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Our study investigates the complex interaction between active neutrinos and the ultralight bosonic dark
matter halo surrounding the Sun. This halo extends over several solar radii due to the Sun’s gravitational
field, and we represent it as a coherent oscillating classical field configuration of bosonic dark matter
particles that vary in time. Our investigation has revealed that, based on the available solar neutrino flux
data, these novel models do not surpass the performance of the conventional neutrino flavour oscillation
model. Furthermore, we discuss how next-generation solar neutrino detectors have the potential to provide
evidence for the existence or absence of the ultralight-dark matter halo.
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I. INTRODUCTION

While studying the movement of galaxies in the Coma
cluster, Fritz Zwicky became the first astronomer to detect
a discrepancy between visible matter and gravitational
forces. In a groundbreaking 1933 article, he presented a
compelling finding: the visible matter’s total mass in the
cluster was insufficient to gravitationally bind the galaxies,
identifying what is now known as the dark matter problem
[1]. Since then, many solutions have continuously been put
forward to solve this problem, including invisible massive
astronomical bodies such as black holes, alternative theo-
ries to general gravity, extensions to the standard model
of fundamental particles and interactions postulating the
existence of new particles. Although many articles are
being published on these very active research fields, the
latter class of solutions is the most popular and widely
accepted. However, identifying the definitive new particle
or particles remains a significant challenge [2]. So far,
the theoretical and experimental efforts to discover such
particles have focused primarily on the so-called weakly
interacting massive particles (WIMPs). Accordingly, these
particles are neutral and nonrelativistic particles, with
masses varying from a few GeV to 103 GeV and interacting
ultraweakly with the standard particles, e.g., [3,4].
The lack of evidence for the existence of WIMPs and the

need to answer unsettled problems in the current standard
cosmological model—Lambda cold dark matter model—
motivated the study of properties of ultralight particles as
viable dark matter candidates. These particles are well
motivated by modern theories (e.g., [5]), many of which
predict the existence of spin-0 and spin-1 bosons, including
axions or axionlike particles and dark photons [5–7]. These

ultralight particles collectively behave like a bosonic field.
In this work, we call all these particles, including the
classical axion [8] or their closest relative, the axionlike
particles [9], simply “bosons” or “ultralight particles” if not
stated otherwise. Interestingly, we should be able to detect
such fields by their interaction with standard particles in the
future. A cornucopia of experiments aims to detect such
bosonic particles by the emission of photons created by
their interaction with magnetic fields [10], nuclear mag-
netic resonance (e.g., [11]) and axion spin precession
(e.g., [12]).
Here, we discuss the possibility of this ultralight-dark

matter particle interacting with solar neutrinos using a well-
established model for predicting neutrino flavor oscillation
through vacuum and matter. In this work, we discuss also
how current and future solar neutrino detectors (e.g., [13])
could be used to constrain the properties of these particles.
The article is organized as follows: Sec. II presents the

properties of the local dark matter field. Section III explains
the mechanism by which the local dark matter field
interacts with the active neutrinos. Section IV introduces
the survival probability of electron neutrino function in the
standard neutrino oscillation flavor model. Section V gen-
eralizes the result of the previous section to the new
neutrino dark matter model. Section VI discusses the time
dependence of the survival probability of electron neutri-
nos. Section VII gives predictions of the new neutrino
model for the present Sun, and Sec. VIII summarizes the
main results and conclusions of this work.
If not stated otherwise, we work in natural units

(c ¼ ℏ ¼ 1). All standard units are expressed in GeV
by applying the usual conversion rules. These are the
most common ones used in this work: 1 m ¼ 5.068×
1015 GeV−1, 1 kg ¼ 5.610 × 1026 GeV, and 1 sec ¼
1.519 × 1024 GeV−1.*ilidio.lopes@tecnico.ulisboa.pt
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II. ULTRALIGHT-DARK MATTER

A. The origin of the ultralight-dark matter field

If boson particles exist today, they were produced
abundantly in the early Universe. The production of
light-dark matter can take many forms. We have thermal
production, dark matter decay, parametric resonance, and
topological defect decay, among other mechanisms (e.g.,
[14,15]). For the light-dark matter field, some authors
obtained Ω2

ψ ¼ 0.1ðao=1017 GeVÞ2 ðmψ=10−22 eVÞ1=2,
where ao is a parameter that relates to the initial misalign-
ment angle of the axion, and mψ is the axion mass [16,17].
Therefore, we will assume that at least a fraction of the dark
matter background in the solar neighborhood is made of an
ensemble of ultralight bosons,

ρ̄bψ ¼ ρ̄⊙DM

�
Ωψh2

ΩDMh2

�
; ð1Þ

where ρ̄⊙DM is the local density of dark matter (DM) in the
solar neighborhood, Ω2

DMh
2 andΩ2

ψh2 are the total DM and
axion energy density parameters in the present Universe,
and h is the reduced Hubble constant such that h≡H0=
ð100 km s−1Mpc−1Þ. Recent measurements of the dark
matter constituents give ρ⊙DM ¼ 0.39 GeV cm−3 [18] and
ΩDMh2 ¼ 0.12 [19]. Now, we compute the averaged
density number of dark matter n̄bψ near the Sun as the
ratio between the averaged local density ρ̄bψ and mψ ,
such that n̄bψ ¼ ρ̄bψ=mψ . For example, considering axions
with mψ ¼10−22 eV and Ωψh2¼ΩDMh2, we obtain n̄bψ ¼
3.9 × 1030 cm−3. This value is only 2 orders of magnitude
smaller than the density of electrons in the Sun’s core,
n̄e ∼ 6 × 1031 cm−3 [20].
Ultralight boson particles behave as nonrelativistic

matter and account for dark matter in the present
Universe. Moreover, such a population of particles will
smooth inhomogeneities in the dark matter distribution on
scales smaller than the de Broglie wavelength λdB. We have
calculated the de Broglie wavelength, which is given by the
equation λdB¼1.24×1022 ð10−23 eV=mψ Þ ð10−3=vψ Þ cm,
where vψ is the virial velocity of the boson in the halo.
For the fiducial boson, assuming mψ ¼ 1.5 × 10−14 eV
and vψ ∼ 10−3, we obtain λdB ¼ 119R⊙. Collectively, such
particles form a dark matter background that we choose to
represent as a coherent oscillating classical field configura-
tion (e.g., [21–23]). Accordingly, the general form of this
field reads

ψbðr⃗; tÞ ¼ ψbo cos ðmψ tþ ϵoÞ; ð2Þ

whereψbo and ϵo are the amplitude and phase of this bosonic
field background. The amplitude ψbo is computed from the
density ρ̄bψ asψbo ¼

ffiffiffiffiffiffiffiffiffiffi
2ρ̄bψ

p
=mψ andwe assume that ϵo ≈ 0

[22]. In the determination ofψbðr⃗; tÞ, sincevψ ∼ 10−3 is very
small (e.g., [23]), we neglect its contribution for Eq. (2).
Here, we hypothesize that ultralight bosons around the

Sun form a halo of dark matter. As a consequence of such a
gravitational bound system, we describe the boson field of
this bound system similar to Eq. (2). Conveniently, we
define ρ̄ψ as the average dark matter density inside the halo.
Since ρ̄ψ is larger than background density ρ̄bψ, we have
ρ̄ψ ¼ χψ ρ̄bψ , where χψ is a positive number larger than 1.
The boson halo we are considering shares similar properties
to boson stars (e.g., [24,25]), except that it is bounded by a
gravitational potential of the host star, the Sun, rather than
its self-gravity. Since these particles in the halo are
maintained and stabilized by the gravitational potential
of the host star, the total mass of halo Mψ must be much
smaller than the mass of the star M⊙, i.e., Mψ < M⊙, so
specifically we can consider that Mψ ≤ M⊙=2.

