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Atom gradiometers have emerged as compelling broadband probes of scalar ultralight dark matter
(ULDM) candidates that oscillate with frequencies between approximately 10−2 Hz and 103 Hz. ULDM
signals with frequencies greater than ∼1 Hz exceed the expected Nyquist frequency of atom gradiometers,
and so are affected by aliasing and related phenomena, including signal folding and spectral distortion. To
facilitate the discovery of super-Nyquist ULDM signals, in this work we investigate the impact of these
effects on parameter reconstruction using a robust likelihood-based framework. We demonstrate that
accurate reconstruction of ULDM parameters can be achieved as long as the experimental frequency
resolution is larger than the ULDM signal linewidth. Notably, as ULDM candidates whose frequencies
differ by integer multiples of the sampling frequency are identified at the same aliased frequency, our
discovery analysis recovers discrete islands in parameter space. Our study represents the first compre-
hensive exploration of aliasing in the context of dark matter direct detection and paves the way for
enhanced ULDM detection strategies with atom gradiometers.
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I. INTRODUCTION

Ever since the formulation of the dark matter (DM)
hypothesis, the search for dark matter in direct detection
experiments has been one of the greatest priorities in
particle physics [1,2]. Until recently, the possibility of
charting the strikingly diverse and vast landscape of DM
models beyond conventional GeV-scale candidates seemed
like a remote possibility. Now, thanks to extraordinary
advancements in a wealth of cutting-edge technologies with
ever-increasing sensitivity to minute effects, it is expected
that large regions of DM model space will be within the
reach of the next generation of direct detection experi-
ments, such as atom interferometers.
In addition to being excellent probes of gravitational

waves in the midfrequency gap [3], large-scale atom
interferometer experiments, such as AION [4], MAGIS
[5], MIGA [6], ELGAR [7], and ZAIGA [8], would be
powerful probes of ultralight dark matter (ULDM). In
particular, these experiments would be especially ideal
probes of scalar ULDM signatures through their exquisite
sensitivity to changes in atomic structures. Indeed, scalar

ULDM with dilatonic couplings to Standard Model (SM)
operators would give rise to time-varying oscillations in
atomic transition frequencies [9,10], which in turn would
generate an oscillatory nonvanishing phase difference
between pairs of spatially separated interferometers that
are interrogated by the same set of lasers through a
gradiometer configuration [11,12].
As first shown in Ref. [11], and later studied in detail

within the context of the AION and MAGIS experiments,
terrestrial long-baseline single-photon vertical atom gradi-
ometers and space-based experiments that operate in broad-
band mode would be especially powerful probes of scalar
ULDMwith masses between∼10−18 eV and 10−13 eV, cor-
responding to signals oscillating at ∼10−2 Hz and ∼103 Hz,
respectively. Importantly, these experiments are expected to
outcompete other complementary probes in this frequency
range, such as atomic clocks [10], the MICROSCOPE
experiment [13], torsion balance experiments [14], the
AURIGA experiment [15] and superradiance constraints
from the observations of fast-spinning stellar-mass black
holes in x-ray binaries [16].
The high-frequency range of broadband interferometer

experiments, by which we mean the window containing
signal frequencies greater than ∼1 Hz, offers particularly
interesting search prospects in light of projected exclusion
limits from future experiments, and theoretical consider-
ations. For instance, future noninterferometer experiments,
such as resonant cavity experiments [17], will only set
weak limits in the 1–100 Hz frequency window compared
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with those arising from proposed vertical long-baseline
gradiometers operating single-photon atomic transitions,
e.g., AION and MAGIS. Hence, it is expected that only
long-baseline interferometers will be able to set constraints
on nonconventional scalar dark matter production mecha-
nisms in thismasswindow, such as the thermalmisalignment
mechanism [18], and probe characteristic signatures of
ULDM in direct detection experiments that are most ampli-
fied in this frequency range, such as gravitational focusing
[19]. Moreover, the high-frequency region of parameter
space accessible to long-baseline gradiometers is not fine-
tuned, which is often considered as an important criterion for
selecting a region of parameter space to target. Assuming a
UV cutoff at 10 TeV, loop corrections to the mass of a scalar
ULDM candidate with linear couplings to electron masses
would be smaller than the renormalized mass for couplings
satisfying the relation dϕ ≲mϕ=ð3.3 × 10−10 eVÞ, which
would be within the reach of a 1-km gradiometer operating
with the parameters proposed in Ref. [20].1

Aside from these considerations, the projected reach of
long-baseline atom interferometers may start to become
limited by mass-density fluctuations induced by seismic
activity below ∼0.5 Hz; in turn, this means that the peak
sensitivity of a 1-km gradiometer operating with the
parameters proposed in Ref. [20] would be shifted from
0.1 Hz to∼1 Hz, which lies close to or beyond the expected
sampling frequency of these experiments. As is well known
in signal analysis, any signal oscillating at a frequency
larger than half of the experimental sampling frequency,
also known as the Nyquist frequency, is aliased to a lower
frequency between zero and the Nyquist frequency, see
e.g., Refs. [21,22]. Additionally, important spectral dis-
tortions due to aliasing would affect the qualitative features
of a putative signal, and thus impact the ability to correctly
identify a signal as being of a ULDM origin, as briefly
discussed first in Ref. [23] within the context of ULDM
searches with a network of atomic clocks. As a study in this
direction is lacking within the context of ULDM searches
with atom interferometers, here we provide a complete and
versatile likelihood-based analysis framework, which
makes use of the machinery developed in Refs. [20,24],
for discovering these high-frequency signals. With the aid
of Monte Carlo (MC) simulations, we also confirm the
robustness of our analysis strategy in reconstructing the
properties of an injected signal. Importantly, leveraging on
these statistical tools, we provide predata and postdata
collection strategies that broadband atom interferometer

experiments should consider to maximize the potential to
discover a super-Nyquist ULDM signal.
The rest of the paper is organized as follows. In Sec. II,

we review the scalar ULDM signal in broadband vertical
atom gradiometers employing single-photon atomic tran-
sitions. In Sec. III, we present the likelihood-based analysis
of a ULDM signal in the frequency domain. In Sec. IV, we
provide a detailed discussion of aliasing within the context
of ULDM searches: in Sec. IVA, we provide the reader
with an overview of the concepts and phenomena asso-
ciated with aliasing, such as Nyquist windows and folding;
in Secs. IV B–IV E we present several techniques to
correctly reconstruct super-Nyquist ULDM signals that
are affected by aliasing; and in Sec. IV F we apply these
techniques to a discovery search based on several MC
realizations of the data. Finally, we summarize our results
in Sec. V. Several appendixes provide further details that
complement and validate our analysis and results.

II. SCALAR ULDM SIGNAL IN VERTICAL
ATOM GRADIOMETERS

In light of its large occupation number, small mean
velocity and velocity dispersion that is characteristic of
DM in the Milky Way, scalar ULDM can be modeled
as a temporally and spatially oscillating, nonrelativistic
classical field with frequency largely set by the DM mass,
mϕ ¼ 2πfϕ, and small kinetic corrections [25].2 As a
result of the wave’s dispersion Δωϕ ¼ 2πΔfϕ ∼mϕv0σv
where fv0; σvg ∼ 10−3, ULDM is characterized by a
coherence time τc ≡ 2π=ðmϕv20Þ, which sets the timescale
on which the field amplitude and phase vary considerably.
Assuming the random phase model, the ULDM field can
be expressed as a sum of its Fourier components with
uncorrelated phases [26].
In the context of direct detection experiments, which aim

to measure a time-varying signal that is proportional to the
ULDM field itself over an integration time T int, it is
advantageous to express the ULDM field in terms of an
experiment’s frequency resolution Δf ≡ 1=Tint. Without
loss of generality, assuming the random phase model and
neglecting its spatial variation, a scalar ULDM field can be
expressed as [20]

ϕðtÞ ¼
ffiffiffiffiffiffiffiffiffi
ρDM

p
mϕ

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
cos ðωatþ θaÞ;

FDMðvaÞ ¼
Z

vaþΔv=2

va−Δv=2
dvfDMðvÞ; ð1Þ1The UV cutoff depends on the scale of new physics, which

could lie below 10 TeV. For instance, assuming Higgs-portal DM,
the cutoff would be set by the Higgs mass; assuming couplings at
tree level to only the electron mass, the cutoff would instead be
set by the electron mass. While both models are feasible, we
stress that the latter would require elaborate and ad hoc model
building.

2In this work, we will mainly quote masses in Hz and eV.
The conversion between the two quantities is given by
fϕ ¼ mϕ=ð4.136 × 10−15 eVÞ Hz.
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where ρDM ¼ 0.3 GeV=cm3 is the local DM density, ωa ≃
mϕð1þ v2a=2Þ is the angular frequency of the ULDM wave
for a given speed va and θa ∈ ½0; 2πÞ is a random phase. The
sum is over velocity classes that are identified by the index a;
the size of each velocity class Δv is related to the experi-
ment’s frequency resolution Δf ¼ 1=Tint ≃mϕv0Δv=2π.

