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In this work, we present a non–general relativity full waveform for general parametrization of
axisymmetric black holes by extending our previous photon sphereþ inspiral model. Our model comprises
two main components: an inspiral part obtained by using a phenomenological method in a frequency domain
and a ringdown part derived from quasinormal modes associated with photon motion. For quantitatively
revealing the influence of the deviation from Kerr black holes on the waveforms, we specify our model to the
bumpy black holes, which are typical examples of non–general relativity black holes. The results show that
the deviation from the Kerr quadrupole moment could be measured with a high accuracy. The newwaveform
model can be directly used to test black holes for the LIGO-Virgo-KAGRA observations, the third
generation detectors, and space-borne interferometers.
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I. INTRODUCTION

In the past decade, there have been significant advance-
ments in the study of gravitational waves (GWs). The
detection of GW150914 by the LIGO-Virgo Collaboration
in 2015 marked a major breakthrough as it was the first
observation of gravitational wave events from a binary
black hole system [1]. Since then, more compact binary
systems have been discovered and reported by the LIGO-
Virgo-KAGRA Collaboration. To date, over 90 compact
binary systems have been identified [2–5], including two
neutron star and black hole systems that are distinct from
other binary black hole systems [6]. These unique compact
binaries provide excellent scenarios for testing general
relativity (GR) [7–12], gaining new insights into compact
objects [13], and potentially discovering new theories
beyond GR. Ground-based detectors such as LIGO,
Virgo, and KAGRA have opened up new avenues for
understanding compact binary physics and astrophysics.
Future space-based detectors such as Laser Interferometer
Space Antenna (LISA), Taiji [14], and Tianqin [15] will
offer different scenarios to improve our comprehension of
the Universe further.
The no-hair theorem states that black holes in general

relativity can be uniquely characterized by only a few
fundamental properties, namely their mass, electric charge,
and angular momentum. All other details, such as the

matter that formed the black hole, are “hairless” and do not
affect its external gravitational field. In 1915, a black hole
model was introduced by Schwarzschild to characterize
stationary and spherical spacetime. Subsequently, Kerr
devised a broader black hole model, commonly referred
to as the Kerr black hole, that possesses both stationary
and axisymmetric properties. These two classical metrics,
which are asymptotically flat, can be defined by two
fundamental parameters: the mass denoted as M and the
spin represented by a. The no-hair theorem suggests that a
black hole has information about its charge q, such as in
the Reissner-Nordstrom black hole or the Kerr-Newman
black hole. However, for real astrophysical black holes,
their charge can usually be ignored. Gravity theories yield
a wide range of metrics. Early metrics were Ricci-flat
solutions of Einstein’s field equations but had naked
singularities or other pathologies [16–18]. Over recent
years, researchers have studied Zipoy-Voorhees spacetime
(also known as δ-metric, q-metric, or γ-metric) [19–23],
while for a more general metric solution, they have
proposed and studied the δ-Kerr metric [24–26]. This
nonlinear superposition of the Zipoy-Voorhees metric with
the Kerr metric represents a deformed Kerr solution. Based
on the parametrized post-Newtonian (PPN) theory which
describes strong gravity far away from sources, Konoplya,
Rezzolla, and Zhidenko introduced the KRZ metric [27] to
describe most general black hole spacetimes through finite
adjustable quantities. The abundance of metrics derived
from general relativity or alternative theories of gravity
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presents a fertile ground for investigating various astro-
nomical phenomena in future research.
The Event Horizon Telescope (EHT) Collaboration

recently captured shadow images of collapsed objects
located at the center of two galaxies: M87* in an elliptical
galaxy and Sagittarius-A* (SgrA*) in the Milky Way
[28–31]. These observations have sparked a new area of
research focused on testing gravity theories and black hole
solutions within a gravitational field regime that has never
been tested before [32–34]. This image is a result of light
bending in the gravitational field of the source and has been
extensively studied in GR [35–38]. Theoretical explanations
for these images can be found in references such as [39–48].
The concept of the black hole shadow, which is associated
with the photon sphere surrounding the central object, was
explored in Ref. [49]. Over several years, research on the
photon sphere has included various approaches such as
different images of black holes [28,31,50], ray-tracing
codes [51–54], and accretion disks [55,56]. These methods
have provided effective ways to study black holes and
general relativity. Several authors have used photon motion
to investigate the black hole shadow using different metrics
including the Kerr metric [57–59], the Kerr-Newman metric
[60], and other rotating regular black hole metrics [61–63].
Furthermore, the M87* shadow has been utilized by
researchers to evaluate alternative theories of gravity such
as superspinar [34] and conformal massive gravity [64].
McWilliams proposed a new waveform model for GR black
holes called the backwards one-body (BOB) method that
only considers photon motion without any phenomenologi-
cal degrees of freedom [65].
The coalescence of two black holes involves three stages:

inspiral, merger, and ringdown. During the inspiral phase,
the black holes gradually approach each other. This phase
refers to the few seconds before the merger. During the
merger, they combine to form a single black hole. Finally,
during the ringdown phase, the newly formed black hole
undergoes oscillations, gradually releasing excess energy
and angular momentum in the form of gravitational waves,
until it reaches a stable state of equilibrium. Different phases
have different methods to describe. In general, the inspiral
phase is described by post-Newtonian theory while numeri-
cal relativity simulation provides a good description of the
merger phase. Quasinormal modes are used to study the
ringdown phase where there is still a slight perturbation in
spacetime compared to a stable black hole. Black hole
perturbation theory can be used to study the ringdown
waveform. Well-known waveform models such as EOBNR
and IMRPhenom rely on this idea [66–75]. Currently, the
Teukolsky equation is the most widely used method for
calculating perturbations. This linear partial differential
equation describes how scalar, vector, and gravitational
perturbations of Kerr black holes evolve. By solving this
equation with an outgoing boundary condition at infinity
and an ingoing boundary condition at the horizon, complex