B. The local ultralight-dark matter field

Our study focuses on a halo of ultralight bosons hosted
by the Sun, which we assume to be a spherical object with a
total radius Rψ large enough to encompass the entire Sun.
For convenience, we use a fiducial radius several times
greater than the Sun’s. In the nonrelativistic limit, we
compute the boson field inside of the halo similar to boson
stars as originally proposed by Kaup [26] and Ruffini and
Bonazzola [27], following in the footsteps of Wheeler [28].
A recent review of the properties of boson stars can be
found in Braaten and Zhang [29]. Within the nonrelativist
effective field theory framework, Namjoo et al. [30]
derived an exact connection between the boson field, a
real function, and a complex function known in this context
as a relaxation wave function. Chavanis [31] found that an
exponential form is a suitable ansatz for describing the
radial variation of the density profile inside the halo. Eby
et al. [32] has shown this form to be a good fit for the
numerical solution to the Gross-Pitaevskii-Poisson equa-
tion [33]. In our case, we consider that the boson field
decays exponentially with the distance r from the star’s
center [31]. Therefore, the boson field created by the halo
of dark matter particles in the presence of an external
gravitational source reads

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mψ

πmψR3
ψ

s
e−

r
Rψ cos ðmψ tÞ: ð3Þ

In this configuration, the radius of a halo Rψ is determined
by the gravitational potential of the external source: Rψ ¼
ðM2

p=M⊙Þm−2
ψ , whereMp¼ðℏc=GÞ1=2¼1.2×1019GeV is

the Planck mass, or Rψ ¼ 3.7863ð1 × 10−13 eV=mψ Þ2 R⊙.
Our study will focus on dark matter halos with a radius of at
least 2 times that of the solar radius (Rψ ≥ 2R⊙), which
implies the presence of dark matter particles with a mass
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mψ lower than the critical threshold ofmc
ψ ≈3.6×10−13 eV.

The boson field ψðr⃗; tÞ [Eq. (3)] inside the halo behaves
similar to the boson background field ψbðr⃗; tÞ [Eq. (2)].
Both fields are oscillating in time with a frequency
approximately equal to the boson mass mψ (e.g., [34]).
We also found that the density profile of the dark matter
halo (for r ≤ Rψ with Rψ ≥ R⊙) reads

ρψðrÞ ¼ ρcψe
− 2r
Rψ ; ð4Þ

where ρcψ ¼ Mψ=ðπR3
ψÞ. This expression is identical to the

one found by Banerjee et al. [35] for relaxion stars.
We compute the overdensity of particles inside the halo

in a similar way to the calculation done for the boson
star [35]: the averaged density ρ̄ψ of the halo is determined
in comparison to the background density of the dark matter
ρ̄bϕ, in such a way that the parameter of condensation χψ
corresponds to

χψ ¼ ρ̄ψ
ρ̄bψ

≈
Mψ

πR3
ψ

1

ρ̄bψ
: ð5Þ

If we set ρ̄bϕ ¼ ρ̄⊙DM and express Mψ in units of solar
masses, the previous equation can be rewritten as follows:

χψ ¼ 4.987 × 1022
�
Mψ

M⊙

��
mψ

1 × 10−13 eV

�
6

; ð6Þ

where mψ does not exceed the critical threshold value
of mc

ψ .
The standard solar model, which is based on solar

neutrino fluxes and helioseismology data, provides an
accurate understanding of the physics within the Sun
(e.g., [36]). Based on this, we assume that the total
mass of the halo must be sufficiently light to have a
negligible effect on solar gravity and structure.
Furthermore, Banerjee et al. [35] found that planetary
ephemerides data can exclude dark matter halos with a
total mass greater than 10−12M⊙. As a result, we have
adopted a total mass of 10−13M⊙ for our dark matter
halo unless otherwise specified. Our fiducial model
assumes mψ ¼ 1.5 × 10−14 eV and Mψ ¼10−13M⊙, which
yields Rψ ¼168R⊙¼0.783A:U:. and χψ ¼5.69×104.
Occasionally, we consider a larger mass for the dark matter
halo, such as Mψ ¼ 10−10M⊙.

III. ACTIVE NEUTRINOS PROPAGATING
IN A BOSON DARK MATTER FIELD

Here, we choose to explore the physics beyond the
standard model by encoding nonstandard interactions
between active neutrinos and dark matter [37] in the
framework of effective field theory (e.g., [38]). We start
by considering an extended version of the standard neutrino

flavor oscillations model [39], which includes an additional
nonstandard interaction: we postulated that the three active
neutrinos νa (a ¼ e, τ, μ) could change their flavor through
an interaction with an ultralight time-dependent boson
field ψðr; tÞ [Eq. (3)], mediated by vector boson ϕ with
a mass mϕ. Therefore, ψ couples with νa by the interaction
gψψνaνa, where gψ is a dimensionless coupling (e.g., [40]).
Moreover, to widen the space of possible solutions, the
intermediate boson ϕ can be an ultralight particle.
Accordingly, the effective Lagrangian (e.g., [41]) that
describes the system is

L ⊃ −mν

�
1þ gψ

ψ

Λ

�
ννþ H:c:; ð7Þ

where Λ ¼ mν=gψ is a large mass scale (for instance, with a
gψ ≪ 1). For convenience, we suppress the flavor indices
on ν and mν. The results found in this work are equally
valid for Dirac and Majorana neutrinos. Therefore, the
survival probabilities of solar neutrinos can vary through
two new mechanisms:
(1) Neutrino masses inside the dark matter halo can

change according to Eq. (7): mν can vary to
mνð1þ δmν=mνÞ by the action of the boson field.
Here we consider a large number of bosons within
the de Broglie wavelength, making them oscillate
coherently as a single classical field, such as ψðr; tÞ
corresponds to the boson field defined in Eq. (3), for
which the mass perturbation reads

δmν

mν
¼ ϵ̄ψe

− r
Rψ cos ðmψ tÞ; ð8Þ

where the amplitude ϵ̄ψ reads

ϵ̄ψ ¼
ffiffiffiffiffiffiffimψ

p
2

gψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χψ ρ̄

⊙
DM

q
mνmψ

�
h2Ωψ

h2ΩDM

�
1=2

: ð9Þ

If not stated otherwise, we assume that Ωψh2 ¼
ΩDMh2. Note that ϵ̄ψ can affect neutrino flavors’
transformation even ifΩψh2 is a small fraction of the
dark matter halo. Lopes ([42] and references therein)
discusses the properties of such a dark matter model.

