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While most scintillation-based dark matter experiments search for weakly interacting massive particles
(WIMPs), a sub-GeV WIMP-like particle may also be detectable in these experiments. While dark matter
of this type and scale would not leave appreciable nuclear recoil signals, it may instead induce ionization of
atomic electrons. Accurate modeling of the atomic wave functions is key to investigating this possibility,
with incorrect treatment leading to a large suppression in the atomic excitation factors. We have calculated
these atomic factors for argon, krypton, and xenon and present the tabulated results for use with a range of
dark matter models. This is made possible by the separability of the atomic and dark matter form factor,
allowing the atomic factors to be calculated for general couplings; we include tables for vector, scalar,
pseudovector, and pseudoscalar electron couplings. Additionally, we calculate electron-impact total
ionization cross sections for xenon using the tabulated results as a test of accuracy. Lastly, we provide an
example calculation of the event rate for dark matter scattering on electrons in XENON1T and show that
these calculations depend heavily on how the low-energy response of the detector is modeled.
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I. INTRODUCTION

As the astrophysical evidence for the existence of dark
matter (DM) has strengthened, research into its identity has
started to seep into many fields of physics. However, even
after years of dedicated experiments, the nature of DM
remains a mystery, with no confirmed detection to date [1].
The widely held explanation is that DM is an undiscovered
particle that interacts primarily via gravity, with a very
weak coupling to ordinary matter that could be exploited as
a detection route [2]. Of the particle candidates, the weakly
interacting massive particle (WIMP) is the most sought,
with numerous experiments designed to search for WIMPs
with GeV mass scales and above (see, e.g., Refs. [3–6]).
One lesser researched option is a WIMP-like particle

with sub-GeV scale mass. Many of the recent DM experi-
ments are scintillation based, and rely on nuclear recoil to
claim a detection.
As these lighter particles transfer less energy in collisions

compared to their heavier counterparts, the resulting
nuclear recoil events would occur at energies too low to

be detected by most scintillation-based detectors. However,
interactions with the atomic electrons in the scintillator
may result in observable ionization signals, see, e.g.,
Refs. [7–14]. Low-mass WIMPs may also cause observable
signals from nuclear scattering via the Migdal effect; see,
e.g., Refs. [15–20].
Experiments utilizing dual-phase time-projection cham-

bers (TPCs) are of particular interest. In these detectors, the
bulk of the scintillating material is in a liquid phase with an
applied electric field (sometimes called the “drift” field),
while the remaining material is in its gaseous phase above
it, with a stronger electric field [21]. Due to this setup,
results from these types of detectors can come in the form
of S1 and S2 signals.
The prompt scintillation signal, S1, occurs in the liquid

phase when a collision between an incoming particle and an
atom of the scintillator causes a release of photons. Due to
the electric field in this section, if the collision instead
results in atomic electrons being ionized, those electrons
will drift upward, toward the gaseous phase.
The delayed electroluminescence signal, S2, is a result of

those drifting electrons reaching the gaseous scintillator and
colliding with the atoms. The photomultiplier tubes (PMTs)
that detect these signals are in arrays at the top and bottom of
the whole chamber, allowing the location in the plane of the
arrays to be determined. By combining this with the time
between S1 and S2 signals, the three-dimensional location of
the scattering event is reconstructed (for more detailed
discussions, see, e.g., Refs. [5,6,21,22]).
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For the case of sub-GeV DM interacting with a scintil-
lator, most research focuses on looking at the S2 signal
(see, e.g., Refs. [23,24]). However, DM-electron inter-
actions may have a higher chance of creating a detectable
S1 signal than previous research suggests due to enhance-
ments in the event rate [10].
To explore the possibility of atomic ionization we need

to calculate atomic ionization factors, the details of which
are discussed in Sec. III. However, the calculations present
many difficulties. Depending on the details of the experi-
ment, accurate atomic ionization factors are often required
across many orders of magnitude of energy deposition
(∼eV to keV) and momentum transfer (∼keV to MeV).
Furthermore, as inaccurate description of the atomic wave
functions can lead to errors of up to several orders of
magnitude in the calculations, this prevents many common
and convenient approximations from being used, as pre-
viously discussed in Ref. [10].
At high values of energy and momentum transfer,