3

The variable αa is Rayleigh distributed with hα2ai ¼ 2; its
probability density function is given by

PðαaÞ ¼ αa exp

�
−
α2a
2

�
: ð2Þ

The DM speed distribution is denoted by fDMðvÞ, which we
assume to correspond to the Standard Halo Model (SHM)
[27,28], namely

fDMðvÞ ¼
vffiffiffiffiffiffi

2π
p

σvvobs
e−ðvþvobsÞ2=ð2σ2vÞ

× ðe4vvobs=ð2σ2vÞ − 1Þ; ð3Þ

where σv is the velocity dispersion which is set, at the solar
position, by the value of the local standard of rest
v0 ¼

ffiffiffi
2

p
σv ≈ 238 km=s, and vobs ≈ 252 km=s is the aver-

age speed of the Earth relative to the halo rest frame [29].4

We end this discussion by noting that the spatial
structure of the ULDM wave can be neglected in indi-
vidual gradiometer experiments by observing that (i) on
average the magnitude of wave vector kϕ ¼ mϕv ¼ 1=λdB,
where λdB is the DM’s de Broglie wavelength, is sup-
pressed by a factor of v ∼ 10−3 relative to the angular
frequency, and (ii) the longest length scale in an atom
gradiometer experiment is set by the length of the base-
line, which, in the mass range of interest, is significantly
smaller than λdB ≃ ð10−14 eV=mϕÞ2 × 107 km. Hence,
corrections to the phase from the ULDM spatial structure
are highly subdominant.5

A. ULDM-induced differential phase shift

Linear interactions between scalar ULDM and SM
photons/electrons give rise to the oscillation of the electron
mass me and fine-structure constant α [32,33],

meðtÞ ¼ me½1þ dme

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕðtÞ�; ð4Þ

αðtÞ ≈ α½1þ de
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕðtÞ�; ð5Þ

where the parameters fde; dme
g denote the coupling

strengths relative to the Planck mass, which we explicitly
express in terms of Newton’s gravitational constant GN .
These couplings lead to oscillations in atomic transition
frequencies which could be detected in the differential
phase shift Φmeasured between two atom interferometers
that compose an atom gradiometer. Explicitly, as first
calculated in Ref. [11] and subsequently generalized to
baselines of arbitrary length in Refs. [12,20], the ULDM
gradiometer phase shift measured after a time mΔt from
the start of the first experiment between two coupled
interferometers, which are separated by a distance Δz,
takes the following form:

ΦDM;m ¼ Δz
L

X
a

αa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FDMðvaÞ

p
Aa cosϕa;m; ð6Þ

where

Aa ¼
8ffiffiffi
2

p ΔωA

ωa
sin

�
ωanL
2

�
sin

�
ωaT
2

�

× sin

�
ωaðT − ðn − 1ÞLÞ

2

�
; ð7Þ

ΔωA ¼ dϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p ffiffiffiffiffiffiffiffiffi
ρDM

p
mϕ

ωA: ð8Þ

Here, we have assumed the “broadband” atom gradiom-
eter sequence shown in Fig. 1, which consists of an initial
π=2 pulse, (4n − 3) π pulses from alternating directions,
and a final π=2 pulse, where n is the number of large
momentum transfer (LMT) kicks.
In Eq. (6), ϕa;m ⊃ ωamΔtþ θa is the phase of the DM

wave at the end of the interferometer sequence; the
amplitude Aa depends both on experimental parameters
(the number of LMT kicks n, the interrogation time T, the
length of the baseline L characterizing the interferometric
sequence, and the angular frequency ωA of the optical
transition6) and phenomenological parameters (the local
dark matter density ρDM, the ULDM mass mϕ, and the

3The former equality follows from the discrete Fourier trans-
form of the data, whereas the latter follows from the signal’s
kinetic energy.

4Although the DM speed distribution is characterized by a
cutoff at the escape velocity vesc ∼ 800 km=s in the Earth’s frame
and may feature substantial radial anisotropic components,
commonly referred to as the Gaia Sausage or Gaia-Enceladus
[30], we expect the simple SHM form in Eq. (3) with no cutoff
and anisotropies to be sufficient for the analysis strategy
presented here.

5The spatial structure of the ULDM wave could be relevant
when performing ULDM searches with networked atom gradi-
ometers. When the distance between gradiometer experiments
(e.g. MAGIS and AION) is comparable to the field’s de Broglie
wavelength, the correction to the ULDM’s phase would be on the
order of the time-dependent phase [31]. Hence, two networked
experiments that are located at antipodal points could be used to
explore the spatial structure of the ULDM scalar candidates with
masses mϕ ≳ 10−11 eV. A study on the physics potential of such
searches is beyond the scope of this work.

6For the 5s21S0 ↔ 5s5p3P1 clock transition in 87Sr, which we
assume throughout this work, ωA ¼ 2.697 × 1015 rad=s.
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ULDM-SM coupling strength dϕ ∈ fde; dme
g). In this

work, we assume the parameters listed in Table I.
The dependence of Eq. (6) on the random and uncorre-

lated variables αa and θa implies that the ULDM signal is
stochastic [34]. In the next section, we review the details
regarding the characterization of stochastic signals in the
frequency domain, and we show how a likelihood-based
framework can be used to search for a ULDM signal.
This framework was developed in Ref. [20] and builds on
previous work in the context of axionlike particle
searches [24,31].

III. FREQUENCY-DOMAIN
ULDM SIGNAL ANALYSIS

The data that are measured by an interferometer consist
of a finite number of phase measurements at discrete points
in time, and hence constitute a time series of finite length.
Here, we assume a constant time interval Δt between
successive measurements. As a DM signal is characterized
by a frequency largely set by its mass and a frequency
spread dictated by its speed distribution, the appropriate

tool for analyzing the data is the discrete power spectral
density (PSD), which is defined as

SDM;k ≡ ðΔtÞ2
T int

jΦ̃DM;kj2; ð9Þ

where Φ̃DM;k is the discrete Fourier transform of the data,
k∈ f0; 1;…; N − 1g labels the frequency bin accessible to
the experiment, and N ¼ T int=Δt. As derived in Ref. [20],
without loss of generality, the expectation value of the
signal’s PSD takes the form

hSDM;ki ¼
π

2

�
Δz
L

�
2

A2
k

1

Δω

Z
ωkþΔω=2

ωk−Δω=2
dω

fDMðvωÞ
mϕvω

; ð10Þ

where we define vω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω=mϕ − 2

p
, and express the kth

angular frequency and resolution as ωk ¼ 2πk=T int and
Δω ¼ 2π=Tint, respectively. Here, Ak is as defined in
Eq. (7) under the redefinition ωa → ωk.
By construction, the observable spectral content of the

ULDM-induced signal depends on the duration of the
experiment relative to the signal’s coherence time, T int=τc.
When T int=τc ≪ 1, the size of the frequency bins exceeds
the signal’s spectral linewidth Δfϕ ≈ 1=τc. In turn, this
implies that the signal is observed in a single frequency
bin, i.e., in Eq. (6), FDM ¼ 1 and the sum is carried over a
single frequency component, so that Eq. (10) is only
nonzero for a single value of k. The ULDM field is then
well described by oscillations at ωϕ ≈mϕ with a fixed but
random amplitude and phase, such that the signal’s PSD
corresponds to a single spike in the frequency bin centered
at ∼fϕ. Thus, in this case, we would expect the mass
resolution to be comparable to the experiment’s frequency
resolution, namely Δf ¼ 1=T int. On the other hand, when

FIG. 1. Schematic representation of the atom gradiometer sequence considered in this work for n ¼ 4 LMT kicks. The atom’s excited
(jei) and ground (jgi) states are shown in blue and cyan, respectively. π=2 and π pulses are displayed as wavy lines in fuchsia (dashed)
and red (solid), respectively. Atom-light interactions are indicated with black dots. The length of the baseline is L, the distance between
the atom interferometers is Δz, and T is the interrogation time. Here, we show two sequences, which are temporally separated by the
sampling interval Δt.

TABLE I. List of experimental parameters assumed in this
paper. These could be implemented in future vertical gradiom-
eters, e.g., AION-km. Here, L is the length of the baseline, T is
the interrogation time, 4n − 1 is the total number of large
momentum transfer kicks transferred during a single cycle, Δz
is the gradiometer length, δϕ is the shot noise-limited phase
resolution per interferometer, T int is the total integration time for
the experiment and fs is the sampling frequency.

L [m] T [s] n Δz [m] δϕ½1= ffiffiffiffiffiffi
Hz

p � T int [s] fs [Hz]

1000 1.7 2500 970 10−5 108 1
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T int=τc ≫ 1, the size of the frequency bins would be
smaller than the signal’s dispersion ð∝ 1=τc) such that the
spectral content of the signal could be resolved, i.e., in this
limit, FDMðvaÞ ¼ fDMðvaÞΔv and the sum in Eq. (6) is
over all resolvable DM speeds [24]. In practice, to resolve
the DM speed distribution which is imprinted onto the
signal, it is necessary to choose a sufficiently long
integration time so that the frequency resolution satisfies
Δf ≲ 10−6fϕ. For DM masses in the high-frequency
regime considered in this paper (i.e., fϕ ≳ 1 Hz), this
requires T int ≳ 106 s. For bookkeeping purposes, we
summarize the relationship between the key parameters
in the frequency and time domain in Table II.

