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We study, using the Mathisson-Papapetrou-Dixon equations, the spin oscillation of neutrinos when the
latter are coupled to the scalar field of screening models of dark energy. First, we derive the transition
probability formula for a left-handed neutrino to become a right-handed neutrino within a general static and
spherically symmetric metric. We then apply our general formula to neutrinos deflected around a central
mass described by the Schwarzschild metric. Our results show that, contrary to what one might expect, the
scalar field of chameleonlike and symmetronlike screening models would not show any effect on the spin
oscillations of neutrinos. The origin of such an outcome is discussed.
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I. INTRODUCTION

Neutrinos have become a valuable alternative tool for
probing gravity in various environments [1] thanks to their
nonzero mass, their zero electric charge, and their nonzero
spin. Their nonzero mass makes them change their flavor as
they propagate in space. First theoretically proposed in
Refs. [2,3], and then theoretically predicted to exhibit a
resonance inside matter in Refs. [4,5], these (experimen-
tally well established [1,6]) flavor oscillations of neutrinos
are the favorite solution to the solar neutrino problem. On
the other hand, neutrinos’ zero electric charge and their
weak interaction have prompted many authors to also
investigate the effect of gravity on such oscillations, both
within general relativity and within extended theories of
gravity (see, e.g., the more recent Refs. [7–11] and
references therein.)
Being half-integer spin particles, however, neutrinos may

exhibit yet another kind of oscillation beside the flavor
oscillation. Indeed, as other spin particles, neutrinos pos-
sess a helicity and the latter may flip as they propagate in
space. In fact, this possibility has been considered very
early on [12–14] in an attempt to provide an alternative
solution for the solar neutrino problem. For, as detectors
respond only to left-handed neutrinos, any flip of neutrinos’
helicity to right-handedness would indeed show up as a
deficit in the expected number of detected neutrinos. This
was the original motivation for considering spin oscilla-
tions since a nonzero magnetic moment of neutrinos could

make the latter flip their helicity as they interact with a
magnetic field along their path toward the detector. See the
review [15] and the compilation [16] and references therein
for the early works, as well as Ref. [17] and references
therein for more recent ones.
The possibility of spin flip caused by gravity has also

been considered in the literature, first by studying arbitrary
Dirac particles in Refs. [18–21], and then by focusing on
neutrinos in Refs. [22–28]. In fact, it is well known that the
general relativistic description of gravity entails that even in
the absence of torque spinning bodies should exhibit a
precession of their spin, caused either by the curvature of
static spacetimes [29] or by the frame dragging induced by
a spinning gravitational source [30]. Now, if this kind of
spin precession also occurs for neutrinos a left-handed
helicity neutrino could flip and become a right-handed one.
This would then give rise to gravitationally induced spin
oscillations of neutrinos analogous to the ones suggested in
earlier works to occur due to magnetic fields. Furthermore,
just as with the effect of gravity on neutrino flavor
oscillations, the gravitationally induced spin oscillations
of neutrinos could be studied within the framework of
general relativity and within extended theories of gravity,
including the much-studied screening models that offer an
alternative explanation for dark energy. In this paper, we are
interested in the latter category of gravitationally induced
spin oscillations of neutrinos.
The first motivation behind the present work is the fact

that among the many interesting models proposed for the
origin of dark energy [31] are the so-called scalar-tensor
theories of gravity and, more specifically, screening models
in which a scalar field couples to matter via the spacetime
metric. This special coupling to matter takes place in such a
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way that the unwanted “fifth force” interaction is screened
(i.e., is rendered undetectable) at the Solar System level.
Among the very well studied ones in this class of models
are the chameleon model [32,33] and the symmetron model
[34]. The review [35] offers a discussion of the various
feasible experimental tests on such screening models.
The second motivation behind the present work is to

consider the spin precession phenomenon within such
screening models using a different and more general
approach than the one adopted in Ref. [28]. We first derive
the general formula for the precession angular velocity as
well as the probability for neutrinos helicity flip in arbitrary
spacetimes and with an arbitrary screening scalar field.
We then apply our results to the case of the spherically
symmetric and static gravitational source described by the
Schwarzschildmetric.We consider themore realistic case of
neutrinos deflected by a gravitational source along general
paths, as opposed to the purely radial or circular paths. Our
results show that, in contrast to what was reported in
Ref. [28], the scalar field of chameleonlike and symmetron-
like models has no effect on neutrinos’ spin oscillations.
The remainder of this paper is divided into four sections

as follows. In Sec. II, after giving a brief introduction to the
formalism used to describe spin dynamics in curved
spacetimes, we derive the spin-precession angular velocity
for neutrinos coupled to a general screening scalar field in
an arbitrary spacetime. In Sec. III, we use our results from
Sec. II to derive the probability formula for a neutrino to
flip its helicity as it propagates in space. An application of
the probability formula to chameleonlike and symmetron-
like screening models will then be made in Sec. IV for the
case of neutrinos deflected by a static spherically sym-
metric gravitational source. We conclude this paper with
the brief Sec. V in which we summarize and discuss our
main results.