relativistic effects become crucial to the calculations
[9,25]. These effects can even dominate the calculations,
as the parts of the electron wave functions that are closest to
the nucleus contribute the most to scattering, and so we
need fully relativistic wave functions to accurately model
the small-distance behavior.
At moderate momentum transfer values, the small-

distance scaling of the atomic wave functions is again
very important. This can lead to drastic errors in the
calculations when the wave functions are approximated
as hydrogen-like and scaled by the relevant factor (some-
times referred to as “effective-Z” methods).
At low momentum transfer, but also arising at all scales

to some degree, the form of the continuum wave functions
is crucial to the calculations. Approximating these con-
tinuum wave functions as plane waves misses the signifi-
cant Sommerfeld-like enhancement [8,10]. The attractive
potential of the nucleus means that plane waves do not have
appropriate small-distance scaling in this area. For the
continuum states to be unbound energy eigenstates, they
must be found in a self-consistent atomic potential to
ensure correct orthogonality to the bound electrons [17,26].
The need for accuracy also extends to the continuum-

state energy, as solving the Dirac equation in this region can
be numerically unstable. Finally, at moderately low values
of both energy deposition and momentum transfer, the
atomic ionization factor can depend significantly on the
atomic potential itself.
Our method applies the relativistic Hartree-Fock

approximation, and accounts for the most important
many-body effects. This approach addresses all of the
above issues, allowing accurate calculation at the energy
deposition and momentum transfer values relevant to DM-
electron scattering. Additionally, we can test our method by
calculating electron-impact ionization cross sections, which
is a similar process to DM-impact ionization for low-mass

WIMP-like particles. High-accuracy experimental rates
have been measured for xenon in the relevant impact
energy regime, allowing a stringent test of the accuracy
of our method. In the important region of ∼keV incident
energies, our calculations agree with experiment substan-
tially better than dedicated calculations that focused solely
on electron impact rates.
We present tables of atomic excitation factors for argon,

krypton, and xenon as Supplemental Material [27] and on
GitHub [28]. These tables can be used in conjunction with
DM form factors to calculate cross section and event rates,
without the underestimates that arise from inaccurate atomic
physics. An example of this process is provided as code, also
on Github alongside the tables [28]. Finally, we note that our
code and technique, while developed for scattering, also
apply for absorption (see, e.g., Refs. [26,29,30]), andmay be
beneficial in that case also.

II. THEORY

We consider inelastic scattering between a nonrelativistic
DM particle and an atom. We may model the DM-electron
interaction with an effective Yukawa coupling,

V ¼ ℏcαχ
e−μr

r
; ð1Þ

where αχ is the DM-electron coupling strength, and μ is the
inverse interaction length scale. This form of potential will
result from the nonrelativistic limit of a vector or scalar
coupling between electrons and DM particles, in which
case μ may be recognized as μ ¼ mvc=ℏ, where mv is the
mass of the mediator particle. This potential will reduce to a
Coulomb-like potential if the mediator is massless, or to a
contact interaction if it is heavy.
The differential cross section for an atomic electron in

initial state nκm to be ionized into final state εκ0m0 can be
written as

dσnκ
dE

¼ 8πα2χ

�
c
v

�
2
Z

qþ

q−

qdq
ðq2 þ μ2Þ2

KnκðE; qÞ
EH

; ð2Þ

where E is the energy deposition, v is a fixed DM velocity,
q is the momentum transfer, EH ≡mec2α2 ≈ 27.2 eV is the
Hartree energy unit, which we introduce to to make K
dimensionless, K is the dimensionless atomic excitation
factor [10], n is the principal quantum number of the bound
electron, and ε is the energy of the ionized electron, which
we can write as ε ¼ E − Inκ, with Inκ denoting the ioniza-
tion energy of state nκ. The integration limits, q�, are the
allowed range of momentum transfer1

1Technically, it is ℏq that is the momentum transfer, q has units
of inverse length. We refer to q as the momentum transfer for
brevity. We keep factors of c and ℏ in equations to aid in
comparison between works.
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ℏq� ¼ mχv�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χv2 − 2mχE
q

: ð3Þ

Lastly, κ is the Dirac quantum number, defined in terms of
the quantum numbers for orbital angular momentum, l, and
total angular momentum, j: κ ¼ ðl − jÞð2jþ 1Þ.
The atomic excitation factor is proportional to the chance

of the transition from state nκm to εκ0m0 occurring due to
the interaction with a DM particle, and is defined in
Ref. [10] for a vector electron coupling as

