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We study the bulk viscosity of moderately hot and dense, neutrino-transparent relativistic npeμ matter
arising from weak-interaction direct Urca processes. This work parallels our recent study of the bulk
viscosity of npeμmatter with a trapped neutrino component. The nuclear matter is modeled in a relativistic
density functional approach with two different parametrizations—DDME2 (which does not allow for the
low-temperature direct-Urca process at any density) and NL3 (which allows for low-temperature direct-
Urca process above a low-density threshold). We compute the equilibration rates of Urca processes of
neutron decay and lepton capture, as well as the rate of the muon decay, and find that the muon decay
process is subdominant to the Urca processes at temperatures T ≥ 3 MeV in the case of DDME2 model and
T ≥ 1 MeV in the case of NL3 model. Thus, the Urca-process-driven bulk viscosity is computed with the
assumption that pure leptonic reactions are frozen. As a result, the electronic and muonic Urca channels
contribute to the bulk viscosity independently, and at certain densities, the bulk viscosity of npeμ matter
shows instead of the standard one-peak (resonant) form a “flattened” shape. In the final step, we estimate
the damping timescales of density oscillations by the bulk viscosity. We find that, e.g., at a typical
oscillation frequency f ¼ 1 kHz, the damping of oscillations is most efficient at temperatures 3 ≤ T ≤
5 MeV and densities nB ≤ 2n0 where they can affect the evolution of the postmerger object.

DOI: 10.1103/PhysRevD.108.083019

I. INTRODUCTION

The recent detections of gravitational waves and their
electromagnetic counterparts produced in binary neutron-
star (BNS) mergers by the LIGO-Virgo Collaboration
motivates studies of the properties of hot and dense nuclear
matter (for reviews, see [1–3], and for input models for
simulations, see [4]). Numerical simulations of BNS
mergers performed in the framework of nondissipative
hydrodynamics [5–18] (for reviews, see [19–21]) predict
large-amplitude density oscillations and intense gravita-
tional wave emission during the first tens of milliseconds
of the postmerger evolution. The density oscillations
eventually will be damped by dissipative processes in
postmerger matter, which will affect the gravitational wave

signal. Among various dissipative processes, bulk viscous
dissipation by weak interactions is likely to be the most
efficient mechanism in damping the density oscillations in
postmerger matter as it follows from initial estimates [22]
and more recent implementations in the numerical simu-
lations [23–27]. In the cold regime, relevant for mature
compact stars, bulk viscosity has been extensively studied
following the seminal work of Ref. [28]. Bulk viscosity of
hot and dense matter in various regimes was computed in
several recent works [29–34] either in the neutrino trans-
parent or trapped regimes. Results for the bulk viscosity
and damping timescales that interpolate between these
regimes and cover the entire temperature range were given
recently in Refs. [33,35].
Here, we extend our recent work [32] on the influence of

the muonic component on the bulk viscosity of neutron-
proton-electron matter from the neutrino-trapped to the
neutrino-transparent regime. Matter is transparent to
neutrinos at intermediate temperatures 1 ≤ T ≤ 10 MeV,
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and as already demonstrated in the previous investigations
[29,35], the bulk viscous damping is expected to be most
efficient in this regime. The results that we present show
the likely importance of bulk viscous damping arising
from beta equilibration via weak interactions. Exactly how
the physics of beta equilibration should be included in
merger simulations is a separate question that we do not
address here.
Some of the results reported here were previewed in a

review article [33], which reported results for the entire
range of temperatures relevant for binary neutron-star
mergers by interpolating between neutrino-transparent
and neutrino-trapped regimes using the DDME2 para-
metrization of the nuclear density functional. Here, we
expand on this discussion by (a) adding results obtained
with an alternative NL3 density functional, which allows us
to assess the uncertainties associated with the choice of the
density functional, and (b) by focusing on the neutrino-
transparent regime we provide details of the derivations
of the rates for processes involving muons in Secs. II B
and IVA 2 and bulk viscosity in Sec. IV B 2. Finally, the
Appendixes contain details of the derivation of rates of
processes together with their low-temperature limits as well
as the susceptibilities in the isothermal and isentropic cases
needed for the evaluation of the bulk viscosity.
Below, we use the same formalism as in Ref. [32] by

keeping track of three types of processes: (a) the nucleonic
Urca process on electrons, (b) the nucleonic Urca processes
on muons, and (c) purely leptonic processes, all in the
neutrino-transparent regime. It will turn out that the muon
decay rate is much smaller than the Urca process rates on
electrons and muons in the entire temperature-density
range. This simplifies the treatment of the coupled network
of reactions, as the purely leptonic processes can be
considered as decoupled on the timescales that are char-
acteristic for Urca processes. The importance of the
extension to the neutrino-transparent regime lies in the fact
(confirmed by explicit computations below) that in this
regime the bulk viscous damping timescale is short (in the
range 1–10 ms); therefore, the bulk viscosity may have a
significant impact on the initial phase of postmerger
dynamics which is characterized by a typical timescale
∼10 ms (see also the earlier work [29,35] where the
muonic Urca processes were excluded).
This paper is organized as follows. In Sec. II, we discuss

the rates of the weak processes, specifically, those of the
direct Urca processes and the muon decay. In Sec. III, we

briefly review the derivation of the bulk viscosity of npeμ
matter. Section IV collects our results of the weak process
rates, the bulk viscosity, and the damping timescales of
density oscillations for two equation of state models based
on the density functional theory. Our results are summa-
rized in Sec. V. Appendix A provides the derivation of the
weak process rates in the degenerate matter. Appendix B
details the computation of the relevant susceptibilities in
both cases of isothermal and adiabatic oscillations. We use
natural (Gaussian) units with ℏ ¼ c ¼ kB ¼ 1 and the
metric gμν ¼ diagð1;−1;−1;−1Þ.

II. WEAK PROCESSES IN npeμ MATTER

Consider neutron-star matter composed of neutrons,
protons, electrons, and muons in the density range 0.5n0 ≤
nB ≤ 5n0 where n0 is the nuclear saturation density (which
is a parameter of the density functionals considered)
and the temperature range 1 ≤ T ≤ 10 MeV. In this
temperature-density range, the matter is conjectured to
be transparent for neutrinos.
The simplest semibaryonic beta equilibration processes

are the direct Urca processes of neutron decay and lepton
capture, respectively,

n → pþ l− þ ν̄l; ð1Þ

pþ l− → nþ νl; ð2Þ

where l− ¼ fe−; μ−g is electron or muon and νl is the
corresponding neutrino. There are also modified Urca
processes, which we discuss in Sec. IV B 2.
In addition, the purely leptonic muon-decay process

μ− → e− þ ν̄e þ νμ ð3Þ

takes place. The opposite process e− → μ− þ νe þ ν̄μ does
not occur because it is forbidden by energy conservation:
in the rest frame of the initial state electron, there is not
enough energy to create the final state particles. The
processes (1)–(3) proceed only in the direction from left
to right because in neutrino-transparent matter neutrinos/
antineutrinos can appear only in final states.

A. Urca processes

The rates of the processes (1) and (2) are given,
respectively, by (see Ref. [36], Chap. 7)

Γn→plν̄ ¼
Z

d3p
ð2πÞ32p0

Z
d3p0

ð2πÞ32p0
0

Z
d3k

ð2πÞ32k0

Z
d3k0

ð2πÞ32k00
X

jMUrcaj2

× f̄ðkÞf̄ðpÞf̄ðk0Þfðp0Þð2πÞ4δð4Þðkþ pþ k0 − p0Þ; ð4Þ

ALFORD, HARUTYUNYAN, and SEDRAKIAN PHYS. REV. D 108, 083019 (2023)

083019-2



Γpl→nν ¼
Z

d3p
ð2πÞ32p0

Z
d3p0

ð2πÞ32p0
0

Z
d3k

ð2πÞ32k0

Z
d3k0

ð2πÞ32k00
X

jMUrcaj2

× fðkÞfðpÞf̄ðk0Þf̄ðp0Þð2πÞ4δðkþ p − k0 − p0Þ; ð5Þ

where fðpÞ ¼ fexp½ðEp − μÞ=T þ 1g−1, etc., are the Fermi distribution functions of particles, with Ep being the single-
particle spectrum for momentum p, and f̄ðpÞ ¼ 1 − fðpÞ. The mapping between the particle labeling and their momenta is
as follows: ðlÞ → k, ðνl=ν̄lÞ → k0, ðpÞ → p, and ðnÞ → p0. Note that in neutrino-transparent matter f̄ðk0Þ ¼ 1 in Eqs. (4)
and (5).
The spin-averaged relativistic matrix element of the Urca processes reads [37]

X
jMUrcaj2 ¼ 32G2

F cos
2 θc

�ð1þ gAÞ2ðk · pÞðk0 · p0Þ þ ð1 − gAÞ2ðk · p0Þðk0 · pÞ þ ðg2A − 1Þm�
nm�

pðk · k0Þ
�
; ð6Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling constant, θc is the Cabibbo angle with cos θc ¼ 0.974, gA ¼ 1.26
is the axial-vector coupling constant, andm�

n=m�
p is the effective neutron/proton mass. In our calculations, we will keep only

the first term of this expression, which we expect to dominate because gA is close to 1. The 12-dimensional phase-space
integrals in Eqs. (4) and (5) can then be reduced to the following four-dimensional integrals, which are then computed
numerically [32],

Γn→plν̄ðμΔl
Þ ¼ −

G2T4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx
�ðμ�n þ yTÞ2 −m�2

n − x2T2
��ðμl þ μ�p þ ȳlTÞ2 −m2

l −m�2
p − x2T2

�

×
Z

αpþȳl

ml=T−αl
dzf̄ðzÞfðz − ȳlÞθx

Z
∞

0

dz0fðz0 þ yÞθy; ð7Þ

Γpl→nνðμΔl
Þ ¼ G2T4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx
�ðμ�n þ yTÞ2 −m�2

n − x2T2
��ðμl þ μ�p þ ȳlTÞ2 −m2

l −m�2
p − x2T2

�

×
Z

αpþȳl

ml=T−αl
dzfðzÞfðȳl − zÞθx

Z
αnþy

0

dz0fðz0 − yÞθz; ð8Þ

where G ¼ GF cos θcð1þ g2AÞ; ml is the lepton mass;
αl ¼ μl=T; αN ¼ μ�N=T for N ¼ fn; pg with μ�N being
the effective nucleon mass (see Sec. IVA); ȳl ¼
yþ μΔl