A. Likelihood-based analysis

As was shown in Ref. [20], both the ULDM signal and
dominant irreducible backgrounds in future single-photon
atom gradiometers will be Gaussian distributed with zero
mean. Hence, the PSD of the expected signal and back-
ground will be exponentially distributed. For a signal-plus-
background model MSþB, we define the parameter vector
θ ¼ fθsig; θnuisg, where θsig describes the signal parameters
that characterize the ULDM signal contribution, and θnuis
describes the background (nuisance parameters). In this
case, the appropriate likelihood7 to determine the correct
upper limits on the couplings and to claim a discovery is
given by

LðdjM; θÞ ¼
YN−1

k¼1

1

hSkðθÞi
exp

�
−

Sdata;k
hSkðθÞi

�
; ð11Þ

where the product is over frequency indices
k∈ f1; 2;…; N − 1g, excluding k ¼ N=2, and where

hSkðθÞi ¼ hSDM;kðθsigÞi þ hSNoise;kðθnuisÞi ð12Þ

is the sum of the expected PSD of the signal and back-
ground. Above ∼1 Hz, atom shot noise is expected to
dominate the background [20], so we will assume that the
expected PSD of the noise is frequency independent.

To reduce the number of frequency bins’ postdata
collection over which to evaluate the likelihood, which
drastically shortens the computational time required to
evaluate the test statistic (TS) to claim a discovery or set
upper limits without changing their value [24], it is possible
to i) break up the time series into Nstacks chunks of duration
T int=Nstacks; ii) compute the PSD on each time series, which

we label as SðlÞdata;k; and iii) compute the average of these
PSD for each frequency bin k∈ f1;…; N=Nstacks − 1g,
excluding k ¼ N=2Nstacks. We refer to this averaged
quantity as the “stacked PSD,” which we define math-
ematically as

S̄data;k ¼
1

Nstacks

XNstacks−1

l¼0

SðlÞdata;k: ð13Þ

The distribution of the sum of Nstacks-independent and
identically distributed random variables, each having an
exponential distribution with the same mean, is given by
the Erlang distribution [35]. Upon a change of variable, the
probability distribution function (PDF) of the stacked PSD
is then given by the rescaled Erlang distribution

P½S̄data;k� ¼
NNstacks

stacks

ðNstacks − 1Þ!
ðS̄data;kÞNstacks−1

hSkiNstacks

× exp

�
−
NstacksS̄data;k

hSki
�
; ð14Þ

where hSki is the expectation value of the PSD at the kth

frequency bin. It then follows that the likelihood8 for the
stacked data can be defined as

LstacksðdjM; θÞ ¼
YN=Nstacks−1

k¼1

�
1

hSkðθÞiNstacks

× exp

�
−
NstacksS̄data;k
hSkðθÞi

��
; ð15Þ

TABLE II. Dictionary of conjugate variables in the time (left column) and frequency (right column) domains
pertinent to the analysis of a time-dependent ULDM signal.

Time domain Frequency domain

ULDM coherence time τc ≡ 2π=ðmϕv20Þ ULDM signal’s linewidth Δfϕ ∼ 1=τc
Sampling interval Δt Sampling frequency fs ¼ 1=Δt
Integration time T int Experimental frequency resolution Δf ¼ 1=T int
Integration time per stack Tst

int ¼ T int=Nstacks Experimental stacked frequency resolution Δfst ¼ NstacksΔf

7We note that this likelihood differs from the one obtained for
the N ¼ 1 case in Ref. [20] by a factor of

ffiffiffi
π

p
, which cancels out

in all relevant test statistics used in this work.

8We note that the likelihood defined in Eq. (15) differs from
the rescaled Erlang distribution as defined in Eq. (14). Indeed, we
infer the form of the likelihood by dividing Eq. (14) by a factor of
ðS̄data;kÞNstacks−1NNstacks

stacks =ðNstacks − 1Þ!. We justify this by noting
that this factor cancels in all relevant test statistics, which consist
of the differences between logarithms of Eq. (15).
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where

hSkðθÞi ¼ hSDM;kðθsigÞi þ hSNoise;kðθnuisÞi: ð16Þ

In light of the reduction in the effective integration time by a
factor of Nstacks, the frequency resolution will be decreased
by a factor of Nstacks, as shown in Table II. Thus, in order to
resolve the spectral features of a putative ULDM signal with
fϕ ∼ 1 Hz which is integrated over a time T int ¼ 108 s, an
experimentalist should choose Nstacks ≲ 102.

B. Test statistic for discovery

With these likelihoods, we can define the discovery test
statistic, namely

TSðθsigÞ ¼ 2 ln
LðdjMSþB; f ˆ̂θnuis; θsiggÞ

LðdjMB; fθ̂nuisgÞ
; ð17Þ

where θ̂nuis denotes the vector of nuisance parameters that
maximize the likelihood in the background-only hypothesis

(i.e., the denominator term), and ˆ̂θnuis represents the vector
of nuisance parameters that maximize the likelihood in the
signal-plus-background hypothesis for a given set of signal
parameters. The best fit point in ULDM parameter space is
then defined by the vector θ̂sig that maximizes Eq. (17).
Unless otherwise stated, we set θsig ¼ ðmϕ; d2ϕÞ.9
Since the likelihoods are Gaussian, we define the

confidence region (C.R.) with confidence level (CL) α in
ULDM parameter space as the set fθsigg satisfying

TSmax − TSðθsigÞ ≥ Qα; ð18Þ

where TSmax ¼ TSðθ̂sigÞ corresponds to the maximum value
of thediscovery test statistic, andQα is a quantile of orderα of
the χ2 distribution, and as such depends on the confidence
level α and the number of fitted parameters [36]. When a
ULDM signal is nonzero in multiple frequency bins, the
Wald approximation and Wilks’ [37] are valid. In this case,
the C.R. at the 68.3% and 95.4% CL are associated with
Q68.3% ¼ 2.3 and Q95.4% ≈ 5.99, respectively.
Obtaining the threshold value of the test statistic to

determine the global significance of a signal is involved
and requires the application of the look elsewhere effect.
The simplest approach would be to evaluate the test statistic
for discovery at fixed masses over a range of independent
(i.e., nonoverlapping) frequency windows, whose width is

given by the expected linewidth of the ULDM signal.
With this prescription, we can estimate the number of
independent frequency windows given a minimum and
maximum frequency over which to perform the scan, fmin

and fmax respectively, as Nwindows ≈ 106 lnðfmax=fminÞ for
Nwindows ≫ 1. Hence, the threshold for claiming a discov-
ery can be related to the p value via

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSthresh

p
¼ Φ−1

�
1 −

p
Nwindows

�
; ð19Þ

whereΦ−1 is the inverse cumulative distribution function of
the normal distribution. For example, a 5σ local discovery
(i.e. Nwindows ¼ 1) would require p ≈ 2.87 × 10−7 andffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSthresh

p ¼ 5. If we scanned between 2 Hz and 22 Hz
(i.e. Nwindows ≈ 2.4 × 106), a 5σ global discovery (i.e.
Nwindows ¼ 1) would instead require p ≈ 2.87 × 10−7

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSthresh

p
≈ 7.32.10

From these likelihoods it is also possible to define the
test statistic for setting upper limits on dϕ at specific mass
values. Since the focus of this work is on understanding
how to discover a super-Nyquist signal, we provide a short
discussion on this test statistic in Appendix B.

IV. DISCOVERING A SUPER-NYQUIST
ULDM SIGNAL

In this section, we will explore the approach toward
discovering a super-Nyquist ULDM signal in a broadband
atom gradiometer. After introducing the concept of alias-
ing, we show how a signal oscillating close to or beyond
the Nyquist frequency of the experiment can be correctly
reconstructed by making use of the framework presented
in Sec. III.

A. An overview of aliasing, Nyquist windows,
and folding

The well-motivated high-frequency window to which
vertical atom gradiometers would be sensitive lies above
Oð1 HzÞ, which is greater than and comparable to the
Nyquist frequency fNy ¼ fs=2 of projected experiments.
As is well-known in Fourier analysis [21,40], any signal
whose spectral content is greater than fNy will be mapped
to frequencies between 0 and fNy due to a phenomenon
known as aliasing. Specifically, it follows from the
Nyquist-Shannon theorem [41] that a signal oscillating
with frequency f is detected at two frequencies between 0
and fs: f�1 ¼ f − κfs and f�2 ¼ ðκ þ 1Þfs − f, where κ is
the largest non-negative integer for which 0 < f�1 < fs.

9Although the signal phase shift is proportional to dϕ, the
signal PSD is proportional to d2ϕ. By performing the analysis in
the frequency-domain, it is therefore natural to search for a
ULDM signal by looking for fluctuations in the amplitude PSD.
This justifies d2ϕ as a parameter of interest in the signal parameter
vector θsig.

10Alternatively, to avoid performing a scan over independent
and nonoverlapping frequency windows, which can only be
performed at the expense of the frequency resolution, the global p
value can be inferred from MC realizations of the background-
only hypothesis using the procedure elucidated in Refs. [38,39].