(2) The forward scattering of active neutrinos νa can
change due to the boson field ψ and the intermedia-
tor vector boson ϕ.1 Such effect is taken into account
by the inclusion of a new term Vψνa in the matter

1We note that the MSW potential resulting from the interaction
of neutrinos with a boson field through a fermionic mediator is
identical to the interaction of neutrinos with a fermion field
through a bosonic mediator [43]. The two particles switch roles in
the MSW potentials. The difference between the two MSW
potentials may only appear in higher-order terms.
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potential diagonal matrix V (e.g., [44]). The function
Vψνa is an effective Wolfenstein potential of ψ
particles associated with flavor change due to
the propagation of neutrinos inside the dark matter
limit medium. Such neutrino flavor oscillation re-
sults from the neutrinos’ interaction with bosons ψ
through ϕ. This process corresponds to the
well-known Mikheyev-Smirnov-Wolfenstein effect
(MSW) [45,46]. The Vψνa inside the boson halo for a
generic mediator ϕ [40] reads

VψνaðrÞ¼gψgνa

(
V̄I
ψðrÞþ V̄II

ψðrÞ; r≤Rψ ;

V̄III
ψ ðrÞ; r≥Rψ ;

ð10Þ

where gψ and gνa represent the coupling constants of
the corresponding particle—boson and active neu-
trino, associated with an intermediator particle with
mass mϕ [37]. The radial functions V̄I

ψðrÞ, V̄II
ψ ðrÞ,

and V̄III
ψ ðrÞ are given by the following expressions:

V̄I
ψðrÞ ¼

e−mϕr

mϕr

Z
r

0

r0n̄ψðr0Þ sinh ðmϕr0Þdr0; ð11Þ

V̄II
ψðrÞ ¼

sinh ðmϕrÞ
mϕr

Z
Rψ

r
r0n̄ψðr0Þe−mϕr0dr0; ð12Þ

and

V̄III
ψ ðrÞ ¼ e−mϕr

mϕr

Z
Rψ

0

r0n̄ψ ðr0Þ sinh ðmϕr0Þdr0; ð13Þ

where nψðrÞ is the local density of bosons given by

nψ ðrÞ ¼
ρψðrÞ
mψ

¼ ρcψ
mψ

e−
2r
Rψ ; ð14Þ

where ρψðrÞ is given by Eq. (4).
It follows that the Wolfenstein potential Vψνa

[Eq. (10)] now reads

VψνaðrÞ ¼
gψgνaR

2
ψ

m2
ϕR

2
ψ − 4

nψðrÞ ½1þ ΨðrÞ�: ð15Þ

The coupling gνa is different for neutrinos with
different flavors: νa (a ¼ e, ν, τ). The function
ΨðrÞ is given by

ΨðrÞ ¼ 4

m2
ϕR

2
ψ − 4

Rψ

r
½e−ðmϕRψ−2Þ r

Rψ − 1�: ð16Þ

This result corresponds to the effective potential of
spherically symmetric exponential density distribu-
tion [40]. If Rψ is much larger, then the effective

potential corresponds to a pointlike interaction:
Vψνa ¼ gψgνa nψ=m

2
ϕ. We remind the reader that ν

can be one of the following flavors: νe, ντ, or νμ.
We remind the reader that the interaction between dark

matter particles with neutrinos and antineutrinos depends
intrinsically on the nature of the dark matter particle and
the particle mediator. In this work, without loss of general-
ity, we assume that the dark matter interacts with neutrinos
but not with antineutrinos. It is worth reminding the reader
that such asymmetry is already present in the standard
MSW effect (e.g., [45]), since most of the neutrino
propagation medium is composed of matter and not
antimatter. Moreover, we also include in our calculation
the corrections resulting from the propagation (at finite
temperature) of neutrinos in a thermal background of dark
matter particles (e.g., [47,48]). Several mechanisms con-
tribute to the enhancement or suppression of the conversa-
tion of neutrinos from one flavor to another; however, some
of these processes are more relevant than others for the
neutrino energy window of this study. Here, following
Lunardini and Smirnov [49], we include this effect using
the effective propagator2 of the intermediator ϕ defined as
ζϕ ¼ ð1þ sϕÞ=½ð1þ sϕÞ2 þ γ2ϕ�, where sϕ ¼ 2Emψ=m2

ϕ,
γϕ ¼ Γϕ=mϕ, and Γϕ is the width of the intermediator
particle ϕ. Konstandin and Ohlsson [50] have computed
the propagator function using the thermal field theory [51]
and found that the propagator function should read
ζϕ ¼ ð1þ sϕÞ=½ð1þ sϕÞ2 þ s2ϕγ

2
ϕ�. This last ζϕ expression

differs from the expression found by Lunardini and
Smirnov [49], only by a term of small magnitude in the
dominator of function ζϕ, where s2ϕγ

2
ϕ replaces γ2ϕ. Since γϕ

is a minimal quantity, both expressions agree with current
experiments’ data [49]. Therefore, here, we opt for the
following expression:

ζϕ ≡ ð1þ sϕÞ
ð1þ sϕÞ2 þ γ2ϕ

: ð17Þ

It is worth noticing that, in the limit of sϕ ≫ 1, we obtain
ζϕ ≈ s−1ϕ ¼ m2

ϕ=ð2EmψÞ. We include the correction on
Vψνa [Eq. (15)], through the function ζϕ [Eq. (17)], hence
the Wolfenstein potential now reads

VψνaðrÞ ¼
gψgνa R

2
ψ

m2
ϕR

2
ψ − 4

nψðrÞ ζϕ ½1þ ΨðrÞ�: ð18Þ

We interpret the function ζϕ in VψνaðrÞ as the correction
coming from the propagation of neutrinos within an

2We note that, for convenience, the definition of the propagator
function in this work differs from the one found in the literature
[49,50], where ζoðsϕÞ ¼ ð1 − sϕÞ=½ð1 − sϕÞ2 þ γ2ϕ�, therefore
ζϕ ¼ ζoð−sϕÞ.
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effective bosonic-neutrino potential that starts by consid-
ering the effect of neutrino propagation on a limited
bosonic medium.