=T with μΔl
¼ μn − μp − μl; and fðxÞ ¼

ðex þ 1Þ−1 is the Fermi distribution function of dimension-
less variable x. The θ-functions in Eqs. (7) and (8) imply

θx∶ ðzk−xÞ2≤ ðz−αp− ȳlÞ2−m�2
p =T2≤ ðzkþxÞ2; ð9Þ

θy∶ðz0−xÞ2≤ ðz0 þαnþyÞ2−m�2
n =T2≤ ðz0 þxÞ2; ð10Þ

θz∶ðz0−xÞ2≤ ðz0−αn−yÞ2−m�2
n =T2≤ ðz0 þxÞ2: ð11Þ

The integration variables y and x are normalized-by-
temperature transferred energy and momentum, respec-
tively; the variable z is the normalized-by-temperature
lepton energy, computed from its chemical potential;

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ αlÞ2 −m2

l =T
2

q
is the normalized lepton

momentum; and z0 is the normalized neutrino/antineutrino
energy.
In beta-equilibrium, the rates of the neutron decay and

lepton capture should be equal: Γn→plν̄ ¼ Γpl→nν. This is
the case in the low-temperature regime T ≪ μi for μΔl

¼ 0,
i.e., μn ¼ μp þ μl. In that case, the low-temperature limit of
the Urca process rates (7) and (8) are given by the Fermi-
surface approximation (see Appendix A)

Γn→plν̄ ¼ Γpl→nν

¼ α

2
G2T5μ�nðp2

Fp þ p2
Fl þ 2μlμ

�
p − p2

FnÞ
× θðpFl þ pFp − pFnÞ; ð12Þ

where α ¼ 3½π2ζð3Þ þ 15ζð5Þ�=16π5 ≃ 0.0168. However,
at higher temperatures, the Fermi-surface approximation is
no longer valid; non-negligible neutrino momentum enters
(7) and (8) with opposite signs. As a consequence, matter is
in beta-equilibrium at nonvanishing values of μeqΔl

[38].
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For small departures from β-equilibrium, μΔl
− μeqΔl

≪ T,
and the net proton production rate can be approximated as
Γn→plν̄ − Γpl→nν ¼ λlðμΔl

− μeqΔl
Þ with the expansion coef-

ficients

λl ¼
�
∂Γn→plν̄

∂μΔl

−
∂Γpl→nν

∂μΔl

�����
μΔl¼μeqΔl

: ð13Þ

The coefficients λl in the low-T limit of neutrino-
transparent matter are given by (see Appendix A)

λl ¼
17

480π
G2T4μ�nðp2

Fp þ p2
Fl þ 2μlμ

�
p − p2

FnÞ
× θðpFl þ pFp − pFnÞ: ð14Þ

In the limit of nonrelativistic nucleons pFN ≪ μ�N ≃m�
N ,

Eqs. (12) and (14) reduce to our previous results [30]
if the lepton mass is neglected, i.e., μl ¼ pFl (ultrarelativ-
istic limit).
Wewill neglect the isospin chemical potentials μeqΔl

below
and employ the low-temperature beta-equilibrium condi-
tion μn ¼ μp þ μl. Recent work on bulk viscosity in
muonless nuclear matter [34] found that inclusion of μeqΔl

does not affect the temperature at which bulk viscosity
achieves its maximum.

B. Muon decay

The rate of the μ-decay process (3) is given by

Γμ→eν̄ν ¼
Z

d3kμ
ð2πÞ32k0μ

Z
d3ke

ð2πÞ32k0e

Z
d3kν̄e

ð2πÞ32k0ν̄e

Z d3kνμ
ð2πÞ32k0νμ

X
jMlepj2

× fðkμÞf̄ðkeÞf̄ðkν̄eÞf̄ðkνμÞð2πÞ4δð4Þðke þ kν̄e þ kνμ − kμÞ; ð15Þ

with the spin-averaged scattering matrix element given by [39]

X
jMlepj2 ¼ 128G2

Fðke · kνμÞðkμ · kν̄eÞ: ð16Þ

The final rate is given by the expression

Γμ→eν̄νðμLΔÞ ¼ −
4G2

FT
4

ð2πÞ5
Z

∞

−∞
dy

Z
∞

0

dx
Z

ỹ

me=T−αe
dzf̄ðzÞθ̃x

Z
∞

0

dz0fðz0 þ yÞθ̃y
×
�ðμe þ ỹTÞ2 −m2

e − x2T2
��ðμμ þ yTÞ2 −m2

μ − x2T2
�
; ð17Þ

where μLΔ ≡ μμ − μe ¼ μΔe
− μΔμ

, ỹ ¼ yþ μLΔ=T, and the
θ-functions imply

θ̃x∶ ðzk − xÞ2 ≤ ðz − ỹÞ2 ≤ ðzk þ xÞ2; ð18Þ

θ̃y∶ðz0 − xÞ2 ≤ ðz0 þ αμ þ yÞ2 −m2
μ=T2 ≤ ðz0 þ xÞ2; ð19Þ

with zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ αeÞ2 −m2

e=T2
p

. In the low-temperature
limit, we find

Γμ→eν̄ν ¼
α

2
G2T5μμðp2

Fe − p2
FμÞθðpFe − pFμÞ: ð20Þ

Note that there are also “modified Urca-type” leptonic
reactions involving electromagnetic interaction with spec-
tator leptons [40]. However, the total rate of these processes
is found to be at least three orders of magnitude smaller
than the rate (17).

III. BULK VISCOSITY OF npeμ MATTER

In this section, we analyze the bulk viscosity coefficient
of neutrino-transparent npeμ matter arising from the Urca
processes (1) and (2). We consider small-amplitude density
oscillations with a frequency ω following the approach first
proposed in Ref. [28]. Separating the oscillating parts
from the static equilibrium values of particle densities, we
can write njðtÞ ¼ nj0 þ δnjðtÞ, where δnjðtÞ ∼ eiωt, where
j ¼ fn; p; e−; μ−g labels the particles.
Oscillations drive the system out of chemical equilibrium

leading to nonzero chemical imbalances μΔl
¼ δμn−

δμp − δμl, which can be written as

μΔl
¼ Anδnn − Apδnp − Alδnl; ð21Þ

where the particle susceptibilites are defined as
An ¼ Ann − Apn, Ap ¼ App − Anp, and Al ¼ All with
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Aij ¼
∂μi
∂nj

; Aj ¼
∂μj
∂nj

; ð22Þ

and the derivatives are computed in the static equilibrium
state. The off-diagonal elements Anp and Apn are nonzero
because of the cross-species strong interaction between
neutrons and protons. The computation of particle suscep-
tibilities Ai is performed in Appendix B.
If the weak processes were switched off, then the number

of all particle species would conserve separately, which
implies

∂

∂t
δn0jðtÞ þ θnj0 ¼ 0 ⇒ δn0jðtÞ ¼ −

θ

iω
nj0; ð23Þ

where θ ¼ ∂ivi is the fluid velocity divergence. Once the
weak reactions (1), (2), and (3) are switched on, there is a
net production of particles that should be included in the
balance equations. To linear order in chemical imbalances,
these equations read

∂

∂t
δnnðtÞ ¼ −θnn0 − λeμΔe

ðtÞ − λμμΔμ
ðtÞ; ð24Þ

∂

∂t
δnpðtÞ ¼ −θnp0 þ λeμΔe

ðtÞ þ λμμΔμ
ðtÞ; ð25Þ

∂

∂t
δneðtÞ ¼ −θne0 þ λeμΔe

ðtÞ þ λLμ
L
ΔðtÞ; ð26Þ

∂

∂t
δnμðtÞ ¼ −θnμ0 þ λμμΔμ

ðtÞ − λLμ
L
ΔðtÞ; ð27Þ

where λl are defined in (13) and λL is defined analogously
to λl, i.e.,

λL ¼ ∂Γμ→eνν̄

∂μΔL

����
μLΔ¼0

: ð28Þ

To proceed further, we need to specify how the muon
decay reaction (3) affects the bulk viscosity from the Urca
processes (1) and (2). As we show below, we deal typically
with one of these two limiting cases:

ðaÞ slow lepton equilibration∶ λL ≪ λe; λμ

ðbÞ slow muon equilibration ∶ λL; λμ ≪ λe: ð29Þ

In the case (a), the muon decay rate is much slower than the
Urca process rates, i.e., λL ≪ λe; λμ. In the case (b), the
processes involving muons (i.e., muon decay and muonic
Urca reactions) are much slower than electron Urca process
rates λL; λμ ≪ λe. In this limiting case, muons can be
simply neglected, and the bulk viscosity arises only from
electronic Urca reactions. Below, we derive the bulk

viscosity in terms of equilibration rates and particle
susceptibilities for case (a).