BADURINA, BENIWAL, and MCCABE PHYS. REV. D 108, 083016 (2023)

083016-6



Hence, the spectrum of a signal oscillating at a frequency
greater than fNy and aliased to f�1 will be added to the
spectrum of a nonaliased signal oscillating with frequency
f�1. By definition, f�1 will be measured either in the range
½0; fNy� or in the range ½fNy; fs�, which we refer to as the
first and second Nyquist window, respectively. Hence, if f�1
is in the first Nyquist window, then f�2 is in the second
Nyquist window, and vice versa. Since f�1 is related to f by
a frequency shift, the original line shape of the spectrum
will be preserved at f�1; this is to be contrasted with the
spectrum identified at f�2, which is related to f by both a
frequency shift and a parity transformation, and so will be a
mirror image of the signal’s original line shape. This
phenomenon is commonly referred to in the literature as
folding [21,40]. In this sense, the Nyquist frequency acts as
an axis of reflection, so that the spectral content measured
in the first Nyquist window is a mirror image of the spectral
content in the second Nyquist window. All of these
principles follow from the symmetries of the Fourier
transform, which we review in Appendix A.

To illustrate aliasing in the context of ULDM searches, in
the top row of Fig. 2 we show a MC realization of the
broadband signal induced by a scalar ULDM candidate
with mass mϕ ¼ 2πfϕ ¼ 2π × 9.1 Hz and coupling
strength dϕ ¼ 3 × 10−4 that would be measured by a
gradiometer which operates with the parameters in
Table I and Nstacks ¼ 100. In this case, f�ϕ;1 ¼ 0.1 Hz
and f�ϕ;2 ¼ 0.9 Hz; hence, f�ϕ;1 and f�ϕ;2 are measured in
the first and second Nyquist windows, respectively. Since
f�ϕ;1 is contained in the first Nyquist window, the spectrum
identified at f�ϕ;1 ¼ 0.1 will not be affected by folding. This
can be clearly seen in the upper left panel, where the signal
rises sharply around the mass of the signal and falls at high
frequencies. On the other hand, f�ϕ;2, which is contained in
the second Nyquist window, will be affected by folding.
Indeed, as shown in the upper right panel, the signal now
rises sharply at f�ϕ;2 ¼ 0.9 Hz and falls at low frequencies.
For the sake of completeness, in the second row of Fig. 2
we show a MC realization of the broadband signal induced

FIG. 2. Comparison between the expected (black line) and MC-generated (filled bars) PSDs of an injected super-Nyquist ULDM
signal with fϕ ¼ 9.1 Hz and dϕ ¼ 3 × 10−4 (top row), and fϕ ¼ 9.9 Hz and dϕ ¼ 10−4 (bottom row) for the experimental parameters
shown in Table I and Nstacks ¼ 100. In the left column, the aliased signals are mapped to the first Nyquist window, whereas in the right
column the signals are mapped to the second Nyquist window. Spectral folding occurs for signals whose aliased frequency is f�ϕ;2, and so
can be seen in the second Nyquist window for fϕ ¼ 9.1 Hz and in the first Nyquist window for fϕ ¼ 9.9 Hz. For comparison, we also
show the aliased ULDM mass at 0.1(0.9) Hz with a purple dash-dotted (red-dotted) line in the left (right) panels.
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by a scalar with mass mϕ ¼ 2πfϕ ¼ 2π × 9.9 Hz and
coupling strength dϕ ¼ 10−4 as measured by the same
instrument. In this case, f�ϕ;1 ¼ 0.9 Hz and f�ϕ;2 ¼ 0.1 Hz,
so that the aliased spectrum in the first Nyquist window will
now be affected by folding, whilst the aliased spectrum in
the second Nyquist window will not.

B. Disentangling an aliased from
a nonaliased ULDM signal

To discover ULDM in the super-Nyquist frequency
range it is imperative to be able to distinguish between
aliased and nonaliased signals. This can only be achieved
when a subset of the signal’s features is unaffected by
aliasing. In the context of scalar ULDM searches with
broadband atom gradiometers, this set includes the ampli-
tude of the signal and its spectral line width. Owing to
aliasing, a ULDM signal with frequency fϕ > fNyq would
be identified at a smaller frequency between zero and fs,
but crucially, would inherit its original frequency spread
and amplitude. This is because the signal amplitude
depends on both the coupling strength and the ULDM

mass, while the spectral width depends on the properties of
the dark matter’s speed distribution and the ULDM mass.
Prima facie, it would then seem that an aliased ULDM

signal could always be correctly disentangled from a non-
aliased one. This statement, however, is not correct. Indeed,
because of the amplitude’s degeneracy with coupling
strength, aliased and nonaliased signals cannot be disen-
tangled when their spectral content is contained within a
single frequency bin, which occurs when the stacked
integration time Tst

int ¼ T int=Nstacks exceeds the ULDM’s
coherence time. Therefore, even if T int > τc in the frequency
range of interest, a postdata collection choice of stacking
could weaken the ability to distinguish between aliased and
nonaliased signals. To illustrate this point, let us consider an
experiment operating with the parameters shown in Table I,
and hunting for signals satisfying T int > τc. In the left
column of Fig. 3 we show the expected power spectrum
density of a nonaliased signal at fϕ ¼ 0.4 Hz with
d2ϕ ¼ 4 × 10−10, and the expected power spectrum density
of an aliased signal at fϕ ¼ 8.4 Hz with d2ϕ ¼ 4.16 × 10−7,
assuming aggressive stacking (Nstacks ¼ 104). In light of the
sampling frequency, both signals are identified at 0.1 Hz;

FIG. 3. Expected power spectrum densities of aliased and nonaliased ULDM signals which satisfy either Tst
int < τc (left column) or

Tst
int > τc (right column). In the top row we show the spectra of a ULDM signal with fϕ ¼ 0.4 Hz, which is not affected by aliasing in

light of the chosen sampling frequency (see Table I), for different coupling strengths. In the second row, we show the spectra of a ULDM
signal with fϕ ¼ 8.4 Hz, which is subject to aliasing, for different coupling strengths. In the regime of short stacked integration time, the
aliased and nonaliased signals that we show are identical; in the opposite regime, the aliased and nonaliased signal are characterized by a
marked difference in spectral broadening.
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since the stacked integration time Tst
int ¼ 104 s satisfies the

condition Tst
int < τc for both ULDMmasses, both signals are

contained in a single frequency bin. Therefore, despite the
vastly different phenomenological parameters, both signals
appear identical and hence cannot be distinguished.
Instead, the correct statement is the following: aliased

and nonaliased signals can only be disentangled when their
spectral content is spread over multiple frequency bins.
Indeed, in this regime, aliased and nonaliased signals that
are mapped to the same frequency between zero and fs, and
have identical maximum PSD amplitude, can still be
distinguished because of the spectral linewidth’s linear
dependence on the ULDM mass (or equivalently, fϕ). To
illustrate this point, we consider the usual experiment
operating with the parameters shown in Table I, but in
the case of limited stacking (Nstacks ¼ 10). For this choice
of stacking and integration time, the nonaliased signal at
fϕ ¼ 0.4 Hz with d2ϕ ¼ 2 × 10−12 and the aliased signal at
fϕ ¼ 8.4 Hz with d2ϕ ¼ 4 × 10−8 satisfy the condition
Tst
int > τc. In the right column of Fig. 3 we show the

expected PSD of these two signals. In each case, the signals
are mapped to f�ϕ;1 ¼ 0.4 Hz but exhibit significantly
different spectral broadening. Since the spectral width of
a ULDM signal scales linearly with fϕ, the PSD of the
fϕ ¼ 8.4 Hz signal is the broadest. Hence, despite their
identical maximum amplitude, these two signals can be
easily distinguished.

If we did not take aliasing into account, an aliased signal
satisfying the condition Tst

int > τc would be confused for a
nonaliased one with different coupling strength and much
larger (and unphysical) velocity dispersion, which we
remind the reader is given by v0=

ffiffiffi
2

p
. We show this in

Fig. 4, where we provide a comparison of the reconstructed
coupling and v0 of an injected ULDM signal using the
discovery test statistic defined in Eq. (17) at fixed mass. In
particular, we analyze the Asimov dataset11 of a signal with
fϕ ¼ 8.4 Hz, d2ϕ ¼ 4 × 10−8 and v0 ¼ 238 km=s at two
masses: ffixedϕ ¼ 0.4 Hz, which corresponds to the alias of
the injected signal’s angular frequency and assumes no
aliasing, and ffixedϕ ¼ 8.4 Hz, which corresponds to the
angular frequency of the injected signal and assumes
aliasing. In the former case, which is displayed in the left
panel, we reconstruct a signal with bv0 ¼ 1490þ30

−30 km=s andcd2ϕ ¼ 4.11þ0.15
−0.14 × 10−11. This is to be contrasted with the

injected signal parameters, which instead are in agreement
with the fitted parameters for ffixedϕ ¼ 8.4 Hz: bv0 ¼
238þ7

−7 km=s and cd2ϕ ¼ 4.00þ0.15
−0.15 × 10−8. In particular, in

the former case, the inferred best-fit value of v0 is an order

FIG. 4. Comparison of the posterior distributions of d2ϕ and v0 for an injected signal with fϕ ¼ 8.4 Hz and d2ϕ ¼ 4 × 10−8 at two fixed
masses: ffixedϕ ¼ 0.4 Hz, which assumes no aliasing (left panel), and ffixedϕ ¼ 8.4 Hz, which assumes aliasing (right panel). The 1σ and
2σ credible regions are shown with solid lines. The injected ðv0; d2ϕÞ value is shown in the 2D plane of the right panel by a blue square; it
is not visible in the left panel due to different axis scales. Here, we have taken the dataset to be equal to the mean predictions of the model
under consideration and neglecting statistical fluctuations, i.e. the Asimov approach.