IV. SURVIVAL PROBABILITY OF ELECTRON
NEUTRINOS: CLASSICAL MODEL

Here, we compute the survival probability of electron
neutrinos PeeðEÞ of several ultralight-dark matter models
and compare them with the data coming from solar neu-
trino detectors. We compute PeeðEÞ by using one of the
analytical formulas found in the literature (e.g., [52–56]). If
not stated otherwise, we consider the neutrino oscillations
occurring inside the Sun and in the boson halo to be
adiabatic. A detailed discussion about adiabatic and non-
adiabatic neutrino flavor oscillations is available by
Gonzalez-Garcia and Nir [57] and Fantini et al. [58]. In
agreement with the current neutrino data in which, at a
good approximation, the neutrino flavor oscillations between
the three flavors are considered adiabatic [56,59,60], and
following the recent review of particle physics on this
topic [61,62], specifically the article “Neutrino masses,
mixing, and oscillations,” the survival probability of electron
neutrinos reads

PeeðEÞ ≈ cos4 ðθ13ÞP2νe
ee þ sin4 ðθ13Þ; ð19Þ

where P2νe is the survival probability in the two neutrino
flavor model (with θ13 ¼ 0) given by

P2νe
ee ðEÞ ¼ 1

2
þ
�
1

2
− Pγ

�
cos ð2θ12Þ cos ð2θmÞ; ð20Þ

where Pγ is the jump probability that corrects the adiabatic
expression (20) for the nonadiabatic contribution, and θm ¼
θmðrsÞ is the matter mixing angle at the point of neutrino
production (source) located at a distance rs from the center of
the Sun (e.g., [63,64]). The jump probability Pγ [65] reads

Pγ ¼
e−γ sin

2 θ12 − e−γ

1 − e−γ
PH; ð21Þ

where γ ¼ 2πhγΔm2
21=2E, hγ is the scale height [66] andPH

is a regular step function.
The matter mixing angle (Gando et al. [67]) is given by

cosð2θmÞ ¼
Amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
m þ sin2ð2θ12Þ

p ; ð22Þ

where Am reads

Am ¼ cos ð2θ12Þ − Vm=Δm2
21: ð23Þ

In the standard case [59], it corresponds to Vm ¼
2Vcccos2ðθ13ÞE with Vcc ¼

ffiffiffi
2

p
GFneðrÞ, where neðrÞ is

different from zero (r ≤ R⊙) only inside the Sun. In the

previous expression, Vcc is the Wolfenstein potential.
Nevertheless, as we will see in the next section, VccðrÞ
in this study will be replaced by a new effective poten-
tial VeffðrÞ.
The maximum production of neutrinos in the Sun’s core

occurs in a region between 0.01 and 0.25 solar radius, with
neutrino nuclear reactions of the proton-proton chain and
carbon-nitrogen-oxygen cycle occurring at different loca-
tions (e.g., [20]). These neutrinos, produced at various
values of rs, when traveling toward the Sun’s surface,
follow paths of different lengths. Moreover, during their
traveling, neutrinos experience varying plasma conditions,
including rapid decreasing of the electron density from
the center toward the surface. In general, we expect that
nonadiabatic corrections average out and are negligible
along the trajectory of the neutrinos, except at the boun-
daries (layer of rapid potential transition) of the neutrino
path, typically around the neutrino production point or at
the surface of the Sun.3 Therefore, we could expect Eq. (20)
to be very different when taking such effects into account.
Nevertheless, this is not the case, de Holanda et al. [68]
analyzed in detail the contribution to Pee (Eq. (19) coming
from nonadiabaticity corrections and variation on the
locations of neutrino production, i.e., rs, and they found
that the impact is minimal. In general, Pγ [Eq. (21)] is
expected to take a real value, such that Pγ ¼ 0 or Pγ ≠ 0

corresponding to neutrino flavor adiabatic and nonadiabatic
conversions. In general, the conversions are only called
nonadiabatic if Pγ is non-negligible. Figure 1 depicts the
survival probability PeeðEÞ for the standard neutrino flavor
oscillation model. Interestingly, the contribution of Pγ to
PeeðEÞ is minimal, bordering on negligible. In this figure,
the red and blue curves represent PeeðEÞ, as defined by
Eq. (20), with and without the Pγ contribution, respectively,
the latter being determined by Eq. (21).
Since the electron number density ne varies considerably

along the neutrino path in the Sun: ne decreases mono-
tonically from the 1031 m−3 in the center of the star to an
almost negligible value at the surface, e.g., [20]. Therefore,
neutrinos propagating toward the surface necessarily cross
a layer of matter where ne ¼ nres such that Am ¼ 0. This
particular solution of the function Am, the value for which
nresðEÞ leads to Am ¼ 0, is known as the resonance
condition. In the classic case, we compute this electronic
density associated with the resonance condition as

neðrÞ ¼ nresðEÞ≡ Δm2
21

2
ffiffiffi
2

p
GFE

cos ð2θ12Þ
cos2ðθ13Þ

; ð24Þ

where r ¼ rγ (≠ hγ) is defined as the layer where the
resonance condition neðrÞ ¼ nresðEÞ occurs. Figure 2
shows nresðrÞ for the present Sun as a continuous red

3Since the potential is zero at the Sun’s surface, the non-
adiabatic contribution is negligible.
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curve. In the same figure, the horizontal lines correspond to
energy values of electron neutrino equal to 100, 11, and
4 MeV, for which the resonance condition occurs for the
radius of 0.46, 0.26, and 0.15 solar radius.
In general, the adiabatic and nonadiabatic nature of

neutrino oscillations depends on the neutrino’s energy E
and the relative value of the resonance condition of nresðEÞ
[Eq. (24)]. For instance, if a neutrino of energy E is such
that (i) nresðEÞ ≫ ne, neutrinos oscillate practically as in
vacuum; (ii) if nresðEÞ ≪ ne, oscillations are suppressed in
the presence of matter [62].
In our models, most cases correspond to adiabatic tran-

sitions, for which Pγ ≈ 0. Nevertheless, it is possible to
compute the contribution of the nonadiabatic component
Pγ to PeeðEÞ by using Eq. (21) and the following prescrip-
tion: (i) compute the value of nres [using Eq. (24)] for each
value of E (with fixed values of Δm2

12, θ12, and θ13),
(ii) calculate the scale height hγ ¼ jne=ðdne=drÞjrγ at the
point rγ , defined as neðrγÞ ¼ nresðEÞ, and (iii) calculate Pγ

and γ for the value of hγ. The scale height hγ also reads
hγ ¼ jðd ln ne=drÞ−1jrγ , the reason for which will be made

clear later. We also found that hγ ¼ jðd ln Vcc=drÞ−1jrγ .
Conveniently, to properly take into account the non-

adiabatic correction in Eqs. (20) and (21), we included the
step function PH, defined as PHðVm − Δm2

21 cos ð2θ12ÞÞ.
This function is 1 for Δm2

21 cos ð2θ12Þ ≤ Vm and is 0
otherwise (e.g., [69]).

V. SURVIVAL PROBABILITY OF ELECTRON
NEUTRINOS: NEW MODEL

The survival probability of electron neutrinos [Eq. (19)]
in this study can vary in comparison to the standard
neutrino flavor oscillation model by two mechanisms:
(1) Variation of the mass-square differences Δm2

ij and
the mixing angles θij (where i, j ¼ 1, 2, 3 and i ≠ j),
related with the neutrino mass correction δmν

resulting from the interaction of active neutrinos
with the boson field ψ :
(a) Considering only first-order perturbation, thus,