Knκ ≡ EH

X
m

X
κ0m0

jhεκ0m0jeiq·rjnκmij2; ð4Þ

where m is the magnetic quantum number. We stress that
the final states are energy eigenstates, not momentum
eigenstates. It is therefore natural to normalize on the
energy scale, such that

Zεþδ

ε−δ

hε0κ0m0jεκmidε0 ¼ δκ;κ0δm;m0 : ð5Þ

The continuum wave functions then have dimension:
½ϕε� ¼ L−3=2E−1=2. The factor EH is introduced to make
K dimensionless. Care should be taken comparing ioniza-
tion factors calculated in different works, which may
choose different normalization.
We then sum over all electrons to get the total atomic

excitation factor,K, which we can use to reach the velocity-
averaged differential cross section, expressed as

hdσvi
dE

¼ σ̄ec
2mec2

Z
dv

fðvÞ
v=c

Z
qþ

q−

a20qdqjFμ
χðqÞj2KðE;qÞ; ð6Þ

where σ̄e is the free-electron cross section at a fixed
momentum transfer of q ¼ a−10 ≈ 3.6 keV, which we
introduce following Refs. [31,32] to simplify comparisons
between results [a0 is the Bohr radius; see Ref. [10] for full
expression linking σ̄e back to αχ parameter of Eq. (1)]. The
DM speed distribution is denoted as f, which we assume to
be a Maxwell-Boltzmann distribution with the standard
halo model assumptions (see, e.g., Refs. [33,34]). We note
that electron recoil spectrum may be particularly sensitive
to details of the velocity distributions; see, e.g.,
Refs. [9,10,35]. Lastly, Fχ is the DM form factor.
As Fχ is able to be separated from the atomic excitation

factor, the atomic excitation factors are largely independent
of the DMmodel, and we only need to consider the electron
coupling. For the example calculations in Sec. V, we use a
DM form factor that is applicable to both vector and scalar
couplings, as defined in Ref. [10] as

FχðqÞ ¼
ðmv=meÞ2 þ α2

ðmv=meÞ2 þ ðαa0qÞ2
: ð7Þ

While the effective potential that we began with can be
applied to vector and scalar interactions, Eq. (4) is only
applicable to the vector case. We can reach scalar, pseu-
doscalar, or pseudovector electron couplings if we replace
eiq·r in the matrix element with γ0eiq·r, γ0γ5eiq·r, or γ5eiq·r,
respectively.

III. CALCULATIONS

A. Hartree-Fock approximation

As finding the atomic excitation factor includes a matrix-
element calculation with both the bound and continuum
wave functions, we need to accurately form the electron
orbitals. We use the relativistic Hartree-Fock (HF) method,
which is both self-consistent and includes the electron-
exchange interaction. The final HF potential is then used to
solve the Dirac equation at each step in a range of energy
deposition values for the continuum wave functions. We
write the HF potential as the sum of the direct and exchange
potentials,

V̂HFψaðr1Þ ¼
XNc

i≠a

�Z jψ iðr2Þj2
r12

d3r2ψaðr1Þ

−
Z

ψ†
i ðr2Þψaðr2Þ

r12
d3r2ψ iðr1Þ

�
; ð8Þ

where the first term corresponds to the direct potential, the
second term to the exchange potential, i denotes the bound
electron state with quantum numbers fni; κi; mig, Nc is the
total number of electrons, and finally r12 ¼ jr1 − r2j.
First, the Hartree-Fock equations are solved self-

consistently for the Nc bound electrons. Then, the wave
functions for the continuum electrons are found in the
frozen Hartree-Fock potential by directly solving the Dirac
equation, including the exchange term. (A small deviation
from the frozen potential, known as the hole-particle
interaction, will be discussed below.) We use the energy
normalization condition for the continuum states (5). In
practice, this is achieved by solving the Dirac equation by
integrating outwards to very large distances from the
nucleus, where the wave functions take a spherical wave
form analogous to the hydrogen-like case, and comparing
to analytic solutions [36].

