
Thermodynamically adaptive piecewise polytropic
equation of state for neutron stars

M. Berbel * and S. Serna
Universitat Autònoma de Barcelona, Bellaterra 08193, Spain

(Received 22 June 2023; accepted 15 September 2023; published 23 October 2023)

The equation of state (EoS) governing high-density matter inside neutron stars can exhibit phase
transitions (PTs), which have the potential to induce anomalous wave structures in hydrodynamics and
alterations in star stability. However, existing analytic models that are employed to replace realistic
tabulated EoS in simulations often fall short in accurately capturing the intricate thermodynamics
associated with these PT. Modeling PTs poses a challenge as they occur in thin density regions yet
significantly impact the description of matter, rendering the EoS nonconvex and leading to a distinct
hydrodynamic behavior. In this paper, we present a new analytic model for tabulated EoS with special focus
on the modeling of PTs by means of a thermodynamically adaptive slope piecewise polytropic (T-ASPP)
approximation, able to replicate nonconvex EoS and therefore triggering anomalous wave dynamics. In
addition, we present a comprehensive analysis of the stellar properties (mass, radius, and tidal
deformability) obtained from our model and compare them with those derived from the tabulated EoS.
The results demonstrate that our T-ASPP EoS model provides a fair approximation to the neutron star
properties. Furthermore, we investigate the hydrodynamic discrepancies between including and excluding
the proper thermodynamics of PTs by examining two Riemann problems. This analysis sheds light on the
significant impact of incorporating the accurate thermodynamics of PTs on the hydrodynamic behavior.
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I. INTRODUCTION

The understanding of the equation of state (EoS) for
matter beyond nuclear density remains a significant chal-
lenge in astrophysics. This highly dense matter is encoun-
tered in the cores of neutron stars (NSs), where thermal
effects can be neglected rendering the EoS a relation
between pressure and density, commonly referred to as a
cold EoS. Various theoretical models have been proposed
to describe the NS core, including nucleons, hyperons, or
boson condensates, leading to increasingly complex EoS
models that incorporate the corresponding microphysical
descriptions. These models have been constrained through
a combination of electromagnetic signal observations and
heavy-ion collision experiments [1–3]. More recently,
gravitational wave detections [4–7] have provided new
insights and observational constraints.
One intriguing aspect of high-density matter is the

possibility of phase transitions (PTs) to exotic states, such
as quark-gluon plasma or the presence of hyperons.
Although the nature of these PTs remains uncertain, they
can significantly impact the stability [8,9] and dynamical
evolution of NSs through hydrodynamics [10,11]. The
study of PTs is often approached through the examination
of the sound speed of the fluid c2s , which, in the case of a

cold EoS, is given by the derivative of the pressure with
respect to density.
Notably, the PT to quark-gluon plasma has been

observed to induce a loss of monotonicity in the sound
speed [12,13], which is otherwise expected to monotoni-
cally increase. Bedaque and Steiner [14] have concluded
that the sound speed of high-density matter exhibits non-
monotonic regions.
The sound speed of the fluid is closely linked to the

concept of the fundamental derivative [15], defined as

G ¼ 1þ ∂ lnðcsÞ
∂ lnðρÞ ; ð1Þ

where ρ represents the rest-mass density. An EoS with a
changing sign G is referred to as nonconvex.
A study of the effects of a nonconvex EoS describing the

matter of NSs has been performed through a phenomeno-
logical Gaussian Gamma Law (GGL) EoS [16]. The GGL
EoS presents a nonlinear adiabatic index, leading to non-
monotonic sound speed along a given region. This EoS was
employed in hydrodynamics experiments considering spe-
cial relativistic hydrodynamics [16,17] revealing the devel-
opment of anomalous wave structure. Further numerical
experiments on the stability and collapse of NSs [11]
indicate that nonconvex EoS can accelerate the collapse*marinaberbelp@gmail.com
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into black holes and leave an imprint on the gravitational
wave signal of the infalling phase.
Simulations involving NSs commonly employ analytic