A. Bulk viscosity in slow lepton-equilibration limit

In this limit, muon decay is too slow to contribute, so we
drop the terms proportional to λL when substituting
Eq. (21) in Eqs. (24) and (26). We obtain

iωδnn ¼ −nn0θ − ðλe þ λμÞAnδnn þ ðλe þ λμÞApδnp

þ λeAeδne þ λμAμδnμ; ð30Þ

iωδne ¼ −ne0θ þ λeAnδnn − λeApδnp − λeAeδne: ð31Þ

We close the system exploiting the relations
δnp þ δnn ¼ δnB, δne þ δnμ ¼ δnp, which lead us to
(λ≡ λe þ λμ)

δne ¼
−ne0θ þ λeðAn þ ApÞδnn − λeApδnB

iωþ λeðAe þ AνeÞ
; ð32Þ

iωδnn ¼ −nn0θ − ðλAn þ λAp þ λμAμÞδnn
þ ðλeAe − λμAμÞδne þ ðλAp þ λμAμÞδnB: ð33Þ

Solving the coupled Eqs. (32) and (33) we find

Dδnn ¼ −
θ

iω

n
iω
h
nn0ðiωþ λeAeÞ þ ne0ðλeAe − λμAμÞ

i

þ nB0
h
iωðλAp þ λμAμÞ

þ λeλμðApAe þ ApAμ þ AeAμÞ
io

; ð34Þ

Dδne¼−
θ

iω

n
iωne0

h
iωþλμA2þλeðAnþApÞ

i

þ iωnn0λeðAnþApÞ
−λenB0

h
ApðiωþλμA2Þ−λμðAnþApÞðApþAμÞ

io
;

ð35Þ

where we used the baryon conservation δnB ¼ −nB0ðθ=iωÞ
and defined

D ¼ ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2; ð36Þ

and

A1 ¼ An þ Ap þ Ae; ð37Þ

A2 ¼ An þ Ap þ Aμ: ð38Þ

To find the bulk viscosity, we still need to separate
the instantaneous equilibrium parts of particle densities
from Eqs. (34) and (35). As discussed in Ref. [35], the
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equilibrium shifts δneqj are the solutions of the balance
equations (24) and (26) in the case if the Urca processes are
infinitely fast such that the β-equilibrium is restored
instantly. This implies that δneqj can be obtained by letting
λe;μ → ∞ in Eqs. (34) and (35). However, as we argued in
Ref. [35], one can use the opposite limit λe;μ → 0 with

quasiequilibrium solutions given by Eq. (23) δn0j ¼
−θnj0=iω instead of δneqj as both choices lead to the same
result for the bulk viscosity. Subtracting the local quasie-
quilibrium parts δn0j from Eqs. (34) and (35), we find the
relevant nonequilibrium parts δn0j ¼ δnj − δn0j ,

δn0n ¼
θ

iω

iωðλeC1 þ λμC2Þ þ λeλμ
�
C2ðAe þ AνeÞ þ C1ðAμ þ AνμÞ

�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

; ð39Þ

δn0e ¼ −
θ

iω

iωλeC1 þ λeλμ
�
A2C1 − ðAn þ ApÞC2

�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

:

ð40Þ

Then, the nonequilibrium part of the pressure, referred to as
bulk viscous pressure, will be given by

Π ¼
X
j

cjδn0j; ð41Þ

with

cj ≡ ∂p
∂nj

¼
X
i

ni0
∂μi
∂nj

¼
X
i

ni0Aij: ð42Þ

Here, we used the definitions (22) and the Gibbs-Duhem
relation dp ¼ nBsdT þP

i nidμi ≈
P

i nidμi (the term
with dT is small in the parameter range considered here),
where s is the entropy per baryon. The bulk viscous
pressure then reads

Π ¼ ðcn − cp − cμÞδn0n þ ðce − cμÞδn0e ¼ C2δn0n þ ðC2 − C1Þδn0e

¼ θ

iω

iωðλeC2
1 þ λμC2

2Þ þ λeλμ
�
A1C2

2 þ A2C2
1 − 2ðAn þ ApÞC1C2

�
ðiωþ λeA1Þðiωþ λμA2Þ − λeλμðAn þ ApÞ2

; ð43Þ

where we defined

cn − cp − ce ¼ nn0An − np0Ap − ne0Ae ≡ C1; ð44Þ
cn − cp − cμ ¼ nn0An − np0Ap − nμ0Aμ ≡ C2: ð45Þ

Extracting the real part of Eq. (43) and recalling the
definition of the bulk viscosity ReΠ ¼ −ζθ, we find

ζðωÞ ¼ n1 þ n2ω2

ðd1 − ω2Þ2 þ d2ω2
; ð46Þ

where we defined

n1 ¼ λeλμ
h
λe½ðAn þ ApÞC1 − A1C2�2

þ λμ½ðAn þ ApÞC2 − A2C1�2
i
; ð47Þ

n2 ¼ λeC2
1 þ λμC2

2; ð48Þ

d1 ¼ λeλμ
�
A1A2 − ðAn þ ApÞ2

�
; ð49Þ

d2 ¼ðλeA1 þ λμA2Þ2: ð50Þ

The slow muon-equilibration limit can be obtained by
dropping the terms ∝ λμ in Eq. (46),

ζe ¼
C2
1

A1

γe
ω2 þ γ2e

; ð51Þ

with γe ¼ λeA1, which coincides with the result of our
previous work [30].
In the limit of high frequencies ω ≫ λA, we find from

Eq. (46)

ζ ¼ λeC2
1 þ λμC2

2

ω2
¼ ζe þ ζμ; ð52Þ

where ζe and ζμ are the contributions by electrons and
muons, respectively.

IV. NUMERICAL RESULTS

The numerical evaluation of equilibration rates (7), (8),
and (17) is performed within the framework of covariant
density functional approach to the nuclear matter. The
Lagrangian density reads
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L ¼
X
N

ψ̄N

�
γμ
�
i∂μ − gωωμ −

1

2
gρτ · ρμ

�
−m�

N

	
ψN þ

X
l

ψ̄ lðiγμ∂μ −mlÞψ l;

þ 1

2
∂
μσ∂μσ −

1

2
m2

σσ
2 −UðσÞ − 1

4
ωμνωμν þ

1

2
m2

ωω
μωμ −

1

4
ρμνρμν þ

1

2
m2

ρρμ · ρμ; ð53Þ

where N sums over nucleons, ψN are the nucleonic Dirac
fields, and m�

N ¼ mN − gσσ are the nucleon effective
masses, with mN being the nucleon mass in the vacuum.
Next, σ, ωμ, and ρμ are the scalar-isoscalar, vector-isoscalar,
and vector-isovector meson fields, respectively; ωμν ¼
∂μων − ∂νωμ and ρμν ¼ ∂μρν − ∂νρμ are the field strength
tensors of vector mesons; mi are the meson masses, gi are
the baryon-meson couplings with i ¼ σ, ω, ρ, and UðσÞ is
the self-interaction of scalar meson field. Next, ψ l are the
leptonic free Dirac fields with massesmλ where l ¼ fe; μg.
We adopt two different parametrizations of Lagrangian (53),
specifically, the model DDME2 [41] with density-
dependent nucleon-meson couplings and with UðσÞ ¼ 0,
and the model NL3 [42], which has density-independent
nucleon-meson couplings but contains self-interaction
terms of σ-meson fields given byUðσÞ ¼ g2σ3=3þ g3σ4=4.
The spectrum of nucleonic excitations derived from

Eq. (53) in the mean-field approximation is given by [43]

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

N

q
þ gωω0 þ I3Ngρρ03 þ Σr; ð54Þ

where I3N is the third component of the nucleon isospin and
Σr is the so-called rearrangement self-energy [44], which is
introduced to maintain the thermodynamic consistency in
the case where the nucleon-meson couplings are density
dependent.
Introducing the nucleon effective chemical potentials

as μ�N ¼ μN − gωω0 − I3Ngρρ03 − Σr, one can write the

argument of nucleon Fermi-functions as Ek − μN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

N

p
− μ�N , which formally coincides with the spec-

trum of free nucleons with effective masses and effective
chemical potentials.
The composition of β-equilibrated matter at the given

baryon density nB and temperature should be determined
by imposing the β-equilibrium conditions, the charge
neutrality condition np ¼ ne þ nμ, and the baryon number
conservation nB ¼ nn þ np. As discussed above, we adopt
for the unperturbed background β-equilibrium conditions
μΔl

¼ μn − μp − μl ¼ 0, with l ¼ fe; μg, which are valid in
the low-temperature limit.
Particle fractions in β-equilibrated npeμ matter for the

two parametrizations are shown in Fig. 1. The main
difference between these two models is the larger proton
and lepton fractions in the NL3 model. As a result,
NL3 has direct electronic Urca threshold at nB ≃ 1.3n0
and muonic Urca threshold at nB ≃ 1.6n0, see Fig. 2,
with n0 being the nuclear saturation density which has
the values n0 ¼ 0.152 fm−3 for model DDME2 and
n0 ¼ 0.153 fm−3 for model NL3. The model DDME2
instead does not reach the direct Urca thresholds up to
baryon density nB ¼ 5n0. In contrast to the case of
neutrino-trapped matter [32], in the neutrino-transparent
matter, muons appear only above a certain baryon density
nB ≳ n0, where the condition μe ≥ mμ ≃ 106 MeV is
satisfied.

FIG. 1. Particle fractions in finite-temperature β-equilibrated matter as functions of the baryon density nB (in units of nuclear
saturation density n0) for models DDME2 (a) and NL3 (b) at fixed temperature T ¼ 5 MeV.

BULK VISCOSITY FROM URCA PROCESSES: npeμ MATTER IN … PHYS. REV. D 108, 083019 (2023)

083019-7



A. Beta-equilibration rates

1. Urca process rates

The direct Urca neutron-to-electron decay and electron-
capture rates are shown in Figs. 3 and 4 as functions of the
temperature for models DDME2 and NL3, respectively.
The modified Urca contribution is discussed at the end
of Sec. IV B.

In the DDME2 model, the densities we study are
all below the direct Urca threshold, so direct Urca
rates are Boltzmann suppressed at low temperatures. We
see this in the rapid dropping off of both the neutron decay
and electron capture rates as T decreases. In fact, for
densities 3n0 and 5n0, the suppression of the neutron
decay rate is so strong that those curves are not visible on
the plot.
Comparing panels (a) and (b) of Fig. 3, we see that the

electron capture rate, although Boltzmann suppressed, is
much faster than the neutron decay rate, and much less
dependent on density. At saturation density, it is about three
orders of magnitude faster than neutron decay and remains
about the same as the density increases. Similar behavior
of the neutron decay rate was also found and discussed
in Ref. [45].
Figure 3 shows in addition the neutron decay and

electron capture rates computed in Ref. [30] in the
approximation of nonrelativistic nucleons. We see that
the electron capture rates for nonrelativistic nucleons are
smaller than the relativistic ones, the difference being as
large as an order of magnitude at nB ¼ 5n0. The non-
relativistic treatment of the neutron decay process, instead,
strongly overestimates the rates above the saturation
density, as the relativistic rates are strongly damped in
this regime, as already mentioned above.
Turning to the NL3 model, we see that at density

nB ¼ n0, which is below the direct Urca threshold, both
neutron decay and electron capture rates show the expected
Boltzmann suppression at low T, but the rates for NL3 are
significantly faster than for DDME2. At higher densities,
the direct Urca channel is open for NL3 where the neutron
decay and the electron capture are almost equal and closely
follow their low-temperature scaling Γn→peν̄¼Γpe→nν ∝T5

FIG. 3. The rates for (a) neutron decay to an electron and (b) electron capture direct Urca processes as functions of the temperature for
various densities for the DDME2 model. The dotted lines show the Urca process rates computed in Ref. [30] within the approximation of
nonrelativistic nucleons.