B. Calculation of atomic ionization factors

In the Dirac basis, we write the bound-state orbitals as

ϕnκmðrÞ ¼
1

r

�
fnκðrÞΩκmðn̂Þ
ignκðrÞΩ̃κmðn̂Þ

�
; ð9Þ
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and similarly for the continuum-state orbitals

ϕεκmðrÞ ¼
1

r

�
fεκðrÞΩκmðn̂Þ
igεκðrÞΩ̃κmðn̂Þ

�
; ð10Þ

where f and g are the large and small components of the
Dirac wave function, and Ω is a two-component spherical
spinor. We can express Ω as

Ωκm ¼
X
sz

hl; m − sz; 1=2; szjj; miYl;m−szðn̂Þχsz ; ð11Þ

where hj1m1j2m2jJMi denotes a Clebsch-Gordon coeffi-
cient, Y is a spherical harmonic, χ is a spin eigenstate, and
sz is the electron spin, such that the sum runs over
sz ¼ f−1=2; 1=2g. Lastly, Ω̃ is related to Ω through

Ω̃κm ¼ −ðσ · n̂ÞΩκm ¼ Ω−κ;m: ð12Þ

To calculate the matrix element in Eq. (4), we use
irreducible spherical tensors to expand the exponential
term:

eiq·r ¼
X∞
L¼0

XL
M¼−L

TLM; ð13Þ

where

TLM ¼ 4πiLjLðqrÞYLMðθr;ϕrÞY�
LMðθq;ϕqÞ; ð14Þ

where jL is a spherical Bessel function of the first kind and
L is the multipolarity. With this, and angular reduction rules
[37], we can then write the atomic excitation factor as

KnκðE; qÞ ¼ EH

X
L

X
κ0

jRκ0L
nκ j2CL

κκ0 ; ð15Þ

where R is the radial integral and C is an angular
coefficient. In the case of a vector electron coupling, R
can be expressed as

Rκ0L
nκ ¼

Z
∞

0

½fnκðrÞfεκ0 ðrÞ þ gnκðrÞgεκ0 ðrÞ�jLðqrÞdr: ð16Þ

If we instead consider the scalar case, where we replace
eiq·r with γ0eiq·r, this will result in a radial integral of

Rκ0L
nκ ¼

Z
∞

0

½fnκðrÞfεκ0 ðrÞ − gnκðrÞgεκ0 ðrÞ�jLðqrÞdr; ð17Þ

which can be rewritten in a form that is more numerically
stable at low q due to the orthogonality condition:

Rκ0L
nκ ¼

Z
∞

0

½fnκðrÞfεκ0 ðrÞðjLðqrÞ − 1Þ

− gnκðrÞgεκ0 ðrÞðjLðqrÞ þ 1Þ�dr; ð18Þ

as discussed below. For the pseudoscalar case, replacing
eiq·r with γ0γ5eiq·r gives

Rκ0L
nκ ¼

Z
∞

0

½fnκðrÞgεκ0 ðrÞ þ gnκðrÞfεκ0 ðrÞ�jLðqrÞdr; ð19Þ

and finally, for the pseudovector case, replacing eiq·r with
γ5eiq·r gives

Rκ0L
nκ ¼

Z
∞

0

½fnκðrÞgεκ0 ðrÞ − gnκðrÞfεκ0 ðrÞ�jLðqrÞdr: ð20Þ

In the cases of both vector and scalar electron couplings,
C can be expressed as

CL
κκ0 ¼ ½j�½j0�½L�

�
j j0 L

−1=2 1=2 0

�
2

ΠL
ll0 ; ð21Þ

where ½J�≡ 2J þ 1, the term in parentheses is a Wigner 3-j
symbol, and ΠL

ll0 the parity selection rule (it is unity if lþ
l0 þ L is even and zero otherwise). The angular coefficient
for the pseudovector and pseudoscalar cases are similar, but
we replace κ with κ̃ ¼ −κ and l with l̃ ¼ jκ̃ þ 1=2j − 1=2.
Example calculations for the total atomic factors for each

of these couplings can be seen in Figs. 1 and 2 as functions
of energy deposition and momentum transfer, respectively.
Tables of these factors are included as Supplemental
Material [27]. Alternatively, the tables can be found on

FIG. 1. Comparison of the total atomic excitation factor as a
function of energy deposition for xenon for vector (solid line),
scalar (dotted line), pseudovector (dashed line), and pseudoscalar
(dashed-dotted line) electron couplings at a fixed momentum
transfer of q ¼ 4 MeV.
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GitHub [28], alongside example code that uses the tables to
calculate cross sections as seen in Secs. IV and V.
As a stability test for the calculations, we also computed

K using an approximate local potential instead of the HF
potential. The local potential used was the nuclear potential
plus a parametric potential, making the calculation far
simpler and less prone to numerical instabilities. The local
potential leads to very similar atomic excitation factors,
giving a point of comparison that highlights possible
numerical issues or errors in the calculation.