EoS models characterized by a few parameters. These
computationally efficient models can adequately represent
the realistic tabulated EoSs derived from the microphysics
of the matter constituents. One widely utilized model is the
piecewise polytropic (PP) approach proposed in [18],
which employs four free parameters to effectively capture
the high-density region of EoS of different natures. This
approach provides a reasonable reconstruction of the
pressure and yields stellar properties similar to those
obtained from the tabulated data. The PP model has been
successfully employed in simulations of NS binaries [19]
and is implemented in several numerical codes involving
NSs [20–24].
However, the PP model is limited in the representation of

the thermodynamic properties of PTs. Given a polytrope for
the pressure

PðρÞ ¼ κρΓ; ð2Þ

the sound speed and the fundamental derivative are

c2s ¼ κΓρΓ−1; G ¼ Γþ 1

2
: ð3Þ

Therefore, the sound speed is always monotonic, and the
fundamental derivative has a constant, positive value. As a
consequence, any PP model fails to be nonconvex.
In this paper, we propose an analytic EoS model for NSs

that allows nonconvex regions. Following the approach of
the PP model, we fit the pressure of tabulated EoSs with
polytropes and change to a different definition at PTs to
account for the different behavior of the pressure. We refer
to our model as thermodynamically adaptive slope piece-
wise polytropic approximation (T-ASPP). First, we
describe a methodology to locate PTs in tabulated EoS.
Then, we design an analytic model for the EoS at PTs that
can be seamlessly stitched to any pressure model outside
PTs ensuring a continuous EoS. This PT model allows for
the presence of negative values of the fundamental deriva-
tive and, therefore, is capable of representing nonconvex
EoS. The T-ASPP EoS model uses this reconstruction for
PTs and polytropes outside them. Different polytropes are
partitioned according to the thermodynamic properties of
the tabulated data. We provide graphical examples of the
fitting of T-ASPP in comparison with PP approximation
and show the discrepancy that both models have on stellar
properties with respect to tabulated EoS. We include
examples of hydrodynamics that illustrate the different
wave structure arising from the PP and T-ASPP model due
to the presence of a nonconvex region.
The paper is organized as follows. In Sec. II, we present

a methodology for detecting PTs in tabulated EoS.
Section III introduces a model for matter at PTs.

Complementing the model for PTs, Sec. IV describes a
polytropic fit of the pressure outside PTs, altogether
constructing our T-ASPP model. Finally, in Sec. V, we
illustrate the performance of our T-ASPP model by
comparing it with the PP approximation. In Sec. VI, we
draw our conclusions.

II. DETECTING PHASE TRANSITIONS

PTs of matter are characterized by an abrupt change in its
thermodynamic properties. Along PTs, more than one
phase coexists, and matter deviates from its usual behavior
in pure phases. In a mixed phase, the slope of pressure with
density decreases with respect to the slope in pure phases.
The main affected quantities relate to the derivatives of the
pressure.
In a cold EoS, where the entropy is constant, the sound

speed is defined as

c2s ¼
∂P
∂ρ

: ð4Þ

Along PTs, the sound speed decreases, presenting a local
minimum.
The adiabatic exponent,

γ ¼ ρ

P
∂P
∂ρ

; ð5Þ

presents a kink (discontinuity in first derivative) at the
start of a PT, while it is a smooth quantity along pure
phases [25].
The key behavior identifying a PT is the break of

monotonicity of the sound speed which in turn induces
the kink in the adiabatic exponent. We use these features to
identify the start of PTs in tabulated EoS. We consider that
the PT is over and matter is in a pure phase when these
thermodynamic quantities recover their usual smooth
behavior.
To obtain the sound speed and adiabatic exponent from a

tabulated EoS containing values on density ρ and pressure
P, we use the derivative of a three-point Lagrangian
interpolation, as it allows for unevenly spaced data.
Given consecutive abscissa points ½x0; x1; x2� with corre-
sponding ½y0; y1; y2� ordinate values, then