FIG. 2. The sum pFn − pFp − pFl, l ¼ fe; μg, in zero-
temperature npeμ matter for DDME2 and NL3 models. At
T ¼ 0, the direct Urca process is only allowed in the regions
where pFn − pFp − pFl ≤ 0. Thus, for DDME2, the direct Urca
processes on electrons and muons are Boltzmann suppressed at
all the densities plotted, whereas for NL3, the threshold density
for electronic and muonic Urca processes are ≈1.3n0 and ≈1.6n0,
respectively. Above these, the direct Urca processes are unsup-
pressed at low temperatures.
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given by Eq. (12). The discrepancy between the relativistic
and nonrelativistic calculations is within an order of
magnitude also in this case. Note that the Urca process
rates increase with the density in the case of NL3 model,
but are nonmonotonic in the case of DDME2.
The rates of muonic direct Urca processes are shown in

Fig. 5. Panel (a) shows the results for muon capture for the
model DDME2. The general behavior of the muon capture
rates is similar to electron capture rates; however, quanti-
tatively, the muon capture rate is much smaller at low
temperatures and becomes comparable to the electron
capture above T ≥ 5 MeV. The neutron-to-muon decay

is strongly suppressed in the whole density range for the
DDME2 model.
The muon capture rates for the NL3 model are shown in

Fig. 5 (b). As in the case of DDME2, the muon capture rate
is much slower than the electron capture rate at low
temperatures T ≤ 5 MeV below the direct Urca threshold,
i.e., at nB ¼ n0, whereas the electron and muon capture
rates are almost equal above the threshold at all temper-
atures. We see also that the neutron-to-muon decay rate is
nonvanishing only above the threshold where it is close to
the muon capture rate. The difference between these rates
increases with the temperature.

FIG. 5. The muonic direct Urca processes rates for the DDME2 model (a) and the NL3 model (b). The neutron-to-muon decay is
allowed only for the NL3 model above the direct Urca threshold (dotted lines).

FIG. 4. The rates for (a) neutron-to-electron decay and (b) electron capture direct Urca processes as functions of the temperature for
various densities for the NL3 model. The dotted lines show the Urca process rates computed in Ref. [30] within the approximation of
nonrelativistic nucleons.
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2. Muon decay rate

Figure 6 shows the muon decay rates given by Eq. (17).
Muon decay is Boltzmann suppressed at low temperatures
because, like neutron decay in the DDME2 model, at all
densities, it is Pauli blocked for particles on their Fermi
surfaces. A muon on its Fermi surface has just enough
energy but insufficient momentum to create a final state
electron on its Fermi surface, so it lacks the extra energy to
create neutrinos to help with momentum conservation.
To decide whether we are in the slow lepton equilibration

limit or the slow muon equilibration limit (29), we compare
the muonic Urca rate to the electronic Urca and muon decay
rates. The electron capture rates are always found to exceed
the muon decay rates at least by an order of magnitude.
In Fig. 6, where the Urca muon capture rates are shown
by dotted lines, we see that the Urca muon capture rate is
comparable to the muon decay rate only in the low-
temperature domain T ≲ 2 MeV in the case of DDME2
model, indicating that the matter is in the slow-muon-
equilibration regime, where the muonic component can be
simply neglected when computing the bulk viscosity, as
discussed in Sec. III. At higher temperatures T ≥ 3 MeV,
the system is in the limit of slow lepton equilibration
Γpe→nν ≥ Γpμ→nν ≫ Γμ→eν̄ν. (Note that, if one includes the
modified Urca processes, then the muon decay rate will be
always smaller than the sum of the direct and modified
Urca rates.)
In the case of NL3 model, the lepton capture rates are

always larger than the muon decay rates; they differ at least
by an order of magnitude below the direct Urca threshold
and at least three orders of magnitude above the threshold.
Thus, the bulk viscosity of npeμ matter for the NL3 model
should be computed under the slow-lepton-equilibration
assumption in the whole temperature-density range of
interest.

B. Bulk viscosities

1. Bulk viscosity of relativistic npe matter

In this subsection, we will assume that muons are absent
and discuss the bulk viscosity of relativistic npe matter
given by Eq. (51). This improves on our previous treat-
ments in Refs. [29,30] where we used nonrelativistic
dispersion relations for nucleons in computing the rates
of processes (but not in computing the background nuclear
equilibrium) and on Ref. [33] by showing the results for the
NL3 density functional. For parallel developments which
also used relativistic dispersion relations for nucleons with
alternative background nuclear models, see Ref. [34].
The coefficients λl, defined by Eqs. (13), were computed

by taking numerical derivatives of off-equilibrium Urca
process rates. At densities nB ≥ n0, we find approximately
λl ≃ cΓpl→nν=T, where the number c varies in the range
0.3 ≤ c ≤ 2 [in the low-temperature limit c ≃ 1.34, see
Eqs. (A10) and (A14)].
The susceptibilityA1 given by Eq. (37) is insensitive both

to the temperature and the density; therefore, the relaxation
rate γe ¼ λeA1 scales as γe ∝ Γpe→nν=T (see Fig. 7). The
relaxation rate γe crosses the line of the constant angular
frequency ω ¼ 2π × 1 kHz ¼ 4.14 × 10−18 MeV at tem-
peratures 3 ÷ 4 MeV if the density is below the direct Urca
threshold and around T ¼ 2 MeV for densities above the
threshold, where γe ∝ T4. Consequently, the bulk viscosity
attains its maximum at the temperature defined by the
crossing. Compared to the nonrelativistic treatment, the full
relativistic calculation predicts the point of the maximum of
the bulk viscosity at lower temperatures, because it predicts
faster equilibration rates.
Figure 8 shows the combination of (isothermal) suscep-

tibilities C2
1=A1 relevant to the bulk viscosity [which in npe

matter takes the form of Eq. (51)] at two fixed temperatures

FIG. 6. The muon decay rates as functions of the temperature for different densities for (a) the DDME2 model and (b) the NL3 model.
The muon capture (pþ μ− → nþ νμ) rates are shown by the dotted lines for comparison.
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T ¼ 1 MeV and T ¼ 10 MeV [panels (a) and (b), respec-
tively]. In full relativistic calculation, C2

1=A1 is almost
density independent above nB ¼ 2n0 in contrast to its
nonrelativistic counterpart which monotonically increases
and strongly overestimates the bulk viscosity already at
density nB ¼ 2n0. The temperature dependence of iso-
thermal susceptibility C2

1=A1 is very weak in the range
1 ≤ T ≤ 10 MeV almost at all densities. The only excep-
tion is the density range below the nuclear saturation

density. The green triangles in panel (a) show the results
of Ref. [29] for the DD2 model at T ¼ 1 MeV which
were obtained by direct numerical differentiation of chemi-
cal imbalance μΔ. [Note that Refs. [29,30] define the
susceptibilities A1 and C1 via alternative expressions
A1 ¼ −n−1B ð∂μΔ=∂YpÞnB , C1 ¼ nBð∂μΔ=∂nBÞYp

]. It is seen
that the results of our analytic expressions for relativistic
susceptibilities agree quite well with the results of
Ref. [29].

FIG. 8. The susceptibility C2
1=A1 of npe matter as a function of the baryon density for the DDME2 and NL3 models and fixed

temperature (a) T ¼ 1 MeV and (b) T ¼ 10 MeV. The solid lines show the isothermal susceptibilities of relativistic matter, and the
dotted lines show the isothermal susceptibilities computed in Ref. [30] within the approximation of nonrelativistic nucleons. The green
triangles in panel (a) show the result of Ref. [29] for adiabatic susceptibility for the model DD2 at T ¼ 1 MeV. The dashed lines in panel
(b) show the adiabatic susceptibilities at T ¼ 10 MeV as computed in Appendix B 2. At T ¼ 1 MeV [panel (a)], the difference between
the isothermal and adiabatic susceptibilities is very small and is invisible in the plot.

FIG. 7. The β-relaxation rate γe as a function of the temperature for fixed values of the density for (a) the DDME2 model and (b) the
NL3 model. The dotted lines show the relaxation rates computed in Ref. [30] within the approximation of nonrelativistic nucleons. The
horizontal lines show where γe ¼ 2πf for selected values of oscillation frequency f ¼ 1 kHz (solid lines) and f ¼
10 kHz (dashed lines).
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For the sake of completeness, we compute also the
adiabatic susceptibilities in addition to the isothermal ones.
The dashed lines in panel (b) show the adiabatic suscep-
tibilities as computed in Appendix B 2. (Note that, at low
temperatures T ≃ 1 MeV, the difference between the iso-
thermal and adiabatic susceptibilities is very small and so is
not visible on the left panel of the plot). We see that
at high temperatures the adiabaticity enhances the suscep-
tibility C2

1=A1 by a factor of a few at low densities
nB ≤ 2n0. Comparing the two panels of Fig. 8, we see
also that the adiabatic susceptibilities are practically

temperature independent in the whole range of densities
0.5n0 ≤ nB ≤ 5n0.
Figures 9 and 10 show the temperature dependence of

the bulk viscosity of npe matter for DDME2 and NL3
models, respectively, computed according to Eq. (51). The
results for the bulk viscosity in the isothermal case are
shown for two frequencies f ¼ 1 kHz and f ¼ 10 kHz
which bracket the typical range of frequencies of density
oscillations in BNS mergers. As discussed above, for any
given frequency, ζe has a maximum at the temperature
where ω ¼ γeðTmaxÞ, and Tmax increases with the

FIG. 9. Each panel shows the bulk viscosity of relativistic npe matter as a function of temperature for three values of baryon density
for DDME2 model. The left panel is for oscillations of frequency f ¼ 1 kHz; the right panel is for f ¼ 10 kHz. The dotted lines show
the results of Ref. [30] obtained within the approximation of nonrelativistic nucleons.