II. GRAVITATIONALLY AND SCALAR-FIELD-
INDUCED SPIN PRECESSION

Thanks to the seminal work of Mathisson [36] and the
subsequent works of Papapetrou [37] and Dixon [38], it
became possible to describe the dynamics of any test
particle (including quantum particles) in curved spacetimes
[39] (see also Ref. [40] and references therein). It was
shown in those works that spinning bodies in curved
spacetime should exhibit not only nongeodesic motion
but also a spin precession. When keeping only the zeroth-
order terms in spin on the right-hand side of the first
set of Mathisson-Papapetrou-Dixon (MPD) equations, the
deviation from the geodesic motion of spinning bodies can
safely be neglected. However, spin precession holds even if
one restricts oneself to the zeroth-order terms in spin on the
right-hand side of the second set of MPD equations. This
fact allows one to seriously consider spin precession of
quantum particles such as neutrinos in curved spacetimes.
In fact, while the extremely weak magnetic moment of

neutrinos makes it hard to rely on spin precession caused by
magnetic fields when dealing with the solar neutrino
problem, the spacetime-induced spin precession occurs
for any nonvanishing spin regardless of the value of the
particle’s magnetic moment.
In this paper, we use (following Refs. [22–24,26–28])

the zeroth-order approximation of the second set of MPD
equations to describe the dynamics of neutrinos’ spin as
they propagate in curved spacetime. In fact, although
neutrinos in curved spacetime are governed by the
curved-spacetime Dirac equation,1

ðiγμ∇μ −mÞψ ¼ 0; ð1Þ

where γμ are the curved-spacetime gamma matrices and
∇μ is the spin covariant derivative, it was shown in
Refs. [41,42] that when using a Wentzel-Kramers-
Brillouin (WKB) approximation to first order in ℏ, one
does indeed recover the MPD equations from the Dirac
equation. The MPD equations emerge from the Dirac
equation by plugging into the latter the WKB ansatz,
ψðxÞ ¼ exp½− i

ℏ SðxÞ�
P∞

n¼0 ℏ
nψ ðnÞðxÞ, and then equating

to zero the coefficient of each power of ℏ. The result up to
the power ℏ1 is a Hamilton-Jacobi equation for the phase
function SðxÞ and a transport equation for the amplitude
ψ ð0ÞðxÞ, from which emerge the MPD equations after
using the Gordon decomposition of the Dirac probability
current.2

In Ref. [46], such an approach was also applied to extract
the MPD equations for charged particles in curved space-
time in the presence of a Maxwell field, as well as the MPD
equations for massless particles. The latter case, on which
we shall come back briefly below our result (23), is
particularly interesting whenever one works within the
approximation of massless neutrinos by neglecting their
mass or by considering them within the ultrarelativistic
regime.
The covariant description of spin (as required by a

curved-spacetime representation of gravity) is achieved
by conveniently introducing the spin four-vector Sμ. In
special relativity, the latter four-vector consists of the
Lorentz boosted four-vector ð0;SÞ, where S is the usual
three-dimensional spin vector of the particle as measured
by an observer at rest in the center-of-mass frame of the
particle. In such a frame, the four-velocity uμ ¼ dxμ=dτ of
the particle, where τ is an affine parameter usually chosen
to be the proper time of the particle, is simply (1, 0, 0, 0).
As such, the covariant identity Sμuμ ¼ 0 applies, and it

1We set throughout the paper c ¼ G ¼ ℏ ¼ 1, and we adopt
the metric signature ð−;þ;þ;þÞ.

2Note that it is also possible to extract the MPD equations from
the Dirac equation using an eikonal approximation [43,44]. Yet,
another way of describing spin dynamics of quantum spinning
particles in curved spacetime is to use the curved-spacetime Dirac
Hamiltonian in the Foldy-Wouthuysen representation [45].
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readily supplies us with the time component S0 of the spin
vector Sμ in any other frame. However, the MPD equations
are written in terms of the spin tensor Sμν rather than the
spin four-vector Sμ. Indeed, at the zeroth order in spin on
the right-hand side of the second MPD set of equations, the
latter reduce to DSμν=dτ ¼ 0, where D is the covariant total
derivative operator. Within the WKB approximation of the
Dirac equation, the spin tensor emerges when one identifies
Sμν with iℏ

4
ðψ̄ψÞ−1ψ̄ ½γμ; γν�ψ , where ψ̄ is the Dirac adjoint

of ψ and ½γμ; γν� is the commutator of the gamma matrices.
Nevertheless, the spin vector Sμ can still be extracted

from the spin tensor Sμν in a similar manner as done in
the flat-space special relativistic framework [47]: Sμ ¼
− 1