the neutrino mass-squared difference reads

Δm2
ijðr; tÞ

Δm2
ij;o

≈ 1þ 2ϵ̄ψe
− r
Rψ cos ðmψ tÞ; ð25Þ

where Δm2
ij;o ¼ m2

i −m2
j is the standard (undis-

torted) value and Δm2
ijðr; tÞ is the perturbed

term. Δm2
ijðr; tÞ varies with the amplitude

ϵ̄ψðgψ ; mψÞ and the frequency mψ. In the deri-
vation of Eq. (25), we consider that δmi=mi≈
δmν=mν. δmν=mν is given by Eq. (8) and ϵ̄ψ by
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FIG. 2. The effective density neffðrÞ is shown as a function of
radius within a spherical boson halo with a radius of Rψ ¼
0.783 A:U: and a total mass of Mψ ≈ 10−13M⊙, composed of
bosons with a mass of mψ ¼ 1.5 × 10−14 eV. The red curve
represents the standard neutrino flavor oscillation model Sν (see
Table I), where neðrÞ ¼ nresðEÞ [Eq. (24)]. The horizontal black
lines correspond to nresðEÞ for E values of 100, 11, and 4 MeV,
which occur in the layer located at 0.46, 0.26, and 0.15 of the
solar radius, respectively (see main text for details). In our model,
active neutrinos interact with the bosons through an intermediary
particle with mass mϕ and a coupling constant gψν. The other
curves shown use the condition neffðrÞ ¼ nresðEÞ [Eq. (28)] for
E ¼ 100 MeV. These curves correspond to the models Raν, Rbν,
and Ai (i ¼ 1, 6) presented in Table I, with the color scheme
indicated in the table.

FIG. 1. This figure illustrates the survival probability of the
electron neutrino PeeðEÞ computed for the standard model of
neutrino flavor oscillations (model Sν, as detailed in Table I). The
calculations, based on Eqs. (19) and (20), also factor in the jump
probability term Pγ [Eq. (21)]. The red curve includes the Pγ

contribution, as per Eq. (21), while the blue curve depicts PeeðEÞ
without the Pγ contribution. While the contribution of Pγ to
PeeðEÞ remains negligible within the shown neutrino energy
interval, its influence becomes marginally visible for neutrino
energies exceeding 50 MeV. For more details, please refer to the
main text.
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Eq. (9). The mass-squared difference Δm2
ij

between neutrinos of different flavors follows
the usual convection (e.g., [70]), such that
Δm2

i1 ¼ m2
i −m2

1 (i ¼ 2 and 3).
(b) Similarly, themixing angle variations is written as

θijðr; tÞ − θij;o ≈ ϵ̄ψe
− r
Rψ cos ðmψ tÞ; ð26Þ

where θij;o is the standard (undistorted) mixing
angle. The indices i and j in θij follow a conven-
tion identical to the mass-squared differences.

Equations (25) and (26) are time-dependent variations
similar to the ones found by several authors, such as
Krnjaic et al. [41] and Berlin [71], that result from the
impact of ψ on neutrino flavor oscillations. However, in our
case, both quantities also vary with the distance.
(2) The forward scattering of active neutrinos on the

boson dark matter field ψ is taken into account by
the inclusion of the new term Vψνa [Eq. (18)] in the
matter potential diagonal matrix V ¼ diagðVcc þ
Vnc þ Vψνe ; Vnc þ Vψνμ ; Vnc þ VψντÞ, where Vcc ¼ffiffiffi
2

p
GF neðrÞ and Vnc ¼ −GF=

ffiffiffi
2

p
GFnnðrÞ corre-

spond to the charged current (cc) that takes into
account the forward scattering of νe with electrons
and the neutral current (nc) related to the scattering

of all active neutrinos with the ordinary fermions
(e.g., [72]). Now, if we consider that Vψνa is the
same for all active neutrinos, then the diagonal
matrix [44] takes the standard form matter poten-
tial V ¼ diagðVcc; 0; 0Þ. Nevertheless, in the
study we consider gνe ≠ gνμ ¼ gντ, therefore, V ¼
diagðVeff ; 0; 0Þ where Veff ¼ Vcc þ Vψνe − Vψνμ .

In the standard model, matter potential V associated with
the forward scattering of active neutrinos depends strongly
on the properties of constitutive particles of the background
medium [47,51]. Therefore, we opt to consider that these
neutrinos propagate in the boson medium [37,73–76], for
which the coupling constants have the following relations:
gνe ≠ gντ ¼ gνμ . We notice that the coupling of active
neutrinos with dark matter background (including axions)
have been studied in many scenarios; among other articles,
see the following ones: Bœhm and Fayet [73,74],
Berezhiani and Mohapatra [77], Berezhiani et al. [78],
Mangano et al. [79], and van den Aarssen et al. [80].
Therefore, now Veff reads

VeffðrÞ ¼
ffiffiffi
2

p
GF

�
ne þ

gψνR2
ψnψζϕ

m2
ϕR

2
ψ − 4

½1þΨðrÞ�
�
; ð27Þ

where gψν is a coupling constant given by gψν ¼
gψ ðgνe − gνμÞ=ð

ffiffiffi
2

p
GFÞ, and neðrÞ is different from zero

TABLE I. Comparison of the parameters of various dark matter boson-neutrino models. The standard neutrino
model Sν is compared to parameter-varying models, including Raν, Rbν, Ai, Bi, and Ci, where ϵ̄ ¼ 10−3 is fixed, and
Di, where ϵ̄ ¼ j × 10−1 (with j ¼ 1, 2, 3, 4) is chosen. To highlight the varying parameters across each set of
models, the corresponding values of these parameters are denoted in bold. Figures 2–4 show the effective resonance
density neff and the electron neutrino survival probability hPeeðEÞi for some models. These figures provide a
comparison of the various models discussed in the article. The Sun is assumed to be inside a boson cloud with a
mass of approximately 10−13M⊙, a radius of Rψ ¼ 0.783 A:U:, and a parameter of condensation χψ ¼ 5.7 × 104.

Model mψ (eV) mϕ (eV) gψν GF χ2ν χ2ν per d.o.f. Color curve

Sν � � � � � � � � � 2.73 0.55 Red
Raν 1.5 × 10−14 10−12 6 × 1023 2.76 0.69 Blue
Rbν 1.5 × 10−14 10−12 −5 × 1024 2.58 0.65 Green
A1 1.5 × 10−14 10−12 3 × 1024 2.94 0.74 Coral
A2 1.5 × 10−14 10−12 1 × 1025 3.77 0.94 Gold
A3 1.5 × 10−14 10−12 5 × 1025 15.44 3.86 Violet
A4 1.5 × 10−14 10−12 1 × 1026 27.36 6.84 Lime
A5 1.5 × 10−14 10−12 −1 × 1024 2.68 0.67 Aqua
A6 1.5 × 10−14 10−12 −7 × 1025 13.23 3.31 Brown
B1 1.0 × 10−14 10−12 6 × 1023 2.74 0.69 � � �
B2 1.8 × 10−14 10−12 6 × 1023 2.80 0.70 � � �
C1 1.5 × 10−14 10−20 6 × 1023 2.73 0.68 � � �
C2 1.5 × 10−14 10−10 1 × 1025 2.76 0.69 � � �
C3 1.5 × 10−14 10−5 1 × 1025 2.76 0.69 � � �
C4 1.5 × 10−14 105 1 × 1025 2.73 0.68 � � �
D1 1.5 × 10−14 10−12 6 × 1023 2.62 0.66 � � �
D2 1.5 × 10−14 10−12 6 × 1023 2.68 0.67 � � �
D3 1.5 × 10−14 10−12 6 × 1023 3.47 0.87 � � �
D4 1.5 × 10−14 10−12 6 × 1023 4.94 1.23 � � �
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only inside the Sun (for r ≤ R⊙). Since gνe and gνμ are two
free positive parameters of different magnitudes, it follows
from the definition that gψν can be positive or negative.
Accordingly, Vm in Eqs. (22) and (23) now reads
Vm ¼ Veff cos2 ðθ13ÞE.
In the new model, we generalize the result given by