FIG. 10. The bulk viscosity of relativistic npematter as a function of temperature for three values of baryon density for the NL3 model
at (a) f ¼ 1 kHz and (b) f ¼ 10 kHz. The dotted lines show the results of Ref. [30] obtained within the approximation of nonrelativistic
nucleons.
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frequency. The maximum value of the bulk viscosity
for the given density decreases with the frequency as
ζe max ¼ C2

1=ðA1ωÞ. At temperatures below the resonant
maximum, chemical equilibration is slower than density
oscillations, i.e., γe ≪ ω, and the bulk viscosity drops
rapidly as frequency rises ζe ∝ ω−2. At temperatures above
the resonant maximum, chemical equilibration is faster
than the oscillations, and we have ζe ¼ C2

1=ðA1γeÞ, which
is independent of the frequency.
In the case of the DDME2 model, in which direct Urca

processes are kinematically forbidden at low temperatures
(i.e., the relevant densities are always below the threshold
density), the maximum of the bulk viscosity moves to a
higher temperature as density increases from n0 to 3n0.
This is consistent with Fig. 7, where we see that for
DDME2 γe drops as density rises from n0 to 3n0 at fixed T.
In general, one expects Urca rates to increase with density
(as seen for NL3), but this can be offset by other factors
such as changes in the dispersion relations that affect the
density of states at the Fermi surface. We already know
from Fig. 3 that for DDME2 the Urca rates drop slightly
with increasing density at T ≳ 3 MeV.
The NL3 model, in which particles near the Fermi

surfaces can undergo direct Urca, shows the opposite
behavior: the maximum is shifted to lower temperatures
once the direct Urca threshold is achieved. This is expected
since the rates rise with density because of increasing phase
space at the Fermi surfaces, so γ ¼ 1 kHz is achieved at
lower temperatures. Comparing these results with the ones
obtained within the nonrelativistic approximation for
nucleons, we observe two characteristic features: (i) the
maximum is shifted to lower temperatures in the relativistic
calculation, the shift being larger above the direct Urca
threshold, and (ii) the approximation of nonrelativistic
nucleons overestimates the bulk viscosity by orders of

magnitude for DDME2 models and by an order of
magnitude for the NL3 model.
Note that, according to the susceptibilities shown in

Fig. 8, the bulk viscosities computed in the adiabatic and
isothermal cases will differ appreciably only below the
saturation density.

2. Bulk viscosity of relativistic npeμ matter

The bulk viscosity of relativistic npeμ matter computed
in the slow-lepton equilibration limit (46) is shown in
Figs. 11 and 12, for models DDME2 and NL3, respectively.
The bulk viscosity of npe matter ζe is shown for com-
parison by dotted lines. The qualitative behavior of ζ is
similar to that of ζe.
In the following, we first focus on the DDME2

density functional model (which does not reach the low-
temperature Urca threshold at any density) and discuss
first the low-temperature regime, which is followed
by a discussion of the high-temperature regime. At low
temperatures, where λiAj ≪ ω, we have n1=n2; d1;
d2 ∼ λiAj ≪ ω2, and the bulk viscosity is given by
ζ ≃ n2=ω2 ¼ ðλeC2

1 þ λμC2
2Þ=ω2 ¼ ζe þ ζμ [46]. In this

regime, ζμ is much smaller than ζe; therefore, the bulk
viscosity of npeμ matter practically coincides with that of
npe matter. As shown above, in the case of the DDME2
model, the muons should be neglected in the evaluation of
the bulk viscosity in the low-temperature sector, where all
muonic processes are suppressed compared to the elec-
tronic Urca processes. However, because ζμ ≪ ζe in this
regime, the muonic contribution automatically drops; there-
fore, the bulk viscosity of npeμ matter in the whole regime
can be computed from Eq. (46).
At high temperatures, where equilibration is fast com-

pared to the oscillation frequency, λiAj ≫ ω, we approach

FIG. 11. The bulk viscosity of relativistic npeμ matter as a function of temperature for three values of baryon density for the DDME2
model at (a) f ¼ 1 kHz and (b) f ¼ 10 kHz. The dotted lines show the bulk viscosities of relativistic npe matter.
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the low-frequency limit where the bulk viscosity becomes
frequency independent and is equal to ζ ¼ n1=d21 ∼ 1=λi
which decreases with the temperature. In this regime, the
bulk viscosity of npeμ matter exceeds the bulk viscosity of
npe matter by factors between 2.5 and 8 for the model
DDME2. At intermediate temperatures, where λiAj ≈ T,
the bulk viscosity obtains a maximum. However, as the
quantities n1=n2, d1, and d2 reach their maxima at slightly
different temperatures, see Fig. 13, there is a broadened

maximum or a “flattened” structure in the temperature
dependence of ζ, which is clearly pronounced at density
nB ¼ n0; see the left panels of Figs. 11 and 12. The
maximum of the bulk viscosity of npeμmatter is located at
a slightly higher temperature as compared to the bulk
viscosity of npe matter.
In the case of NL3 model, the effect of the inclusion of

muons on the bulk viscosity below the direct Urca thresh-
old is the same as in the case of DDME2 model: muons

FIG. 12. The bulk viscosity of relativistic npeμ matter as a function of temperature for three values of baryon density for the NL3
model at (a) f ¼ 1 kHz and (b) f ¼ 10 kHz. The dotted lines show the bulk viscosities of relativistic npe matter.

FIG. 13. The quantities n1=n2, d1, and d2 entering in the expression of the bulk viscosity (46) as functions of the temperature for fixed
values of density for the DDME2 model (left panels) and the NL3 model (right panels). The horizontal lines correspond to the squares of
the oscillation frequencies fixed at f ¼ 1 kHz (solid lines) and f ¼ 10 kHz (dashed lines).
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enhance ζ by up to a factor of 3 at temperatures above the
maximum, whereas they almost do not affect the bulk
viscosity below the maximum. At densities nB ¼ 3n0 and
nB ¼ 5n0, which are above the threshold, the electronic and
muonic Urca rates are almost equal, see Figs. 4 and 5,
resulting in almost equal contributions of electrons and
muons to the bulk viscosity. Thus, to the left side of the
maximum, where the bulk viscosity is proportional to the
reaction rates, see Eq. (52), we have ζ ≃ ζe þ ζμ ≃ 2ζe. At
higher temperatures, the total bulk viscosity is slightly
smaller than that of npe matter. Note also that above the
direct Urca threshold the inclusion of muons moves the
location of the resonant maximum to smaller temperatures,
whereas below the threshold, the location of the maximum
remains nearly unchanged.
For the sake of completeness, we also investigate how

the modified Urca processes N þ n → N þ pþ l− þ ν̄l
and N þ pþ l− → N þ nþ νl, N ∈ n; p, affect the bulk
viscosity (Fig. 15). For that purpose, we use the low-
temperature modified Urca rates from Ref. [29]. Note that
there is no threshold for these processes.
The modified Urca rates for electronic processes for

two models are shown in Fig. 14. Note that the low-
temperature modified Urca rates are equal for neutron
decay and electron capture processes when μn ¼ μp þ μe.
The rates of the muonic-modified Urca processes are very
close to these and are not shown. The dotted lines show
the rates of the direct Urca electron capture rates for
comparison. Because the direct Urca neutron decay is
strongly damped at densities below the direct Urca
threshold, its rate is much smaller than that of the summed
modified Urca rate at those densities. Below the direct
Urca threshold and at moderate temperatures T ≥ 3 MeV,
the direct Urca lepton capture rates exceed the modified

Urca rates by at least an order of magnitude. The modified
Urca process rates become comparable to the direct Urca
electron capture rates at T ≃ 1.5 MeV and the direct Urca
muon capture rates at T ≃ 3 MeV for the model DDME2.
Above the direct Urca threshold which is realized only in
the case of NL3 model at densities nB ≥ 1.5n0, both direct
Urca rates are higher than the modified Urca rates by at
least an order of magnitude. In the case of the NL3 model,
the direct Urca electron capture rate is always at least two
orders of magnitude larger than that of the modified Urca,
whereas the direct muon capture rate becomes smaller
than the modified process rate at T ≤ 2 MeV below the
threshold, e.g., at nB ¼ n0. When the modified Urca
processes are included, the summed Urca process rates
are always much higher than the muon decay rates. Thus,
the bulk viscosity of npeμ matter can be computed
according to the slow-lepton-equilibration limit in the
whole temperature-density range of interest. Figure 15
shows the bulk viscosity of the npeμ matter with the
inclusion of modified Urca processes for the model
DDME2. The bulk viscosity computed only with the
direct Urca is shown for comparison with the dotted lines.
We see that the inclusion of modified Urca processes
becomes important at densities below the direct Urca
threshold in the low-temperature regime T ≤ 3 MeV. For
NL3 model, the modified Urca processes do not have any
significant impact on the bulk viscosity. Also, note that the
modified Urca processes do not change the location of the
maximum bulk viscosity.

C. Damping of density oscillations

Now, we estimate the bulk viscous damping timescale in
relativistic npeμmatter. The damping timescale is the decay
time for a density oscillation and is given by [22,29,35]

FIG. 14. The rates of modified Urca process involving electrons at two fixed densities and for the (a) DDME2 and (b) NL3 model. The
direct Urca electron capture rates are shown by the dotted lines for comparison.
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τζ ¼
1

9

KnB
ω2ζ

; ð55Þ

where the incompressibility of nuclear matter is

K ¼ 9nB
∂
2ϵ

∂n2B
; ð56Þ

and ϵ is the energy density. The incompressibility is plotted
in Fig. 16. It is not sensitive to the temperature in the range
1 ≤ T ≤ 10 MeV; therefore, the damping timescale shows
temperature dependence inverse to that of the bulk viscosity
and attains its minimum value at the temperature where the

bulk viscosity has a maximum (see Figs. 17 and 18). The
damping timescale is frequency independent in the low-
temperature regime but is inversely proportional to ω2 in
the high-temperature regime above the minimum. For the
minimal value, we have τζ ∝ 1=ω.
As seen from Eq. (55), the dependence of τζ on the

density arises from three factors: nuclear incompressibility,
the baryon density, and the inverse bulk viscosity. Here, we
will use the bulk viscosities (plotted in Fig. 15 for the
model DDME2) which include both direct and modified
Urca processes. We see that the density dependence of the
maximum bulk viscosity roughly follows ζ ∝ nB; therefore,
the density dependence of minimal τζ just follows that of
nuclear incompressibility. Thus, the damping timescales
are smaller, and, therefore, the bulk viscous dissipation is
more efficient at lower densities. This result is in contrast
to our previous nonrelativistic treatment [35], where the
damping timescale showed a decreasing behavior with the
density as a result of the overestimation of the bulk
viscosity at high densities.
The shaded regions in Figs. 17 and 18 show where the

damping timescale becomes smaller than the short-
term (≃10 ms, dark shaded areas) and long-term (≃1 s,
lightly shaded areas) evolution timescales of a BNS
merger remnant object. For a typical oscillation frequency
f ¼ 1 kHz, the model DDME2 predicts that the bulk
viscous damping would be marginally relevant in the
short term and noticeable for long-living remnants with
τζ ≥ 10 ms at any density and in the temperature range
2 ≤ T ≤ 10 MeV. The damping timescale reaches its
minimum at nB ≤ n0 and T ≃ 5 MeV, where the damping
time τζ reaches the short-term (10 ms) evolution timescale.
For higher frequencies, there is already a window of
densities and temperatures where the damping timescales

FIG. 15. The bulk viscosity of relativistic npeμ matter with the inclusion of modified Urca processes for the DDME2 model at
(a) f ¼ 1 kHz and (b) f ¼ 10 kHz. The dotted lines reproduce the bulk viscosities shown in Fig. 11, which were obtained neglected
modified Urca processes.