11The Asimov dataset corresponds to taking the data to be
equal to the mean predictions of the model under consideration,
and neglecting statistical fluctuations [37].
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of magnitude larger than the prediction of the SHM in
Eq. (3), thereby implying that the signal at 0.4 Hz cannot be
confidently attributed to ULDM.
In summary, in light of the difficulty in disentangling a

nonaliased signal from an aliased one, we conclude that
i) Nstacks should be chosen post data collection so that the
effective integration time (i.e., the duration of each stacked
time series, Tst

int) should be larger than the largest coherence
time that the experimentalist wishes to probe, and ii) the
speed parameters should be constrained by the predictions
of the SHM, so that the spectral breadth of the signal
depends exclusively on the ULDM mass.

C. Disentangling a folded from
a nonfolded ULDM signal

In light of the Nyquist-Shannon theorem, the spectral
content of the first and second Nyquist windows is identical
under a parity transformation. Specifically, the spectrum
measured at f�ϕ;1 ¼ fϕ − κfs is identical to the one mea-
sured at f�ϕ;2 ¼ ðκ þ 1Þfs − fϕ, where κ is the largest non-
negative integer for which 0 < f�ϕ;1 < fs. However, the
aliased copy identified at f�ϕ;1 will preserve the signal
spectrum’s original orientation, while the aliased copy
identified at f�ϕ;2 will be its mirror image.
The degree to which the excesses at ∼f�ϕ;1 and ∼f�ϕ;2 can

be correctly identified with the folded and nonfolded alias,
respectively, of a super-Nyquist ULDM candidate depends
on the resolution of the characteristic line shape of the
ULDM signal, which in turn depends on the stacked
integration time. To measure this, we introduce the folding
discriminant, which quantifies the degree to which an

excess is attributed to a folded or a nonfolded alias. The
definition of this measure relies on the properties of an
injected ULDM signal f0ϕ. We choose to have a nonfolded
alias in the first Nyquist window, and therefore a folded
alias in the second window. The folding discriminant is
then defined as the difference between the maximized test
statistic for discovery assuming that the first Nyquist
window features a nonfolded alias of a signal with
frequency ∼f0ϕ and the second Nyquist window contains
a nonfolded alias of a different signal with frequency ∼f00ϕ.
Mathematically, this is equivalent to

QFD ¼ max
fϕ ∈N f0

ϕ

TS1ðffϕ;cd2ϕgÞ − max
fϕ ∈N f00

ϕ

TS2ðffϕ;
ccd2ϕgÞ;

ð20Þ

where N fϕ is defined as the neighbourhood around fϕ.
Since the injected signal contains a nonfolded alias in the
first Nyquist window only, in Eq. (20) the second term will
be bounded above by the first term. The difference between
these test statistics is then analogous to the definition of
quantile Qα of the χ2 distribution which was used in the
definition of confidence regions in ULDM parameter space
[cf. Eq. (18)]. Hence, the larger the difference between
these two test statistics (i.e. the larger the value of the
folding discriminant), the larger the discriminating power
between folded and nonfolded signals.
In Fig. 5, we make use of the folding discriminant on two

Asimov datasets containing an injected signal with ≈5σ
local significance (fϕ ¼ 9.1 Hz and d2ϕ ¼ 10−9) and an

FIG. 5. Significance comparison between neighboring folded and nonfolded signals as a function of the ratio of the stacked integration
time Tst

int to the ULDM coherence time τc for fϕ ¼ 9.1 Hz. The comparison is quantified via the folding discriminant, as defined in the
body of the paper, which we evaluate on two Asimov datasets containing a ULDM signal with fϕ ¼ 9.1 Hz and d2ϕ ¼ 10−9 (solid blue),
and fϕ ¼ 9.1 Hz and d2ϕ ¼ 1.4 × 10−9 (dashed green). We assume the experimental parameters stated in Table I with the exception of
the sampling frequency, which we set to 0.3 Hz in the left panel and 3 Hz in the right panel. The folding discriminant is saturated by
signals satisfying T int=τc ≳ 5. The similarity between the panels implies that the ability to disentangle folded and nonfolded signals is
independent of fs.
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injected signal with ≈5σ global significance (fϕ ¼ 9.1 Hz
and d2ϕ ¼ 1.4 × 10−9).12 In both cases, we fix T int (i.e. the
data have been already taken by the experimentalist) but
allow for Nstacks to be tuned, which implies that we are
effectively scanning over different values of Tst

int. We further
choose the experimental parameters stated in Table I and
two different values of the sampling frequency: 0.3 Hz and
3 Hz. For this choice of sampling frequencies, the alias of
the injected signal identified in the first Nyquist window
will not be affected by folding. The folded alias of the
injected signal will instead be identified at 0.2 Hz and
2.9 Hz for fs ¼ 0.3 Hz and fs ¼ 3 Hz, respectively. For
both sampling frequencies, we assume that the aliases in the
second Nyquist window are attributable to ULDM fields
with fϕ ¼ 8.9 Hz, for which the aliases in the second
Nyquist window would not be folded.
As shown in both panels of Fig. 5, the folding discriminant

is approximately zero and constant for T int=τc ≳ 1, which
corresponds toNstacks ≲ 103 for T int ¼ 108 s, independently
of the significance of the injected signal. This follows from
the fact that the folded and nonfolded signal spectrawill each
be contained within a single bin, which implies that the two
signals will be identical (up to a difference in spectral
amplitude); hence, the analysis is unable to discriminate
between the folded signal at fϕ ≈ 8.9 Hz and the nonfolded
signal at fϕ ≈ 9.1 Hz. Furthermore, since increasing Nstacks

(i.e. decreasing Tst
int) does not improve the resolution of the

signal’s spectral content, the ability to distinguish between
these two signals is independent of Nstacks.
For T int=τc ≳ 5, the folding discriminant is maximal and

constant. This can be understood as follows: the limit
T int > τc implies that the signal’s spectral content is well-
resolved. In this case, the folded and nonfolded aliased
copies of the true signal will be characterized by well-
resolved line shapes with opposite parity; hence, the spectra
at f�ϕ;1 and f�ϕ;2 can be correctly identified with the
nonfolded and folded aliases, respectively. Since we have
assumed no DM substructure, increasing Tst

int further (i.e.
choosing Nstacks ≲ 102 for T int ¼ 108 s) does not improve
the resolution of the signal’s characteristic line shape;
hence the ability to distinguish between these two signals
is independent of Nstacks. In both panels, however, the
folding discriminant is largest for the signal that has the
highest significance (i.e. the signal with the largest cou-
pling), which follows from the definition of the folding
discriminant and from the scaling of Eq. (17) with d2ϕ. This
can also be understood as follows: for large couplings, the
features of the expected signal’s line shape are more

pronounced; hence, the folded and nonfolded aliases of
ULDM signals with large couplings can be more readily
distinguished.
Finally, for our choice of sampling frequencies, f�ϕ;1 and

f�ϕ;2 are not affected by fs; hence, the degree to which the
likelihood can distinguish between folded and nonfolded
signals is largely insensitive to the sampling frequency,
which explains the substantial similarity between the left
and right panels of Fig. 5.
In summary, we conclude that i) the degree to which

folded and nonfolded signals can be distinguished
depends on the ability to resolve the signal’s characteristic
line shape; ii) folded and nonfolded signals satisfying
Tst
int=τc ≳ 5 have well-resolved line shapes with opposite

parity and so can be readily disentangled, whilst those
satisfying Tst

int=τc ≲ 1 have unresolved line shapes and so
cannot be correctly reconstructed; and iv) the degree to
which folded and nonfolded signals can be distinguished is
independent of the sampling frequency fs.