Eq. (24) by introducing the effective density neff associated
with the resonance condition as

neffðrγÞ ¼ nresðEÞ≡ Δm2
21

2
ffiffiffi
2

p
GFE

cos ð2θ12Þ
cos2ðθ13Þ

; ð28Þ

where rγ (≠ hγ) is defined as the layer where the resonance

condition occurs, and Veff ¼
ffiffiffi
2

p
GFneff [see Eq. (27)], such

that neff reads

neff ¼ ne

�
1þ nψ

ne
ζϕ

gψνR2
ψ

m2
ϕR

2
ψ − 4

½1þΨðrÞ�
�
: ð29Þ

Once we assume that the second term of Eq. (29) is
always positive, we therefore choose a boson such that
mϕ ≥ mϕ;crit ¼ 2=Rψ ; the conclusions found at the end of
Sec. IV associated with the electronic density neðrÞ remain
valid for neffðrÞ. For example, for Rϕ ¼ 0.5 A:U: we obtain
mϕ;c ¼ 5.3 × 10−27 GeV. Figure 2 shows neffðrÞ [Eq. (29)]
of several models for the present Sun as colored curves.
Table I presents the parameters of such models. Models
with changed parameters are displayed in bold to aid the
reader's understanding of the table. It is worth noticing that,
in comparison with the classical case [Eq. (24)], neutrino
oscillations in some of these new models are suppressed for
higher neutrino energy values [Eq. (28)]. This is the case of
models A2 (gold curve) and A3 (violet curve).
Similar to the standard case (model Sν in Table I),

PeeðEÞ’s contribution [Eqs. (19) and (20)] coming from the
jump probability Pγ, although small, is not entirely neg-
ligible in this class of models. We compute the jump
probability Pγ by using expression (21) where rγ is now
determined by condition (28) and the scale height reads
hγ ¼ jðd ln Veff=drÞ−1jrγ . The contribution comes from the
interaction of electron neutrinos with the boson field ϕ
within the dark matter halo. Unlike in the standard case
(model Sν in Table I), the contribution is small but
marginally visible for the conversion of electron neutrinos
with high energy (see Fig. 1).

VI. LIGHT-DARK MATTER IMPACT
ON SOLAR NEUTRINOS

The survival probability of electron neutrinos PeeðEÞ
[Eq. (19)] is a time-dependent function through the time-
varying boson field ψðtÞ. Conveniently, we define the
averaged survival probability of electron neutrinos as

hPeeðEÞi ¼
Z

τψ

0

PeeðE;ψÞ
dt
τψ

; ð30Þ

where τψ ¼ 2π=mψ is the period of the boson field ψðtÞ.
The ability of a solar neutrino detector to measure the
impact of the time-dependent field ψðtÞ on the averaged
survival probability hPeeðEÞi depends on three character-
istic timescales:
(1) τν is the neutrino flight time, for a solar neutrino τν is

approximately 8.2 min.
(2) τev is the time between two consecutive neutrino

detections; for some of the forthcoming neutrinos
experiments, τev is bigger than 7 min (JUNO [81]).

(3) τex is the total run time of the experiment, which for
most detectors should be above ten years.

Since solar neutrino detectors will run for long periods and
collect many events, it is reasonable to consider that τev and
τex have small and large values, respectively. Therefore,
the hPeeðEÞi time modulation by ψðtÞ depends slowly on
period τψ in comparison to τν. Hence, from the condition
that τψ ¼ 8.2 min ¼ τν, we obtain a critical boson mass
mψ ;c ¼ 8.3 × 0−18 eV. This critical value defines the mass
range of the two time modulation regimes that affect the
survival probability function of the electron neutrinos:
(1) Low-frequency regime: mψ ≤ mψ ;c (or τψ ≥ τν), a

direct time modulation of PeeðE;ψÞ occurs when
the period of ψðtÞ is larger than the neutrino flight
time τν. In this case, a temporal variation of the
neutrino signal may be observed in the hPeeðEÞi
function. This type of physical process and the
associated variation of time-dependent neutrino flux
measurements were studied by Berlin [71], among
others.

(2) High-frequency regime: mψ ≥ mψ ;c (or τψ ≤ τν), the
change of PeeðE;ψÞ produced by ψðtÞ occurs on a
timescale faster than the neutrino flight time τν. The
timescale of this variation is too quick to create a
periodic time modulation on the neutrino flux
measurements. Nevertheless, such a process leads
to the existence of a distorted hPeeðEÞi average and a
spread of the PeeðE;ψÞ, similar to an energy
resolution smearing. This distorted probability aver-
age is identified by its deviation from the undistorted
hPeeðEÞi in the standard scenario (e.g., [41]). In-
deed, the net effect of averaging over time [see
Eq. (30)] induces a shift in the observed values of
hPeeðEÞi relative to its undistorted value.

The neutrino models discussed in this work are within
the latter case—the high-frequency regime, once mψ (see
Table I) is much larger than mψ ;c for all the models. It is
worth highlighting that future neutrino detectors will obtain
neutrino flux datasets that we can use to test such a range of
boson masses. Examples of such class of detectors are the
Deep Underground Neutrino Experiment [82] and the
Jiangmen Underground Neutrino Observatory [83].
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VII. TESTING ULTRALIGHT BOSONS
WITH ACTIVE NEUTRINOS

To test our neutrino-boson model, we use an up-to-date
standard solar model with good agreement with current
neutrino fluxes and helioseismic datasets. The details about
the physics of this standard solar model in which we use
the AGSS09 (low-Z) solar abundances [84] are described in
Lopes and Silk [36] and Capelo and Lopes [85]. The Sun’s
present-day structure was computed with release version
12115 of the stellar evolution code MESA (e.g., [86]). This
stellar code computes one-dimensional star structures
through time; thus, the code follows the evolution of
the Sun from the pre-main-sequence or zero-age main
sequence until the Sun’s present age, 4.57 Gyr. Then,
using a χ2 calibration optimization method, Capelo and
Lopes [85] obtain a present-day Sun model that better fits
the observed solar values, such as the luminosity and
effective temperature of the star, 3.8418 × 1033 erg s−1 and
5777 K, respectively. Among other quantities, the χ2

calibration method also fits the experimental determination
of the abundance stellar surface ratio: ðZs=XsÞ⊙ ¼ 0.0181,
where Zs and Xs are the metal and hydrogen abundances at
the star’s surface [87–89].
In this nonstandard neutrino flavor oscillation model,

we opt to use the parameter values corresponding to the
standard neutrino oscillation model (e.g., [90]). Hence, we
adopt the recent values obtained by the data analysis of the
standard three-neutrino flavor oscillation model obtained
by de Salas et al. [91]. Accordingly, for a parametrization
with a normal ordering of neutrino masses, the mass-square
difference and the mixing angles have the following values
(see Table 3 of [91]): Δm2

21 ¼ 7.50þ0.22
−0.20 × 10−5 eV2,

sin2 θ12 ¼ 0.318� 0.016, and sin2 θ13 ¼ 0.02250þ0.00055
−0.00078 .