∂y
∂x

≈
y0ð2x − x1 − x2Þ
ðx0 − x1Þðx0 − x2Þ

− y1
2x − x0 − x2

ðx0 − x1Þðx1 − x2Þ
þ y2

2x − x0 − x1
ðx0 − x2Þðx1 − x2Þ

: ð6Þ

Because of the numerical nature of the values in the
tables, the points contain an intrinsic error that may lead to
oscillations in the numerical derivatives. These oscillations
need to be distinguished from actual properties of the fluid.
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The challenges come from detecting a kink in the
discrete adiabatic exponent in a general manner and
determining that the sound speed is varying smoothly after
the PT. For this purpose, we introduce the use of the total
variation (TV).
The TV is a measure of oscillatory behavior. For a set of

discrete values fuigmi¼0, it is defined as

TVðuÞ ¼
Xm−1

i¼0

juiþ1 − uij: ð7Þ

A strategy to detect kinks, used in [26], is to define
the local total variation (LTV) of n points at the value of
index j as

TVn
j ðuÞ ¼

Xjþn

i¼j

juiþ1 − uij: ð8Þ

This quantity measures how much the magnitude u is
changing around the point of index j. If the magnitude
varies smoothly, the value of TVn

j ðuÞ is similar for
consecutive j and fixed n. If there is an abrupt change
like a kink in the magnitude, then the LTV increases.
To detect a kink in the adiabatic exponent, we compute

TV3
jðγÞ for every point in the table. The selection n ¼ 3 is

made to keep the study very local, as PTs extend for small
regions of density. Including more points can mix them
with pure phases covering up their effects. A kink intro-
duces a local maximum in the sequence of LTVs.
For a tabulated EoS including the sound speed and

adiabatic exponent, which can be calculated from the
pressure and density values as specified above, we propose
the following criteria to identify a PT:

(i) A PT starts at ρj if the corresponding value of the
sound speed is a local maximum. To avoid mis-
classifying oscillations, we require that the sound
speed decreases for at least two consecutive data

points. In addition, the start of the PT must induce a
kink in the adiabatic exponent, which implies a local
maximum in its LTV. This maximum can occur at
index j − 1, j, or jþ 1. The actual position of the
maximum is determined from how the numerical
derivatives were calculated during the construction
of the table.

(ii) A PT finishes at ρq if the sound speed is larger than
or equal to the value it had at the beginning of the PT,
since the sound speed is always larger in pure phases
than in mixed phases. Also, c2s should increase
monotonically and smoothly. We require TV3

qðc2sÞ
to be less than or equal to TV3

jðc2sÞ, implying that the
sound speed is smoother than when it suddenly
changed at the start of the PT.

We apply the method described to locate PTs in tabulated
EoS to the tables taken from Arizona University NS EoS
database [27]. The EoS that present at least one PT are PS
[28], GS1-GS2 [29], BGN1H1 [30], H4-H7 [31], and
ALF1-ALF2 [32]. The left and right extremes of the
PTs are gathered in Table I.
The PTs located lie at the transition between the crust

and the core of the NS, representing the change from solid
to liquid matter. The EoS models H4-H7 present additional
PTs deep into the core related to the progressive addition of
hyperon species.

III. MODELING PHASE TRANSITIONS

In this section, we focus on the modeling of the EoS
along PTs, assuming there exists another modeling for the
pressure outside them. We will refer to such a model as
PfitðρÞ during this section.
To accurately represent the thermodynamic properties of

a PT, we model the sound speed (4) of the fluid. This choice
is motivated by the fact that the sound speed exhibits
distinct behavior along PTs, characterized by a change in
monotonicity and the presence of a local minimum.

TABLE I. Density values of the extremes of the PTs located in EoS tables from Arizona [27]. Density is presented in 1014 g=cm3.
Notice that the densities have been rounded for the table to fit in the page.