frequencies known as quasinormal modes (QNMs) can be
used to characterize gravitational waves. The QNMs are a
spectrum of complex frequencies associated with gravita-
tional waves. In addition to the fundamental QNMs, the
overtone refers to higher-order vibrational modes that a
black hole can exhibit during its ringdown phase. If we
consider the ringdown phase early enough, before these
overtones would have decayed it was shown that including
them enhances waveform template accuracy, increases the
signal-to-noise ratio (SNR), and allows more precise testing
of the no-hair theorem [76,77]. Dhani [78] studies the
insertion of negative-frequency modes (counterrotation),
known as mirror modes, in addition to positive-frequency
modes, known as regular modes, in the gravitational wave-
form. He shows that this will provide a more accurate
description of the gravitational wave signal. Yang et al. [79]
developed a method for calculating QNMs through the
photon sphere.
In this study, we proposed a full waveform model for

the non-GR black hole by combining the inspiral and
ringdown components. The inspiral component is con-
structed by the phenomenological method, while the
ringdown component is obtained based on the photon
sphere. We refer to this model as PSI-FD (ΨFD), which is
an extension of our previous Ψ (PSI: photon sphereþ
inspiral) model [80]. The Ψ model is a waveform model
that consists of the inspiral part calibrated from post-
Newtonian approximation and the ringdown part derived
from the photon sphere. Reference [80] demonstrates the
high accuracy of the Ψ waveform model compared to
numerical relativity (NR) waveforms.
This article is structured as follows: Sec. II provides an

introduction to the KRZ metric and highlights key con-
siderations when using this metric. We then combine the
KRZ metric with the bumpy black hole metric to establish
the relationship between the parameters of the KRZ metric
and the quadrupole moment. In Sec. III, we present a
methodology for extracting the inspiral waveform from
photon motion. Subsequently, Sec. IV outlines the deri-
vation of QNMs through the photon sphere and describes
how to obtain the ringdown waveform using these QNMs.
Finally, we combine the inspiral and ringdown waveform
to obtain the complete waveform. Our results and findings
are presented in Sec. V. We have fixed units such that
G ¼ c ¼ 1.

II. PARAMETRIZED BLACK HOLE METRIC
AND THE APPLICATION

The KRZ metric, constructed by Konoplya, Rezzolla,
and Zhidenko [27] proposes a parametrization for general
stationary and axisymmetric black holes. They develop a
model-independent framework that parametrizes the most
generic black hole geometry by a finite number of tunable
quantities. By adjusting these quantities, a number of
famous black hole metrics, such as the Kerr metric, are
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found exactly and in the whole space. The metric with
this form

ds2 ¼ −
N2ðr̃; θÞ −W2ðr̃; θÞ sin2 θ

K2ðr̃; θÞ dt2

− 2Wðr̃; θÞr̃ sin2 θdtdϕ
þ K2ðr̃; θÞr̃2 sin2 θdϕ2

þ Σðr̃; θÞ
�
B2ðr̃; θÞ
N2ðr̃; θÞ dr̃

2 þ r̃2dθ2
�
; ð1Þ

where r̃ ¼ r=M; ã ¼ a=M, and the other metric functions
are defined as

Σ ¼ 1þ a2 cos2 θ=r̃2; ð2Þ

N2 ¼ ð1 − r0=r̃Þ½1 − ϵ0r0=r̃þ ðk00 − ϵ0Þr20=r̃2 þ δ1r30=r̃
3�

þ ½a20r30=r̃3 þ a21r40=r̃
4 þ k21r30=r̃

3L� cos2 θ; ð3Þ

B ¼ 1þ δ4r20=r̃
2 þ δ5r20 cos

2 θ=r̃2; ð4Þ

W ¼ ½w00r20=r̃
2 þ δ2r30=r̃

3 þ δ3r30=r̃
3 cos2 θ�=Σ; ð5Þ

K2 ¼ 1þaW=rþfk00r20=r̃2þ k21r30=r̃
3Lcos2 θg=Σ; ð6Þ

L ¼
�
1þ k22ð1 − r0=r̃Þ

1þ k23ð1 − r0=r̃Þ
�
−1
: ð7Þ

This paper adopts the parameters defined as follows:

a20 ¼ 2ã2=r30; ð8Þ

a21 ¼ −ã4=r40 þ δ6; ð9Þ

ϵ0 ¼ ð2 − r0Þ=r0; ð10Þ

k00 ¼ ã2=r20; ð11Þ

k21 ¼ ã4=r40 − 2ã2=r30 − δ6; ð12Þ

w00 ¼ 2ã=r20; ð13Þ

k22 ¼ −ã2=r20 þ δ7; ð14Þ

k23 ¼ ã2=r20 þ δ8; ð15Þ

The dimensionless parameter δi, where i ¼ 1, 2, 3, 4, 5,
6, 7, 8, describes the deformation of various parameters in
metric (1). Specifically, gtt is deformed by δ1, while δ2 and
δ3 correspond to spin deformations. Additionally, δ4 and δ5
relate to deformations of grr, and δ6 is for event horizon
deformation. When all values of δi are zero (δi ¼ 0), the
KRZ metric reduces to the Kerr metric specified in (1).

