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Binary neutron star mergers probe the dense-matter equation of state (EoS) across a wide range of
densities and temperatures, from the cold conditions of the inspiral to the high-temperature matter of the
massive neutron star remnant. In this paper, we explore the sensitivity of neutron star mergers to
uncertainties in the finite-temperature part of the EoS with a series of merger simulations performed in full
general relativity. We expand on our previous work to explore the interplay between the thermal
prescription and the stiffness of the zero-temperature EoS, which determines the compactness of the initial
neutron stars. Using a phenomenological model of the particle effective mass, M�, to calculate the finite-
temperature part of the EoS, we perform merger simulations for a range of thermal prescriptions, together
with two cold EoSs that predict either compact or large-radius initial neutron stars. We report on how the
choice of M�-parameters influences the thermal properties of the postmerger remnant, and how this varies
for stars with different initial stellar compactness. We characterize the postmerger gravitational wave
signals, and find differences in the peak frequencies of up to 190 Hz depending on the choice of
M�-parameters. Finally, we find that the total dynamical ejecta is in general only weakly sensitive to the
thermal prescription, but that a particular combination ofM�-parameters, together with a soft cold EoS, can
lead to significant enhancements in the ejecta.
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I. INTRODUCTION

Binary neutron star mergers probe the dense-matter equa-
tion of state (EoS) across a wide range of parameter space,
from the zero-temperature and β-equilibrated conditions of
the inspiral, to the hot and high-density conditions of the
massive neutron star remnant that forms following themerger.
The first detection of gravitational waves (GWs) from

the inspiral of a binary neutron star (BNS) merger, event
GW170817 [1], has already provided exciting new con-
straints on the EoS of cold, dense matter, e.g., [2–7]. After
the merger, however, significant shock-heating is expected
to raise the temperature of the system to several tens of
MeV [8,9], at which point the thermal pressure can become
a significant fraction of the cold pressure. This heating can
influence the lifetime and dynamical evolution of the
massive neutron star remnant, as well as the launching
of the dynamical ejecta during the merger itself [e.g.,
[10,11]]. Observations of these postmerger properties thus
provide insight into the EoS in a new region parameter
space: at finite temperatures.

In order to connect finite-temperature EoS constraints
inferred from postmerger observations to the zero-
temperature constraints inferred from the inspiral, one useful
approach is to decouple the EoS into a cold and thermal
component. For example, one can expand the pressure as

Pðn; T; YeÞ ¼ Pcoldðn; T ¼ 0; YeÞ þ Pthðn; T; YeÞ; ð1Þ
where Pcold is the zero-temperature pressure, Pth is the
thermal contribution to the pressure, and n, T, and Ye
indicate the baryon number density, temperature, and
electron fraction of the matter. Such a decomposition makes
it possible to systematically explore the relative sensitivity of
a merger to current uncertainties in our understanding of
cold dense matter, independently from the uncertainties in
the finite-temperature part of the EoS. This decomposition
also forms the basis of the so-called “hybrid approach” [12],
in which thermal effects are parametrically calculated
according to

Pth ¼ nEthðΓth − 1Þ; ð2Þ
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where Eth is the thermal energy per baryon and Γth is the
effective thermal index, which is assumed to constant.
In one early study of thermal effects in BNS mergers

using this approach, Ref. [10] showed that by using
different values for Γth—while keeping the zero-
temperature part of the EoS the same—it is possible to
change the amount of dynamical ejecta by a factor of two
and the peak frequency of the postmerger GWs by up to
390 Hz (see also [13]). However, in the cores of realistic
neutron stars, Γth has a strong density-dependence due to
the degeneracy of the matter [e.g., [14–16]], which is
neglected in the hybrid approach.
In order to go beyond the simplified assumption of

a constant thermal index, Ref. [17] developed a new,
phenomenological framework for calculating finite-
temperature effects that includes the leading-order effects
of degeneracy in the thermal prescription. The framework
is based on Landau’s Fermi liquid theory, in which the
thermal contribution to the pressure and energy of the
matter can be written purely in terms of the particle
effective mass function M�ðnÞ [18,19]. Reference [17]
introduced a new, two-parameter approximation of
M�ðnÞ, which can be used to robustly calculate the thermal
pressure in Eq. (1), and thus to generically extend any cold
EoS to finite-temperatures.
With this “M�-framework," fully finite temperature EoS

models can be calculated to probe new regions of EOS
parameter space. The framework has been shown to
recreate the pressure profiles of a sample of tabulated,
microphysical EoSs to within ≲15% accuracy across a
range of densities and temperatures [17]; and its perfor-
mance, compared to a tabulated nuclear EoS, was recently
validated in the context of numerical merger simulations
in [20].
In [21], we performed the first parameter study of the

M�-framework, exploring outcomes of BNS merger sim-
ulations for four different sets of effective mass parameters.
These parameters were chosen to bracket the range of
uncertainty in the finite-temperature part of the EoS
spanned by a sample of models that are commonly used
in merger simulations. The BNS mergers were evolved
using a single cold EoS, onto which the four different
thermal prescriptions were attached. It was found that the
thermal profile of the remnant neutron stars and the
postmerger GW signals indeed depend on the choice of
M�-parameters, but that the total ejecta depends only
weakly on the finite-temperature part of the EoS.
In this work, we expand on the results of [21] (hereafter

Paper I) to explore the relative importance of finite-
temperature effects on the postmerger properties for two
new cold EoSs, which are designed to span a wide range
of stellar compactness. In particular, we perform BNS
merger simulations for one soft and one stiff cold EoS,
corresponding to models that predict small (11 km) and
large (14 km) radii for intermediate-mass neutron stars,

respectively. To each of these cold EoSs, we attach one of
four different thermal prescriptions, corresponding to
different choices of M�-parameters. In general, we find
that there is a complex interplay between the choice ofM�-
parameters, the stellar compactness (or, more generally, the
stiffness of the underlying cold EoS), and the thermal
structure of the postmerger remnant. We quantify the
degree of heating for each merger, including how this
affects the structure and postmerger evolution of the
remnant neutron star. In addition, we take advantage of
recent improvements to our code, in terms of the post-
merger convergence and improved modeling of the cold
EoS [22], to go beyond what was reported in Paper I and
provide detailed analyses of the postmerger GW spectra
and ejecta.
The outline of the paper is as follows. We start in Sec. II

with an overview of our numerical methods and describe
the details of our EoS construction. We present the results
of our simulations in Sec. III, starting with an overview of
the merger dynamics in Sec. III A and the heating of the
system throughout the evolution in Sec. III B. We describe
the thermal structure of the remnant neutron stars in
Sec. III C, the gravitational wave emission in Sec. III D,
and the properties of the dynamical ejecta in Sec. III E. We
summarize and discuss the results in Sec. IV.
Unless otherwise noted, we use geometric units,

where G ¼ c ¼ 1.

II. NUMERICAL METHODS

All simulations were performed using the dynamical
spacetime, general-relativistic (magneto)-hydrodynamics
code with adaptive mesh refinement of [23–26], as it
was recently extended in [21,22]. The code is built within
the Cactus/Carpet framework [27–29]. We refer the reader
to these works for detailed information on the code; and we
here highlight a few key aspects relevant to the present
simulations.