PT1 PT2 PT3 PT4

EoS ρL ρR ρL ρR ρL ρR ρL ρR

PS 3.645 7.458
GS1 4.316 9.557
GS2 4.648 8.587
BGN1H1 6.142 11.62
H4 5.013 6.109 6.839 7.370 11.39 12.02 14.48 17.297
H5 5.511 7.072 7.935 8.632 15.84 16.57
H6 4.847 6.341 6.773 7.603 10.79 12.28
H7 5.777 7.204 8.366 8.898 16.14 16.57
ALF1 3.735 7.091
ALF2 4.210 6.350
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Let CðρÞ represent the curve obtained by modeling the
sound speed of a tabulated EoS. Starting from an initial
state (ρi, Pi), we can express the pressure as

PðρÞ ¼ Pi þ
Z

ρ

ρi

CðtÞdt: ð9Þ

Additionally, we can derive an expression for the internal
energy. Since we are considering a cold EoS, where the
entropy is constant, the first law of thermodynamics
leads to

εðρÞ ¼ εi þ
Z

ρ

ρi

PðtÞ
t2

dt: ð10Þ

To model the sound speed across the PT, we suggest
using a polynomial of degree n,

pnðρÞ ¼
Xn
i¼0

ai

�
ρ

ρm

�
i
; ð11Þ

where we restrict the values of n to f2; 3; 4g. A linear
approximation (n ¼ 1) fails to capture the change in
monotonicity during the PT, while higher degrees (n > 4)
may introduce unrealistic behavior, as discussed later. The
parameter ρm represents a density scale factor, and its value
is chosen to be the density at which the minimum sound
speed occurs during the PT. Finally, ai denote the free
parameters of the model.
Given an interval for the PT, ½ρL; ρR�, we ensure

continuity of pressure at ρL by selecting ρi ¼ ρL, Pi ¼
PL ¼ PfitðρLÞ in (9).
Continuity at ρR is imposed by equating PfitðρRÞ ¼

PpnðρRÞ ¼ PR:

PR ¼ PL þ
Xn
i¼0

ai
ðiþ 1Þρim

ðρiþ1
R − ρiþ1

L Þ: ð12Þ

To satisfy this condition, we fix one of the free
parameters, a0, as follows:

a0 ¼
PR − PL

ρR − ρL|fflfflfflffl{zfflfflfflffl}
d

−
Xn
i¼1

ai
ρim

ρiþ1
R − ρiþ1

L

ðiþ 1ÞðρR − ρLÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
θi

: ð13Þ

Our model, when including continuity of pressure,
presents an independent term d given by the extremes of
the PT and a constant factor θi multiplied by each of the
remaining free parameters of the model:

pnðρÞ ¼
Xn
i¼1

ai
ρim

ðρi − θiÞ þ d: ð14Þ

Pressure and internal energy values are obtained straight-
forwardly:

PðρÞ ¼ PL þ
Xn
i¼1

ai
ρim

�
ρiþ1 − ρiþ1

L

iþ 1
− θiðρ − ρLÞ

�
þ dðρ − ρLÞ; ð15Þ

εðρÞ ¼ εL þ
Xn
i¼1

ai
iðiþ 1Þρimρ

ðiρiþ1
L − ðiþ 1ÞρiLρ

þ ρiþ1 þ ðiþ 1Þiθiðρ lnðρL=ρÞ þ ρ − ρLÞÞ

þ d

�
lnðρ=ρLÞ þ

ρL − ρ

ρ

�
−
PLðρL − ρÞ

ρLρ
: ð16Þ

Once a PT is localized, we have the density values of its
extremes, ρL and ρR, as well as the corresponding sound
speed values, cL and cR. Additionally, inside the transition
region, we can identify the sound speed’s minimum cm at
density ρm. Moreover, it is known that at ρL there exists a
local maximum of the sound speed indicating the onset of
the PT. We can impose these pairs of values and local
extrema on our model to determine the free parameters.
We have a total of five conditions (three pairs of values,

two extrema), and we can impose a maximum of n
conditions simultaneously on each model. This leads to
a set of parametrizations from which we can choose the
most appropriate one. It is important to note that for n ¼ 2
our model takes the form of a parabola and therefore it only
makes sense to impose the minimum as its vertex.
Given a tabulated EoS and a PT location within, we

calculate all parametrizations for n ¼ 2, 3, 4. We discard
those that are not causal or thermodynamically consistent.
After eliminating parametrizations that contradict physi-
cally valid EoS, we further filter them based on their
agreement with the behavior of the sound speed along a PT.
We only consider parametrizations with exactly one local
minimum as the sole extreme within the PT interval. This
filtering process usually excludes higher-order polynomials
since they tend to exhibit additional extrema along the PT.
The remaining parametrizations are physically consistent

models for the PT. To select the more appropriate one
among them, we consider the error of a model as the
average between the relative errors of pressure and sound
speed. The parametrization with smaller error is the model
for the PT. This approach allows us to choose the best
fitting polynomial without introducing additional free
parameters into the overall EoS model.