C. Many-body effects

The most important many-body effect (that is, deviation
from the frozen-core Hartree-Fock approximation) is the

hole-particle interaction. Physically, this effect arises due to
the deviation of the (direct) Hartree-Fock potential for the
ionized electron compared to those in the core, as in Fig. 4.
In practical Hartree-Fock calculations for occupied core
states, the self-interaction term is included in the direct
potential; this is then exactly compensated by the corre-
sponding term in the exchange potential, e.g., by setting
i ¼ a in Eq. (8). However, this cancellation does not apply
to an electron that has been excited out of the core.
Therefore, the self-interaction term should be removed
for the excited states. While this hole-particle interaction
term makes a very small difference when looking at the
ionization of bound electrons with high ionization energies
(close to the nucleus), the impact becomes more obvious
for electrons further from the nucleus, and for lower-energy
scatterings. From Fig. 3, we can see that this contribution to
the atomic factors carries through to the cross-section
calculation, resulting in a more significant discrepancy
as we move to lower energies.
Beyond Hartree-Fock and hole-particle effects, the next

most important many-body correction to matrix elements of
the external field is the core polarization, often referred to
as the relativistic random-phase approximation (RPA) with
exchange [38]. The lowest-order core polarization dia-
grams are shown in Fig. 5. Physically, this effect arises due
to the combined action of the external field and interelec-
tron Coulomb interaction. In the present case, it manifests
in the possibility that when the dark matter particle interacts
with an electron in one state, an electron in a different state
may become ionized due to its Coulomb interaction with
the first electron. This may be particularly important in
cases where, for example, only s states have appreciable
eiqr matrix elements (due to their nonzero wave functions at
the nucleus), but they are energetically inaccessible. In that
case, an energetically accessible p, d state may be ejected
via Coulomb interaction with an s electron that interacts
with the dark matter.
In the many-body perturbation theory diagrams, there is

an implied sum over intermediate states, with the backward
lines denoting the core (bound, occupied) atomic states,
and the forward lines representing the full spectrum of
excited (unoccupied) bound and continuum states. To
approximate this spectrum, we form an approximately

FIG. 2. Total atomic excitation factors as a function of
momentum transfer for xenon at a fixed energy deposition of
E ¼ 2 keV, with the same electron couplings as in Fig. 1.

FIG. 3. Velocity-averaged differential cross section for xenon
when accounting for the hole-particle interaction (solid line), and
when excluding it (“frozen” Hartree-Fock, dashed line). In this
case, we have set the DMmass to bemχ ¼ 1 GeV. The DM form
factor is set to Fχ ¼ 1, corresponding to a heavy mediator as per
Eq. (7). We use a vector electron coupling with free-electron cross
section σ̄e ¼ 10−37 cm2.

FIG. 4. Goldstone diagrams for the direct (left), exchange
(middle), and hole-particle (right) contributions to the atomic
potential. The wavy line is the Coulomb interaction, external lines
are either bound atomic states or unbound continuum states, and
internal lines are core states (holes). The hole-particle effect arises
from the deviation of the direct potential for the ejected
continuum electron from that of the bound electrons.
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complete, though finite, basis by diagonalizing a set of
B-splines over the atomic Hamiltonian (see, e.g., [39,40]).
We use the dual-kinetic-balance basis as introduced in
Ref. [41], which offers a high level of convergence and
stability. Our technique is well tested, and produces high-
accuracy results across a range of atomic systems [42].
The lowest-order calculation typically overestimates the

core-polarization contribution, and often significantly. For
accurate calculations, all-order (in the Coulomb interac-
tion) calculations are required. In the RPA, this is achieved
iteratively, by replacing each external-field vertex in the
four RPA diagrams (Fig. 5) with the four RPA diagrams.
This process is continued iteratively until convergence is
reached. This is equivalent (up to first order in external
field) to including the action of the external field into the
potential when solving the Hartree-Fock equations (known
as time-dependent Hartree-Fock method [43]). We note that
the RPA equations must be iterated separately for each
value of momentum transfer q, and each multipolarity, L
[see Eq. (13)]. We thus include the all-order RPA effects
only for a subset of the parameter range to check its
contribution, which we find to be small.
The lowest-order core polarization effects have the