A. EoS construction

In order to investigate the influence of stellar compact-
ness on the role of finite-temperature effects in a BNS
merger, we adopt two zero-temperature EoSs that span a
wide range of neutron star compactness. For each of these
cold EoSs, we add on one of four different thermal
prescriptions, for a total of eight simulations.
For our baseline, zero-temperature models, we use a

parametrized representation of the wff2 [30] and H4 [31]
tabular EoSs at high densities, with a parametrized repre-
sentation of SLy [32] for the crust. We represent these EoSs
with the generalized piecewise polytropic parametrization
of [33], which we recently studied in the context of
numerical merger simulations in [22]. This parametrization
allows us to analytically represent these EoSs with a small
number of parameters, while still ensuring that the EoS
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pressure is smooth and differentiable at all densities.
We describe the fits to these EoSs in Appendix A.
The resulting smoothed-polytropic EoSs are shown,

together with their mass-radius relations, in Fig. 1. The
smoothed-wff2 model predicts the areal radius of a 1.4M⊙
star to be R1.4 ¼ 11.1 km and has a maximum mass of
Mmax ¼ 2.2M⊙. In contrast, the smoothed-H4 model cor-
responds to R1.4 ¼ 13.99 km and Mmax ¼ 2.01M⊙. Thus,
compared to the exploration of thermal effects in Paper I,
which used a zero-temperature EoS with R1.4 ¼ 12 km, the
models used here span a broad range of stellar compact-
ness. For convenience, and to focus on the impact of stellar
compactness in our simulations, we will refer to these
models by their characteristic radii, R1.4, throughout
this work.
We extend these cold EoSs to finite-temperatures using

the M�-framework of [17]. This framework is based on a
two-parameter model of the particle effective mass func-
tion, M�ðnÞ. The free parameters include a density-
transition parameter, n0, which describes the density at
which the effective mass starts to decrease from the vacuum
rest mass, and a power-law parameter, α, which character-
izes the rate at which the effective mass function decreases

with density. This model of the effective mass function
accounts for the leading order effects of degeneracy,
through a Fermi liquid theory based model. We use the
same four sets ofM�-parameters that were studied in Paper
I: i.e., n0 ¼ 0.08 and 0.22 fm−3 and α ¼ 0.6 and 1.3.1 This
choice of parameters was found to approximately bracket
the range of M�-values for a sample of commonly used,
finite-temperature EoS tables [17] (see also Appendix B).
We compare the predictions of this set ofM�-parameters

to a subset of these public finite-temperature EoS tables in
Fig. 2, which shows the effective thermal index for each
model, at a fixed temperature of T ¼ 10 MeV.We note that
the thermal indices for this set of parameters are also
consistent with tabulated EoSs across the full range of
temperatures commonly found in neutron star merger

FIG. 1. Top: pressure as a function of density for the zero-
temperature, β-equilibrium slice of each equation of state
considered in this work. Bottom: the corresponding mass-radius
relations. The R1.4 ≈ 11 km model is shown in green, while the
R1.4 ≈ 14 km model is shown in orange.

FIG. 2. Top: effective thermal index for the four sets of M�-
parameters explored in this work, for a fixed temperature of
kBT ¼ 10 MeV, and for a composition corresponding to the
conditions for cold, neutrinoless, β-equilibrium. The dotted lines
indicate the thermal index spanned by a sample of five tabulated,
finite-temperature EoSs, with the green shading added to guide
the eye. Bottom: specific heat for the same models and same
conditions. The quantities are plotted as a function of the number
density, relative to a fiducial value for the nuclear saturation
number density of nsat ¼ 0.16 fm−3.

1We note that in some figure legends, we will suppress the
units on n0 in order to save space. Throughout this paper, the
units for n0 are always fm−3.
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simulations, as shown in [21]. From Eq. (2), we can
rearrange to solve for the thermal index according to

Γth ¼ 1þ
�
Pthðn; T; YeÞ
nEthðn; T; YeÞ

�
; ð3Þ

where the thermal pressure and energy are provided by the
particular EoS model. Figure 2 also shows the specific heat
at constant volume, Cv, which is defined according to

Cv ¼
∂Eth

∂T

����
n
: ð4Þ

The full M�-framework expressions for Pth and Eth, as a
function of density, temperature, and electron fraction, are
provided in [17,21].
In extending the EoS to finite-temperatures, we also

follow Paper I in assuming that the matter maintains its
initial β-equilibrium composition throughout the evolution.
This allows us to focus our analysis on the impact of
thermal effects, thanks to the separability of the M�-
framework, which treats thermal and out-of-equilibrium
effects independently [17]. The assumption of β-equilibrium
throughout the evolution is further motivated by a recent
study, which showed that Urca processes can act to restore
departures from equilibrium within the postmerger remnant
on a millisecond-timescale [34]. In order to set the initial
composition of the neutron stars, we set the leading-order
coefficients of the nuclear symmetry energy to S0 ¼
32 MeV for both cold EoSs, and L ¼ 34.8 MeV and
L ¼ 112.1 MeV for the R1.4 ≈ 11 km and R1.4 ≈ 14 km
EoSs, respectively. The value for S0 is chosen in order to be
consistentwith experimental and theoretical constraints [35];
while, at leading order, the value for L is determined by S0
and the zero-temperature pressure at ρsat [36,37]. These two
parameters, S0 and L, together with a free parameter γ,
uniquely determine the initial, β-equilibriumcomposition for
the neutron stars [17]. We adopt γ ¼ 0.6, which is consistent
with values inferred from tabulated EoSs. This initial
composition is then held fixed throughout the evolutions.
For additional details, see [17,21].

B. Initial conditions and numerical setup

For all simulations, we construct initial data using
LORENE [38]. The initial configurations describe two
unmagnetized, irrotational, equal-mass neutron stars in a
quasicircular orbit, with an Arnowitt-Deser-Misner (ADM)
mass of 2.6M⊙ and an initial separation of 40 km. The
neutron stars start at zero temperature and have an initial
coordinate equatorial radius of either 8.8 km or 12.0 km,
depending on the cold EoS model.
For each binary evolution, we use nine spatial refinement

levels which are separated by a 2∶1 refinement ratio.
The grid is set up such that the innermost refinement level
is approximately 30% larger than the initial neutron

star radius. The resulting computational domain extends
to 2880 km for the R1.4 ≈ 11 km evolutions, and to
3900 km for the R1.4 ≈ 14 km evolutions. We impose
equatorial symmetry to reduce computational costs.
The finest-level grid spacing covers the coordinate

diameter of each initial neutron star with ∼125 grid points
across the x-direction. This corresponds to a finest-level
grid spacing of Δx ¼ 140 m for the R1.4 ≈ 11 km evolu-
tions and Δx ¼ 195 m for the R1.4 ≈ 14 km evolutions.
Finally, the evolutions implement a continuous parabolic

damping of the Hamiltonian constraint, as was introduced
in [22], to ensure convergence of the Hamiltonian con-
straint violations. The implementation is identical to what
was described in that work, namely, we use the same
constant damping coefficient cH ¼ 0.0045 km.
Except where explicitly indicated above, the rest of the

details of the evolution are identical to [21].

III. RESULTS

We turn now to the results of our simulations. We start
with a brief overview of the global properties of the merger.
In all cases, we simulate the final few orbits of the binary,
through the merger itself, and for 12–20 ms postmerger.

A. Merger overview

All binaries start with an initial coordinate separation of
40 km. For the R1.4 ≈ 14 km (R1.4 ≈ 11 km) models, this
corresponds to the final ∼3 (4.5) orbits prior to merger. In
general, we find negligible variations in the time-to-merger,
defined as the time when the gravitational wave strain
reaches a peak amplitude (see Sec. III D), for the dif-
ferent choices of M�-parameters. The minimal impact of
theM�-parameters on the time-to-merger is expected, given
the negligible inspiral heating typically found in merger
simulations [e.g., [10,39]] (see also Sec. III B).
In all evolutions, a massive neutron star remnant forms

after the merger, which does not collapse on the timescales
simulated, as evidenced by the slow growth of the maxi-
mum rest-mass density of the remnant, ρb;max, and the
correspondingly slow decay of the minimum lapse function
at late times in our simulations. We show these functions
in Fig. 3.
For the R1.4 ≈ 11 km evolutions, the rest mass of the

remnant is 2.94 − 2.95M⊙, which is smaller than the
maximum rest mass of the zero-temperature Kepler
sequence ofMKep ¼ 3.15M⊙ for this EoS. Thus, we expect
these remnants to remain stable to late times. In contrast,
for the R1.4 ≈ 14 km evolutions, the rest mass of the
remnant is 2.85 − 2.86M⊙, which exceeds the Kepler
maximum rest mass of MKep ¼ 2.68M⊙ for this EoS.
This suggests that the remnants evolved with this cold
EoS are supported against gravitational collapse by a
combination of differential rotation and thermal pressure
[11]; and that over longer timescales, the remnants will
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collapse to a black hole. We do not find evidence of
collapse during our simulations. We note, however, that
Fig. 3 shows that the remnants for this EoS are still
contracting throughout our simulations, with the rate of
contraction slowing at late times, suggesting that the
remnant may be starting to (temporarily) stabilize.
Throughout this work, we will use the late-time properties
of the R1.4 ≈ 14 km evolutions as approximately represen-
tative of the final remnant, but we note that the remnant
may still experience further contraction.
Finally, we note a weak dependence of the late-time