IV. THERMODYNAMICALLY ADAPTIVE SLOPE
PIECEWISE POLYTROPIC APPROXIMATION

To construct an expression for the pressure outside the
PTs, we follow the idea in [18] to fit polytropes with the
tabulated data. A polytrope is defined as (2), where κ and Γ
are the free parameters of the model. The internal energy
and other thermodynamic quantities for polytropes are
detailed in Sec. III of [18].
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Since PTs are modeled independently, we remove these
regions of data from the tabulated EoS. The outcome is a
table with gaps that separate different polytropes, a total of
the number of PTs plus one. The dividing densities there-
fore arise from the thermodynamics, and the polytropes
adjust smoother data, which does not contain the different
slope of the pressure along PTs.
We consider that the crust of the NS is described by the

four fixed polytropes indicated in [18]. Our modeling
applies beyond their last dividing density and continues
the crust at some matching density. If the tabulated EoS
presents PTs along the crust, our modeling approach can be
applied to the whole NS.
A first polytrope, marked with subindex 1, matches the

model of the crust, with subindex c, at some density ρ1 and
extends up to the start of the first PT of the EoS. To ensure
continuity of the pressure, the free parameters of the first
polytrope are the matching density ρ1 and the adiabatic
index Γ1. The matching density determines κ1 ¼ κcρ

Γc−Γ1

1 .
To fit the relation, we minimize the root-mean-squared
residual

S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

X
ρi>ρ1

ðlogðPiÞ − logðκcρΓc−Γ1

1 Þ − Γ1 logðρiÞÞ2
s

;

ð17Þ

wherem is the number of density points above the value ρ1.
Polytropes defined in the region after a PT do not require

continuity conditions with any other piece, and therefore
both parameters κ and Γ can be used in the fitting. The cost
function to minimize is

S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ρi

ðlogðPiÞ − logðκÞ − Γ logðρiÞÞ2
s

; ð18Þ

where N is the number of points in the corresponding
tabulated data.
Given that the high-density regime of the EoS is adjusted

with a number of polytropes equal to the number of PTs
plus one, an accurate reconstruction of the pressure is
achieved when multiple PTs are present. Nevertheless, in
the presence of a single PT, one polytrope may not
adequately capture the variations in pressure slope within
the stellar core. To address this issue, we design a procedure
to locate significant changes in the slope of pressure within
the tabulated data that would indicate an appropriate
matching density between two polytropes modeling the
core. The method is designed to be applied to EoS with a
single PT and focuses on the region after it.

A. Locating significant changes of the pressure slope

When trying to fit the whole core of a NS with a single
polytrope an average slope of the tabulated states is

captured, not being very accurate neither in the outer
nor the inner core. We propose using two polytropes
instead. The matching density is chosen based on the
behavior of the pressure, analyzed through the sound speed.
We define a significant change of slope as a jump

discontinuity of the sound speed or a decreasing region
that is not a PT. If there is no significant change of slope,
the pressure can be accurately fitted with a single polytrope.
If one of these phenomena takes place, it indicates the
matching density between the two polytropes. If both types
of changes defined happen in a tabulated EoS, we prioritize
as matching density the position of the jump discontinuity.
We look for local maxima in the data to locate a

decreasing region of the sound speed. We impose that
the sound speed decreases for at least two data points after
the maximum to avoid oscillatory behavior. If there is more
than one maximum, we consider as matching density the
one at a smaller density.
To locate a jump discontinuity in the sound speed, we