2m ε
μ
νρσpνSρσ (also known as the Pauli-Lubanski pseudo-

vector), where εμνρσ is the totally antisymmetric Levi-Civita
tensor and pμ is the effective four-momentum vector of the
spinning particle. Although pμ is not the usual four-
momentum muμ of a particle of mass m [48], at the zeroth
order in spin we do have the identity pμ ¼ muμ. On the
other hand, since at the zeroth order the MPD equations for
pμ reduce to the geodesic equation Dpμ=dτ ¼ 0, we
immediately see that at the zeroth order in spin we also
have DSμ=dτ ¼ 0. This is the equation that describes the
dynamics of the spin four-vector as seen by an observer in
the laboratory frame.
To properly describe spin precession, however, one

needs to cast the equation DSμ=dτ ¼ 0 back into the
spinning particle’s rest frame [49]. This is done by using
the projection Sâ of the spin vector Sμ into the local tangent
space of the moving particle thanks to the spacetime
comoving vierbeins eâμ. These vierbeins are defined for

any spacetime metric gμν by ηâ b̂e
â
μeb̂ν ¼ gμν, where ηâ b̂ is

the Minkowski metric.3 The inverse comoving vierbeins eμâ
are defined by eâμe

μ

b̂
¼ δâ

b̂
, where δâ

b̂
is the Kronecker

delta symbol. Therefore, writing Sâ ¼ eâμSμ and using
DSμ=dτ¼0, we learn that the dynamics of Sâ is described
by the following equation:

dSâ

dτ
¼ Sμ

Deâμ
dτ

: ð2Þ

Next, recall that general spacetime vierbeins are
related to the spin connection ωab

μ
4 and the Christoffel

symbols Γλ
μν by ωab

μ ¼ −eνb∂μeaν þ eνbΓλ
μνeaλ ¼ −eνb∇μeaν,

where ∇μ denotes here the covariant derivative acting on
tensors carrying curved-spacetime indices. Therefore, we

have that ∇μeaν ¼ −ebνωab
μ . Using this identity and the fact

that uμ ¼ dxμ=dτ and u0 ¼ dt=dτ, we extract from Eq. (2)
the dynamics of the spin three-vector S (of components Sî)
in the rest frame of the particle in terms of the spin
connection ωâ b̂

μ as follows:

dSî

dτ
¼ −Sâuμωî â

μ : ð3Þ

In Refs. [22–24,26–28], the authors proceed from here by
following Ref. [50] (see also Ref. [51]), where one relies on
a similarity between Eq. (3) and the equation derived from
the electrodynamics of relativistic particles [52]. However,
to achieve our present aim, which is to investigate the effect
on the spin precession of a particle coupled to a scalar field
through the spacetime metric, it is very important to keep
working solely with the spacetime tensors and not rely on
analogies with flat-spacetime electrodynamics.
Using the spin connection’s antisymmetry, ωâ b̂

μ ¼ −ωb̂ â
μ ,

and the fact that S0̂¼0, we extract fromEq. (3) the following
dynamics for the three-dimensional spin vector Sî:

dSî

dτ
¼ −Sĵuμω

î ĵ
μ ⇔

dS
dτ

¼ Ω × S: ð4Þ

In the second step we introduced the precession angular
velocity vector Ω which can be read off from the first
equation to be

Ωî ¼
1

2
εî ĵ k̂u

μωĵ k̂
μ ; ð5Þ

where εî ĵ k̂ is the totally antisymmetric Levi-Civita symbol.
The problem of finding the precession angular velocity
reduces thus to finding the four velocityuμ of the particle and

the coefficients of the spin connection ωî ĵ
μ . The latter is, in

turn, found as soon as one chooses the spacetime metric gμν
from which one extracts the comoving vierbeins eâμ corre-
sponding to the four-velocity uμ.
Given that our problem is to deal with neutrinos coupled

to the scalar field of the screening models, however, we
cannot just use Eqs. (4) and (5) as they are. In fact, what is
special about the screening models of interest to us here is
that particles in those models are coupled to spacetime only
thanks to a scalar field ϕðxÞ. As such, matter within those
models behaves as if it evolves in a spacetime of metric g̃μν
rather than in the original spacetime metric gμν. Indeed, the
metric g̃μν “seen” by matter in those models is the Weyl
conformally rescaled metric g̃μν ¼ A2ðϕÞgμν [53], for some
regular and nowhere vanishing functional AðϕÞ of the
scalar field ϕðxÞ of the models.
This approach is motivated by the application of dilaton-

field models to astrophysics and cosmology [54,55]. The
action of dilaton models is a scalar-tensor type action that
can be chosen to have the form [54]

3We use the first letters ða; b; cÞ of the Latin alphabet to denote
tangent-space indices while we reserve the Greek letters for
curved-spacetime indices. The letters ði; j; kÞ from the middle
of the alphabet will be used to denote indices of the three-
dimensional space.

4This spin connection ωab
μ is what is also denoted by γbaμ in the

literature and called the Ricci rotation coefficients.
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S¼
Z ffiffiffiffiffiffi

−g̃
p �

σR̃−
ω

σ
g̃μν∂μσ∂νσ

�
d4xþ

Z
LmðΨi; g̃μνÞd4x;

ð6Þ

where σðxÞ is a scalar field, R̃ is the curvature scalar
corresponding to the metric g̃μν, ω is a Jordan-Fierz-
Brans-Dicke parameter, and ΨiðxÞ are matter fields. The
gravitational part of this action takes the more familiar
Einstein-Hilbert form,

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p ðR− gμν∂μϕ∂νϕÞd4xþ
Z

LmðΨi; g̃μνÞd4x;

ð7Þ
after one performs the following metric and field redefini-
tions: g̃μν¼exp½ϕ=ðωþ3