ρb;max on the choice of M�-parameters in Fig 3. For the
evolutions with the R1.4 ≈ 11 km EoS, we find a 2%
difference in ρb;max at the end of our evolutions, with the
α ¼ 0.6 evolutions leading to larger maximum densities.
The picture is less clear for the R1.4 ≈ 14 km remnants
due to the continued contraction, but in this case, the
ðn0 ¼ 0.08 fm−3; α ¼ 1.3Þ thermal prescription leads to
the largest late-time ρb;max, while the α ¼ 0.6 prescriptions
lead to smaller maximum densities. In summary, the choice
ofM�-parameters has a small, but complicated effect on the
maximum rest-mass density of the remnant. We revisit this
dependence in Sec. III E.

B. Thermal evolution over time

In order to assess the heating of the neutron stars during
the inspiral, merger, and postmerger phases, Fig. 4 shows
the average thermal pressure of the neutron stars, Pth,
relative to the zero-temperature pressure, Pcold, over
time. We calculate these density-weighted averages
from slices taken along the equatorial (Z ¼ 0) plane. In
order to illustrate the global heating of the neutron star,
these averages include matter with rest-mass density
ρb > 0.1ρsat, where ρsat ¼ 2.7 × 1014 g=cm3 is a fiducial
value for the nuclear saturation density.
For all evolutions considered, we find that there is

negligible premerger heating, with hPth=Pcoldi≲ 0.1.
This is consistent with previous studies, which have shown
that tidal heating during the inspiral is minimal [e.g.,
[10,39]]. Figure 4 shows a sharp increase in the thermal
pressure at merger, as expected by the shock heating of the
collision. Following merger, the average thermal pressure is
a large fraction (up to ∼100%) of the cold pressure and, as a
result, may be expected to play a role in the postmerger
evolution. We investigate the differences in the thermal
properties of the postmerger remnant in detail in the
following sections.

FIG. 3. Top: evolution of the minimum lapse function, αmin. Bottom: evolution of the maximum rest-mass density, ρb;max, relative to
the initial rest-mass density at the start of the evolutions. The evolutions with the R1.4 ≈ 11 km cold EoS are shown in the left column,
while those with the R1.4 ≈ 14 km cold EoS are shown in the right column. For comparison, the normalized central density for a star with
the maximum mass of the supramassive sequence (i.e., the maximum mass supported by uniform rotation) is shown in the dashed gray
lines, for each cold EoS. For reference, the initial densities, ρb;maxð0Þ, are 9.1 × 1014 g=cm3 and 5.9 × 1014 g=cm3 for the two EoSs,
respectively.
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C. Late-time properties of the neutron star remnants

Figures 5 and 6 show equatorial snapshots of the
remnants for the evolutions with the R1.4 ≈ 11 km EoS
at 12 ms postmerger and R1.4 ≈ 14 km EoS at 18.6 ms
postmerger, respectively. The top row of each figure shows
the rest mass density ρb relative to ρsat, the middle row
shows the angular velocity of the fluid within the remnant
for each snapshot, and the bottom row shows the corre-
sponding temperature. We highlight a few key features of
these snapshots here, and will discuss the details in the
following subsections.
In these late-time snapshots, the remnants evolved with

the R1.4 ≈ 11 km cold EoS (shown in Fig. 5) have become
nearly axisymmetric, while the late-time remnants for the
R1.4 ≈ 14 km evolutions (Fig. 6) show a pronounced bar-
mode in the density distribution. This bar mode drives
significant GW emission (see Sec. III D), which drains
angular momentum from the remnant and will cause the
structure to become more axisymmetric over time. As a
result, this bar-mode may help to explain the late-time
contraction discussed in Sec. III A, for this stiff cold
EoS. For all of our simulations, the remnants exhibit
strong differential rotation within the remnants, with small
differences depending on the choice of M�-parameters

(consistent with our results from Paper I). We also find
the merger resulted in significant heating, with temper-
atures above 50 MeV reached in most of the remnants, and
overall more heating in the R1.4 ≈ 11 km evolutions com-
pared to the R1.4 ≈ 14 km evolutions.
From these late-time snapshots, we calculate the average

thermal properties of the remnants and report these global
summary statistics in Table I. These averages are computed
for matter with ρ> ρsat, in order to focus on the bulk dense-
matter interior, which governs the postmerger dynamics.
Finally, we also compute the median thermal properties as a
function of the density within the remnant, using bins that
are spaced log-uniformly in the density. Figure 7 shows
these median values, along with their 68% scatter, for the
temperature, the normalized thermal pressure Pth=Pcold,
and the effective thermal index Γth. We discuss these
thermal properties in detail in the following subsections.

1. Temperature

We start with the temperature profiles of the remnants,
which directly influence the neutrino opacity of the interior,
and thus may affect the long-term cooling of the remnant
and neutrino irradiation of the disk. Although neutrinos are
not included in these simulations, we direct the readers to,
e.g., [9,40,41], and references therein for further details on
this topic.
For all four thermal prescriptions with the R1.4 ≈ 11 km

EoS (shown in Fig. 5 across columns), we find evidence of
a high-temperature ring in the remnant, located at X=M ≃
1.5 in these spatial snapshots, where M is the ADM mass.
In contrast, the temperature of the innermost core
(X=M < 1) varies significantly, depending on the choice
of M�-parameters. In particular, the evolutions with
M�-parameters of n0 ¼ 0.08 fm−3 have hotter cores, while
the evolutions with n0 ¼ 0.22 fm−3 are characterized by
temperatures of≲10 MeV in the innermost core (X=M < 1).
We found a similar behavior in Paper I, in which the

temperature of the inner core of the remnants depended
sensitively on the choice ofM�-parameters. However, in that
work, for a cold EoS with R1.4 ¼ 12 km, the inner-core
temperature was correlated with α and was relatively insen-
sitive to n0, in contrast to what we now find in Fig. 5. Thus,
already, this suggests that the mapping between the M�-
parameters and the thermal properties of the remnant is not
straightforward formodelswith different stellar compactness.
The location of the high-temperature ring aligns closely

with the maximum angular velocity within the remnant, as
shown in the middle row of Fig. 5, and as has been seen
previous studies [e.g., [42,43]]. The ringlike structures
in Fig. 5 also correspond to a strong peak in the 1D
density-profiles of the temperature in Fig. 7. From these 1D
profiles, we find that the maximum temperatures reach up
to 40–50 MeV, depending on the choice ofM�-parameters,
and occur at densities of ∼2–2.5ρsat (or, equivalently, at
∼0.5ρb;max). The density-weighted average temperatures

FIG. 4. Evolution of the average thermal pressure, Pth, relative
to the zero-temperature pressure, Pcold, throughout the simula-
tions. The averages are density-weighted and include all matter
with ρb > 0.1ρsat. The neutron stars stay thermodynamically cold
(i.e., the thermal pressure is subdominant to the cold pressure)
until merger.
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within the remnants also depend on the M�-parameters,
with the evolutions with n0 ¼ 0.08 fm−3 leading to larger
average temperatures of hTi ¼ 33–36 MeV, compared
to the n0 ¼ 0.22 fm−3 evolutions, which yield hTi ¼
26–28 MeV (see Table I).
The picture changes somewhat for the evolutions per-

formed with the R1.4 ≈ 14 km cold EoS. Perhaps as a
consequence of the continued contraction for these rem-
nants, we do not find a high-temperature ring, although
we note the presence of two hot spots at X=M ≃ 1.5 in the
bottom row of Fig. 6, that suggest such a ring may be
forming. This is further apparent in the 1D density profiles
in Fig. 7, where we see a weaker and broader, but
nonetheless well-defined peak in the median tempera-
ture distribution located at ∼1.5–2ρsat (or, equivalently,
0.3–0.4ρb;max). Interestingly, for all sets of M�-parameters,
we find that the temperature of the innermost core is low,
≲8 MeV, for these evolutions.
Compared to the R1.4 ≈ 11 km evolutions, the R1.4 ≈