use the LTV defined in Eq. (8), TV3
jðc2sÞ. We compute this

quantity for the whole region after the PT and look for
maxima of the LTV. We consider a maximum of the LTV
relevant if its value is larger than the mean of the LTValong
the region plus two times the standard deviation. In a
Gaussian distribution, this criterion isolates the data outlier
from the mean with 95% confidence. We consider that this
general fact can be extended to our study and the criterion
identifies peaks of the LTV that are actually significant
jumps in the sound speed. If there is more than one peak
obeying this criterion, the matching density from this
approach is the density value with the larger LTV.
When the region after the PT is fitted with two different

polytropes, 2 and 3, separated at density ρc selected with
the method above, then the first polytrope has two free
parameters and is fitted optimizing cost S2 (18) using
densities up to ρc. To ensure continuity of the pressure at ρc,
the second polytrope has a single free parameter, Γ3 and
κ3 ¼ κ2ρ

Γ2−Γ3
c . Therefore, the cost function to minimize for

its fitting is

S3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ρi>ρc

ðlogðPiÞ − logðκ2ρΓ2−Γ3
c Þ − Γ3 logðρiÞÞ2

s
:

ð19Þ

Our analytic model for tabulated EoS utilizes polyno-
mials to model PTs, capturing the different thermodynamic
behavior of these regions. It employs polytropes to fit the
pressure in terms of the density when the slope is smooth,
and it detects the need of more polytropes for an accurate fit
analyzing the slope of the pressure. Therefore, the model
adapts the slope of the pressure attending to the thermo-
dynamic properties of the tabulated data.
The process to construct the T-ASPP model of a

tabulated EoS can be summarized as follows:
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(1) Locate PTs in the tabulated EoS analyzing the sound
speed and adiabatic index (see Sec. II).

(2) Fit polytropes for every region of tabulated data
outside PTs. Locate the need of additional poly-
tropes by analyzing the changes of the pressure slope
(see Sec. IV).

(3) Construct polynomial models at PTs given the
pressure values at their extremes evaluated with
the polytropes. Select the polynomial model that
is causal and thermodynamically consistent, present-
ing a single minimum and the least relative error in
the sound speed and pressure (see Sec. III).

V. MODEL COMPARISON

We compare the performance of our T-ASPP model with
the PP approximation. We present the difference on mass,
radius, and dimensionless tidal deformability of both
models with respect to the results from the tabular data.
We also illustrate the difference on the hydrodynamic
evolution when using the two models by solving some
test problems for a particular EoS.

A. Stellar properties

We compute the mass, radius, and tidal deformability for
a sequence of NSs ranging from the central density of the
maximum mass NS according to the tabulated EoS down to
the central density where the NS reaches a 16 km radius.
This is a conservative approach to the maximum possible
value estimated for a NS [33,34].
For the sequence of stars obtained from each EoS

model, we compute the relative percent difference (RPD),
ðaveragejXmodel=Xtab − 1jÞ100, of the stated stellar proper-
ties with respect to the tabulated EoS. In this way, we
compare the performance in the representation of NSs all
over the stable branch. The results are gathered in Table II.
We consider the ten EoS with PTs from the 34 analyzed.

The T-ASPP model reduces the error of the PP approxi-
mation in five EoS for the mass (GS2, BGN1H1, H6,
ALF1, and ALF2), six for the radius (PS, GS1, GS2, H4,

H6, and ALF1), and six for the tidal deformability (PS,
GS2, H5, H7, ALF1, and ALF2). For the EoS that are not
improved, the performance is similar.
In particular, EoS ALF1 and ALF2 present a large

improvement with T-ASPP model with respect to the PP,
reducing noticeably the error for the three stellar properties
(the error for ALF2 radius is similar for both models). In the
T-ASPP model, the polytrope after the PT captures better
the behavior of the tabulated data than in the PP model,
where it is influenced by the different slope along the PT.
Moreover, T-ASPP presents a third polytrope for the higher
densities starting at a dividing density larger than the one of
the PP. Since the division is done in a state marking a
change of slope, the following polytrope resembles better
the tabulated EoS.
Figure 1 presents the modeling of the tabulated PS EoS