largest impact at small energy deposition values, and give
at most a correction of a factor of 2. The all-order RPA
corrections significantly reduce this. After integrations, the
uncertainty in Hartree-Fock calculations from excluding
RPA is of order ≃20%, which is more than sufficient for the
current purpose.
As a final consideration, we check for errors due to

imperfect orthogonality. Due to numerical uncertainties, the
exact orthogonality is not guaranteed between the core and
continuum states in practical calculations, particularly
when the hole-particle interaction is included. This can
be the source of significant errors, so must be checked.

We can check for this by explicitly enforcing orthogonality
between the continuum states and the states in the core
using the standard procedure: jai → jai − jbihbjai. In our
calculations, this makes very little difference, due to the
already good orthogonality achieved in the self-consistent
Hartree-Fock procedure. However, in methods where the
self-consistency of the potential cannot be guaranteed, this
check is essential.
Another option for ensuring orthogonality between core

and continuum states is to make a substitution in the matrix
element of eiq·r → eiq·r − 1 in Eq. (4) [or, equivalently,
jL → jL − 1 in Eq. (15)]. While this corrects errors caused
by orthogonality in regions of low momentum transfer, it
can shift the error to high momentum transfer. As we need
accurate atomic factors across many orders of magnitude of
momentum transfer for DM-electron scattering, this sub-
stitution alone cannot ensure orthogonality for this case.
This is especially true when accounting for the hole-particle
interaction. As a result, we opt to use the previous
procedure for ensuring orthogonality, as this addresses
issues across the required range.

D. Approximation of atomic excitation factors

We present an informative approximate approach to
presenting the ionization form factors that are valid for
q ≫ 1=a0. When the energy deposition goes above the
ionization of a bound electron, this electron becomes
“accessible;” the atomic excitation factor for that electron
is also zero below this point. For an increasing energy
deposition past this point, the atomic excitation factor is
relatively constant while the continuum energy remains
small, so long as q is reasonably large. This is because for
large q, only the low-r part of the electron wave function
may contribute. In this region, the energy of the bound or
continuum electron is insignificant compared to the nuclear
potential jεj ≪ jZ=rj, and the Dirac equation is indepen-
dent of energy. In this case, we may approximate KnκðE; qÞ
as a step function of energy, allowing it to be expressed as

KnκðE; qÞ ≈ K̃nκðqÞΘðE − InκÞ; ð22Þ

where Θ is the Heaviside step function, and K̃nκ is the
atomic excitation factor that is dependent on momentum
transfer at a fixed energy deposition. Thus, above the
ionization energy, Knκ is equal to K̃nκ.
This approximate method loses accuracy for very small

values of momentum transfer (q≲ 0.1 MeV). For the
typical momentum transfer values for DM-electron scatter-
ing, inaccuracies found in the low-q region do not have a
significant impact on cross-section calculations due to
integrating over q, as seen in Eq. (6), but care should be
taken if high accuracy is needed in this region.

FIG. 5. Goldstone diagrams for core polarization correction to
matrix elements, showing the direct (left) and exchange (right)
contributions. The diagram notation is the same as in Fig. 4, with
the dotted line representing interaction with the external field
(DM particle), and the internal forward lines representing virtual
excited atomic states. In the all-order RPA method, each of the
external field vertices is replaced with these four diagrams; this
process is repeated until the matrix elements converge.
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IV. ELECTRON-IMPACT IONIZATION

We have also calculated the total cross section for the
case of an atomic electron being ionized by an incoming
free electron [referred to as “electron-impact” (EI) ioniza-
tion in the literature]. With existing experimental data, the
calculations being applied to this interaction type serve as a
test of the accuracy of the code. In the case that mχ → me,
mv → 0, and αχ → α, it can be seen that the electron-
impact and DM-induced ionizations are very similar atomic
processes.
To compare to experimental data, we can calculate the

total cross section,

σðEiÞ ¼
4π

Ei

Z
Ei

0

Z
qþ

q−

dq
Kðq; EÞ

q3
dE; ð23Þ

where Ei is the incident energy of the projectile electron,
and E is again the energy deposition.
As found in past literature, calculations of the total cross