FIG. 16. The incompressibility of nuclear matter for
the DDME2 and NL3 models. The temperature is fixed at
T ¼ 1 MeV.
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are shorter than the short-term evolution timescale of BNS
mergers. For f ¼ 10 kHz, the short-term damping is
noticeable at densities nB ≥ 3n0 and for temperatures
between 4 ≤ T ≤ 10 MeV.
In the case of NL3 model, there is always a range of

densities and temperatures where the bulk viscous damping
time is comparable to the short-term evolution timescale.
For oscillations of frequency f ¼ 1 kHz, the relevant
parameter range is nB ≲ 2n0 and 2≲ T ≲ 5 MeV. The
high-density region above the direct Urca threshold does
not have a significant impact on the damping of density
oscillations because the Urca processes are so fast that the
system is not driven far from equilibrium. This result again

differs from those of Ref. [35]. At f ¼ 10 kHz, the
damping timescale reaches down to the ms range also at
high densities. On the long-term evolution timescale, the
damping is efficient at all densities. Correspondingly, the
range of temperatures where the bulk viscosity would play
a role is larger than in the case of the DDME2 model.
A comparison of Figs. 17 and 18 shows that the damping

timescale is a few times shorter for model NL3, although
the bulk viscosity for NL3 is larger by an order of
magnitude. This is because NL3 matter is stiffer and has
larger incompressibility, so density oscillations store more
energy, and this outweighs the larger bulk viscosity
[see Eq. (55)].

FIG. 18. The damping timescale of oscillations as a function of temperature for various densities for the NL3 model for (a) f ¼ 1 kHz
and (b) f ¼ 10 kHz. The dotted lines show the damping timescales for npe matter.

FIG. 17. The damping timescale of oscillations as a function of temperature for various densities for the DDME2 model for
(a) f ¼ 1 kHz and (b) f ¼ 10 kHz. The dotted lines show the damping timescales in npe matter.
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The damping times shown in Figs. 17 and 18 are for
isothermal oscillations. We have also performed calcula-
tions for adiabatic oscillations, and we find that at low
densities nB ≤ 2n0 and sufficiently high temperatures
T ≥ 5 MeV the adiabatic density oscillations have slightly
shorter damping timescales. The maximal difference
between adiabatic and isothermal nuclear incompressibil-
ities is about 15% for DDME2 and 7% for NL3 models at
T ¼ 10 MeV; see also Ref. [29].

V. CONCLUSIONS

We studied the Urca-process-driven bulk viscosity of
neutrino-transparent, relativistic npeμmatter in the temper-
ature range 1 ≤ T ≤ 10 MeV and density range 0.5n0 ≤
nB ≤ 5n0 which is relevant for BNS mergers. This parallels
(and complements) our recent work [32] where similar
calculations were performed for relativistic neutrino-
trapped npeμ matter. Using the analytic expressions for
the relativistic beta-equilibration rates derived in Ref. [32],
we compute numerically the direct Urca neutron decay and
lepton capture process rates with two (DDME2 and NL3)
equation of state models within the relativistic density
functional theory for nuclear matter.
Imposing the β-equilibrium conditions μn ¼ μp þ μl,

strictly valid at low temperatures, we find that in the case
of the DDME2 model, which does not allow for a low-
temperature direct Urca process (as the proton fraction
stays always below the threshold), the neutron decay rate is
strongly suppressed as compared to the lepton capture rate
in the whole temperature-density range of interest and is
completely damped at high densities. The qualitative
picture is similar in the case of NL3 model at densities
below the direct Urca threshold, whereas at higher densities
above the threshold, the neutron decay and the lepton
capture rates are almost equal. We also find that the
previous nonrelativistic approximation [30] underestimates
the relativistic electron capture rates by factors from 1 to 10
depending on the density.
In contrast to the neutrino-trapped matter, where the

beta-relaxation rates γe were always higher than the typical
frequencies of density oscillations, in the neutrino-
transparent matter, the relaxation rate resonates with the
typical frequencies 1 ≤ f ≤ 10 kHz at a temperature that
lies in the range 4 ≤ T ≤ 7 MeV for DDME2 and 2 ≤ T ≤
5 MeV for NL3, the exact value depending on the density
and oscillation frequency. As a result, the bulk viscosity
reaches a resonant maximum at that temperature. As
compared to the nonrelativistic case, the location of the
maximum is shifted to lower temperatures, the shift being
larger at densities above the direct Urca threshold. We also
find that, as noted in Ref. [32], the nonrelativistic treatment
of nucleons strongly overestimates the maximal values of

the bulk viscosity because of an overestimate of suscep-
tibilities in the nonrelativistic approximation.
Another way in which this computation adds to earlier

treatments is the proper inclusion of muonic weak-
equilibrium reactions in the bulk viscosity. As in
Ref. [32], we analyze the relative rates of electronic and
muonic Urca processes as well as the rates of pure leptonic
processes, which is the muon decay in this case. The muon
decay rates are found to be smaller than the Urca process
rates almost in the whole temperature-density range; there-
fore, the bulk viscosity of npeμ matter can be computed
neglecting the muon decay process. Thus, the bulk vis-
cosity arises from two independent equilibration channels
(i.e., electronic and muonic Urca channels), which results
in a flattened structure in the temperature dependence of
the bulk viscosity, which is in contrast to the bulk viscosity
of npe matter with a single peak at low densities. The
flattened structure is clearly seen in the left panels of
Figs. 11 and 12, the relevant bulk viscosity being shown by
solid lines corresponding to nB=n0 ¼ 1. The bulk viscosity
of npeμ matter is higher than that of npe matter by factors
from 2.5 to 8 above the maximum temperature if the
density is below the direct Urca threshold. Above the
threshold, we find ζ ≃ 2ζe below the maximum and ζ ≲ ζe
above the maximum.
Using the results of the bulk viscosity, we estimate

the bulk viscous damping times of density oscillations for
frequencies f ¼ 1 kHz and f ¼ 10 kHz. The damping
timescale has a minimum as a function of temperature
between 5 ≤ T ≤ 7 MeV (DDME2 model) and 2 ≤ T ≤
5 MeV (NL3 model) for various densities.
For a typical frequency f ¼ 1 kHz, the DDME2 model

predicts that the bulk viscous damping would be efficient
only for long-living remnants with τζ ≥ 10 ms at any
density and in the temperature range 2 ≤ T ≤ 10 MeV.
The damping timescale reaches its minimum at nB ≤ n0
and T ≃ 5 MeV, where τ ≃ 10 ms reaches the short-term
evolution timescale. For higher frequencies, there is already
a window of densities and temperatures where the damping
timescales are shorter than the short-term evolution time-
scale of mergers. For f ¼ 10 kHz, the short-term damping
is efficient at densities nB ≥ 3n0 and for temperatures
between 4 ≤ T ≤ 10 MeV.
In the case of the NL3 model, there is always a range of

densities and temperatures where the bulk viscous damping
is efficient within the short-term evolution timescale. At
f ¼ 1 kHz, the relevant parameter range is nB ≤ 2n0 and
2 ≤ T ≤ 5 MeV. The high-density region above the direct
Urca threshold does not have a significant impact on the
damping of density oscillations (in contrast to findings of
Ref. [35]). At f ¼ 10 kHz, the damping timescale reaches
down to the ms range also at high densities. On the long-
term evolution timescale, the damping is efficient at all
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densities. Correspondingly, the range of temperatures
where the bulk viscosity would play a role is larger.
Our results for the bulk viscosity are most useful for

estimating the damping of small-amplitude postmerger
oscillations; see, e.g., Ref. [35]. These results show the
likely importance of bulk viscous damping arising from
beta equilibration via weak interactions and provide moti-
vation for this physics to be included in simulations.
Merger simulation groups are already exploring different
approaches to the inclusion of beta equilibration, for
example, using the framework of the second-order
Israel-Stewart relativistic hydrodynamics [25,26]; its rela-
tion to the one defined within the approach of Ref. [28] and
used here is discussed in Ref. [47]. Another possibility is to
use an equation of state that includes the dependence on the
particle fractions and evolve those quantities, using the
relevant reaction rates, in the simulation [24].
It should be noted that complete second-order multifluid

formulations of relativistic hydrodynamics will contain
additional transport coefficients describing the relaxation
of dissipative fluxes, in particular, the bulk-viscous flux; for
review and references, see Ref. [48].
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APPENDIX A: LOW-TEMPERATURE LIMIT
OF URCA PROCESS RATES

Here, we present the details of the calculation of β-
equilibration rates given by Eqs. (4) and (5). Writing the
energy conservation in the form δðk0 þ p0 � k00 − p0

0Þ ¼
δðϵl þ ϵp − ϵn � ϵν̄l=νl − μΔl

Þ, where ϵi are the energies of
the particles computed from their (effective) chemical

potentials (e.g., ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

p

q
− μ�p), and substituting

Eq. (6) into Eqs. (4) and (5), we obtain
[G ¼ GF cos θcð1þ gAÞ]