Furthermore, if ã ¼ 0, it reduces to the Schwarzschild
metric.
The parameter r0 represents the equatorial radius of the

event horizon. Some papers have utilized the KRZmetric to
explore the general parametrization of axisymmetric black
holes. However, these papers erroneously employed the
definition r0 ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, which is only valid in the

context of the Kerr metric. We provide two examples to
illustrate this point.

A. EDGB black hole metric

The Einstein-dilaton–Gauss-Bonnet (EDGB) gravity is
a modified theory of gravity that extends general relativity
(GR) by including an additional scalar field (dilaton) and
the Gauss-Bonnet term, a curvature term that arises from
higher-dimensional theories of gravity. The authors of this
paper [27] provided the parametrization for an EDGB
black hole:

r0 ¼ 2M
�
1−

χ2

4
−
49ζ

80
þ 128171χ2ζ

588000

�
þOðχ4;ζ2Þ; ð16Þ

δ1 ¼ −
17ζ

60

�
1 −

324899χ2

166600

�
þOðχ4; ζ2Þ; ð17Þ

δ2 ¼ −
63χζ

160
þOðχ3; ζ2Þ; ð18Þ

δ3 ¼ Oðχ3; ζ2Þ; ð19Þ

δ4 ¼ −
361ζ

240

�
1 −

51659χ2

176890

�
þOðχ4; ζ2Þ; ð20Þ

δ5 ¼
175629

196000
χ2ζ þOðχ4; ζ2Þ; ð21Þ

χ ≡ a
M

¼ J
M2

; ζ ≡ 16πα2

βM4
; ð22Þ

where α and β are two coupling constants in Einstein-
dilaton–Gauss-bonnet theory, α represents the coupling of
higher curvature, while β accounts for the coupling with
the scalar field.

B. Dilaton black hole metric

Additionally, the authors provided the parametrization
for a dilaton black hole:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − a2

q
Þ2 − b2

r
; ð23Þ
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δ1 ¼
2ðμþ bÞ

h
2b2 þ r20 þ ð2r0 − 3bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p i
r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
− 3

r20 þ a2

r20
; ð24Þ

δ2 ¼
2aðμþ bÞ

�
bþ r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p �
r30

; ð25Þ

δ3 ¼ 0; ð26Þ

δ4 ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ b2
p − 1; ð27Þ

δ5 ¼ 0; ð28Þ

where μ and b are the dilaton parameters.
Equations (16) and (23) demonstrate that when consid-

ering specific metrics, such as the EDGB or Dilaton
metrics, the equatorial radius of the event horizon (r0) is

not equal to r0 ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. Therefore, when utiliz-

ing the KRZ metric to obtain the value of r0, it is crucial to
focus on the appropriate metric. This concept is easily
comprehensible because the KRZ metric is a general
metric. However, if the value of r0 is fixed using the
definition r0 ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, then the universality of the

metric is lost.

C. Bumpy black hole

General relativity predicts the existence of compact
objects known as black holes, whose spacetimes are solely
determined by their mass, spin, and charge in vacuum,
in accordance with the “no-hair” theorem. Collins and
Hughes [81] proposed the existence of an exception, called
bumpy black holes. These objects possess a multipolar
structure closely resembling that of black holes but with
some deviation. When the deviation is set to zero, bumpy
black holes reduce to standard black holes such as
the Schwarzschild black hole or the Kerr black hole.
The bumpy Kerr black hole metric can be expressed in
the Boyer-Lindquist coordinates, as shown below:

ds2 ¼ −e2ψ1

�
1−

2Mr
Σ

�
dt2 þ e2ψ1−γ1ð1− eγ1Þ4a

2Mrsin2θ
ΔΣ

dtdr− e2ψ1−γ1
4aMrsin2θ

Σ
dtdϕþ e2γ1−2ψ1

�
1−

2Mr
Σ

�
−1

×

�
1þ e−2γ1ð1− 2eγ1Þa

2sin2θ
Δ

− e4ψ1−4γ1ð1− eγ1Þ2 4a
4M2r2sin4θ
Δ2Σ2

�
dr2 − 2ð1− eγ1Þasin2θ

�
e−2ψ1

�
1−

2Mr
Σ

�
−1

− e2ψ1−2γ1
4a2M2r2sin2θ
ΔΣðΣ− 2MrÞ

�
drdϕþ e2γ1−2ψ1Σdθ2 þΔ

�
e−2ψ1

�
1−

2Mr
Σ

�
−1

− e2ψ1−2γ1
4a2M2r2sin2θ
ΔΣðΣ− 2MrÞ

�
sin2θdϕ2: ð29Þ

The bumpy Kerr black hole metric can be expressed in
the form gαβ ¼ gKerrαβ þ bαβ, where gKerrαβ denotes the Kerr
metric. In the above equation, Δ≡ r2 − 2Mrþ a2, and γ1
and ψ1 denote the perturbation potentials arising from the
mass moment and spin moment perturbations, respec-
tively. The definitions of γ1 and ϕ1 are detailed in [81,82].
The bumpy Kerr black hole metric reduces to the Kerr
black hole metric, i.e., γ1 ¼ ϕ1 ¼ 0, in the absence of
perturbations,