D. Disentangling neighboring aliased
and equally folded signals

From the Nyquist-Shannon theorem, two ULDM signals
whose frequencies differ by integer multiples of the
sampling frequency are both identified at the same fre-
quency between zero and fs—i.e. two ULDM signals with
f0ϕ ¼ κfs þ f�ϕ and f00ϕ ¼ κ0fs þ f�ϕ, for integers κ and κ0,
would be imaged at f�ϕ. Hence, different from the case of
folded and nonfolded signals, the spectra of neighboring
aliased signals will have the same parity (i.e. they will
exhibit the same degree of folding). Since Δfϕ ∝ fϕ, such
signals may be differentiated post-data-taking by leverag-
ing exclusively on the spectral linewidth’s dependence on
the DM mass.
The degree to which such signals can be disentangled

largely depends on the sampling frequency of the experi-
ment. In particular, for high-frequency ULDM signals, the
larger the sampling frequency, the larger the frequency
difference between super-Nyquist signals which are con-
sistent with the same alias; the larger the frequency splitting
between neighboring signals, the larger the linewidth
difference between neighboring signals, and so the greater
the incompatibility between such ULDM candidates. To
measure this, we introduce the aliasing discriminant. In
analogy to the folding discriminant defined in Sec. IV C,
the aliasing discriminant is computed using the discovery
test statistic. Additionally, the definition of this measure
also relies on the properties of an injected ULDM signal fϕ,
which we choose to have a nonfolded alias in the first
Nyquist window. However, different from the folding
discriminant, this object is defined as the difference
between the test statistic for discovery assuming that the
first Nyquist window contains a nonfolded alias of a signal
with frequency ∼f0ϕ and the first Nyquist window contains

12From Sec. III B, a 5σ globally significant signal implies a
value of TSthresh that is approximately twice the value of TSthresh
for a 5σ locally significant discovery. Since TS ∝ d4ϕ, a 5σ locally
significant signal becomes 5σ globally significant if d2ϕ increase
by a factor of

ffiffiffi
2

p
.
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a nonfolded alias of a signal with frequency f00ϕ ¼
f0ϕ þ κfs. Mathematically, this is equivalent to

QAD ¼ max
fϕ ∈N f0

ϕ

TS1ðffϕ;cd2ϕgÞ − max
fϕ ∈N f00

ϕ

TS1ðffϕ;
ccd2ϕgÞ:

ð21Þ

Since the injected signal is at fϕ, in Eq. (21) the second
term will be bounded above by the first term. Hence, as for
the folding discriminant, this object is analogous to the
definition of the quantile Qα. Therefore, the larger the
difference between these two test statistics (i.e. the larger
the value of the aliasing discriminant), the larger the
discriminating power between super-Nyquist signals with
different masses.
By making use of the aliasing discriminant, which we

evaluate on two Asimov datasets containing an injected
signal with ≈5σ local significance (fϕ ¼ 9.1 Hz and
d2ϕ ¼ 10−9) and an injected signal with ≈5σ global sig-
nificance (fϕ ¼ 9.1 Hz and d2ϕ ¼ 1.4 × 10−9), in Fig. 6 we
illustrate the likelihood’s ability to distinguish between
neighboring aliased and equally folded signals as a function
of κ. Similarly to Fig. 5, we focus on two different sampling
frequencies: 0.3 Hz, which we display in the left panel, and
3 Hz, which we display in the right panel. Here, however,
we set Nstacks ¼ 100. The aliasing discriminant is then
computed over ULDM masses contained in integer multi-
ples of the first Nyquist window, which we define as κ,
closest to the one containing 9.1 Hz, which we define as

κ9.1 Hz, respectively. For illustrative purposes, we restrict
ourselves to 28 ≤ κ ≤ 34 for fs ¼ 0.3 Hz, and 1 ≤ κ ≤ 7
for fs ¼ 3 Hz. The multiples of the first Nyquist window
containing 9.1 Hz for fs ¼ 0.3 Hz and fs ¼ 3 Hz are then
κ9.1 Hz ¼ 30 and κ9.1 Hz ¼ 3, respectively.
In both panels, the aliasing discriminant is zero and at its

minimum for κ ¼ κ9.1 Hz, which implies that the recon-
structed signal is favored to be in the correct multiple of the
Nyquist window. Furthermore, the aliasing discriminant
increases with jκ − κ9.1 Hzj, which implies that the ability to
distinguish between neighboring and equally folded signals
increases with the difference between the reconstructed
signal’s expected linewidth. Furthermore, as for the folding
discriminant, neighboring aliased signals with larger cou-
plings (and larger significance) will be more readily
distinguished, as shown by the higher values of the aliasing
discriminant away from κ9.1 Hz.
The degree to which equally folded signals in neighbor-

ing multiples of the first Nyquist window are less signifi-
cant depends on the sampling frequency. For fs ¼ 0.3 Hz,

the ratio of cfϕ to 9.1 Hz in neighboring windows is
approximately unity, which implies that the spectral content
of these signals is comparable with the injected one;
hence, the aliasing discriminant is approximately zero,
i.e. neighboring signals cannot be easily disentangled. For

fs ¼ 3 Hz, however, 0.34≲cfϕ=ð9.1 HzÞ ≲ 2.4, which
implies that the spectral content of these signals is much
wider or narrower than that of the injected signal; hence, the
aliasing discriminant increases rapidly, i.e. neighboring
aliased signalswill bemore robustly disfavored. In particular,

FIG. 6. Significance comparison between neighboring equally folded signals as a function of integer multiples of the first Nyquist
window (lower axis), or equivalently as a function of the frequency (upper axis). The comparison is quantified via the aliasing
discriminant, as defined in the body of the paper, which we evaluate on two Asimov datasets containing a ULDM signal with
fϕ ¼ 9.1 Hz and d2ϕ ¼ 10−9 (solid blue) and fϕ ¼ 9.1 Hz and d2ϕ ¼ 1.4 × 10−9 (dashed green). We assume the experimental
parameters stated in Table I with the exception of the sampling frequency, which we set to 0.3 Hz in the left panel and 3 Hz in the right
panel. The dashed horizontal lines define the quantiles associated with the 68.3% and 95.4% CL The aliasing discriminant increases
away from the injected signal; as the right panel shows, this object is largest for signals whose frequency is much larger or smaller than
the injected one.
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we note that reconstructed signals that are at least twice or at
most half as wide as the injected signal in the frequency
domain would not be contained within the 95.4% CL of the
injected signal.
From this last observation, we can infer a condition on

fϕ and fs to maximize the likelihood’s ability to distinguish
between neighboring aliased and equally folded signals. As
shown in Fig. 6, the aliasing discriminant of signals whose
linewidth is at least twice or at most half as wide as that of
the injected signal are not contained within the 95.4% CL
quantile of the global maximum. Hence, signals satisfying
ðfϕ þ fsÞ=fϕ ≳ 2 and ðfϕ − fsÞ=fϕ ≲ 1=2 will not be in
good agreement with the injected signal. Combining these
two conditions, we find fs=fϕ ≳ 3=5.
In summary, we conclude that i) the degree to which

neighboring equally folded aliased signals can be disen-
tangled improves with the sampling frequency and ii) in
order to contain the 95.4% CL confidence region of a ≈5σ
globally significant discovery in a single Nyquist window,
it will be necessary to choose a value of the sampling
frequency that satisfies the condition fs=fϕ ≳ 3=5, where
fϕ is the largest ULDM mass to be considered in the scan;
equivalently, for a given choice of fs, which is stipulated
before the start of the measurement campaign, fϕ ¼ 3fϕ=5
would be the largest ULDM mass that could be unambig-
uously reconstructed by our analysis.

E. Discovering distorted signals

Another defining feature of aliased signals is distortion
due to folding. This arises when the spectral content of a

signal exceeds the frequency range of a given Nyquist
window; in light of the symmetries of the Fourier transform
(see Appendix A), the power spectrum that leaks into the
neighboringNyquist window is reflected back to the original
Nyquist window, and added to the PSD that was initially
aliased to this Nyquist window. In the case of ULDM
searches, this phenomenonwould occur for signals satisfying
f�ϕ þ fϕv2esc=2 > fNy, when f�ϕ is contained within the first
Nyquist window, or f�ϕ þ fϕv2esc=2 > fs, when f�ϕ is con-
tained within the second Nyquist window.
All ULDM signals satisfying fϕ ≳ 106fNy would be

affected by distortions due to folding, independently of f�ϕ.
This is because the spectral width of these very high-
frequency super-Nyquist signals exceeds the size of a
single Nyquist window. Here, we will not consider such
signals: this part of parameter space is already competi-
tively probed by complementary probes for typical values
of fs, and so would not be a primary target of ULDM
searches with broadband atom gradiometers.
Spectral distortions owing to folding would be of interest

to broadband interferometers for high-frequency ULDM
signals well below fϕ ∼ 106 Hz and sufficiently close to
integer multiples of the Nyquist frequency. This is illus-
trated in Fig. 7 where we show the effect of spectral
distortions on three different ULDM signals with d2ϕ ¼
2 × 10−8 and fϕ ¼ ð12 − 3.5 × 10−5Þ Hz, fϕ ¼ ð12 − 2 ×
10−5Þ Hz and fϕ ¼ ð12 − 1 × 10−5Þ Hz, which we show in
the left, central and right panels respectively. For our choice
of sampling frequency, fs ¼ 1 Hz, the nonfolded alias of
the true ULDM signal is imaged in the second Nyquist

FIG. 7. Spectral distortion on ULDM signals close to an integer multiple of the Nyquist frequency, which we set to 0.5 Hz. We show
this effect for three different signals with d2ϕ ¼ 2 × 10−8: fϕ ¼ ð12 − 3.5 × 10−5Þ Hz (left panel), fϕ ¼ ð12 − 2 × 10−5Þ Hz (central
panel) and fϕ ¼ ð12 − 1 × 10−5Þ Hz (right panel). In purple, we show the nonfolded spectrum, which is aliased to the second Nyquist
window (2nd NW) and leaks into the first Nyquist window (1st NW); in green we show the folded spectrum, which is aliased to the 1st