14 kmevolutions generally have lower average temperatures
in the remnant, with hTi ¼ 14–18MeV (see Table I). The
more significant heating for the R1.4 ≈ 11 km evolutions is

not surprising: given the smaller radii, the stars reach shorter
separations before merging and thus experience higher-
velocity impacts [e.g., [44]]. Nevertheless, even with this
reduced heating, we find that the same trend between n0 and
the average remnant temperature persists with this stiffer
cold EoS: i.e., evolutions with n0 ¼ 0.08 fm−3 lead to larger
average remnant temperatures, compared to the evolutions
with n0 ¼ 0.22 fm−3.
Because n0 determines the density at which the effective

mass starts to decrease, the correlation between hTi and n0
also implies a correlation with M�. Indeed, we find that, for
both cold EoSs, the average remnant temperatures are loosely
correlated with the effective mass or with the specific heat at
ρsat: in general, larger values of Cvðρsat; T ¼ 10 MeVÞ or
M�ðρsatÞ are correlated with smaller hTi (see Table I).
However, the correlation is not exact, as seen in Table I,
suggesting that the density-dependence of M� or Cv at
densities beyond ρsat may also play a role in the heating of
the remnant.
For completeness, Table I also includes the density-

weighted average of the specific heat, hCvi for each
remnant. This average Cv is approximately correlated with

FIG. 5. Late-time (t − tmerger ≈ 12 ms), equatorial snapshots for the R1.4 ≈ 11 km evolutions, in coordinates with respect to the ADM
mass. The top row shows the rest-mass density relative to the nuclear saturation density (ρsat ¼ 2.7 × 1014 g=cm3), with blue lines
indicating specific contours of ρb ¼ 2; 3 and 4ρsat. The middle row shows the angular velocity of the fluid in each snapshot. The bottom
row shows the corresponding temperature of the fluid, with contours indicating where the thermal pressure is equal to 100% and 10% of
the cold pressure. The columns correspond to the different thermal prescriptions (i.e., the different choices of M�-parameters).
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the average temperature in the remnants, but the correlation
is again not exact.

2. Thermal pressure

The middle panel of Fig. 7 shows the median profiles
(and 68% bounds) of Pth=Pcold for the late-time remnants.
For all of the evolutions, we find that the thermal pressure is
a significant fraction of the cold pressure to high densities
within the remnant. For the R1.4 ≈ 11 km evolutions, the
median thermal pressure exceeds 10% of the cold pressure
at densities of up to 3ρsat or, equivalently, 0.7ρb;max. For the
R1.4 ≈ 14 km evolutions, Pth exceeds this threshold at
densities of up to ∼2ρsat (or 0.5 − 0.6ρb;max). For both
cold EoSs, we find that the average Pth=Pcold in the remnant
can vary by up to 40–50%, depending on the choice of
M�-parameters, but that the dependence on individual
M�-parameters is not straightforward (see Table III C).
As we saw with the remnant temperatures, the R1.4 ≈
11 km evolutions lead to systematically higher hPth=Pcoldi,
as a result of the more extreme collisions.
Given the sensitivity of the thermal pressure to the choice

of the M�-parameters, we expect the long-term stability of
the remnant and the postmerger dynamical evolution to also
be sensitive to these parameters. We discuss the possible
signatures of this dependence in the postmerger gravita-
tional wave signals in Sec. III D.

3. Thermal index

Finally, the bottom rowof Fig. 7 shows themedian thermal
index, Γth, within each finite-temperature remnant. In the
M�-framework, the parameterα controls the density-depend-
ence of Γth at fixed temperature. This can be seen in Fig. 2,
where the choice of α ¼ 1.3 leads to a steeper Γth function,
while α ¼ 0.6 leads to a shallower density-dependence.
Due to the nonuniform temperature profile within the

remnants, the actual Γthðn; TÞ distributions within the
remnant differ significantly from the constant temperature
predictions of Fig. 2. In particular, the ðn0 ¼ 0.08 fm−3,
α ¼ 1.3) prescription leads to the most rapid density-
variation in Γth, even compared to the other α ¼ 1.3
evolution. This has important implications for the ejected
mass, as we discuss in Sec. III E.
When comparing between the evolutions with the R1.4 ≈

11 km and R1.4 ≈ 14 km cold EoSs, we find small
differences between the Γth distributions within the remnants
but, overall, we conclude that they are qualitatively similar.

D. Gravitational wave signals

We extract the GW radiation from each of our simu-
lations using the Newman-Penrose scalar ψ4, which is
decomposed onto s ¼ −2 spin-weighted spherical
harmonics at large radii (r ≥ 300M⊙). We calculate the

FIG. 6. Same as Fig. 5, but for the R1.4 ≈ 14 km EoS evolutions. These late-time snapshots correspond to t − tmerger ¼ 18.6 ms.
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FIG. 7. Median thermal properties from the late-time remnant. These median quantities are extracted for the equatorial slices shown in
Figs. 5 and 6. From top to bottom, we show: the temperature, T; the thermal pressure relative to the cold pressure, Pth=Pcold; and the
effective thermal index, Γth. The solid line indicates the median value, calculated for bins that are spaced logarithmically in density, with
the shaded regions indicating 68% bounds.

TABLE I. Average late-time properties of the remnant from each simulation. All averages are computed including matter with
densities ρ ≥ ρsat. From left to right, the columns indicate the cold EoS, the thermal prescription, the specific heat at ρsat and
T ¼ 10 MeV, and the density-weighted averages of the following thermal quantities: the thermal pressure relative to the cold pressure,
the thermal pressure, the temperature, and the specific heat.

Cold EoS M�-parameters Cvðρsat; T ¼ 10 MeVÞ hPth=Pcoldi hPthi [MeV fm−3] hTi [MeV] hCvi
R1.4 ≈ 11 km n0 ¼ 0.08 fm−3, α ¼ 0.6 0.60 0.33 4.6 33.1 0.87

n0 ¼ 0.08 fm−3, α ¼ 1.3 0.50 0.27 3.8 36.5 0.84
n0 ¼ 0.22 fm−3, α ¼ 0.6 0.71 0.34 4.0 26.3 0.65
n0 ¼ 0.22 fm−3, α ¼ 1.3 0.74 0.40 4.7 27.7 0.62

R1.4 ≈ 14 km n0 ¼ 0.08 fm−3, α ¼ 0.6 0.60 0.12 1.7 17.3 0.29
n0 ¼ 0.08 fm−3, α ¼ 1.3 0.50 0.12 1.6 18.5 0.29
n0 ¼ 0.22 fm−3, α ¼ 0.6 0.71 0.10 1.5 14.3 0.28
n0 ¼ 0.22 fm−3, α ¼ 1.3 0.74 0.14 2.0 16.4 0.35
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þ and × polarizations of the strain, h, via the relation
ψ4 ¼ ḧþ − iḧ×, using the fixed-frequency integration
method of [45]. We show the resulting plus-polarization
of the dominant l ¼ m ¼ 2 mode of the GW strain in
Fig. 8, for each of our evolutions.
For a given cold EoS, we find negligible differences in

the inspiral GWs between the different M�-parameters, as
expected given the negligible inspiral heating that was
found prior to merger (see Fig. 4). In contrast, differences in
the strain emerge following the merger in both cases, with
variations in the oscillations and amplitude of the post-
merger GWs that depend on the choice of M�-parameters.
In order to explore these differences in the postmerger