sections for this type of scattering are, on average,
overestimated when compared to experimental values
(see, e.g., Ref. [44] and references therein). For testing
DM-induced ionization, the relevant incident energy scale
is mχv2 ∼ ðGeVÞð10−3Þ2 ∼ keV. Our calculations are pre-
sented in Fig. 6, along with experimental data, and existing
calculations for comparison.
When the incident electron energy is low (Ei ≲ 100 eV),

we can see that our calculations (and those of other groups)
overestimate the total ionization cross section. This diver-
gence from experiment largely stems from our use of the
Born approximation [45], which is only valid for very weak
interactions. As the DM-electron interactions that we
consider in this work fall into this category [25], the

approximation holds, and does not carry the same impor-
tance as it does when looking at electron-impact ionization.
Further, the electron-impact ionization case is complicated
by the presence of an exchange term in the interaction
(which we did not account for), since the projectile is an
electron which may be exchanged with a bound atomic
electron. Since no such term exists in the DM case, the
accuracy for the DM scattering case is expected to be
higher.
Importantly, in the region where energies are closer to

that of a DM-electron scattering event (Ei ≳ 1 keV), we
can see in Fig. 6 that the case where we have subtracted the
hole-particle interaction gives results that are closest to
experiment. This shows an improvement on the accuracy of
existing results in this high-energy region and highlights
the importance of subtracting the hole-particle interaction
term. This is both experimental verification of our atomic
wave functions, and also of the approximations used to
derive the scattering formula.

V. EXAMPLE EVENT-RATE CALCULATION

For DM-electron scattering, the differential event rate is

dR
dE

¼ nTρχ
mχc2

hdσvi
dE

; ð24Þ

where nT is the number of target atoms in the detector per
unit mass (reciprocal of atomic mass), mχ is the DM mass,
and ρχ is the local energy density of DM, which we take to
be ∼0.4 GeVcm−3 [48].
To find the event rate that would be observable by a

detector, one needs to consider that not all events are
feasibly detectable and account for the capabilities of the
detectors themselves. However, as many scintillation-based
detectors are aimed at nuclear recoil, their individual
detector models may be calculated outside of the energy
region relevant to DM-electron scattering. This leads to a
complication when looking at theoretical event rates for
DM-electron scattering and comparing to what is seen in
experiment, as the way a detector is modeled may not apply
to this case.
A common approach in the literature is to model the

detector following Ref. [49], which was determined for
MeV-scale energies [50]. Following this same method, we
start by modeling the detector resolution of XENON1Tas a
Gaussian with standard deviation,

σðEÞ ¼ a ·
ffiffiffiffi
E

p
þ b · E; ð25Þ

where a¼ð0.310�0.004Þ ffiffiffiffiffiffiffiffi
keV

p
and b ¼ 0.0037� 0.0003.

We use this Gaussian, gσ, to smear the theoretical event
rate, given in Eq. (24).
The event rate also needs to be corrected for the

efficiency of the detector, which we accounted for by

FIG. 6. Calculations of total electron impact ionization cross
sections for xenon with (HF) and without (frozen HF) accounting
for the hole-particle interaction, and comparison to calculations
by Bartlett et al. [45] and experimental results from Sorokin et al.
[46] and Wetzel et al. [47].
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fitting the total efficiency as a function of energy, εðEÞ, as
given in Fig. 2 of Ref. [49]. Combining these steps together,
we can express the observable differential event rate as

dS
dE

¼ εðEÞ
Z

∞

0

gσðE0 − EÞ dRðE
0Þ

dE0 dE0: ð26Þ

From Fig. 7, we can see that correcting for the specific
detector dampens the event rate as expected. However, for
the lowest-mass case, 0.1 GeV, the calculated event rate
drops to zero at a lower energy than where the observable
event rate begins. This is due to the detector response being
modeled as a Gaussian, which allows very low-energy
signals to “leak” through to higher-energy regions and be
considered detectable. While this is plausible at higher
energies [50], this introduces large uncertainties in the
observable event rate at low energies, where it is not
appropriate to model the response using a simple Gaussian.
Again from Fig. 7, we can see that the theoretical event