btt ¼ −2
�
1 −

2Mr
Σ

�
ψ1; ð30Þ

btr ¼ −γ1
2a2Mr sin2 θ

ΔΣ
; ð31Þ

btϕ ¼ ðγ1 − 2ψ1Þ
2aMr sin2 θ

Σ
; ð32Þ

brr ¼ 2ðγ1 − ψ1Þ
Σ
Δ
; ð33Þ

brϕ ¼ γ1

��
1 −

2Mr
Σ

�
−1

−
4a2M2r2sin2θ
ΔΣðΣ − 2MrÞ

�
asin2θ; ð34Þ

bθθ ¼ 2ðγ1 − ψ1ÞΣ; ð35Þ

bϕϕ ¼
�
ðγ1 − ψ1Þ

8a2M2r2sin2θ
ΔΣðΣ − 2MrÞ − 2ψ1

�
1 −

2Mr
Σ

�
−1
�

× Δsin2θ: ð36Þ

Vigeland and Hughes [82] proposed the quadrupole
bumps (i.e., l ¼ 2) in the Boyer-Lindquist coordinates:
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ψ l¼2
1 ðr;θÞ¼B2M3

4

ffiffiffi
5

π

r
1

dðr;θ;aÞ3
�
3Lðr;θ;aÞ2cos2θ

dðr;θ;aÞ2 −1

�
;

γl¼2
1 ðr;θÞ¼B2

ffiffiffi
5

π

r �
Lðr;θ;aÞ

2

½c20ðr;aÞþc22ðr;aÞcos2θþc24ðr;aÞcos4θ�
dðr;θ;aÞ5 −1

�
; ð37Þ

where

dðr; θ; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2Mrþ ðM2 þ a2Þcos2θ

q
;

Lðr; θ; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr −MÞ2 þ a2cos2θ

q
; ð38Þ

and

c20ðr; aÞ ¼ 2ðr −MÞ4 − 5M2ðr −MÞ2 þ 3M4;

c22ðr; aÞ ¼ 5M2ðr −MÞ2 − 3M4 þ a2½4ðr −MÞ2 − 5M2�;
c24ðr; aÞ ¼ a2ð2a2 þ 5M2Þ: ð39Þ

By selecting the appropriate parameters, the KRZ metric
can be reduced to the bumpy black hole metric. Since the
KRZ metric does not provide an exact value for the black
hole’s quadrupole moment, we aim to utilize the quadru-
pole moment in the bumpy black hole metric to correspond
to δi. Upon performing these calculations, we determined
that selecting specific values for δi results in the reduction
of the KRZ metric to the bumpy black hole metric:

δ1 ¼
	�

ð2ψ1 þ 1Þ
�
1 −

2M
r

���
1 − δ6

r30
r3
cos2θ

�

−
�
1 −

r0
r

�

=
�
r30
r3

�
1 −

r0
r

��
;

δ6 ¼
2ψ1r5

r30
tan2θ;

δ2 ¼ δ3 ¼ δ4 ¼ δ5 ¼ 0: ð40Þ

The quadrupole moment is given by the following
equation:

Q ¼ −Ma2 − B2M3
ffiffiffiffiffiffiffiffiffiffi
5=4π

p
¼ QK þ ΔQ; ð41Þ

where B2 is the parameter that appears in Eq. (37). Figure 1
displays the relationship between δ1, δ6, and ΔQ with
different spins a ranging from 0.1 to 0.7. The left panel
displays the values of δ1 for different spins and ΔQ values.
A larger ΔQ corresponds to a lower spin for the same value
of δ1, suggesting that δ1 has a greater impact on the
quadrupole moment at lower values of spin. The right
panel illustrates that the influence of spin on δ6 is negligible.
Additionally, the figure reveals that ΔQ increases with
increasing values of δ1 and δ6, which represent the deviation
of the Kerr metric. Furthermore, the increase in ΔQ is more
pronounced with increasing δ6.

III. THE INSPIRAL WAVEFORM IN KRZ
BLACK HOLES

The inspiral phase waveform can be calculated through
the geodesic motion, and we will focus on the deformation
parameter δ1 in this section. For simplicity, we assume that
all other deformation parameters are zero when consider-
ing one single parameter. In the following section, we will
provide a brief overview of the derivation for the defor-
mation phase, with details available in the paper [83].
In Sec. II, we have demonstrated that this value of r0 ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is only applicable in the Kerr metric.

Therefore, r0 ¼ needs to be determined for varied non-
GR black holes. As an example, we concentrate on a

FIG. 1. The relationship between theΔQ and δ1ðδ6Þ in the bumpy black hole metric with different spin a from 0.1 to 0.7. The left panel
shows the relationship between the ΔQ and δ1. The right panel shows the relationship between the ΔQ and δ6.
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specific metric, namely the bumpy black hole metric, to
determine the corresponding horizon radius r0 and the
deformation phase. To gain a deeper understanding, we
investigate the quadrupole moment Q rather than the
deformation parameters δi. The normalization of the four-
velocity requires that uμuμ ¼ −1. To simplify the equation,
we choose θ̇ equal to zero. Solving the equation (i.e.,
uμuμ ¼ −1) yields the following result:

Veff ¼ grrṙ2 ¼ −1 − gttṫ2 − gϕϕϕ̇
2: ð42Þ

To simplify the above equation, we can use the specific
energy (the energy per unit mass) and specific angular
momentum (the angular momentum per unit mass) of
a particle:

E ¼ −ðgttut þ gtϕuϕÞ; ð43Þ

L ¼ gϕtut þ gϕϕuϕ; ð44Þ

and they are constants because the KRZ spacetime is
stationary and axisymmetric. Through Eqs. (43) and (44),
we can get the expressions of ṫ and ϕ̇:

ṫ ¼ −
Lgtϕ þ Egϕϕ
gttgϕϕ − g2tϕ

; ð45Þ

ϕ̇ ¼ Lgtt þ Egtϕ
gttgϕϕ − g2tϕ

; ð46Þ

and then with Eqs. (45) and (46) we can rewrite Veff in terms
of E, L as

Veff ¼ −1þ E2 þ 2M
r

þ L2ð2M − rÞ
r3

þ 8δ1M3ð2M − rÞ
r4

þ 8δ1L2M3ð2M − rÞ
r6

þO½δ21�: ð47Þ

The determination of the energy and angular momentum
of circular orbits relies on the condition that Veff ¼
dVeff=dr ¼ 0. By satisfying this condition, it is possible
to express the energy and angular momentum as the sum of
the GR term and a small perturbation that relates to the
deformation parameter δ1:

E ¼ EGR þ δE;

L ¼ LGR þ δL; ð48Þ

where

EGR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − 4Mrþ r2

ðr − 3MÞr

s
;

LGR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr2

r − 3M

r
; ð49Þ

δE ¼ −
2M3ðr − 2MÞ
r5=2ðr − 3MÞ3=2 δ1 þO½δ21�;

δL ¼ −
6M5=2ðr − 2MÞ2
r2ðr − 3MÞ3=2 δ1 þO½δ21�: ð50Þ

By considering the far-field limit in which L ¼ r2ϕ̇ →
r2Ω (where Ω ¼ dϕ=dt refers to the angular velocity of the
body as observed by a distant observer), one can obtain the
following result:

Ω2 ¼M
r3

�
1þ3M

r
þ9M2

r2
−
12M2

r2
δ1þO

�
δ21;

M3

r3

��
: ð51Þ

For circular orbits, it is possible to express the system’s
total energy (ET) as the effective energy of a single body in
the rest frame of the other,

ET ¼ mþ Eb ¼ m½1þ 2ηðEeff − 1Þ�: ð52Þ

The parameters in the equation include the binding
energy, Eb, the symmetric mass ratio, η ¼ μ=m, and the
reduced mass, μ, which is defined as μ ¼ m1m2=m
(m ¼ m1 þm2, where m1 and m2 are the masses of the
two bodies),

Eeff ¼ gtt

�
1þ L2

r2

�
1=2

; ð53Þ

We separate the rest-mass energy m from the binding
energy Eb to express the latter as a sum of its general
relativity term and a correction:

Eb ¼ EGR
b −

ηm2

2r

�
4δ1

�
m
r

�
2

þO
�
δ1

2;
m3

r3

��
: ð54Þ

To simplify calculations, it is possible to express the
binding energy, Eb, as a function of the orbital frequency,
ν ¼ Ω=2π:

EbðνÞ
μ

¼ EGR
b ðνÞ
μ

− 4δ1ð2πmνÞ2 þO½δ21; ð2πmνÞ8=3�: ð55Þ

The orbital phase is given by

ϕðνÞ ¼
Z

ν
Ωdt ¼

Z
ν 1

Ė

�
dE
dΩ

�
ΩdΩ; ð56Þ
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the variable Ė describes the speed at which the binding
energy is altered due to the emission of gravitational
waves, which comprises two parts: the conservative sector
and the dissipative sector. Our focus is primarily on the
conservative sector of the gravitational waves emission,
and the dissipative sector is assumed to be unaffected.
Based on this study [83], we only need to employ the
quadrupole formulation up to the post-Newtonian order of
0PN for determining the modification in binding energy,

Ė0PN
GR ¼ −

32

5
η2m2r4Ω6: ð57Þ

Then we can get the expression for the orbital phase
evolution:

ϕðνÞ ¼ ϕ0PN
GR ðνÞ − 25

eη
ð2πmνÞ−1

3δ1 þO½δ21�; ð58Þ

where

ϕ0PN
GR ðνÞ ¼ −

1

32η
ð2πmνÞ−5=3: ð59Þ

In the stationary phase approximation, the Fourier trans-
form of ϕ is given by ΦGR

GWðfÞ ¼ 2ϕðt0Þ − 2πft0, where t0
is the stationary time, νðt0Þ ¼ f=2, and f is the Fourier
frequency. Then we can get

ΨGWðfÞ ¼ ΨGR;0PN
GW ðfÞ − 75

8
u−1=3η−4=5δ1 þO½δ21�; ð60Þ

where

ΨGR;0PN
GW ðfÞ ¼ −

3u−5=3

128
; ð61Þ

and u ¼ ηπmf.
So the deformation of δ1 on the phase can be

expressed as

ϕδ1
KRZ ¼ −

75

8
u−1=3η−4=5δ1: ð62Þ

We can apply the same method for determining the
deformation parameters besides the one already discussed.
Deformation parameter δ2:

ϕδ2
KRZ ¼ −

85

3η
½1þ logðuÞ�δ2: ð63Þ

Deformation parameter δ3:

ϕδ3
KRZ ¼ −C1δ3cos2ðθÞf5=3; ð64Þ

C1 ¼ 48 × 2−1=3m5=3=ðηπÞ.