GWs in more detail, we compute the characteristic strain
according to

hc ¼ 2fjh̃ðfÞj ð5Þ

where f is the frequency and h̃ðfÞ is the Fourier transform
of the strain hðtÞ. We describe the details of how we
calculate and Welch-average this characteristic strain in
Appendix C, and we show the resulting spectra in Fig. 9.
The spectra are characterized by a small number of

peaks, which we refer to generically as f1, f2, and f3. We
summarize these frequencies in Table II and indicate them
with vertical lines in Fig. 9. The dominant peak, f2, is
typically associated with quadrupolar oscillations of the
remnant [48–50] and has been empirically correlated with
particular properties of the zero-temperature EoS, such as
the radius or tidal deformability of an intermediate-mass
neutron star [e.g., [51–54]], with corrections possible due
to the slope of the mass-radius relation [55]; or with, e.g.,
the maximum density of neutron stars [56].
In general, these studies find that the peak frequency is

inversely correlated with R1.4, and our spectra are globally
consistent with this trend: that is, for the R1.4 ≈ 14 km
evolutions, we find f2 ≈ 2.5 kHz, while for the R1.4 ≈
11 km evolutions, f2 ≈ 3.4 kHz. However, for a given cold
EoS, we find that the postmerger GWs are also mildly

FIG. 8. Plus-polarized gravitational wave strain, for the l ¼
m ¼ 2mode. The strain is plotted relative to the retarded time and
is scaled to a distance of 40 Mpc. The evolutions performed with
the R1.4 ≈ 11 km cold EoS are shown in the top figure, while the
R1.4 ≈ 14 km evolutions are shown in the bottom figure. For a
given cold EoS, the inspiral gravitational waves are identical, but
differences emerge after the merger (indicated with the vertical
dashed lines), depending on the choice of M�-parameters.

FIG. 9. Characteristic strain for a face-on merger located at
40 Mpc, for evolutions with the R1.4 ≈ 11 km cold EoS (top) and
R1.4 ≈ 14 km EoS (bottom). The vertical lines indicate the three
spectral peaks, f1, f2, and f3. The dashed gray line represents the
sensitivity of aLIGO at design sensitivity [46], while the dash-
dotted line indicates the proposed sensitivity for the next-
generation detector Cosmic Explorer [47]. The characteristic
strain has been Welch-averaged and normalized, according to the
procedure described in Appendix C.
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sensitive to the choice of M�-parameters, with f2 differing
by up to 190 Hz (fractional difference of 5.5%) for the
R1.4 ≈ 11 km evolutions, and by up to 60 Hz (2.3%) for the
R1.4 ≈ 14 km evolutions.
Although the ≲200 Hz variation in f2 due to thermal

effects is subdominant compared to the ∼1 kHz scatter due
to uncertainties in the cold EoS, this is a strong indication
that the postmerger GWs are indeed sensitive to the details
of the thermal prescription. This finding is consistent with
early studies that used a constant-Γth prescription to bracket
the range of uncertainty in finite-temperature effects, and
showed that varying Γth from 1.5 to 2 can change f2 by up
to 390 Hz, depending on the cold EoS [10] [see also [13]].
In a recent study, Ref. [57] explored the same question with
the phenomenological EoS framework of [58], which is
based on a liquid drop model with Skyrme interactions and
includes density-dependent thermal effects. They found
differences of up to 245 Hz (8%) in f2 depending on their
choice of effective mass parameters, which is a similar—
though somewhat larger—range of f2 than found here (for
further comparison with this work, see Appendix B).
Within the observed scatter in f2, we do not find a

unique trend with the M�-parameters that persists across
stellar compactness. For example, for the R1.4 ≈ 11 km
cold EoS, we find that thermal prescriptions with α ¼ 1.3
lead to larger values of f2, while α ¼ 0.6 leads to
systematically smaller values of f2. But the trend with α
is reversed for the remnants evolved with the R1.4 ≈ 14 km
cold EoS, suggesting a complex interplay between theM�-
parameters, stellar compactness, and the spectrum of
postmerger GWs. We also do not find any clear trends
between f2 and the average thermal properties of the
remnant in Table I. Notably, we do not find a unique
correlation between f2 and the specific heat at ρsat and a
fixed temperature, as was suggested in [57], that persists

across both cold EoSs and all four thermal prescriptions;
nor is there a unique correlation between f2 and the average
specific heat, hCvi, in the remnant interior.
Table II also reports the values of the secondary peaks, f1

and f3, along with their distances from the dominant peak
f2. Lastly, we include in Table II the quasiradial oscillation
frequency, f0, for each remnant, which we estimate by
Fourier analysis of the rest-mass density evolution (shown
in Fig. 3).
There are various physical interpretations for the origin

of the secondary peaks, including that they are powered by
a nonlinear interaction between the m ¼ 2 mode and the
quasiradial oscillations, or that they are generated by the
propagation of a spiral mode [e.g., [48,49,59]]. We do not
find a definitive correlation (or lack thereof) between f0
and the f2 − f1 or f3 − f2 spacings, making it unclear
which mechanism is operating here. We thus take an
agnostic interpretation of these secondary peak frequencies
in the following discussion.
In general, we find that the secondary peaks are also

sensitive to the choice of M�-parameters. The low-fre-
quency secondary peak f1 shifts by up to 90 (180) Hz for
the soft (stiff) cold EoS, corresponding to ∼4–10% frac-
tional variations. For the high-frequency peak f3, we find
shifts of up to 70 (470) Hz, for the soft (stiff) cold EoSs. We
note that the large scatter in f3 for the R1.4 ≈ 14 km models
is dominated by a single spectrum (see Fig. 9) and that, in
general, these high-frequency secondary peaks are not well
resolved for the R1.4 ≈ 14 km models. As a result, this
scatter should be interpreted cautiously. Nevertheless, we
find that the secondary peaks are also sensitive to the choice
of M�-parameters. As was found for f2, we again find that
there is no unique trend between the secondary peak
frequencies and either Cv or M� at ρsat that persists for
both cold EoSs and all four thermal prescriptions.

TABLE II. Peak frequencies of the postmerger GW spectra for each EoS. All frequencies are given in kHz. The
cold EoS is given in the first column and the thermal prescription is given in the second column. The next three
columns, labeled f1;2;3, correspond to the peaks identified from the Welch-averaged spectra in Fig. 9. These peaks
are used to compute the differences f2 − f1 and f3 − f2. The last column provides the quasiradial mode frequency,
estimated from Fourier analysis of the rest-mass density evolution from Fig. 3. The maximum difference between
each set of four simulations (governed by the same cold EoS) is given in the bottom rows.

Cold EoS M�-parameters f1 f2 f3 f2 − f1 f3 − f2 f0

n0 ¼ 0.08 fm−3, α ¼ 0.6 2.44 3.35 4.72 0.91 1.37 1.27
R1.4 ≈ 11 km n0 ¼ 0.08 fm−3, α ¼ 1.3 2.51 3.54 4.75 1.02 1.21 1.29

n0 ¼ 0.22 fm−3, α ¼ 0.6 2.42 3.35 4.70 0.92 1.36 1.34
n0 ¼ 0.22 fm−3, α ¼ 1.3 2.50 3.52 4.68 1.02 1.17 1.34

Maximum difference 0.09 0.19 0.07 0.11 0.20 0.07

n0 ¼ 0.08 fm−3, α ¼ 0.6 1.81 2.62 2.99 0.81 0.38 0.74
R1.4 ≈ 14 km n0 ¼ 0.08 fm−3, α ¼ 1.3 1.80 2.57 2.96 0.77 0.39 1.04

n0 ¼ 0.22 fm−3, α ¼ 0.6 1.81 2.63 3.43 0.82 0.80 1.02
n0 ¼ 0.22 fm−3, α ¼ 1.3 1.63 2.58 3.09 0.94 0.51 1.01

Maximum difference 0.18 0.06 0.47 0.17 0.42 0.30
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In summary, we find ∼2–5% variation in the location of
f2, depending on the choice of M�-parameters. This
dependence persists across both cold EoSs considered
here, but the effect is largest for the softer (smaller radius)
models. In principle, if the zero-temperature EoS were
known precisely—e.g., from a large number of tidal
deformability measurements, observed across a range of
masses—then these small variations in the location of f2
could be used to constrain the finite-temperature part of the
EoS. This would provide insight into the properties of
dense matter in a region of parameter space that is distinct
from what can be probed during the inspiral.
In practice, the large uncertainties in the cold EoS mean

that, for the time being, the sensitivity of the postmerger
GWs on the thermal prescription may simply introduce an
additional source of uncertainty into inferences that con-
strain properties of the cold EoS (such as R1.4) from f2.
This uncertainty due to the finite-temperature physics—
shown here to affect f2 by up to 190 Hz—will be important
to take into account in future inferences from the post-
merger GWs.
We leave a further investigation into the detectability of

these thermal effects for a future work.