NW and leaks into the 2nd NW; and in gray we show the distorted aliased spectrum, which consists of the sum of the folded and
nonfolded spectra. We assume the experimental values stated in Table I and Nstacks ¼ 50. We see that, the closer an aliased signal is
imaged to an integer multiple of the Nyquist, the greater the degree of spectral distortion.
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window, while the folded alias of the true ULDM signal is
imaged in the first Nyquist window. The degree of
distortion increases as fϕ tends to 12 Hz, which corre-
sponds to an even multiple of the Nyquist frequency.
By taking into account spectral distortions, the likelihoods

defined in Sec. III A can correctly reconstruct such signals,
independently of the degree of distortion induced by folding.
We show this in Fig. 8, where we plot the posterior
distribution of the reconstructed ULDM parameters, namely
fϕ and d2ϕ, based onAsimov datasets containing signals with
various degrees of distortion characterized by fϕ ¼ ð12 −
2 × 10−5Þ Hz and d2ϕ ¼ 2 × 10−8, and fϕ ¼ ð12 − 1 ×
10−5Þ Hz and d2ϕ ¼ 2 × 10−8, which correspond to the
distorted signals shown in the central and right panels of
Fig. 7, respectively. In each case, the injected signal
parameters are correctly reconstructed: for the injected signal
at fϕ ¼ ð12 − 2 × 10−5Þ Hz, for which we show the pos-

terior in the left panel of Fig. 8, we infercfϕ ¼ ð12 − 2þ0.01
−0.01 ×

10−5Þ Hz and cd2ϕ ¼ 2þ0.07
−0.07 × 10−8; for the injected signal at

fϕ ¼ ð12 − 1 × 10−5Þ Hz, for which we show the posterior

in the right panel of Fig. 8, we infer cfϕ ¼ ð12 − 1þ0.02
−0.02 ×

10−5Þ Hz and cd2ϕ ¼ 2þ0.08
−0.07 × 10−8.

Interestingly, while the uncertainty on cd2ϕ is the same for
both signals, the uncertainty on the mass differs appreciably:

for the injected signal at fϕ ¼ ð12 − 2 × 10−5Þ Hz, the

relative uncertainty on ðcfϕ − 12Þ Hz is 0.5%, while for
the injected signal at fϕ ¼ ð12 − 1 × 10−5Þ Hz, the relative
uncertainty on ðcfϕ − 12Þ Hz is ≈2%. This difference can be
explainedbynoting that the degreeofdistortion in the signal’s
line shape is highly sensitive to the value of the alias of fϕ
with respect to the characteristic linewidth Δfϕ. For signals
satisfying Δfϕ ≪ fs − f�ϕ < fϕv2esc=2 [e.g. the fϕ ¼ ð12 −
2 × 10−5Þ Hz signal shown in the central panel of Fig. 7], the
distortion will affect the high tail of the imprinted darkmatter
speed distribution. Since this deviation from the SHMcannot
be accounted for by tuning d2ϕ, such signals would be more
sensitive to changes in f�ϕ, and thus fϕ.
In summary, we conclude that i) super-Nyquist signals

that are affected by spectral distortions due to folding can
be correctly reconstructed using the tools presented in
Sec. III and ii) the relative uncertainty on the recon-
structed coupling d2ϕ is independent of the degree of
distortion, while the relative uncertainty on the recon-
structed value of fϕ is smallest for signals satisfying
Δfϕ ≪ fs − f�ϕ < fϕv2esc=2, i.e., distorted signals whose
deviation from their corresponding nondistorted spectra
predominantly affects the high-speed tail of the imprinted
dark matter speed distribution.

FIG. 8. Comparison between the posterior distributions of fϕ and d2ϕ for Asimov datasets containing an injected signal with d2ϕ ¼
2 × 10−8 and fϕ ¼ ð12 − 2 × 10−5Þ Hz (left panel) and fϕ ¼ ð12 − 1 × 10−5Þ Hz (right panel), which correspond to the gray curves
plotted in the central and right panels of Fig. 7, respectively. The injected signal parameters are shown by blue solid lines in 1D and a
blue square in 2D planes. The 1σ and 2σ credible regions are shown with solid lines. The inferred ULDM parameters are consistent with
the injected signal to within 2σ credible region independently of the degree of spectral distortions due to folding.
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F. Example discovery search

We complete this section with an example of a discovery
analysis, which will provide a unified context for the
phenomena related to aliasing discussed earlier.
For the purpose of comparison, we generate two MC

datasets13 in the frequency domain (see Appendix C for
details) assuming a ULDM signal with fϕ ¼ 9.1 Hz,

d2ϕ ¼ 10−9, the experimental parameters mentioned in
Table I and two different sampling frequencies: 0.3 Hz
and 3 Hz. To maximize the degree to which folded and
nonfolded signals can be disentangled, while also minimiz-
ing the number of bins over which to perform the scan
(i.e. maximizing Nstacks at fixed T int), we set Nstacks ¼ 100
(cf. Sec. IV C).
To reconstruct the injected signal parameters, we

perform a parameter scan in the ðmϕ; d2ϕÞ plane of interest
using a nested sampling algorithm as implemented in
PyMultiNest [42], a PYTHON interface to MultiNest [43–45].
The range of ULDM masses (or frequencies) that are
scanned over also includes multiples of the first and

FIG. 9. Discovery analysis on a MC-generated dataset containing an injected signal with fϕ ¼ 9.1 Hz and d2ϕ ¼ 10−9 for fs ¼ 0.3 Hz
(left column) and fs ¼ 3 Hz (right column). In the upper row, we show the islands of parameter space that are consistent with the
inferred best fit at the 95.4% CL in red, and the injected signal with a green cross. The yellow shaded region has been excluded by
MICROSCOPE, while the fine-tuned region of parameter space assuming a UV cutoff Λ ¼ 10 TeV is located above the blue line. The
lower row shows the one-dimensional profile likelihood ratio for the ULDM frequency. The beige (blue) shaded regions mark multiples
of the first (second) Nyquist window. The horizontal magenta lines correspond to the C.R. at the 68.3% and 95.4% CL In these panels,
we label the best-fit point with a purple star.

13Here, we depart from the Asimov dataset, of which we made
ample use in previous sections. Additionally, for the purposes of
comparison, we choose the same seed for both datasets, so that
fluctuations about the expected signal are the same in both cases.
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second Nyquist windows. In this example, we restrict
the analysis to frequencies between ∼2 Hz and ∼22 Hz,
for which we expect the reconstructed signals to not be
contained within the C.R. at the 95.4% CL of the best-fit
point for a 5.1σ locally (0.4σ globally) significant dis-
covery (i.e. TSmax ≈ 26, cf. Sec. IV D). Since Nstacks > 1,
the test statistic for discovery is evaluated for the stacked
likelihood defined in Eq. (15). Additionally, to disen-
tangle aliased from nonaliased signals, the ULDM model
used in the scan is defined for fixed ULDM speed
parameters, specifically v0, vobs and vesc, which we set
to those of the SHM (cf. Sec. IV B).
In Fig. 9, we plot the results of this analysis for both

datasets. In the upper row, we display the regions of

parameter space that are consistent with the global maxi-
mum at the 95.4% CL for fs ¼ 0.3 Hz and fs ¼ 3 Hz,
which we show on the left and right, respectively. For
fs ¼ 0.3 Hz, we see that most Nyquist windows between
∼2 Hz and 22 Hz are consistent with the best-fit value,
which is identified at ≈8.5 Hz and is consistent with the
injected signal. For fs ¼ 3 Hz, however, fewer regions of
parameter space are consistent with the best fit, which is
correctly reconstructed at ≈9.1 Hz. Different from other
dark matter direct detection experiments, these regions of
parameter space are disconnected, precisely in light of the
symmetry between Nyquist windows. For fs ¼ 3 Hz,
however, fewer regions of parameter space are consistent
with the best-fit value, as a result of aliasing: because the

FIG. 10. Discovery analysis on a MC-generated dataset containing an injected signal with d2ϕ ¼ 1.4 × 10−9 and other parameters as in
Fig. 9. The upper row shows (in red) the islands of parameter space that are consistent with the inferred best-fit value at the 95.4% CL
The lower row shows the one-dimensional profile likelihood ratio for the ULDM frequency, where the beige (blue) shaded regions mark
multiples of the first (second) Nyquist window. The horizontal magenta lines correspond to the 68.3%ð1σÞ and 95.4%ð2σÞ confidence
region of the right panels. The injected signal is shown with a green cross while the best-fit point is labeled with a purple star.
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peak in the first Nyquist window is located at ≈0.1 Hz,
scanned frequencies fscanϕ satisfying 0.5≲ fscanϕ =fϕ ≲ 2 and
identified at 0.1 Hz are consistent with the injected signal;
in agreement with the conclusions of Sec. IV D, since
fscanϕ ¼ fϕ þ afNy, for integers a, the smaller fNy, and so
fs, the more disconnected regions of parameter space
consistent with the results.
In the lower row of Fig. 9, we illustrate the profile

likelihood ratio with respect to fϕ for the corresponding
datasets, which is defined in terms of the discovery test
statistic as

LðfϕÞ=Lmax ¼ exp f½TSðfϕ;cd2ϕÞ − TSð dfϕ; d2ϕÞ�=2g: ð22Þ

Here, we shade the range of frequencies that would be
aliased to the first Nyquist window in beige, and the range
of frequencies that would be aliased to the second Nyquist

window in blue. In these panels we see that a peak is visible
in each scanned Nyquist frequency range, which implies
that a signal is reconstructed in all scanned multiples of the
Nyquist frequency. However, not all of these signals will be
compatible with the global maximum at 2σ. Indeed,
disconnected islands are only visible in the corresponding
mass-coupling plane when the profile likelihood ratio
exceeds the 95.4% C.R.
To illustrate the impact of small changes in the size of d2ϕ

on the ability to correctly reconstruct super-Nyquist ULDM
signals, in Fig. 10, we plot the results of a discovery
analysis on two MC datasets which contain a ULDM signal
with fϕ ¼ 9.1 Hz and d2ϕ ¼ 1.4 × 10−9, the latter differing
from the value of d2ϕ used in generating the datasets for