2
Þ12�gμν and σ¼ 1

16πexp½−ϕ=ðωþ3
2
Þ12�,

respectively. Matter fields ΨiðxÞ in such models are thus
described within any spacetime of metric gμν by replacing
the matter Lagrangian LmðΨi; gμνÞ by the Lagrangian
LmðΨi; g̃μνÞ. For more generality, however, one allows for
an arbitrary metric rescaling g̃μν ¼ A2ðϕÞgμν. The functional
AðϕÞ has the formAðϕÞ ¼ expðβϕÞ in the chameleon model
[32], and it has the form AðϕÞ ¼ 1þ βϕ2 in the symmetron
model [34], where β is an arbitrary constant with the
dimensions of an inverse mass.
Therefore, to extract the modified equation describing

spin precession within such screening models, one needs to
figure out not only how the spin connection is altered but
also how the spin vector Sμ gets modified by the coupling
with the scalar field and how the four-velocity uμ is
modified. Concerning the latter, it is straightforward to
see that the effective four-velocity of the particle is
ũμ ¼ dxμ=dτ̃ ¼ A−1ðϕÞuμ. For the spin connection, we
also easily work out the new expression it takes under
the metric rescaling by using its definition in terms of the
covariant derivatives of the vierbeins (see Ref. [56] for
detailed steps of the calculation). We find

ω̃â b̂
μ ¼ ωâ b̂

μ −
A;ν

A
ðeνâeb̂μ − eνb̂eâμÞ: ð8Þ

In deriving this expression, we used the fact that the
spacetime vierbeins to which the particle couples are
ẽâμ ¼ AðϕÞeâμ. On the other hand, to find the effective spin
vector S̃μ of the particle, we need to recall the original
definition of the spin tensor as being an integral associated
with a pole-dipole test-particle approximation [38]. More
explicitly, one first sets δxμ ¼ xμ − Xμ for some arbitrary
coordinates Xμ of a worldline chosen along the four-
dimensional tube described by the motion of the particle.
Then, one assumes that for all times the energy-momentum
tensor Tμν of the particle vanishes outside a sphere of radius
R → 0 and centered at Xi on some spacelike hypersurface
Σ. The integral giving the tensor Sμν then reads

Sμν ¼
Z

ðδxμTνρ − δxνTμρÞdΣρ; ð9Þ

where the integration is performed over all the spacelike
hypersurface Σ. The effective spin tensor S̃μν is thus
obtained by using the effective energy-momentum tensor
T̃μν that does satisfy the conservation equation ∇̃νT̃μν ¼ 0

[33], where the covariant derivative ∇̃μ is associated with
the rescaled metric g̃μν. Under the rescaling of the space-
time metric, the usual definition of the energy-momentum
tensor allows us to deduce that the energy-momentum
tensor of a particle coupled to the scalar field that needs to
be plugged into Eq. (9) is

T̃μν ¼ 2ffiffiffiffiffiffi
−g̃

p δLmðΨi; g̃μνÞ
δg̃μν

¼ 2ffiffiffiffiffiffi−gp δLmðΨi; g̃μνÞ
A6ðϕÞδgμν

¼ Tμν

A6ðϕÞ :

ð10Þ

The energy-momentum tensor T̃μν is obtained by replacing
inside the explicit expression of the familiar tensor Tμν of a
spinor field the metric gμν by its rescaled version g̃μν.
As the pole-dipole approximation on which integral (9)

relies assumes that the dimensions of the spinningparticle are
very small compared with the characteristic length of the
gravitational field under consideration [48], the scalar field
ϕðxÞ can, to a very good approximation, be taken to be
constant over the nonvanishing integration region in Eq. (9).
Hence, we can move out of the integral all functional terms
AðϕÞ. This implies that we end up with S̃μν ¼ A−2ðϕÞSμν.
Note that this scaling of Sμν is also what one arrives at using
the spinor-based definition given above for Sμν when recall-
ing that γμ ¼ eμaγa, where γa are the constant gamma
matrices, and that ½γ̃μ; γ̃ν� ¼ ẽμaẽνb½γa; γb� ¼ A−2ðϕÞ½γμ; γν�.
From this observation, we deduce that the effective spin
vector S̃μ of the coupled particle expressed fully in themetric
g̃μν is related to thevectorSμ of the coupled particle expressed
in the metric gμν by S̃μ ¼ A−1ðϕÞSμ. Consequently, we
conclude that we have S̃â ¼ S̃μẽâμ ¼ Sâ, which implies that
the invariant squared spin magnitude S̃μS̃μ ¼ s2 is, as it
should be, not altered by switching metrics either.
From these results, we finally deduce that the spin

precession of the coupled particle is governed by
Eqs. (4) and (5), where the proper time element dτ should
be replaced by dτ̃, the four-velocity uμ should be replaced
by ũμ, and the spin connection should simply be replaced
by the modified spin connection ω̃â b̂

μ as given by Eq. (8).
We thus conclude that the angular velocity vector of spin
precession of neutrinos coupled to the scalar field reads

Ω̃î ¼ εî ĵ k̂
uμ

A

�
1

2
ωĵ k̂
μ −

A;ν

A
eνĵek̂μ

�
: ð11Þ
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Note that this final expression of the angular velocity is
valid for any spacetime metric gμν and for any four-velocity
ũμ ¼ A−1ðϕÞuμ of the particle. The latter follows a space-
time geodesic given by D̃ũμ=dτ̃ ¼ 0, whereas a noncoupled
particle follows a geodesic described by Duμ=dτ ¼ 0. In
the next section, we shall drive a general formula for the
spin-flip transition probability for any spin-precession
angular velocity.