E. Dynamical ejecta

Finally, we turn to the properties of the shock-heated
ejecta that is dynamically launched during and immediately
following the merger. We calculate the ejected mass for
each of our evolutions by integrating the total rest-mass
density outside of a sphere of radius r ¼ 100M, including
all matter for which −ut > 1 and ur > 0, according to

Mejð>rÞ ¼
Z
>r

ρbut
ffiffiffiffiffiffi
−g

p
d3x; ð6Þ

where ut is the time-component of the four-velocity, ur is
the radial velocity, and g is the determinant of the metric.
We report the total amounts of ejecta thus calculated for
each of our simulations in Table III.
Overall, we find that the evolutions with the R1.4 ≈

11 km EoSs produce more dynamical ejecta than the
evolutions with the R1.4 ≈ 14 km EoSs. This is consistent
with the overall stronger shock heating that we find for the
more compact stars, and with general trends found in
previous studies [44,60] (though see also [37,61]).
When comparing the differences between thermal pre-

scriptions, we generally find a minimal dependence on the
choice ofM�-parameters. For the R1.4 ≈ 14 km models, we
find differences in Mej of only 1.4 × 10−3M⊙ (fractional
difference of ∼30%), depending on the thermal prescrip-
tion. This difference is comparable to our estimate of the
numerical error in the ejecta (∼30%; see Appendix D), and
thus we conclude that these differences are not numerically
significant.

For the R1.4 ≈ 11 km EoSs, we find similarly negligible
differences in Mej between three of the four thermal
prescriptions. However, we find significantly more dynami-
cal ejecta for the set ofM�-parameters with n0 ¼ 0.08 fm−3

and α ¼ 1.3. This prescription leads to an additional
∼1.4 × 10−2M⊙ ejecta (80% fractional effect), compared
to the other choices of M�-parameters.
We explore the anomalously high ejecta for this case in

Fig. 10, which compares the time evolution of Mej for all
four evolutions with the R1.4 ≈ 11 km cold EoS. We find
that the early evolution of all four thermal treatments
is similar, but that the ðn0 ¼ 0.08 fm−3; α ¼ 1.3Þ pre-
scription produces a second wave of ejecta, which reaches
the imaginary detector at r ¼ 100M approximately 9 ms
after merger. This second wave is the source of the
excess ejecta.
We find that the second wave of ejecta is launched by

a significant core bounce in the postmerger remnant, for
this thermal treatment. The core bounce is not apparent
from the maximum density of the remnant (Fig. 3), but it
become evident in the average density of the remnant,
which we show in the bottom panel of Fig. 10. We
compute the average density from equatorial snapshots of
the remnant, including all matter with ρb > 0.1ρsat. The
evolution of the average density of the postmerger
remnant is initially similar for all four thermal treatments,
but the remnant evolved with the ðn0 ¼ 0.08 fm−3;
α ¼ 1.3Þ thermal prescription experiences a sharper con-
traction at 2 ms postmerger, followed by an increase in
the central density that peaks 4 ms after the merger.
The second wave of ejecta passes through the detector
(at r ¼ 100M) approximately 5 ms later, indicating
characteristic speeds of ∼0.3c.
This remnant is susceptible to the additional core-bounce

due to its softer (i.e., lower) sound speed at intermediate
densities, which we show in Fig. 11 for the R1.4 ≈ 11 km
EoS remnants and explain as follows. The adiabatic sound
speed, cs, is defined as

TABLE III. Total dynamical ejecta extracted at the end of each
simulation, for all unbound matter outside a sphere placed at
100M. From left to right, the columns indicate: the cold EoS, the
thermal prescription, the time at which the ejecta are calculated,
and the total amount of ejecta in units of 10−2M⊙.

Cold EoS M�-parameters t − tmerger (ms) Mejð10−2M⊙Þ
n0 ¼ 0.08; α ¼ 0.6 1.84

R1.4 ≈ 11 km n0 ¼ 0.08; α ¼ 1.3 12.1 3.21
n0 ¼ 0.22; α ¼ 0.6 1.73
n0 ¼ 0.22; α ¼ 1.3 1.81

n0 ¼ 0.08; α ¼ 0.6 0.41
R1.4 ≈ 14 km n0 ¼ 0.08; α ¼ 1.3 18.6 0.35

n0 ¼ 0.22; α ¼ 0.6 0.49
n0 ¼ 0.22; α ¼ 1.3 0.36
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where h is the enthalpy and the derivative is evaluated at
constant entropy S and electron fraction. For a polytropic
EoS, the derivative term can be expanded as
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where Γcold is the adiabatic index of the zero-temperature
EoS and Γth is the (density-dependent) effective thermal

index. As shown in the bottom row of Fig. 7, the ðn0 ¼
0.08 fm−3; α ¼ 1.3Þ set of parameters leads to the most
rapidly decreasing Γth as a function of density, within the
finite-temperature remnant. In addition, in Eq. (8), the
derivative term is multiplied by the overall thermal pres-
sure. Thus, for the R1.4 ≈ 11 km evolutions, which undergo
significant heating, the derivative term is weighted strongly
and this choice of parameters leads to a significant
reduction in the sound speed within the finite-temperature
remnant. This is shown in the top panel of Fig. 11.
In contrast, because the R1.4 ≈ 14 km collisions are so

gentle, the thermal pressures are overall lower and thus the
contributions from the Γth terms in Eq. (8) are suppressed.
As a result, we do not see significant differences in the
sound speed profile of the remnant, and the dynamical
ejecta are similar for all four thermal treatments with this
stiffer cold EoS.
We note that the ejecta properties discussed in this

section may be modified with the inclusion of neutrinos
into the simulations. For example, [62] showed that
neglecting neutrino cooling and heating can cause the
unbound matter to be overestimated by factors of >2.
We leave the investigation of the interplay between

FIG. 10. Top: Unbound (dynamical) ejecta outside a radius of
100M, as a function of time since the merger, for the R1.4 ≈
11 km evolutions. Bottom: Average density of the remnant as a
function of time, where the averages are computed from
equatorial slices and include all matter with ρb > 0.1ρsat. The
ðn0 ¼ 0.08 fm−3; α ¼ 1.3Þ evolution produces a second wave of
ejecta, which passes through the detector at 100M approximately
9 ms after the merger. The same evolution also features a
pronounced core bounce, as evidenced by the bump in the
average density of the remnant ∼4 ms after merger, which likely
launched the second wave of ejecta.