Deformation parameter δ6:

ϕδ6
KRZ ¼ −C2δ6cos2ðθÞf−1; ð65Þ

C2 ¼ 40m=η.
The deformation parameters δ4 and δ5 have no effect on

the motion of geodesics, and therefore they cannot be
constrained within the framework.
Having obtained the phase deformation using the

deformation parameters δi, we can apply it to a more
accurate model such as the PhenomD model [84]. The
PhenomD model divides the GW signal into three stages:
inspiral, intermediate, and ringdown. In this work, we
employ the PhenomD model to represent the inspiral and
intermediate waveforms. To model the ringdown wave-
form, we introduce the Φ model, which we explain in
detail later in the paper.

A. Inspiral

The phase ansatz in the inspiral stage is given by

ϕIns ¼ ϕTF2ðMf;ΞÞ þ 1

η

�
σ0 þ σ1f þ 3

4
σ2f4=3

þ 3

5
σ3f5=3 þ

1

2
σ4f2

�
þ ϕKRZ; ð66Þ

where η ¼ m1m2=M2, M ¼ m1 þm2, the ϕTF2 is the full
TaylorF2 phase:

ϕTF2 ¼ 2πftc − φc − π=4

þ 3

128η
ðπfMÞ−5=3

X7
i¼0

φiðΞÞðπfMÞi=3: ð67Þ

The constants σi (where i ¼ 0, 1, 2, 3, 4) represent the
correlation between the mass and spin of the system.
Meanwhile, the phase deformation arising from the general
parametrized black hole is denoted by ϕKRZ. Varying the
values of δ1, δ2, δ4, and δ6 will result in different phases.
φiðΞÞ are the PN expansion coefficients that are related to
the intrinsic binary parameters. The detailed information of
σi and φiðΞÞ can be found in Appendix B of this article [84].
It should be mentioned here that the inspiral phase relies on
the PN results which only have finite correction orders, so it
may miss the strong-field effects at higher PN orders that
appear in some modified theories.

B. Intermediate

The intermediate stage is after the inspiral stage, and its
phase is given by [84]

ϕInt ¼
1

η

�
β0 þ β1f þ β2 logðfÞ −

β3
3
f−3
�
: ð68Þ
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βi (i ¼ 0, 1, 2, 3) is the constants related to the mass
and spin of the system. The detailed information of βi can
still be found in Appendix B of this article [84]. Because
the duration of the intermediate is indeed short and the
accuracy of Eq. (68) is good enough compared with the
NR waveforms [84], we directly use this phase to construct
our waveform model and ignore the non-GR effect.

IV. THE RINGDOWN WAVEFORM IN KRZ
BLACK HOLES

The forthcoming section aims to capture the ringdown
signals from the waveforms generated using the PSI (Ψ:
photon sphereþ inspiral) model [80]. This model operates
in the proximity of the photon sphere and is based on
the BOB waveform model first presented in Ref. [65]. The
BOB model is an analytic phenomenological model for
the late inspiral, merger, and ringdown signal of the binary
black hole (BBH). It takes into account the motion of
photons without considering any additional phenomeno-
logical degrees of freedom. This paper aims to derive the
complete waveforms by associating our Ψ waveforms with
the inspiral waveforms. Wewill then scrutinize the complete
waveforms with diverse spins and mass ratios and apply
them to the parametrized black holes (i.e., KRZ metric).
To utilize the Ψ waveforms, it is essential to derive the

parameters of QNMs, i.e., ωR and ωI . The real part of
QNMs, ωR, can be decomposed into two directional
components, namely, θ and ϕ:

ωR ¼ LΩθðm=LÞ þmΩprecðm=LÞ; ð69Þ

where Ωθ indicates the frequency of polar motion, which is
the rate at which the photon oscillates above and below the
equatorial plane. The oscillation period can be calculated
using the formula, Tθ ¼ 2π=Ωθ.
In addition to polar motion, the particle also undergoes a

periodic motion in the azimuthal (ϕ) direction with respect
to the oscillation period, Tθ, and the magnitude, Δϕ. The
deviation between Δϕ and �2π is commonly known as the
“precession angle”:

Δϕprec ¼ Δϕ −
	−4π ðcorotating orbitÞ
þ4π ðcouterrotating orbitÞ ; ð70Þ

Ωprec ¼ Δϕprec=Tθ; ð71Þ

L ¼ lþ 1=2: ð72Þ

The values of l and m could be determined through the
conditions: Vrðr;ωRÞ ¼ ∂Vr

∂r jðr;ωRÞ ¼ 0, and Vr is the poten-

tial in the radial Teukolsky equation. The imaginary
component of QNMs, ωI , is directly linked to the
Lyapunov exponents, which determine the rate at which
a circular null geodesic expands its cross-sectional area

under infinitesimal radial perturbations. The detailed cal-
culation of ωI can be found in Ref. [79]. We can derive ωR
and ωI using the photon motion in three dimensions (3D).
Figure 2 illustrates the correlation between the real and
imaginary part of the QNM frequency ωR, ωI and between
the deformation parameters δ1, δ6. Varying δ6 has a more
significant effect on ωR. In the figure at the bottom left, we
note that the green and orange lines almost overlap, beyond
a spin value, but since δ6 cannot exceed 0.5, this will
not happen. This is caused by the quadrupole moment
deviation ΔQ becoming excessively large. On the right
panel, it is evident that the parameter δ1 significantly
impacts the value of ωI .
The amplitude of the gravitational wave can be

expressed as follows, based on [65,85]

jhlmj2 ∼
d
dt

ðΩlm
2Þ; ð73Þ

where Ωlm is the orbital frequency, through this equation,
and we can get the equation of the GW waveform:

h22 ¼ Xsech½γðt − tpÞ�e−iΦ̃22ðtÞ: ð74Þ

The equation includes the following variables: X is a
constant related to the amplitude of the waveform, γ is
the Lyapunov exponent characterizing the rate of diver-
gence of nearby null geodesics, tp is the time at maximum
amplitude of the waveform, and Φ22ðtÞ is the phase.
We can also derive the phase equation:

Φ̃22 ¼
Z

t

0

Ωdt0 ¼ arctanþ þ arctanhþ

− arctan− − arctanh− − ϕ0; ð75Þ

where

8<
:

arctan� ≡ κ�τ
h
arctan

�
Ω
κ�

�
− arctan

�
Ω0

κ�

�i
;

arctan h� ≡ κ�τ
h
arctanh

�
Ω
κ�

�
− arctanh

�
Ω0

κ�

�i
;

ð76Þ

κ� ≡
	
Ω4

0 � k

�
1 ∓ tanh

�
t0 − tp

τ

��

1=4

; ð77Þ

Ω¼
	
Ω4

0þk

�
tanh

�
t− tp
τ

�
− tanh

�
t0− tp

τ

��

1=4

; ð78Þ

k ¼
� Ω4

QNM −Ω4
0

1 − tanh ½ðt0 − tpÞ=τ�
�
; ð79Þ

where τ ¼ γ−1, ΩQNM ¼ ωQNM/m (ΩQNM is just ωR), and
ϕ0, Ω0, t0 are the constants that can be freely chosen.
We need to focus on Eqs. (78) and (79) mentioned above.

The inclusion of terms with an even power in these
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equations imposes an extra constraint on Ω0. Our objective
is to determine the minimum value of Ω0, which can be
achieved by equating the expression inside Eq. (78) to zero.
This yields the following function:

Ω4
0 ¼ k

�
− tanh

�
t − tp
τ

�
þ tanh

�
t0 − tp

τ

��
: ð80Þ

Substituting Eq. (79) into Eq. (80), we can get the solution
of Eq. (80) (we only consider the positive solution):

Ω0
4 ¼

ΩQNM
4

�
tanh

h
t−tp
τ

i
− tanh

h
t0−tp
τ

i�
�
−1þ tanh

h
t0−tp
τ

i� 
1−

tanh
�
t−tp
τ

�
1−tanh

�
t0−tp

τ

�þ tanh
�
t0−tp

τ

�
1−tanh

�
t0−tp

τ

�
! :

ð81Þ

With Eq. (81), we get the minimum value of Ω0. For
convenience, we choose t equal to tp, so Eq. (81) can be
simplified to this form:

Ω0
4 ¼ ΩQNM

4

�
tanh

�
t0 − tp

τ

��
: ð82Þ

Thus, we obtain the minimum value ofΩ0 isΩQNM (i.e., the
region of Ω0 is Ω0 > ΩQNM).
To finalize the analysis, it is essential to establish a

connection between the waveforms originating from the
photon sphere and the inspiral waveforms. This can be
established at any point between the innermost stable
circular orbit (ISCO) and the light ring (LR). In this study,
we have selected the peak of the waveform as our matching
point. This selection allows us to derive the optimal values
of ϕ0, Ω0, and t0. Then with Eqs. (67), (68), and (74), we
can get the full waveform and refer to it as PSI-FDðΨFDÞ.
In Fig. 3, we show the full waveform for the spin

χ1 ¼ χ2 ¼ 0.85, for mass ratio 1∶1, and with different
quadrupole moment deviation ΔQ. The waveform from
Kerr black holes is plotted in each panel for comparison
purposes. Both positive and negative values of deviations
ΔQ were selected to ensure a more thorough comparison.
The waveforms suggest that the quadrupole moment
deviation denoted as ΔQ has a minor impact on the

FIG. 2. The relationship between the ωRðIÞ and δ1ð6Þ with different spin aða ¼ 0.20; 0.21; 0.22Þ. The left panel shows the relationship
between the ωR and δ1ð6Þ, and the right panel shows the relationship between the ωI and δ1ð6Þ. When we study one of the parameters δi,
another parameter is equal to zero.
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ringdown part. However, it significantly influences the
inspiral part. The analysis of Figs. 1 and 2 can explain
that for the ringdown part, a major influence is from the
values of ωR and ωI . Further analysis of these figures
identifies that the ωRðIÞ only undergoes minor changes with
a ΔQ magnitude variation of 0.001. The full waveforms of
the same relative quadrupole momentΔQ=QKerr in different
spins are shown in Fig. 4. Our analysis indicates that at a
small spin, the quadrupole moment deviation ΔQ has a
considerably greater impact on the overall waveform.
Furthermore, to ensure a more intuitive comparison, we
employ the parameter overlap. The definition of the overlap
is as follows:

F ¼
� hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p �

; ð83Þ

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð84Þ

where h1 is the waveform derived from the PSI model, h2 is
the compared waveform (e.g., SEOBNRv4, SXS), and
SnðfÞ is the power spectral density of the detector noise;
in this work we use the aLIGO’s sensitivity curve [86]. And
the definition of the match is

FF ¼ max

� hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p �

; ð85Þ

and the mismatch of two waveforms is defined as 1-FF.
Figure 5 displays the plot of the match between the Kerr
waveforms and the bumpy black hole with various relative
quadrupole moments ΔQ=QKerr. The plots for each panel
represent different spin values, specifically a ¼ 0.10, 0.30,
0.50, 0.70, and 0.90. The dashed black line represents the
match values equal to 0.995 which corresponds to the SNR
approximately equal to 40, and this value is from the
definition F ¼ 1 − D

