � � 1.0007þ0.0011

−0.0011 � � � 0.9999þ0.0001
−0.0001

χ2=ν 2958.38=2906 2673.01=2713 3599.87=3446
¼ 1.01802 ¼ 0.98525 ¼ 1.04465

aThe value of the parameter is frozen during the fit.

FIG. 6. Best-fit model and data to best-fit model ratio for the simulated observation with NuSTAR.
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We fit the three simulations with model 1 with the
parameter q free and the emissivity profile modeled by a
broken power law. The results of our fits are reported in
Table III and Fig. 6. We see that the iron abundance is
significantly overestimated in the first simulation in which
the input model has a nonvanishing electron density
gradient. However, in general, we can recover the correct
input parameters; that is, the simplifications in our
relxillion_nk used to analyze EXO 1846–031 should
not affect the conclusions of our work. In particular, we do
not see any significant impact on the estimates of the black
hole spin parameter a� and on the deformation parameter q.

APPENDIX B: SIMULATED OBSERVATION
WITH LAD/eXTP

As discussed in Sec. VI, the constraint on q inferred in
the present work is likely close to the best that we can do
today. More stringent constraints will be possible with the
next generation of x-ray observatories. To be more quanti-
tative, we simulate an observation of a source like EXO
1846–031 with the LAD instrument on board eXTP. We
assume a 30 ks observation and we calculate a spectrum
with model 1, employing the best-fit values of model 1 in
Table II as input parameters but assuming that the source is
a Kerr black hole and thus q ¼ 0. From the analysis of this
simulated observation, we find the measurements reported
in Table IV. In particular, the measurement of the defor-
mation parameter q is (90% confidence level)

−0.05 < q < 0.02; ðB1Þ

which is roughly an order of magnitude better than our
measurement with NuSTAR in Eq. (26). Figure 7 shows the
best-fit model and the data to the best-fit model ratio.
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