FIG. 11. Median sound speed profile within each postmerger
remnant, with the 68% uncertainties shown in the shaded regions.
The sound speed profiles are similar for a given zero-temperature
EoS (separated into the top and bottom figures), with the
exception that the n0 ¼ 0.08 fm−3 and α ¼ 1.3 set of parameters
leads to a reduced sound speed at intermediate densities for the
R1.4 ≈ 11 km EoS, and thus produces a more compressible
remnant.
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finite-temperature and neutrino effects to a future study.
Nevertheless, these results provide a first indication of
the degree to which the uncertainties solely in the thermal
part of the EoS can influence the dynamically launched
ejecta.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the role of finite-
temperature effects in BNS mergers for two different
cold EoSs, corresponding to one soft zero-temperature
model (predicting R1.4 ≈ 11 km stars) and one stiff zero-
temperature model (R1.4 ≈ 14 km). All evolutions are
performed for equal mass (1.3þ 1.3M⊙) binaries, with
one of four different thermal prescriptions attached to each
cold EoS. The thermal prescriptions are calculated using a
phenomenological model of the particle effective massM�,
following the framework of [17].
We confirm previous results that tidal heating during the

inspiral is small and that it, accordingly, has a negligible
effect on the inspiral dynamics. In contrast, strong heating
during the merger leads to differences in the postmerger
evolution, depending on the choice of M�-parameters.
For the R1.4 ≈ 11 km evolutions, we find that the average

temperature of the late-time, neutron star remnant is 26–
37 MeV, depending on the choice of M�-parameters, while
the average hPth=Pcoldi can range from 0.27–0.40, indicat-
ing significant thermal support within the remnant neutron
star. For all of these models, we find a strong density-
dependence for the temperature distribution within the
remnants, leading to the formation of a high-temperature
ring in the outer core. Together with the results from Paper
I, these findings confirm that the high-temperature ring
forms generically for any choice of M�-parameters and
across a range of different cold EoSs. Inside this high-
temperature ring, however, the temperature of the inner-
most core depends sensitively on the M�-parameters in a
nontrivial way, which may affect the long-term stability and
cooling of the remnant.
The evolutions with the stiffer R1.4 ≈ 14 km EoS lead to

gentler collisions, with less significant heating. As a result,
the average temperatures of the late-time remnants for this
EoS are only 14–18 MeV, with hPth=Pcoldi ≈ 0.1–0.14,
depending on the choice of M�-parameters. Because this
EoS is so stiff, the remnant object has still not become fully
axisymmetric by the end of our simulations and we observe
a significant bar mode in the remnant. Nevertheless, we see
evidence of high-temperature hot spots forming within
these remnants, which we expect to evolve into a ringlike
structure at later times.
We have also investigated the GW emissions for these

evolutions and conclude that the postmerger GWs are
modestly sensitive to the choice of M�-parameters, as
was first indicated in the GW strain in Paper I for a single
cold EoS. We find that the shifts to the peak frequency f2
are ≲200 Hz (∼2–5%) for a given cold EoS, with the

largest shifts occuring for the R1.4 ≈ 11 km cold EoS. The
peak frequency depends most sensitively on the parameter
α, which governs the rate of decay for the effective mass
function at high densities. However, we find opposite
trends between f2 and α for the R1.4 ≈ 11 km and R1.4 ≈
14 km cold EoSs, suggesting a complex interplay between
the M�-parameters, the stellar compactness, and the struc-
ture of the postmerger remnant. Notably, we do not find a
correlation between f2 and the specific heat at ρsat for our
models, as was recently suggested by [57], nor do we find a
correlation between f2 and the value of M� at ρsat. The
locations of the secondary peaks of the postmerger GW
spectra are also sensitive to the choice of M�-parameters at
the∼4–10% level, but again without a persistent correlation
with either the M�-parameters of specific heat at ρsat.
We note that, like most modern merger codes, our

postmerger gravitational wave signals are not convergent
[e.g., [22]]. In a recent convergence study with a similar
numerical set-up to this work, we estimated that the
approximate, fractional error in f2 for our simulations is
∼0.2% as the resolution is increased [22]. However, with-
out strict convergence, a robust error estimation is difficult.
Other studies have estimated the numerical error in f2 as
being as high as 2%–8%, due to the discrete Fourier
transform [63]. We note also that the dependence of f2
on the M�-parameters is comparable to the ∼100 Hz
dependences of the postmerger GWs on, e.g., microphys-
ical bulk transport [34] or the spin of the initial neutron stars
[64], which may complicate efforts to disentangle the
M�-parameters from a future detection of f2.
Furthermore, attributing the spectral differences to finite-

temperature effects will first require precision knowledge of
the zero-temperature EoS. This may be possible with the
hundreds of thousands of inspiral events that will be
observed in the era of next-generation facilities such as
Cosmic Explorer [65], Einstein Telescope [66], and NEMO
[67]. We plan to further investigate the detectability of these
spectral differences in a future work.
Finally, we have also compared the total amounts of

dynamical ejecta for these evolutions and we find that Mej

is not very sensitive to the choice ofM�-parameters, except
for one extreme case, for which the ejecta can be enhanced
by ∼85% simply by changing the finite-temperature part of
the EoS. We attribute this increase in the ejecta to an
additional core bounce, which is possible for the softer cold
EoS with the ðn0 ¼ 0.08 fm−3; α ¼ 1.3Þ set of M�-param-
eters, due to the lower sound speed in the finite-temperature
remnant for this combination of parameters.
While this work presents a first exploration of realistic

finite-temperature effects in mergers across a range of
stellar compactness, we note that the results presented here
are limited to a single binary mass and an equal mass ratio.
Changing the binary parameters may further influence
the strength of the thermal effects and the sensitivity to
the M�-parameters.
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As we look forward to new discoveries with the
upcoming LIGO-Virgo-Kagra observation runs and as
the community plans for the construction of the next-
generation of detectors, it is essential to quantify the key
uncertainties in our modeling of neutron star mergers, and
to understand how these uncertainties will influence our
ability to constrain the EoS from future observations. At
present, the dependences that we have found here between
the postmerger observables (such as ejecta and GWs) and
the finite-temperature part of the EoS will effectively
introduce an additional source of uncertainty into post-
merger inferences of the cold EoS. In the future, however,
as the zero-temperature EoS becomes better constrained,
these dependences can be exploited to derive novel con-
straints on the EoS at high densities and temperatures, thus
probing a fundamentally new region of parameter space.
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APPENDIX A: GENERALIZED PIECEWISE
POLYTROPIC FITS

In this appendix, we report our numerical fits for the
generalized piecewise polytrope (GPP) parametrization of
the coldEoSsused in thiswork. Theprocedure for generating
these fits is exactly as described in Appendix A of [22]. In
particular, the low-density portion of the EoS is described by
aGPP representation of SLy, from a high-accuracy version of
Table II of [33] [M. O’Boyle, priv. comm.] For the high-
density EoS, we follow [33] in using a three-segment
parametrization, which are divided at the fiducial densities
ρ1 ¼ 1014.87 g=cm3 and ρ2 ¼ 1014.99 g=cm3.
In this parametrization, the pressure along a given

segment is given by

PðρÞ ¼ Kiρ
Γi þ Λi; ρi−1 < ρ ≤ ρi; ðA1Þ

where the polytropic coefficient, Ki, is determined by
requiring differentiability,

Ki ¼ Ki−1

�
Γi−1

Γi

�
ρΓi−1−Γi
i−1 ; ðA2Þ

and the parameter Λi is imposed to ensure continuity in the
pressure, such that

Λi ¼ Λi−1 þ
�
1 −

Γi−1

Γi

�
Ki−1ρ

Γi−1
i−1 : ðA3Þ

For a three-segment parametrization, there are four free
parameters: K1, Γ1, Γ2, Γ3. From these parameters and the
low-density EoS, all other Ki and Λi in Eqs. (A2)–(A3) are
uniquely determined.
We perform a Markov Chain Monte Carlo simulation to

fit for the parameters that minimize the difference between
the tabulated version of the wff2 [30] and H4 [31] EoSs and
their GPP representations, as in [22]. We report the
resulting best-fit coefficients in Table IV.