Similarly, Δm2
31 ¼ 2.55þ0.02

−0.03 × 10−3 eV2 and sin2θ23 ¼
0.574� 0.014. Moreover, we assume that all phases are
equal to zero.
Figures 3 and 4 show the hPeeðEÞi [Eq. (30)] functions

for different standard and nonstandard neutrino flavor
oscillation models. Table I shows the parameters used to
compute such models. The shape of hPeeðEÞi as a function
of the neutrino’s energy depends on the interaction of active
neutrinos with the plasma background state inside the Sun
and the interaction of electron neutrinos with the boson
field ψðtÞ inside the dark matter halo. Two parameters
regulate this latter interaction: the coupling constant gψν
and the amplitude of the time variation boson field ϵ̄. The
former defines the strength of the coupling of electron
neutrinos to the boson background state; the latter fixes the
amplitude of the time-varying boson field on the mass
differences and mixing angles of the neutrino flavor
oscillation model.
Figure 3 displays several models from Table I (including

models Sν, Raν, Rbν, and Ai with i ¼ 1, 6), where we
choose positive and negative values of gψν ranging from

−7 × 1025GF to 5 × 1025GF. We neglect the time variation
of the boson field for now and thus set ϵ̄ ¼ 10−3. Similar to
the standard neutrino flavor oscillation model, vacuum
oscillations dominate the neutrino propagation for lower-
energy neutrinos (E ≤ 1 MeV) inside the star, in the dark
matter halo, and naturally in outer space. Similarly, as the
neutrino energy increases (E ≥ 10 MeV), the contribution
from the active neutrinos’ interaction with the solar back-
ground plasma (MSW effect) becomes equally important.
In this study, for the nonstandard neutrino models, we
include the interaction of electron neutrinos with the boson
field ψðtÞ inside the dark matter halo. Overall, the neutrino
oscillations and suppression are similar to the classical
case, as shown in Fig. 3. However, for those neutrino-boson
models with a large value of the coupling constant gψν, the
MSWeffect occurs all over the boson halo, including inside
and outside the Sun, and affects the propagation of all solar
neutrinos. This effect is evident in model A3 (shown by the
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FIG. 3. Survival probability of electron neutrinos hPeeðEÞi in a
standard three-neutrino flavor oscillation model with neutrinos,
coupled to a boson dark matter field ψ with a fixed value of mψ

(see main text). The figure shows the hPeeðEÞi of boson models
presented in Table I with ϵ̄ ¼ 10−3. The curves correspond to a set
of models presented in Table I: Sν (red curve, χν2 ¼ 2.73), Raν

(blue curve, χν2 ¼ 2.76), Rbν (green curve, χν2 ¼ 2.58), and Ai

models, for instance, A2 (gold curve, χν2 ¼ 3.77), A3 (violet
curve, χν2 ¼ 15.44), and A6 (light brown curve, χν2 ¼ 13.23).
The data points correspond to the survival probabilities of
electron neutrinos measured by three solar neutrino detectors
(SNO, Super-Kamiokande, and Borexino) and computed using
a current standard solar model: (i) Borexino, pp (yellow
diamond), 7Be (red upward triangle), pep (blue downward
triangle), and 8B HER (salmon circle), 8B HER-I (orange
circle), and 8B HER-II (magenta circle); (ii) SNO, 8B (cyan
square); (iii) KamLAND/SNO, 7Be (green square). See Agos-
tini et al. [92,93], Bellini et al. [94], Abe et al. [95,96],
Aharmim et al. [97], Cravens et al. [98], and references therein,
for details on the experimental data. HER, high-energy region.
See the main text for more details.
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violet curve in Fig. 3). Alternatively, in the case of a
negative value of gψν, the effect is reversed, as seen in
model A6 (shown by the brown curve in Fig. 3).
In addition, to highlight the impact of this new neutrino-

boson model on the hPeeðEÞi, in Figs. 3 and 4, we show
the survival probability of electron neutrinos for the
standard three-neutrino flavor model (continuous red
curve). Although the standard neutrino flavor oscillation
model agrees with the current pp, pep, 7Be, and 8B
measurements, only a restricted set of these nonstandard
neutrino flavor models are in agreement with these solar
neutrino measurements. In this work, we opt to assess the
quality of these new models in fitting the data by using the
following χ2ν statistical test:

χ2ν ¼
XN
i¼1

�
Pobs
ee ðEiÞ − Pth

eeðEiÞ
σobsðEiÞ

�
2

; ð31Þ

where N is the total number of data points. The above χ2ν
combined the neutrino measurements made by several solar
neutrino experiments at different energy values Ei of the
survival probability function PeeðEÞ. The subscript “obs”

and superscript “th” indicate the observed and theoretical
hPeeðEÞi [Eqs. (30) and (19)] values at neutrino energy Ei,
and the subscript i refers to specific experimental meas-
urement (see Fig. 3). σobsðEiÞ is the error of measurement i.
The data points Pobs

ee ðEiÞ are measurements obtained by
solar neutrino experiments [92–98]. For convenience, we
define the degree of freedom (d.o.f.) as d:o:f: ¼ N − k,
whereN is the number of data points and k is the number of
parameters in the model. In this context, the reduced chi-
square value χ2ν, as defined in Eq. (31), is normalized by the
degree of freedom to yield χ2ν=d:o:f:, effectively providing a
measure of the goodness of fit per degree of freedom. In the
current study, we consider N ¼ 8 data points. For the Sν
model, we have k ¼ 3 parameters, leading to a degree
of freedom d:o:f: ¼ 5. For all other models presented in
Table I, we have k ¼ 4 parameters, resulting in d:o:f: ¼ 4.
Figures 3 and 4 illustrate a set of data points pertinent to
this analysis, while Table I lists the corresponding values of
χ2ν and χ2=d:o:f: Interestingly, our analysis (presented in
Table I) shows that the Sν model’s χ2=d:o:f: value is lower
than that of any other model considered in this study. Once
that Sν model contains fewer parameters, our findings
suggest that the extra parameters employed in the other
models may not be necessary for an accurate and robust
representation of the current neutrino data. In line with the
principle of Occam’s razor, which advocates for simplicity
in model selection, the Sν model, with its optimal χ2=d:o:f:
and reduced parameter count, emerges as the most favor-
able model.
However, it is noteworthy that several neutrino-boson

models with specific values of gψν and mψ were also found
to fit the solar neutrino data, albeit not as well as the Sν
standard neutrino oscillation model. For instance, models
Rbν and A5 yield χ2ν values that are comparable to, or even
greater than, those of the Sν model. However, these models
also have larger χ2=d:o:f: values, indicating a less optimal
fit. Furthermore, several other models, including A3, A4,
and A6, exhibit substantially larger χ2ν and χ2=d:o:f: values
compared to the Sν model. Given these findings, we can
reasonably exclude these models from our consideration.
Additionally, we explored the influence of mψ and mϕ on
the average survival probability hPeeðEÞi for models Bi and
Ci, as indicated in the same table. However, our findings
generally suggest a minimal impact. Interestingly, we
identified models such as C1 and C4 that exhibit a χ2ν
identical to the standard model across a range ofmϕ values,
whether small or large.
Figure 4 presents a crucial and relevant result: the

interaction of electron neutrinos with the background boson
field occurs through the coupling constant gψν [Eq. (27)],
but also depends on the amplitude ϵ̄ [Eq. (9)] of the boson
field ψðtÞ, which is determined by the time variation of
mass difference and mixing angles [Eqs. (25) and (26)].
This figure illustrates that, compared to the standard case,
the hPeeðEÞi of a boson-neutrino model undergoes a shift