III. HELICITY FLIP PROBABILITY

We can extract the spin-flip transition probability
for any spin-precession angular velocity Ω thanks to
the effective Hamiltonian HeffðrÞ ¼ 1

2
σ:Ω̃, where σ ¼

ðσ1; σ2; σ3Þ are the three Pauli matrices. In the spherical
coordinates ðr; θ;φÞ of interest to us here, we have
ðΩ̃1; Ω̃2; Ω̃3Þ ¼ ðΩ̃r̂; Ω̃θ̂; Ω̃φ̂Þ. When using the Pauli matri-
ces in such coordinates [57], the effective time-independent
Hamiltonian takes the following explicit form:

HeffðrÞ ¼
1

2
Ω̃1

�
cos θ sin θe−iφ

sin θeiφ − cos θ

�

þ 1

2
Ω̃2

�
− sin θ cos θe−iφ

cos θeiφ sin θ

�

þ 1

2
Ω̃3

�
0 −ie−iφ

ieiφ 0

�
: ð12Þ

Next, the general formula for the probability that a spin
flips from an initial value jSini at proper time τ̃i to a final
value jSfii at any other position at a later proper time τ̃f is
given by

PðSin→ SfiÞ¼
����hSfijTexp

�
−i

Z
τ̃f

τ̃i

HeffðrÞdτ̃
�
jSini

����2: ð13Þ

In writing this expression, we introduced the usual time-
ordering operator T. Using that HeffðrÞ ¼ 1

2
σ:Ω̃ðrÞ, as well

as the well-known exponential identity expðiλn:σÞ ¼
cos λþ in:σ sin λ, which is valid for any parameter λ and
for any unit vector n, we can rewrite Eq. (13) as follows:

PðSin → SfiÞ ¼
����hSfij

�
cos

�Z
τ̃f

τ̃i

Ω̃ðrÞ
2

dτ̃

�

−i
R τ̃f
τ̃i
Ω̃ðrÞ:σdτ̃R τ̃f

τ̃i
Ω̃ðrÞdτ̃

sin

�Z
τ̃f

τ̃i

Ω̃ðrÞ
2

dτ̃

��
jSini

����
2

;

ð14Þ

where Ω̃ðrÞ stands for the magnitude of the angular velocity
vector at the position r of the particle.
What we are interested in here, is the case of left-handed

neutrinos deflected by a spherical massive gravitational

source. In what follows we assume, for definiteness and
simplicity, that the motion of the particle is along the
equatorial plane θ ¼ π

2
of the spherical coordinates.

Suppose the particle came from infinity and got deflected
counterclockwise by the gravitational source. We therefore
take the initial spin of the particle to be antiparallel to the
direction of its initial motion, such that the initial spin state
satisfies n:σjSini ¼ −jSini, where n is the unit vector along
the direction of motion of the particle. The initial ortho-
normalized spin state of the neutrino then reads

jSini ¼
1ffiffiffi
2

p
� −1
ηeiφ

�
; ð15Þ

where η ¼ ðu1 þ iu3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu3Þ2

p
. We are looking for

the probability that the helicity becomes positive, i.e., for
the spin to be found aligned along the positive direction of
motion at a detection point very far from the gravitational
source. Such a final spin state has the form

jSfii ¼
1ffiffiffi
2

p
�

1

ηeiϕ

�
: ð16Þ

Plugging these two spin states into the general formula (14),
we find, after taking account of the Hamiltonian (12), the
following probability for a left-handed neutrino jνLi to
become a right-handed neutrino jνRi:

PðjνLi → jνRiÞ ¼
�Z

τ̃f

τ̃i

Ω̃ðrÞdτ̃
�
−2
sin2

�
1

2

Z
τ̃f

τ̃i

Ω̃ðrÞdτ̃
�

×

��Z
τ̃f

τ̃i

Imðη½Ω̃1̂ðrÞ − iΩ̃3̂ðrÞ�Þdτ̃
�
2

þ
�Z

τ̃f

τ̃i

Ω̃2̂ðrÞdτ̃
�
2
�
: ð17Þ

Here,Imðη½Ω̃1̂ðrÞ − iΩ̃3̂ðrÞ�Þ stands for the imaginary part
of the complex expression η½Ω̃1̂ðrÞ − iΩ̃3̂ðrÞ�. In the next
section we apply this general formula to neutrinos experi-
encing a spin precession of angular velocity (11) as they get
deflected by a static and spherical gravitational source.
Note that, unlike what one does when studying neutrino

flavor oscillations under the effect of gravity where one
works in the mass eigenstates basis ðjν1i; jν2i; jν3iÞ, we
work here in the flavor basis where jνLi and jνRi simply
denote the helicity of the specific flavor we are interested
in: an electron-neutrino jνei, or a muon-neutrino jνμi, or a
tau-neutrino jντi.