APPENDIX B: PARAMETRIZATION
OF THE PARTICLE EFFECTIVE MASS

The thermal prescription developed in [17] is based on
a Fermi-liquid theory based approach, in which the high-
density thermal pressure and energy depend explicitly
on the particle effective mass function, M�ðnÞ. A two-
parameter approximation of this effective mass function
was introduced in [17], according to

M�ðnÞ ¼
(
ðmc2Þ−2 þ

�
mc2

�
n
n0

�
−α
�
−2
)−1=2

; ðB1Þ

where n is the baryon number density, mc2 is the vacuum
rest-mass of the particle (which the effective mass asymp-
totes to at low densities), n0 is the density at which the
effective mass function starts to deviate away from the
vacuum value, and α governs the rate of decay. For the low-
density vacuum mass, we use the energy per baryon of 56Fe
of mc2 ¼ 930.6 MeV. The phenomenological approxima-
tion in eq. (B1) neglects the composition and temperature
dependences ofM�, which were determined to be small for
neutron star conditions in [17]. Instead, it assumes that the

TABLE IV. Best-fit parameters for generalized piecewise poly-
tropic representations of the wff2 and H4 EoSs. R1.4 indicates the
radius of a 1.4M⊙ neutron star predicted by each EoS. The
parameter ρ0 is the density at which the high-density para-
metrization intersects the crust EoS, which is taken to be a GPP
representation of SLy (see text). The remaining four columns
provide the four free parameters that are determined via our GPP
fitting procedure.

EoS R1.4 [km] ρ0 [g=cm3] log10 K1 Γ1 Γ2 Γ3

wff2 11.10 1.309 × 1014 −35.443 3.316 4.122 3.200
H4 13.99 2.931 × 1013 −23.110 2.502 1.511 2.366
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neutron and proton effective masses are comparable, such
that M�

p ≈M�
n ≈M�. For additional details, see [17,21].

Figure 12 shows the effective mass function from
Eq. (B1) for the four sets of parameters considered in this
work. These parameters were chosen to extremally bound
the range of best fit values for a set of finite-temperature
EoS tables that are commonly used in merger simulations
[17], such that the resulting thermal prescriptions would
bracket the effective thermal indices for such models (see
Fig. 2). We show the range of effective masses spanned by
these tabulated models (for symmetric nuclear matter at
T ¼ 10 MeV) in the gray-shaded band in Fig. 12. The
tabulated EoS models include the DD2, TMA, TM1, FSG
models calculated within the statistical framework of [68]
(and references therein), SFHo and SFHx [69], NL3 and
FSU [70], and STOS [71].
We compare these functional forms to another repre-

sentation of the particle effective mass function that was
recently explored in the context of merger simulations in
[57]. The EoS framework used in [57] is based on a
phenomenological liquid drop model with Skyrme inter-
actions from Schneider, Roberts, and Ott (SRO) [58]. In
this approach, the nucleon effective mass is linearly related
to the nucleon densities, according to

ℏ2

2M�
n
¼ ℏ2

2mn
þ α1nn þ α2np ðB2Þ

where the subscript n indicates a neutron, p a proton, and αi
are Skyrme parameters. There are two free parameters, so
the function is uniquely defined by specifying: (1) the
effective mass at saturation M�

nðnsatÞ, which is taken to be
0.55, 0.75, or 0.95 in [57], and (2) the neutron-proton mass

difference for pure neutron matter Δ which is taken to be
0.1mn, following [72]. From these fixed values, one can
solve Eq. (B2) for the full density-dependence of M�ðnÞ,
which we extract and plot in Fig. 12. In this way, we can
compare the range ofM�-functions considered in our work
with the SRO approach.
We note that two of our effective mass functions, which

have α ¼ 0.6, are similar to the SRO mass functions with
M�ðρsatÞ ¼ 0.55 and 0.75 used in [57]. OurM�-model with
n0 ¼ 0.08 fm−3 and α ¼ 1.3 is the most extreme model in
this space; but we note that this choice of parameters is
necessary to fully bracket the range of Γth in Fig. 2.
Finally, we comment briefly on the differences in the

postmerger GWs in our work and [57], which use these two
different representations for the particle effective mass
function. We note that the SRO framework used in [57]
differs additionally beyond the M�-representation; notably,
in that theEoS framework is not assumed to be separable into
a cold and thermal component [as in Eq. (1)]. As a result, the
changes toM�ðρsatÞ in that work lead to a small, but nonzero
change to the zero-temperature part of the EoS aswell, which
will affect e.g. the neutron star radius (see e.g., [73]).
As discussed in Sec. III D, [57] find that f2 varies by up to

245 Hz, for their full range ofM�ðρsatÞ ¼ 0.55 to 0.95. If we
instead focus on theM�-functions from [57] that are themost
similar to those used in this work (i.e.,M�ðρsatÞ ¼ 0.55 and
0.75), then their simulations show that f2 varies by only
73 Hz. For the comparable set ofM�-parameters used in our
work (corresponding to the α ¼ 0.6 models), we find
negligible differences in f2 of ≲10 Hz for both cold EoSs.
In addition to the differences in the EoS framework

discussed above, we note that the numerical scheme used in
[57] also differs from the code used in this work. Most
notably, the evolutions in [57] include an M1 neutrino
transport scheme [74], which may account for some of the
differences in the resulting values of f2.

APPENDIX C: DETAILS ON THE
GRAVITATIONAL WAVE ANALYSIS

In this appendix, we briefly describe our procedure for
calculating the characteristic strain, which is defined as

hc ¼ 2fjh̃ðfÞj ðC1Þ
where f is the frequency and h̃ðfÞ is the Fourier transform
of the strain hðtÞ≡ hþðtÞ − ih×ðtÞ.
To compute h̃ðfÞ, we first apply a Tukey window with a

shape parameter of 0.25 to the two polarizations of the
time-domain strain, hþðtÞ and h×ðtÞ. From this windowed
strain, we compute the Fourier transform to get an initial
spectrum, shown in dashed lines in Fig. 13.
This initial (unaveraged) spectrum is noisy, making

individual spectral features hard to identify. In order to
reduce the noise, we also compute a Welch-averaged
spectrum, using 6 overlapping segments that are ∼5 ms

FIG. 12. Particle effective mass,M�, as a function of the density
for symmetric nuclearmatter. The gray shaded band corresponds to
the range of values spanned by a sample of tabulated, finite-
temperature EoSs. The blue lines correspond to the set of
parameters used in this work following Eq. (B1); while the red
lines indicate themodels used in [57] [Eq. (B2)]. See text for details.
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each in length. Each segment is windowed with a Hann
window and zero-padded to contain a total of 4,096 points.
After computing the Welch-averaged spectrum, we normal-
ize it to ensure the same total power as the raw (unaver-
aged) spectrum between 1 and 5 kHz, to compensate for the
loss of power due to Welch-averaging of a nonstationary
signal. The normalized, Welch-averaged spectra are shown
with solid lines in Fig. 13. We confirm that the spectral
peaks identified from the Welch-averaged spectra approx-
imately agree with what we pick out by eye from the
unaveraged spectra. The Welch-averaged spectra are used
for all of the analyses in Sec. III D.

APPENDIX D: EJECTA CONVERGENCE

In this appendix, we provide an estimate of the numerical
errors for the dynamical ejecta. We base this estimate off of
a previous set of simulations [22], which follow the same
numerical setup to the simulations described in this work,
except that those simulations utilized a different cold EoS
and a different set of M�-parameters. In particular, that
work used a generalized piecewise polytropic parametriza-
tion of ENG [75] for the cold EoS, which predicts neutron
star radii of R1.4 ¼ 11.95 km; while for theM�-parameters,
n0 ¼ 0.12 fm−3 and α ¼ 0.8 were used. Both of these
choices fall in the middle of the range of values explored in
this work, making this a convenient reference. In addition,
we note that this previous work used slightly larger total
mass (MADM ¼ 2.76M⊙ in that work; cf.MADM ¼ 2.6M⊙
in the present study), but we expect the fractional error
estimates made below to approximately hold across these
different masses.
We report the total dynamical ejecta calculated outside a

sphere at r ¼ 100M (as in III E) in Table V. The ejecta is
reported for three different resolutions. We find approx-
imately second-order self-convergence, as the resolution is
increased. We take advantage of this convergence to
calculate the Richardson extrapolation of the dynamical
ejecta, using the low and high resolutions, and we find that
Mej ≈ 1.6 × 10−2M⊙ for a simulation at infinite resolution.
We take the difference between this Richardson extrapo-
lation and Mej extracted from our highest-resolution evo-
lution as an estimate of the error inMej. We find this error to
be ∼5 × 10−3M⊙, which is a ∼30% fractional error.
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