FIG. 4. The figure illustrates the averaged survival probability
of 8B electron neutrinos hPeeðEÞi, resulting from the interaction
of active neutrinos with the background medium. The red curve
depicts the standard three-neutrino flavor oscillation model Sν,
with a χ2ν value of 2.73, while the blue curve represents the new
neutrino-boson Raν model with ϵ̄ ¼ 10−3 and a χ2ν value of 2.76.
Both models are referenced in Table I. We also calculate a variant
of the Raν model, denoted as D1, where ϵ̄ ¼ 0.1. This version is
represented by a thin brown curve and a light green band with a
corresponding χ2ν value of 2.62. Similarly, the magenta, cyan, and
orange curves represent the hPeeðEÞi functions for models D2,
D3, andD4. These are computed at ϵ̄ ¼ 0.2, yielding a χ2ν value of
2.68, at ϵ̄ ¼ 0.3with a χ2ν of 3.47, and at ϵ̄ ¼ 0.4with a χ2ν of 4.94,
respectively. All neutrino-boson models used in this figure are
detailed in Table I. The solar neutrino data are consistent with the
one used in Fig. 3.
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proportional to the magnitude of ϵ̄. This effect is visible
primarily in the 1–10 MeV energy range. Interestingly, for
some of these neutrino-boson models, hPeeðEÞi improves
the agreement with the observational data (see models Di
with i ¼ 1;…; 4 in Table I). Figure 4 depicts two such
models, D1 and D2, with χ2ν ¼ 2.62 and χ2ν ¼ 2.68,
respectively. These χ2ν values are smaller than the one
found for the standard case (χ2ν ¼ 2.73). Although these
models are compatible with the current data, their χ2=d:o:f:
values are larger than that of the Sν model. Therefore,
despite their compatibility, the Sν model remains the
preferred choice.
Using Raν and Rbν as reference models (see Table I),

we estimate some parameter limits. Comparing models
Ai (i ¼ 1;…; 6) with Sν, we find that values of the
neutrino-boson coupling constant gψν outside the interval
−1024GF and 1025GF result in χ2ν values significantly
higher than the χ2ν ¼ 2.73 one of the standard neutrino
model. Therefore, we set the following limits for the

neutrino-boson coupling constant: −1024GF ≤ gψν ≤
1025GF. We also find that the boson’s mass mψ can take
any value in the interval 1.0 × 10−14 − 1.8 × 10−14 eV,
which corresponds to neutrino-boson models B1 and B2

with χ2ν ¼ 4.74 and χ2ν ¼ 2.80, respectively. Finally, we
conclude that the mass of the intermediate particle mϕ does
not significantly affect the neutrino propagation.
In Fig. 5, we plot the dependence of the parameter

gψν on χ2ν for two different dark matter halo masses: Mψ ¼
10−10M⊙ and Mψ ¼ 10−13M⊙. Although gψν behaves
similarly in both cases, we find that the optimal range
of values that agrees with the solar neutrino data is dif-
ferent for the two dark matter halos. Specifically, for
Mψ ¼ 10−10M⊙, the agreement occurs for gψν ≤ 1022GF,
whereas forMψ ¼ 10−13M⊙, it occurs for gψν ≤ 1025GF. In
both cases, we observe that the absolute value of χ2ν
increases rapidly as gψν increases. We also find that
negative values of gψν provide a better fit to the data than
positive values, but for large values of gψν, the negative
solutions are overtaken by the positive ones. Our findings
indicate that a very light-dark matter halo with a mass of
Mψ ¼ 10−13M⊙ hosted by the Sun is consistent with the
solar data. Furthermore, this agreement holds even for
models with gψν negative values. However, despite the
inclusion of additional parameters, the standard case Sν
remains the preferred choice based on the current solar
data, as the improvement in the fitting procedure is not
substantial. Additionally, we note that both negative sol-
utions for gψν yield a small χ2 value, albeit with a larger
χ2=d:o:f: Thus, considering the results presented in Table I,
it is evident that the standard model, represented as Sν,
remains the most suitable option for fitting the current solar
neutrino data.

VIII. SUMMARY AND CONCLUSION

Previous studies have shown that the gravitational field
of stars, including the Sun, enhances the concentration of
ultralight-dark matter particles in their vicinity, forming a
stable dark matter halo. Our study explores explicitly the
potential interaction between solar neutrinos and the ultra-
light-dark matter particles within this halo. We investigate
how the survival probability of electron neutrinos is
affected when active neutrinos interact with a locally
enhanced, time-dependent ultralight-dark matter field, in
addition to the standard interactions. This interaction is
mediated by a new particle, ϕ. It causes active neutrinos to
undergo flavor neutrino oscillations and MSW effects, as
determined by the time-dependent mass term δmν=mν, the
neutrino mixing angles, and a new term in the matter
potential diagonal matrix V, which defines the neutrino’s
interaction with the boson field Vνϕ.
Our investigation reveals that the impact of solar bosonic

dark matter on solar neutrinos can be categorized into two
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FIG. 5. The figures display the χ2ν test values as a function of the
coupling constant gψν for dark matter halos withMψ ¼ 10−13M⊙
(top) and Mψ ¼ 10−10M⊙ (bottom), respectively. In both, green
circles represent positive values of gν in the dark matter models,
while red circles represent negative values.
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classes: (i) The effect is significant to the extent that such
models can be conclusively rejected based on current data.
(ii) The impact is minimal, and the additional freedom does
not improve the agreement between the models and the data.
Here, we showcase the robustness of the current agree-

ment between the standard flavor oscillation model and the
data, making it very difficult to challenge. Even with the
incorporation of ultralight bosons, substantial couplings,
and the inclusion of a mediator, the standard model
maintains its strong compatibility with the data. This
finding aligns with previous research by [42], which also
revealed a similar outcome regarding the average local dark
matter density. Our study further confirms that this chal-
lenge persists even when considering a highly dense halo
confined within the Sun. However, it is worth noting that
as more data become available, it remains possible to

disregard these models or discover potential improvements
in the future. The validation of such a class of models will
be tested by the next generation of neutrino detectors,
including hybrid optical neutrino detectors, such as
Theia [99], Jinping [100] and Yemilab [101], or by liquid
scintillator experiments like JUNO [83,102] and SNO+
[103] and water Cherenkov experiments such as Hyper-
Kamiokande [104] and DUNE [105].
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