2SNR2
min

where F is the match between

the signals andD is the number of intrinsic parameters of the
model (we choose D ¼ 14 in this work). The left panel
shows the case of mass ratio 1∶1, and the right panel shows

FIG. 3. The full waveform of the bumpy black hole with spin χ1 ¼ χ2 ¼ 0.85 and mass ratio 1∶1. Each panel shows the different
waveform with different quadrupole moment deviationsΔQ. For better comparison, we chose different values that had both positive and
negative values of quadrupole moment deviations ΔQ.
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FIG. 4. The full waveform of the bumpy black hole with a different spin (χ1 ¼ χ2 ¼ 0.20, 0.50, and 0.80) and with the same mass ratio
1∶1. Each panel shows the waveform with the same relative quadrupole moments ΔQ=QKerr ¼ 1 × 10−2 and the same spin Kerr
waveform.
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the mass ratio 1∶2. The match exhibits a smaller value at
lower spin configurations, which can be explained using the
definition of the quadrupole moment. According to Sec. II,
the definition of the quadrupole momentQ can be written as

Q ¼ −
220r30 þMa2

3
; ð86Þ

where r0 is the horizon radius. Then we can derive this
expression:

QKerr −Q
QKerr

¼ ΔQ
QKerr

¼ 2

3
− a20

r30
Ma2

; ð87Þ

where the parameter a20 is directly proportional to the
deformation parameters δi. It is evident that as the value of
δi increases, the deviation from the Kerr case becomes
more pronounced, leading to a decrease in the match
values. Based on this, we can rewrite the above equations
as follows:

Match ∝
�
2

3
−

ΔQ
QKerr

�
Ma2

r30
: ð88Þ

From this equation, we see that when the value of
ΔQ=QKerr is fixed, a smaller value of a results in a smaller
match (the difference of a2=r30 is really small for the
different spins).
We also study the overlap between the Kerr waveform

and ΨFD for the next-generation detectors such as Laser
Interferometer Space Antenna (LISA) and Einstein
Telescope (ET) as shown in Fig. 5. The bottom panel
shows the overlap with different relative quadrupole
moments ΔQ=QKerr for LISA [87] and ET-D sensitivity
[88] of the same mass ratio 1∶2. They have the same trend
as shown in LIGO where the overlap exhibits a smaller
value at lower spin configurations. Compared with the top
panel, we can see the overlap has a smaller value for the
LISA and ET, and this means the next generation will have
a better detection of such a gravitational waveform.

FIG. 5. The match between the Kerr waveform and the bumpy black hole waveform with different relative quadrupole moment
ΔQ=QKerr. In each panel, we plot the cases with different spins a ¼ 0.10, 0.30, 0.50, 0.70, and 0.90. The left panel shows the case of
mass ratio 1∶1, and the right panel shows the mass ratio 1∶2. The dashed black line represents the match values equal to 0.995.

SONG LI and WEN-BIAO HAN PHYS. REV. D 108, 083032 (2023)

083032-12



V. CONCLUSION

In this article, we investigate a general parametrization of
axisymmetric black holes, using the KRZ metric. Previous
studies have controversially defined the equatorial radius
of the event horizon, r0, based on the Kerr metric, which
we demonstrate using the EDGB and dilaton metrics. We
compare the KRZ metric with the bumpy metric, focusing
on the δ1 and δ6 parameters for simplicity. The bumpy
black hole metric has a multipolar structure that closely
resembles, but is not exactly, that of a black hole. Notably,
a clear correlation between δ1, δ6, and the quadrupole
moment Q is identified.
In Sec. III, we analyze the inspiral waveform phase in the

KRZ metric, exploring the impact of varying parameters.
The ringdown waveform is derived from the properties of
the photon sphere [79] around black holes [80,85]. This
section gives a brief overview of how to obtain quasinormal
modes using the photon sphere and how to derive the
ringdown waveform from these modes. Next, we establish
a connection between the inspiral and ringdown wave-
forms, considering the peak as the matching point. We refer
to this full waveform model as ΨFD, because this waveform
model depends on the specific metric, it is difficult to apply
it to an unknown metric. We plot the full waveform with
different spins a and different quadrupole moment devia-
tions ΔQ and find the quadrupole moment deviation ΔQ
has a significant influence on the inspiral waveform.
We also calculate the overlap between the waveforms

from KRZ and Kerr binary black holes. If the SNR is
enough (roughly around 40), LIGO-Virgo-Kagra (LVK)

may constrain the deviation of a quadrupole moment from
the Kerr black hole in a relative error ∼10−3. However, in
the previous detections by LVK, there is no event with such
a high SNR. We may participate in the O4 run, and LVK
will find candidates with higher SNRs. For the next-
generation detectors such as ET and space-borne detectors
Taiji and LISA, GW signals with larger SNRs could easily
be detected; therefore, the next generation will have a better
measurement of the deviation from Kerr black holes.
We also found that the effect of deviation ΔQ on the

waveforms has a relation with the spin parameter a. Our
findings revealed that as the spin increases, the influence of
ΔQ=QKerr diminishes. This trend can be explained by
considering the definition of the quadrupole moment Q in
the KRZ metric. We believe that our waveform model can
be useful for testing the no-hair theorem with GWs. In an
upcoming work, our waveform template will be employed
to conduct data analysis to test non-GR black holes with
LVK events. This will provide insights into their properties
and offer a potential avenue for future tests of general
relativity.
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