rate peaks below 1 keV for all DM mass cases. Although
the tail ends of each Gaussian will have very low magnitude
in this region, the magnitude of the event rate causes the
observable event rate to be high as well. This implies that
modeling the detector in this way overestimates the
observable event rate when looking at any scattering type
that has large contributions in regions of low-energy
deposition, where the detector model is not known to
apply. In these cases, where the regions of interest are at the
keV scale and below, the use of the Gaussian resolution has

introduced a large error into the event rate by events
happening far below threshold.
While this detector modeling may serve as a rough

estimate in some cases that fall in high-keV to low-MeV
regions, it is not accurate enough at low energies. A more
accurate option is to directly simulate the specific detector,
such as the use of noble element simulation technique [51–
54], or Obscura [55]. This is particularly important to
consider for scattering cases involving DM, where the
nature of the particle is unknown, as an overestimation in
the predicted event rate could lead to DM models being
excluded preemptively.
Another way to model similar detectors is to instead

model the production of photoelectrons. As an example, we
follow Ref. [56] for the XENON100 detector, and start by
smearing the calculated event rate with a Poisson distri-
bution,

PnðNÞ ¼ e−NðEÞ N
n

n!
; ð27Þ

where n is the true number of photoelectrons produced in an
event, while NðEÞ is the number of photoelectrons expected
to be produced for an event at energy depositionE, whichwe
take to be NðEÞ ¼ aEb with a ¼ ð1.00� 0.25Þ and b ¼
ð1.53� 10Þ [10], according to Fig. 2 of Ref. [56].
The resolution of the PMTs is given by a Gaussian with a

standard deviation of σ ¼ σPMT
ffiffiffi
n

p
, where σPMT ¼ 0.5 PE

(photoelectrons). The detection acceptance as a function
of the number of S1 PEs is taken to be εðs1Þ ¼
0.88ð1 − e−s1=3Þ. Combining these, we can express the
observable differential event rate for the XENON100
detector as

FIG. 7. Example event-rate calculations before (dotted lines)
and after (solid lines) smearing with the Gaussian and correcting
for detection efficiency [49] of the XENON1T detector, corre-
sponding to Eqs. (24) and (26), respectively. The spikes seen in
the calculated event rate are due to deeper shells becoming
accessible as the energy deposition increases, which we can also
see in the cross section. A cutoff has been applied to the
observable event rate at 0.5 keV to indicate the minimum energy
threshold. We take σ̄e ¼ 10−37 cm2. Uncertainties in the detector
response lead to large, underestimated uncertainties in observable
event rates at energies close to the detector threshold.

FIG. 8. Binned event rates (1-keV bin widths) for a range of DM
masses with vector electron couplings and a heavy mediator
(Fχ ¼ 1), calculated according to the modeling of the XENON100
detector, using Eqs. (28) and (29). We take σ̄e ¼ 10−37 cm2.
Uncertainties in the detector response used here may also lead
to large, underestimated uncertainties in observable event rates at
energies close to the detector threshold.
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dS
ds1

¼ εðs1Þ
X
n

gσðn − s1Þ
Z

∞

0

dR
dE

PnðNÞdE: ð28Þ

To then reach the binned event rates, as seen in Fig. 8, we
integrate the differential event rates,

S ¼
Z

b

a

dS
ds1

: ð29Þ

While this method was also determined for energies
above threshold, it has the advantage of modeling the
production of photoelectrons. However, as previously
mentioned, direct simulations of the detector response
may provide higher accuracies when looking at events
close to the threshold of the detector.

VI. CONCLUSION

We have presented tables of atomic excitation factors as
functions of momentum transfer and energy deposition for
DM-electron interactions with vector, scalar, pseudovector,
and pseudoscalar couplings for argon, krypton, and xenon
[27,28]. These take relativistic effects into account and
provide an accurate depiction of the atomic physics

involved. As such, they can be combined with a DM
model of choice to calculate cross sections and event rates,
without risking the underestimates that are common when
neglecting the atomic physics.
We have tested the code for any numerical instabilities

and errors by calculating the atomic factor with an
approximate potential. We have also tested the code for
accuracy by applying the calculations to electron-impact
ionization and found good agreement with experimental
results.
As these atomic factors may be used to calculate cross

sections and event rates, we have presented an example of
an event-rate calculation specific to the XENON1T experi-
ment. While accurate atomic physics is necessary to reach
reliable event rates, we have also highlighted the impor-
tance of the modeling of the detector, particularly the low-
energy response.
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