around its PT, showcasing the tabulated data against PP and
T-ASPP models. In the pictures, we show from top to
bottom pressure, sound speed, and fundamental derivative.
Although the RPD in mass is larger than with the PP model,
T-ASPP decreases the error in radius and tidal deform-
ability. The pressure is much better reconstructed with T-
ASPP since it captures the different slope. This fact is
appreciated in the sound speed. Along the PT, the T-ASPP
model decreases and recovers smoothly, while the PP
model presents a jump discontinuity. The fundamental
derivative shows that, according to the tabulated data, PS
EoS is nonconvex (the fundamental derivative changes
sign). Both PP and T-ASPP models fail to reproduce that
behavior. We include the necessary parameters to construct
the T-ASPP model for PS EoS in Table IV.
In Fig. 2, we depict pressure, sound speed, and funda-

mental derivative for the ALF1 EoS presenting the tabu-
lated data and both PP and T-ASPP models. Although the
pressure is reconstructed similarly by both analytic models,
the sound speed is quite different. Along the PT, the PP
model presents a jump discontinuity of increasing sound
speed, while T-ASPP has a nonmonotonic shape. The
thermodynamically more accurate reconstruction of the
T-ASPP in this region induces the nonconvex region

TABLE II. RPD of mass (M), radius (R), and dimensionless tidal deformability (Λ) with respect to the tabulated EoS for different EoS.

RPD M RPD R RPD Λ

EoS PP T-ASPP PP T-ASPP PP T-ASPP

PS 1.185 2.187 3.019 0.7440 9.143 8.732
GS1 2.133 2.481 2.429 1.298 15.61 18.66
GS2 2.386 1.621 2.087 1.046 16.16 15.84
BGN1H1 3.888 2.562 0.856 1.100 26.80 36.73
H4 1.217 1.287 3.268 3.256 6.056 6.304
H5 1.520 2.383 1.918 2.663 28.10 26.55
H6 1.474 1.373 1.883 1.488 32.748 33.79
H7 1.447 1.910 3.007 3.511 26.24 25.58
ALF1 6.191 3.810 2.705 1.053 34.09 23.00
ALF2 8.783 6.815 3.268 3.298 44.33 31.289
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FIG. 1. Region around the PT, marked in black vertical lines,
for PS EoS. Tabulated data in points, fit by PP model in dashed
line, T-ASPP model in continuous line. From top to bottom:
pressure, fluid sound speed, and fundamental derivative.

FIG. 2. Region around the PT, marked in black vertical lines,
for ALF1 EoS. Tabulated data in points, fit by PP model in
dashed line, T-ASPP model in continuous line. From top to
bottom: pressure, fluid sound speed, and fundamental derivative.
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indicated by the tabulated data. We include the necessary
parameters to construct the T-ASPPmodel for ALF1 EoS in
Table V.
In general, our T-ASPPmodel fairly represents the stellar

properties of NSs. Although it may contain more free
parameters than the PP model, in the case of several PTs
within the high-density region of the EoS, the analytic
expression is equally simple and computationally efficient.
It also presents the advantage of a more accurate repre-
sentation of the thermodynamics, depicting regions of
smooth decrease of the sound speed and allowing for
nonconvex EoS models.

B. Hydrodynamics

With the aim of showcasing the impact of PTs on
the fluid hydrodynamic evolution, we design two
Riemann problems for special relativistic hydrodynam-
ics. Using PP and T-ASPP models for ALF1 EoS, we
present examples that reveal the impact of an accurate
thermodynamics.
We design blast wave problems [35] to use with cold

EoS. The Riemann problems suggested, cold blast wave 1
and 2, are gathered in Table III. Notice that the initial
value for the density determines the initial value of the
pressure. Therefore, the initial state of pressure may be
different for different modelings of the same EoS. Using
the spatial domain x∈ ½0; 1� with initial discontinuity at
x ¼ 0.5, we present the solution profile for density and
fundamental derivative at time tf ¼ 0.2. We perform
numerical simulations using the scheme in [17], which
is able to handle nonconvex dynamics in relativistic
scenarios. The graphics are displayed in x∈ ½0.4; 0.6�,
focused on the waves.