IV. NEUTRINOS DEFLECTED BY A STATIC
SPHERICAL GRAVITATIONAL SOURCE

It is easy to see from formula (11) that for a static
spherical gravitational source, only orbiting neutrinos
would display a nonzero spin-precession angular velocity.
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The reason is that a spherical gravitational source would
also give rise only to a radially varying scalar field ϕ, and
hence only the component A;r of the gradient of AðϕÞ is
nonvanishing in Eq. (11). Therefore, we assume here
deflected neutrinos (as opposed to radially propagating
neutrinos) around a static spherical mass M, using the
Schwarzschild metric given by

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ: ð18Þ

Next, we assume the particle starts moving from infinity
with an energy Ẽ ¼ −g̃00p̃0 ¼ −g̃00mũ0 before getting
closer to the static mass and getting deflected around the
latter in the equatorial plane. Note that, as opposed to what
one does when studying flavor oscillations, the mass m
used here is that of a flavor state rather than one of the three
different masses associated with the mass eigenstates. This
energy of the neutrino is again related at each position r to
the conserved energy E at infinity of a neutrino not coupled
to the scalar field by Ẽ ¼ AðϕÞE. Also, we denote the
conserved orbital angular momentum by L. The particle
follows then a constant-L and a constant-E (rather than
constant-L̃ and constant-Ẽ) path with four-velocity
ũμ ¼ A−1ðϕÞuμ, where uμ is given by [58]

uμ ¼
�
e
Δ
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p
; 0;

l
r2

�
: ð19Þ

For convenience, we set here Δ¼1–2M=r, Σ ¼ 1þ l2=r2,
e ¼ E=m, and l ¼ L=m. The ðþÞ=ð−Þ signs stand, respec-
tively, for neutrinos moving outward/inward relative to the
central mass. On the other hand, with the help of this four-
velocity we easily compute the corresponding vierbeins
and the corresponding spin connection coefficients dis-
played in the Appendix. Plugging the vierbeins (A1) and
(A2) and the nonzero spin connection coefficients (A4) into
formula (11), we find the following expression for the
single nonvanishing component of the spin-precession
angular velocity:

Ω̃2̂ ¼ � el
r2AΣ

: ð20Þ

Again, the ðþÞ=ð−Þ signs stand for particles moving
outward/inward relative to the central mass. We notice
that no dependence on the radial gradient of the scalar field
ϕ appears in this formula.
Next, we also need to convert the dτ̃ in the integrals in

Eq. (17) into a dr. Referring to the four-velocity (19), we
deduce that the proper time of the neutrinos is governed by
the following differential equation relating the proper time
element dτ̃ to the coordinate radius element dr:

dτ̃ ¼ � Adrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p : ð21Þ

Here, we used the (�) sign to guarantee a positive proper
time, for dr is positive for outward moving particles and
negative for inward moving ones. The coordinate radius r
decreases along the trajectory of the neutrino until it
reaches its minimum value r0 at the turning point where
dr=dτ ¼ 0, and starts increasing as the particle continues its
journey away from the gravitational source. The coordinate
radius r ¼ r0 of the closest approach of the particle to the
gravitational source is thus found by solving the equation
ΣΔ ¼ e2. To evaluate the probability integrals over r in
Eq. (17), we need to pick up the same relative signs from
expressions (20) and (21). This amounts then to integrating
over r from r ¼ r0 to r ¼ ∞ using an overall (þ) sign, and
multiplying by a factor of 2 the resulting integral.
Plugging Eq. (20) into Eq. (17), after setting Ω̃1̂ ¼

Ω̃3̂ ¼ 0 and making use of identity (21), we find

PðjνLi → jνRiÞ ¼ sin2
�Z

∞

r0

2el

r2Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p dr

�
: ð22Þ

This result shows no trace of the scalar field ϕ. The latter
disappeared from the integral after the factor AðϕÞ in the
denominator of the angular frequency Ω̃2̂ got canceled by
the same factor in the numerator of expression (21) of the
proper time. All one extracts then from formula (22) is the
spin-flip probability of neutrinos moving within the purely
gravitational field of the central mass, as if the particles
were completely decoupled from the scalar field. Thus, the
spin-flip probability is not affected by the scalar field of the
screening models considered here. Nevertheless, the result
(22) is general enough and is thus interesting for its
own sake.
In fact, formula (22) is valid for any energy e per unit

mass of the neutrinos, for any angular momentum l per
unit mass of the latter, for any possible closest approach r0
of the particles, and for any mass M of the gravitational
source. Unfortunately, no analytic expression of the integral
in Eq. (22) could be found for such a general set of
parameters. Only a numerical integration can be performed
once one chooses specific values for each of those four
parameters.
For that purpose, we shall assume e2 − 1 ≈ e2, which is a

good approximation for the neutrinos of interest to us here
as the latter are necessarily coming from interstellar high-
energy sources before they get deflected by a gravitational
source located on their path. Further, we set x ¼ l=r and
make use of the usual definition of the impact parameter
b ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
≈ l=e that describes the trajectory of

deflected particles by the gravitational field of a central
mass. Therefore, we have x ≈ be=r. For definiteness, we
choose r0 ¼ b, so that x0 ¼ be=r0 ≈ e, and we choose
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e ¼ 107 for a typical parameter of supernovae neutrinos
(see, e.g., Ref. [59] and the references therein). Allowing
for large-curvature scenarios, we choose the impact param-
eter b to be only twice the Schwarzschild radius of the
gravitational source, so that by introducing the dimension-
less parameter μ ¼ M=l, we have μ ≈M=be ¼ 5 × 10−8.
The integral in Eq. (22) can then be evaluated numerically,
yielding