Γn→plν̄ðμΔl
Þ ¼ 2G2

Z
d4q

Z
d3p

ð2πÞ3p0

Z
d3p0

ð2πÞ3p0
0

Z
d3k

ð2πÞ3k0

Z
d3k0

ð2πÞ3k00
ðk · pÞðk0 · p0Þ

× f̄ðkÞf̄ðpÞf̄ðk0Þfðp0Þð2πÞ4δð4Þðkþ p − qÞδð4Þðk0 − p0 þ qÞ ¼ 2G2

Z
d4qI1ðqÞI2ðqÞ; ðA1Þ

Γpl→nνðμΔl
Þ ¼ 2G2

Z
d4q

Z
d3p

ð2πÞ3p0

Z
d3p0

ð2πÞ3p0
0

Z
d3k

ð2πÞ3k0

Z
d3k0

ð2πÞ3k00
ðk · pÞðk0 · p0Þ

× fðkÞfðpÞf̄ðk0Þf̄ðp0Þð2πÞ4δð4Þðkþ p − qÞδð4Þð−k0 − p0 þ qÞ ¼ 2G2

Z
d4qĪ1ðqÞĪ3ðqÞ; ðA2Þ

where

I1ðqÞ ¼
Z

d3p
ð2πÞ3p0

Z
d3k

ð2πÞ3k0
f̄ðkÞf̄ðpÞðk · pÞð2πÞ4δð4Þðkþ p − qÞ; ðA3Þ

I2ðqÞ ¼
Z

d3p0

ð2πÞ3p0
0

Z
d3k0

ð2πÞ3k00
f̄ðk0Þfðp0Þðk0 · p0Þδð4Þðk0 − p0 þ qÞ; ðA4Þ

Ī3ðqÞ ¼
Z

d3p0

ð2πÞ3p0
0

Z
d3k0

ð2πÞ3k00
f̄ðk0Þf̄ðp0Þðk0 · p0Þδð4Þð−k0 − p0 þ qÞ; ðA5Þ

and Ī1 is obtained from I1 by replacing f̄ðkÞf̄ðpÞ → fðkÞfðpÞ. Here, δð4Þðkþ p − qÞ ¼ δðkþ p − qÞδðϵk þ ϵp − ω − μΔl
Þ,

and δð4Þð�k0 − p0 þ qÞ ¼ δð�k0 − p0 þ qÞδð�ϵk0 − ϵp0 þ ωÞ. The calculation of integrals (A3)–(A5) at finite temperatures
was detailed in Ref. [45]. Here, we will derive only their low-temperature limit for the neutrino-transparent matter. In this
limit, the antineutrino and neutrino distributions are zero in integrals I2 and Ī3, respectively; the neutrino momentum
in δ-functions can be dropped; and the magnitude of neutron momentum can be fixed to its value at the Fermi surface
p0 ¼ pFn. We then find
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I2ðqÞ ¼ ð2πÞ−6
Z

∞

0

dp0

p0
0

Z
∞

0

k02dk0

k00

Z
dΩk0fðϵp0 Þðp0

0k
0
0 − q · k0Þδðϵk0 − ϵp0 þ ωÞδðq − pFnÞ

¼ 1

ð2πÞ5 δðq − pFnÞ
Z

∞

0

k02dk0fðk0 þ ωÞ 1
p0

Z
1

−1
dyðp0

0 − qyÞ

¼ 2

ð2πÞ5 δðq − pFnÞ
μ�n
pFn

Z
∞

0

dk0k02fðk0 þ ωÞ; ðA6Þ

Ī3ðqÞ ¼ ð2πÞ−6
Z

∞

0

dp0

p0
0

Z
∞

0

k02k0

k00

Z
dΩk0 f̄ðϵp0 Þðp0

0k
0
0 − q · k0Þδð−ϵk0 − ϵp0 þ ωÞδðq − pFnÞ

¼ 1

ð2πÞ5 δðq − pFnÞ
Z

∞

0

k02dk0f̄ðω − ϵk0 Þ
1

p0

Z
1

−1
dyðp0

0 − qyÞ

¼ 2

ð2πÞ5 δðq − pFnÞ
μ�n
pFn

Z
∞

0

dk0k02fðk0 − ωÞ; ðA7Þ

where y is the cosine of the angle between q and k0, and we used ϵk0 ¼ k00 ¼ k0, as mν ¼ μν ¼ 0. The low-T limits of the
integrals I1 and Ī1 are given by [45]

I1ðqÞ ≃ −
ωgð−ωÞ
4πq

θðpFl þ pFp − qÞθðq − jpFl − pFpjÞðp2
Fp þ p2

Fl þ 2μlμ
�
p − q2Þ; ðA8Þ

Ī1ðqÞ ≃
ωgðωÞ
4πq

θðpFl þ pFp − qÞθðq − jpFl − pFpjÞðp2
Fp þ p2

Fl þ 2μlμ
�
p − q2Þ: ðA9Þ

Then, for the rates (A1) and (A2), we obtain

Γn→plν̄=pl→nν ¼ 2G24π
μ�n
pFn

Z
∞

−∞
dω

Z
∞

0

q2dq
∓ ωgð∓ ωÞ

4πq
θðpFl þ pFp − qÞθðq − jpFl − pFpjÞ

× ðp2
Fp þ p2

Fl þ 2μlμ
�
p − q2Þ 2

ð2πÞ5 δðq − pFnÞ
Z

∞

0

dk0k02fðk0 � ωÞ

¼ G2T5

8π5
μ�nθðpFl þ pFp − pFnÞðp2

Fp þ p2
Fl þ 2μlμ

�
p − p2

FnÞ
Z

∞

−∞
dyð∓ yÞgð∓ yÞ

Z
∞

0

dxx2fðx� yÞ

¼ α

2
G2T5μ�nθðpFl þ pFp − pFnÞðp2

Fp þ p2
Fl þ 2μlμ

�
p − p2

FnÞ; ðA10Þ

where α ¼ 3½π2ζð3Þ þ 15ζð5Þ�=16π5 ≃ 0.0168. In the limit of nonrelativistic nucleons, we keep only the term 2μlμ
�
p in the

brackets, and approximating μ�N ≈m�
N , we obtain

Γn→plν̄ ¼ Γpl→nν ¼ αm�
nm�

pμlG2T5θðpFl þ pFp − pFnÞ; ðA11Þ

which coincides with the results of Refs. [29,30,38,46,49] if the lepton mass is neglected, i.e., μl ¼ pFl.
If matter is out of chemical equilibrium, i.e, μΔl

≠ 0, one should replace ω → ωþ μΔl
in Eqs. (A8) and (A9) as implied

by the energy δ-function after Eq. (A5). Then, the derivatives of (A10) with respect to μΔl
at μΔl

¼ 0 are given by

∂Γn→plν̄

∂μΔl

����
μΔl¼0

¼ G2T5

8π5
μ�nθðpFl þpFp −pFnÞðp2

Fp þp2
Fl þ 2μlμ

�
p −p2

FnÞ
∂

∂μΔl

Z
∞

−∞
dyð−ȳÞgð−ȳÞ

Z
∞

0

dxx2fðxþ yÞ

¼ G2T4

8π5
μ�nθðpFl þpFp −pFnÞðp2

Fp þp2
Fl þ 2μlμ

�
p −p2

FnÞ
Z

∞

−∞
dy

�
1þ gðyÞ��1− ygðyÞ�

Z
∞

0

dxx2fðxþ yÞ;

ðA12Þ
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−
∂Γpl→nν

∂μΔl

����
μΔl¼0

¼ −
G2T5

8π5
μ�nθðpFl þpFp −pFnÞðp2

Fp þp2
Fl þ 2μlμ

�
p −p2

FnÞ
∂

∂μΔl

Z
∞

−∞
dyȳgðȳÞ

Z
∞

0

dxx2fðx− yÞ

¼ G2T4

8π5
μ�nθðpFl þpFp −pFnÞðp2

Fp þp2
Fl þ 2μlμ

�
p −p2

FnÞ
Z

∞

−∞
dygðyÞ�yð1þ gðyÞÞ− 1

�Z ∞

0

dxx2fðx− yÞ;

ðA13Þ

where ȳ ¼ yþ μΔl
=T. The two-dimensional integrals in these expressions are the same and are equal to 17π4=120;

therefore,

λl ¼
�
∂Γn→plν̄

∂μΔl

−
∂Γpl→nν

∂μΔl

�����
μΔl¼0

¼ 17

480π
G2T4μ�nθðpFl þ pFp − pFnÞðp2

Fp þ p2
Fl þ 2μlμ

�
p − p2

FnÞ: ðA14Þ

In the limit μ�N ≃m�
N ≫ pFN , these results lead to

λl ¼
17

240π
m�

nm�
pμlG2T4θðpFl þ pFp − pFnÞ; ðA15Þ

which is consistent with previous nonrelativistic calcula-
tions of Refs. [29,30,46,50].

APPENDIX B: COMPUTATION OF
SUSCEPTIBILITIES

1. Isothermal susceptibilities

To compute the isothermal susceptibilities AT
ij ¼ ∂μi

∂nj
jT ,

we use the following formula for the particle densities

ni ¼
1

π2

Z
∞

0

p2dp½fiðpÞ − f�i ðpÞ�; ðB1Þ

where fiðpÞ and f�i ðpÞ are the distribution functions for
particles and antiparticles, respectively. To compute first the
nucleon susceptibilities, we differentiate the left and right
sides of Eq. (B1) with respect to nj at constant temperature
and use the relations

∂fi
∂nj

����
T
¼ −fið1 − fiÞ

1

T

�
m�

Ep

∂m�

∂nj
−
∂μ�i
∂nj

�
; ðB2Þ

∂f�i
∂nj

����
T
¼ −f�i ð1 − f�i Þ

1

T

�
m�

Ep

∂m�

∂nj
þ ∂μ�i

∂nj

�
ðB3Þ

to obtain

δij ¼ −
�
∂m�

∂nj

�
I1;0i þ

�
∂μ�i
∂nj

�
I0;0i ; ðB4Þ

wherem� ≡m�
n ¼ m�

p is a short-hand notation for effective

nucleon mass, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2 þ p2

p
, and

Iq;si ¼ 1

π2T

Z
∞

0

p2dp

�
m�

Ep

�
q

×
�
zspifið1 − fiÞ þ ð−1Þqþsz�spif

�
i ð1 − f̄iÞ

�
; ðB5Þ

with zpi ¼ ðEp − μ�i Þ=T, z�pi ¼ ðEp þ μ�i Þ=T (the integrals
with s ≠ 0 will be used in the next subsection). Recall that
all derivatives above are computed at T ¼ const. Using the
relation μ�i ¼ μi − gωω0 − gρρ03I3i − Σr and the equations
for vector meson mean fields

gωω0 ¼
�
gω
mω

�
2

ðnn þ npÞ; gρρ03 ¼
1

2

�
gρ
mρ

�
2

ðnp − nnÞ;