Figure 3 shows the solution for the cold blast wave
problem 1 using PP and T-ASPP models. The left initial
condition is outside the PTof the EoS, while the right initial
condition is inside. For the PP model, the problem develops
within a single polytropic definition of the EoS, while for
T-ASPP, it traverses the end of the crust, a first polytrope
and part of the polynomial modeling the PT. The three
different definitions can be appreciated in the fundamental
derivative picture since the quantity presents jump dis-
continuities. For the PP model, we observe an expansive
rarefaction moving to the right and a compressive shock
moving to the left, a structure intrinsic of convex dynamics.
For T-ASPP model, however, there is a change of sign of
the fundamental derivative along the solution of the
Riemann problem inducing nonconvex dynamics. While
the wave to the left is still a shock wave, the wave to the
right traverses the negative region of the fundamental
derivative breaking into a composite wave. A shock
attached to a rarefaction moves toward the right.
We present the solution for the cold blast wave 2 using

PP and T-ASPP models in Fig. 4. In this case, the left initial
condition is closer to the PT, and the solution for the
T-ASPP model only traverses part of the polynomial
definition and a polytrope before. The PP presents an
expansive rarefaction toward the right and a compressive
shock to the left. T-ASPP model presents shock waves
moving in both directions. This is due to the change of sign
of the fundamental derivative during the development of
the right wave.

VI. CONCLUSIONS

We have presented a methodology for the detection
and modeling of phase transitions in realistic tabulated

TABLE IV. Summary of T-ASPP model for PS EoS. Density limits ρs (starting density) and ρe (ending density) are in g=cm3.
Quantities marked with the symbol * have been obtained with the methods proposed above. The other quantities are obtained from
literature or continuity conditions.

Polytropes Crust from [18] ρs ¼ 0 ρe ¼ 2.44034e7 κ ¼ 6.8011e-9 Γ ¼ 1.58425
ρs ¼ 2.44034e7 ρe ¼ 3.78358e11 κ ¼ 1.06186e-6 Γ ¼ 1.28733
ρs ¼ 3.78358e11 ρe ¼ 2.62780e12 κ ¼ 53.2697 Γ ¼ 0.62223
ρs ¼ 2.62780e12 �ρe ¼ 5.408342e13 κ ¼ 3.99874e-8 Γ ¼ 1.35692

High density �ρs ¼ 5.408342e13 �ρe ¼ 3.6452604e14 κ ¼ 1.407284e-26 �Γ ¼ 2.700651
�ρs ¼ 7.4578e14 �κ ¼ 1.678417e-19 �Γ ¼ 2.201028

PT polynomial �ρs ¼ 3.6452604e14 �ρe ¼ 7.4578e14 �ρm ¼ 4.0628832e14
�a1 ¼ −0.291327 � a2 ¼ 0.145664 �a3 ¼ 0 �a4 ¼ 0

TABLE III. Riemann problems designed for ALF1 EoS.

ρL ðg=cm3Þ υL ρR ðg=cm3Þ υR

Cold blast wave 1 8 × 1013 0 4.3 × 1014 0
Cold blast wave 2 3.1 × 1014 0 4.45 × 1014 0
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EoS for NS. Our approach, the T-ASPP approximation,
incorporates a polynomial representation of PTs within
an overall piecewise polytropic EoS. By employing
this methodology, we have been able to capture the
nonconvex behavior of EoS associated with PTs, ena-
bling the emergence of anomalous wave structures in
hydrodynamics.

Our analysis of the stellar properties, encompassing
mass, radius, and tidal deformability, demonstrates the
effectiveness of the T-ASPP model in providing a reliable
approximation of NS properties derived from tabulated
EoS. The examination of hydrodynamic behavior through
the investigation of two Riemann problems highlights the
substantial impact that accurate incorporation of the PT
thermodynamics can have.

FIG. 3. Numerical solution of cold blast wave 1 at time t ¼ 0.2
using ALF1 EoS. In dots, there is the solution using the PP model
for the EoS. In crosses, there is the solution using the
T-ASPP model.

FIG. 4. Numerical solution of cold blast wave 2 at time t ¼ 0.2
using ALF1 EoS. In dots, there is the solution using the PP model
for the EoS. In crosses, there is the solution using the
T-ASPP model.
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