PðjνLi → jνRiÞ

¼ sin2
�Z

x0

0

2e

ð1þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ð1þ x2Þð1 − 2μxÞ

p dx

�

≈ sin2π: ð23Þ

This result shows that the spin-flip probability vanishes for
such high-energy, i.e., ultrarelativistic, neutrinos. This
conclusion is in agreement with what has been found in
Ref. [21]. This conclusion is also in agreement with what
the MPD equations extracted from the Dirac equation

imply for massless particles [46]: static curved spacetime
does not induce spin precession on massless particles.
Since our main goal here is rather to study the depend-

ence of the spin-flip probability on the variation of those
four parameters listed above, we shall focus now on the
more analytically tractable small-curvature case for which
the approximation M=r ≪ 1 applies. For M=r ≪ 1, we
may expand the integrand in Eq. (22) up to the leading
power in M=r. Performing again a change of variables by
setting x ¼ l=r, and introducing the dimensionless param-
eter μ ¼ M=l, formula (22) takes the following form:

PðjνLi → jνRiÞ

≈ sin2
�Z

x0

0

2eð1þ μxÞ
ð1þ x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 2μe2x − x2

p dx

�
; ð24Þ

where we set x0 ¼ l=r0. The integral in this equation can
be analytically evaluated, yielding

PðjνLi → jνRiÞ ≈ sin2
(
−
πη

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p �1

2

ð2
ffiffiffi
2

p
− tan−1χÞ

þ η

2
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p

− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p �1
2

ln

"ð1þ η2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

pq
þ ffiffiffi

2
p

ηð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p
Þ

ð1þ η2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

pq
−

ffiffiffi
2

p
ηð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2

p
Þ

#)
; ð25Þ

with

η ¼
�

1þ μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2

p �1
2

; χ ¼ 2μ3

1þ 3μ2
: ð26Þ

The spin-flip probability (25) is thus expressed solely in
terms of the parameter μ ¼ M=l. It has no dependence on
the radial coordinate r0 of the neutrinos’ closest approach
to the central mass. The disappearance of r0 from Eq. (25)
came about due to the fact that at this order of the expansion
in M=r, the denominator in Eq. (24) vanishes at x ¼ x0.
To examine the dependence of the probability (25) on the

variation of the energy of the neutrinos and on the variation
of the shape of their deflected paths, we replace μ byM=be
in Eq. (26). The latter yields then

η¼
�

b2e2þM2

be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e2þ4M2

p
�1

2

; χ¼ 2M3

beðb2e2þ3M2Þ : ð27Þ

Using these expressions of η and χ, we not only can track
down the dependence of the probability (25) on the

variation of the parameters e and b of the neutrinos, but
we can also find out about the dependence of the proba-
bility on the variation of the mass M of the gravitational
source. In fact, let us consider typical values of the energy e
per unit mass of the neutrinos by allowing e to be as low as
e ∼ 105 for solar neutrinos and as high as e ∼ 107 for
supernovae neutrinos. We also consider an impact param-
eter b as small as a few dozens of M⊙ that might occur for
deflections around compact neutron stars. Indeed, for such
impact parameters around such compact stars we may keep
the second order in M=be in the parameter η, discarding
only the parameter χ for being third order in M=be. From
Eq. (27), we then have

η ≈ 1 −
M2

2b2e2
; χ ≈ 0: ð28Þ

Note that at the first order in M=be, we have η ¼ 1 and
χ ¼ 0. Plugging these two values into Eq. (25) we recover
the vanishing spin-flip probability. On the other hand,
plugging the approximations (28) into Eq. (25), the latter
takes the form

NEUTRINO SPIN OSCILLATION IN SCREENING MODELS … PHYS. REV. D 108, 083025 (2023)

083025-7



PðjνLi → jνRiÞ ≈
π2M4

b4e4
: ð29Þ

Since the impact parameter cannot be smaller than the
gravitational radius of the central mass, we clearly see from
Eq. (29) that although the result increases as the fourth
power of the central mass, the spin-flip probability is
suppressed as the inverse fourth power of the energy per
unit mass of the neutrinos for typical neutrino energies and
for any realistic impact parameter b.