ðB6Þ

we obtain

Bij≡∂μ�i
∂nj

����
T
¼AT

ij−
�
gω
mω

�
2
�
1þ2nB

gω

∂gω
∂nB

	

− I3i

�
gρ
mρ

�
2
�
I3jþ

nn−np
n0

aρ

	
−
∂Σr

∂nj
: ðB7Þ

Next, we use the following equation for the scalar mean
field,

gσσ ¼ m −m�

¼ −
gσ
m2

σ

∂UðσÞ
∂σ

þ 1

π2

�
gσ
mσ

�
2

×
X
i¼n;p

Z
∞

0

p2dp
m�

Ep

�
fiðpÞ þ f�i ðpÞ

�
; ðB8Þ

to obtain (up to terms ∂gσ=∂nB which are small in the
regime of interest and can be neglected)
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∂m�

∂nj
¼ −

1

m2
σ

∂
2UðσÞ
∂σ2

∂m�

∂nj
þ
�
gσ
mσ

�
2
�
∂m�

∂nj

�
ðI2;0n þ I2;0p Þ −

�
gσ
mσ

�
2

ðBnjI
1;0
n þ BpjI

1;0
p Þ

−
�
gσ
mσ

�
2
�
∂m�

∂nj

�X
i¼n;p

1

π2

Z
∞

0

dp
p4

E3
p

�
fiðpÞ þ f�i ðpÞ

�
: ðB9Þ

Introducing the short-hand notations

Ĩi ¼ I2;0i −
1

π2

Z
∞

0

dp
p4

E3
p

�
fiðpÞ þ f�i ðpÞ

�
;

Iσ ¼
�
mσ

gσ

�
2
�
1þ 1

m2
σ

∂
2U
∂σ2

�
; ðB10Þ

and

γ ¼ 1

Ĩn þ Ĩp − Iσ
; ðB11Þ

we obtain

∂m�

∂nj
¼ γ



BnjI

1;0
n þ BpjI

1;0
p
�
: ðB12Þ

Substituting this into Eq. (B4), we obtain the following
equations for coefficients Bij:

BijI
0;0
i − γ



BnjI

1;0
n þ BpjI

1;0
p
�
I1;0i ¼ δij: ðB13Þ

In the case of i ≠ j, we find from Eq. (B13)

Bnp ¼ γBpp
I1;0p I1;0n

I0;0n − γ


I1;0n

�
2
; Bpn ¼ γBnn

I1;0n I1;0p

I0;0p − γ


I1;0p

�
2
:

ðB14Þ

Substituting these expressions into Eq. (B13) for i ¼ j, we
obtain

Bnn ¼
I0;0p − γ



I1;0p

�
2

I0;0n I0;0p − γI0;0p


I1;0n

�
2 − γI0;0n



I1;0p

�
2
;

Bpp ¼ I0;0n − γ


I1;0n

�
2

I0;0n I0;0p − γI0;0p


I1;0n

�
2 − γI0;0n



I1;0p

�
2
; ðB15Þ

and

Bnp ¼ Bpn ¼
γI1;0p I1;0n

I0;0n I0;0p − γI0;0p


I1;0n

�
2 − γI0;0n



I1;0p

�
2
: ðB16Þ

Finally, substituting Eqs. (B15) and (B16) in Eq. (B7) and
recalling the definitions An ¼ Ann − Apn, Ap ¼ App − Anp,
we obtain for isothermal susceptibilites

AT
n ¼ I0;0p − γI1;0p



I1;0n þ I1;0p

�
I0;0n I0;0p − γI0;0p



I1;0n

�
2 − γI0;0n



I1;0p

�
2

þ
�
gρ
mρ

�
2
�
1

2
−
nn − np

n0
aρ

�
; ðB17Þ

AT
p ¼ I0;0n − γI1;0n



I1;0n þ I1;0p

�
I0;0n I0;0p − γI0;0p



I1;0n

�
2 − γI0;0n



I1;0p

�
2

þ
�
gρ
mρ

�
2
�
1

2
þ nn − np

n0
aρ

�
: ðB18Þ

For lepton susceptibilities, we have simply AT
l ¼ 1=I0;0l ,

l ¼ fe; μg.

2. Adiabatic susceptibilities

The adiabatic susceptibilities can be obtained by using
the following chain rule for partial derivatives

As
ij ≡ ∂μi

∂nj

����
s
¼ ∂μi
∂nj

����
T
þ ∂μi

∂T
∂T
∂nj

����
s
¼ AT

ij −
∂μi
∂T

�
∂s
∂T

�
−1 ∂s

∂nj

����
T
;

ðB19Þ

where s is the entropy per baryon

s ¼ −
X
i

1

π2nB

Z
∞

0

p2dp
h
fi ln fi þ ð1 − fiÞ lnð1 − fiÞ

þ f�i ln f
�
i þ ð1 − f�i Þ lnð1 − f�i Þ

i
; ðB20Þ

where the summation goes over all particle species, i.e.,
nucleons, and leptons. In the second step in Eq. (B19), we
used the relation

∂s
∂nj

����
T
¼ −

∂s
∂T

∂T
∂nj

����
s
; ðB21Þ

which can be obtained if one applies an analogous to
Eq. (B19) chain rule to s. Note that all particle densities are
assumed to be kept constant in the partial derivatives with
respect to T in Eq. (B19).
From Eq. (B20), we obtain
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nB
∂s
∂nj

����
T
¼

X
i

1

π2

Z
∞

0

p2dp

�
∂fi
∂nj

ln
1 − fi
fi

þ ∂f�i
∂nj

ln
1 − f�i
f�i

	
− s

∂nB
∂nj

����
T
: ðB22Þ

Substituting here Eqs. (B2) and (B12) for nucleons, we obtain

nB
∂s
∂nj

����
T
¼ −sþ

X
N

1

π2T

Z
∞

0

p2dp

�
Bij

�
zpifið1 − fiÞ − z�pif

�
i ð1 − f�i Þ

�

− γ


BnjI

1;0
n þ BpjI

1;0
p
�m�

Ep

�
zpifið1 − fiÞ þ z�pif

�
i ð1 − f�i Þ

�


¼ −sþ 

BnjI

0;1
n þ BpjI

0;1
p
�
− γ



BnjI

1;0
n þ BpjI

1;0
p
�

I1;1n þ I1;1p

�
; ðB23Þ

where we used the identities lnð1 − fiÞ=fi ¼ zpi, lnð1 − f�i Þ=f�i ¼ z�pi, and recalled the definitions (B5).
Substituting now Bij from Eqs. (B15) and (B16) in Eq. (B23), we find

nB
∂s
∂nn

����
T
¼ −sþ 


BnnI
0;1
n þ BpnI

0;1
p
�
− γ



BnnI

1;0
n þ BpnI

1;0
p
�

I1;1n þ I1;1p

�

¼ −sþ I0;0p I0;1n − γI1;0p


I1;0p I0;1n − I1;0n I0;1p

�
− γI0;0p I1;0n



I1;1n þ I1;1p

�
I0;0n I0;0p − γI0;0p



I1;0n

�
2 − γI0;0n



I1;0p

�
2

; ðB24Þ

nB
∂s
∂np

����
T
¼ −sþ I0;0n I0;1p − γI1;0n



I1;0n I0;1p − I1;0p I0;1n

�
− γI0;0n I1;0p



I1;1n þ I1;1p

�
I0;0n I0;0p − γI0;0p



I1;0n

�
2 − γI0;0n



I1;0p

�
2

: ðB25Þ

For leptons, we have

∂fl
∂nl

����
T
¼ flð1 − flÞ

TI0;0l

;
∂f�l
∂nl

����
T
¼ −

f�l ð1 − f�l Þ
TI0;0l

; ðB26Þ

and

nB
∂s
∂nl

����
T
¼ 1

π2

Z
∞

0

p2dp

�
∂fl
∂nl

ln
1−fl
fl

þ∂f�l
∂nl

ln
1−f�l
f�l

	����
T

¼ 1

π2TI0;0l

Z
∞

0

p2dp
�
zplflð1−flÞ−z�plf

�
l ð1−f�l Þ

�

¼ I0;1l

I0;0l

: ðB27Þ

Next, we compute the temperature derivatives.
Differentiating the left and right sides of Eq. (B1) with
respect to T at constant nj and exploiting the
expressions

∂fi
∂T

¼ fið1 − fiÞ
1

T

�
zpi þ

∂μ�i
∂T

�
;

∂f�i
∂T

¼ f�i ð1 − f�i Þ
1

T

�
z�pi −

∂μ�i
∂T

�
; ðB28Þ

we obtain

∂μi
∂T

≃
∂μ�i
∂T

¼ −
I0;1i

I0;0i

; ðB29Þ

where we took into account that the nucleon masses and
mesonic mean fields are almost independent of the tempera-
ture. Then, from Eqs. (B20), (B28), and (B29), we find

nB
∂s
∂T

¼
X
i

1

π2

Z
∞

0

p2dp

�
∂fi
∂T

ln
1−fi
fi

þ∂f̄i
∂T

ln
1− f̄i
f̄i

	

¼
X
i

1

π2T
∂μ�i
∂T

Z
∞

0

p2dp½zpifið1−fiÞ− z̄pif̄ið1− f̄iÞ�

þ
X
i

1

π2T

Z
∞

0

p2dp½z2pifið1−fiÞþ z̄2pif̄ið1− f̄iÞ�

¼
X
k

�
I0;2k −

ðI0;1k Þ2
I0;0k

	
≡S: ðB30Þ

Then, from Eqs. (B19), (B29), and (B30), we find

As
ij ¼ AT

ij þ
nB
S
I0;1i

I0;0i

∂s
∂nj

����
T
; ðB31Þ
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which leads to

As
n ¼ AT

n þ nB
S

�
I0;1n

I0;0n
−
I0;1p

I0;0p

�
∂s
∂nn

����
T
; ðB32Þ

As
p ¼ AT

p −
nB
S

�
I0;1n

I0;0n
−
I0;1p

I0;0p

�
∂s
∂np

����
T
; ðB33Þ

As
l ¼ AT

l þ 1

S

�
I0;1l

I0;0l

�2

: ðB34Þ

Note that, due to the second term in Eq. (B19), there are
additional cross-terms between different particle species, e.g.,
between baryons and leptons for adiabatic susceptibilities.
However, these terms are found to be smaller than the diagonal
terms in the whole regime of interest and can be neglected.
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