V. SUMMARY AND CONCLUSION

We considered neutrinos spin oscillations within curved
spacetime when the neutrinos are coupled to the scalar field
of chameleonlike and symmetronlike screening models. We
first derived the general expression of the spin-flip prob-
ability in the flavor basis by relying on the MPD equations
that describe classical spin precession under the effect of
gravity. We then applied the formula to extract the
corresponding helicity-flip probability for the case of
neutrinos deflected in the equatorial plane of a static and
spherically symmetric gravitational source. Our result is
valid for any shape of the deflected neutrinos paths, and it is
given in terms of the impact parameter of the particles, their
energy per unit mass, and the coordinate radius of their
closest approach.
What is remarkable about our result is not only the

absence of any dependence of the spin-flip probability on
the radial variation of the scalar field but also the absence of
the scalar field altogether. This means that, although the
scalar field does have an effect on the neutrinos’ spin
precession in the comoving frame, as shown by the spin-
precession angular velocity (20), the spin-flip probability
is not affected by the coupling of the neutrinos to the
scalar field.
The reason why the spin-precession angular velocity is

affected but the spin-flip probability is not is due to the
peculiar coupling we considered here of the screening
models with matter. In fact, the scalar field ϕ of such
models couples to neutrinos only through the spacetime
metric by Weyl rescaling the latter. As such, both the
proper time of the particle and its spin-precession angular
velocity in the comoving frame are oppositely affected.
The proper time is affected by being multiplied by the
functional AðϕÞ of the scalar field, but the angular
velocity gets divided by the functional AðϕÞ. The func-
tional AðϕÞ thus cancels out of the probability integral.
Another way of understanding this result is to recall that
the conformal rescaling of the metric caused by the scalar
field preserves angles, but rescales distances and time. It
is therefore no wonder that the total precession angle and

the corresponding probability for its occurrence both
remain unaffected.
Even though our result showed no effect of the scalar

field on the helicity-flip probability, the generality of the
latter’s final expression allowed us to examine closer the
effect of pure gravity in the absence of any coupling. In
the process, we recovered the vanishing of the probability
for high-energy neutrinos with any realistic impact param-
eter. We also extracted a closed form showing the depend-
ence of the probability on the energy per unit mass of the
neutrinos, on the impact parameter of the latter, and on the
mass of the gravitational source.
It is worth emphasizing here that our present study

focused solely on neutrinos deflected by a static and
spherically symmetric gravitational source. Nevertheless,
the physical interpretation we provided for our present
result is general enough to bring into light the main insights
and to encompass arbitrary physical situations of the
interaction of the spin with the gravitational field of the
source. Still, an extension of this work to include general
motions of neutrinos and/or rotating gravitational sources
will be provided elsewhere. Furthermore, to examine any
eventual fundamental difference between the use of the
mass eigenstates basis and the use of the flavor basis
another study based on the Foldy-Wouthuysen representa-
tion as opposed to the MPD equations, as well as a study
based purely on the WKB approximation for deriving the
MPD equations from the Dirac equation are both necessary
and will also be carried out elsewhere.
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APPENDIX: THE COMOVING VIERBEINS
AND THE SPIN CONNECTION

We display here the comoving vierbeins one builds from
the Schwarzschild metric (18) and the four-velocity (19) of
a deflected neutrino around a static and spherically sym-
metric gravitational source. We set E=m ¼ e and L=m ¼ l,
where E is the conserved energy, m is the mass of the
neutrino, and L is the conserved angular momentum of the
latter. We also set Δ ¼ 1–2M=r and Σ ¼ 1þ l2=r2. Then,
the resulting vierbeins read
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eμ
0̂
¼

�
e
Δ
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p
; 0;

l
r2

�
;

eμ
1̂
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p
ffiffiffi
Σ

p
Δ

;� effiffiffi
Σ

p ; 0; 0

�
;

eμ
2̂
¼

�
0; 0;� 1

r
; 0

�
;

eμ
3̂
¼

�
el

r
ffiffiffi
Σ

p
Δ
;�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p

r
ffiffiffi
Σ

p ; 0;

ffiffiffi
Σ

p

r

�
; ðA1Þ

and their inverses eâμ are

e0̂μ ¼
�
e;∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p

Δ
; 0;−l

�
;

e1̂μ ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p
ffiffiffi
Σ

p ;� effiffiffi
Σ

p
Δ
; 0; 0

�
;

e2̂μ ¼ ð0; 0;�r; 0Þ;

e3̂μ ¼
�
−

el

r
ffiffiffi
Σ

p ;�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p

r
ffiffiffi
Σ

p
Δ

; 0; r
ffiffiffi
Σ

p �
: ðA2Þ

On the other hand, the nonzero Christoffel symbols one
extracts from the Schwarzschild metric are

Γ1
00 ¼

MΔ
r2

; Γ0
01 ¼

M
r2Δ

; Γ1
11 ¼ −

M
r2Δ

;

Γ2
12 ¼ Γ3

13 ¼
1

r
; Γ1

22 ¼ −rΔ; Γ3
23 ¼ cot θ;

Γ1
33 ¼ −rsin2θΔ; Γ2

33 ¼ − sin θ cos θ: ðA3Þ

From these expressions, we compute the following relevant
nonzero coefficients of the spin connection to be

ω1̂ 3̂
0 ¼ �Ml

r3
;

ω1̂ 3̂
1 ¼ el

ΣΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − ΣΔ

p
�
l2

r4
−
M
r3

−
3Ml2

r5

�
;

ω1̂ 3̂
3 ¼ ∓e: ðA4Þ
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