Fig. 9 by
ffiffiffi
2

p
. All other parameters are identical to the ones

that were used to generate the results illustrated in Fig. 9. In
agreement with the results from Secs. IV C and IV D, for

FIG. 11. Enlargement of the parameter space shown in Figs. 9 and 10 close to 8.5 Hz (left column) and 9.1 Hz (right column) for
fs ¼ 0.3 Hz when the injected signal is at d2ϕ ¼ 10−9 (top row) and d2ϕ ¼ 1.4 × 10−9 (bottom row). In both cases, the mass resolution is
on the order of the stacked frequency resolution. The contours, which correspond to the confidence regions at the 68.3% and 95.4% CL,
are tightest for the most significant injected signal.
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this choice of coupling a reduced number of Nyquist
windows will contain signals that are consistent with the
best-fit value, which is identified at ≈9.1 Hz for both fs ¼
0.3 Hz and fs ¼ 3 Hz and consists of a 7.6σ locally (5.4σ
globally) significant discovery. Additionally, as shown in
the lower panels of Fig. 10, for such a choice of coupling,
no range of frequencies whose folded alias would lie in the
second Nyquist window is contained within the C.R. at the
95.4% CL, independently of the sampling frequency. This
confirms that folded and nonfolded aliased signals can be
disentangled when the data contain a highly significant
signal (cf. Sec. IV C).
In light of the ULDM signal’s dependence on exper-

imentally tuneable parameters, it also follows that the
discovery analysis of super-Nyquist signals is highly
sensitive to small changes in sequence parameters. For
example, the scalar ULDM signal amplitude in gradiometer
experiments depends linearly on the gradiometer length Δz
and the number of LMT pulses n. Therefore, if a super-
Nyquist signal is detected with a 5σ local significance, it is
possible to improve the detection significance to 5σ global
significance, without changing the frequency associated
with the experiment’s peak sensitivity, by increasing the Δz
by a factor of 21=4.14 We therefore recommend that future
broadband atom gradiometer experiments consider imple-
menting designs that could be modified postconstruction.
Finally, for completeness, in Fig. 11 we enlarge the C.R.

for the fs ¼ 0.3 Hz case in the vicinity of 8.5 Hz and
9.1 Hz, for both choices of coupling. For the dataset
containing a signal with d2ϕ ¼ 10−9, we observe that,
despite being four Nyquist windows away from the injected
mass, the reconstructed ULDMmass is still consistent with
9.1 Hz at the 68.3 CL This is to be contrasted with the
dataset containing a signal with d2ϕ ¼ 1.4 × 10−9, for which
the best fit point lies in the vicinity of 9.1 Hz. Additionally,
in both cases the resolution on the mass is on the order of
the stacked frequency resolution Δfst ¼ 10−6 Hz. In agree-
ment with the notion of the TS as a measure of significance,
the contours of the more significant signal (lower panels)
are tighter.

V. DISCUSSION AND SUMMARY

Super-Nyquist ULDM signals, which we defined as
ULDM signals whose spectral content exceeds half of

an experiment’s sampling frequency, are a well-motivated
target for future broadband atom gradiometer experiments.
These signals, however, would be affected by spectral
features that deviate substantially from those of sub-
Nyquist signals, and so would not be correctly recon-
structed using the analysis routines previously discussed in
the literature. To address this lacuna, in this work we have
provided the first systematic approach to discovering super-
Nyquist ULDM signals with broadband atom gradiometers
through the use of a comprehensive likelihood formalism
and statistical framework.
To this end, we have conducted a detailed exploration of

the phenomenon of aliasing, whereby any super-Nyquist
signal is identified at a frequency between zero and the
Nyquist frequency. Importantly, even after aliasing to a
lower frequency, the width of the spectral line shape, which
exhibits a linear dependence on the ULDM mass (or,
equivalently, the ULDM frequency), remains unchanged.
As explained in Sec. IV B, this characteristic enables the
differentiation of aliased signals from nonaliased ones,
provided that the experimental frequency resolution, which
is determined by the integration time and the number of
stacks (cf. Table II), is sufficiently high.
Furthermore, in addition to the shift to lower frequencies,

we discussed two other aspects of aliasing: folding and
distortion. Folding refers to the reflection of the signal
around the Nyquist frequency, while distortion occurs when
the spectral content of a signal exceeds the frequency range
of a given Nyquist window and is added onto the original
signal spectrum, resulting in a substantially modified line
shape (cf. Secs. IV C–IV E). By accounting for all these
aspects of aliasing, we have shown that our likelihood
formalism can give an accurate reconstruction of the
original signal parameters, as long as the frequency
resolution is large enough. Indeed, we found that an
experimental (stacked) frequency resolution greater than
approximately 5 times the signal linewidth is sufficient.
A notable feature that occurs in the reconstruction of

super-Nyquist signals was demonstrated in Figs. 9 and 10.
Because ULDM frequencies that differ by integer multiples
of the sampling frequency are identified at the same aliased
frequency, the discovery analysis recovers discrete islands
of parameter space. Each island represents a set of ULDM
frequencies consistent with the best fit point. Within each
island, ULDM frequencies of the order of the experimental
(stacked) frequency resolution are found to be consistent
with the signal (cf. Fig. 11), while the overall number of
islands depends on the statistical significance of the ULDM
signal, in conjunction with the magnitude of the sampling
frequency.
Our systematic exploration of the phenomenon of alias-

ing has shown that the ability to accurately reconstruct
super-Nyquist ULDM signals depends primarily on exper-
imentally tunable parameters that can be set pre- or post-
data taking. These include, respectively, the sampling

14In the regime Tst
int > τc considered here, the scalar ULDM

signal amplitude also scales with the number of LMT pulses and
interrogation time as n and T5=4, respectively [12]. Changing
these parameters, however, changes the frequency at which the
experiment’s sensitivity peaks. In the super-Nyquist regime
considered here, any small change in these parameters may
dramatically reduce the size of the signal amplitude around the
best fit point. Hence, changing these parameters post-discovery
of a 5σ signal should be done with care.
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frequency and the sequence parameters, which affect the
significance of the ULDM signal for a given ULDM
coupling value, and the experimental stacked frequency
resolution. These considerations may inform future exper-
imental designs and enhance ULDM detection strategies
with upcoming atom gradiometers.
There is scope to go beyond the analysis presented in this

work in two primary ways. Firstly, we have neglected
sources of colored noise, such as gravity gradient noise
(GGN), which could dominate the background at both
frequencies below and above the Nyquist frequency. For
example, at frequencies below ∼0.5 Hz, GGN is expected
to eventually dominate the background of terrestrial long-
baseline experiments [20,46]. Therefore, high-frequency
signals of a ULDM nature that are aliased to low frequen-
cies, especially below 0.5 Hz, would have to contend with a
frequency-dependent background of a geological nature.
To accurately model this background, antialiasing filtering
techniques like those proposed in Ref. [47] could be
implemented to distinguish between the aliased and non-
aliased parts of the background spectrum. By leveraging
the dependence of the GGN contribution on the ground’s
vertical spectrum at the Earth’s surface and on local
geological properties, the filter could be modeled on local
density measurements and seismometer data [48].
Furthermore, colorednoise that dominates the background

above the Nyquist frequency would suffer from aliasing and
related effects discussed in this work. Colored noise whose
spectrum leaks beyond the Nyquist frequency will be folded
to lower frequencies and added to the nonaliased low-
frequency spectrum. Therefore, to accurately reconstruct a
super-Nyquist ULDM signal in the presence of this back-
ground, it would be necessary to subtract the expected
nonaliased low-frequency background spectrum from the
background model. Alternatively, to avoid introducing
systematic errors, it may be feasible to design gradiometer
sequences that are simultaneously sensitive to the nonaliased
low-frequency spectrum signal and insensitive to the ULDM
signal. In this case, a noise-free spectrum could be obtained
through spectral subtraction [49]. A more detailed inves-
tigation in this direction is left for future work.
In this work, we have also assumed that the sampling

frequency of the experiment is constant and known with
arbitrary precision. This assumption, which presents an
idealized scenario, leads to the second primary extension of
this work. Interestingly, as proven in Ref. [50], in the case
of unevenly sampled, the Nyquist frequency is given by
1=ð2ΩÞ, whereΩ is the largest factor such that the temporal
spacing between any sampled point is given by an integer
multiple of Ω. Hence, choosing Ω ¼ 0.1 s and performing
T int=Ω measurements at times ti ¼ niΩ, where ni is a
uniformly sampled integer between zero and T int=Ω, the
Nyquist frequency would be given by fNy ¼ 10 Hz.
Following this argument, measurements that are performed

at different times with finite precision would be charac-
terized by a very large Nyquist frequency [51]. For
example, assuming a timing precision on the order of
10−3 s, the Nyquist frequency will be bounded above by
5 × 102 Hz, where this bound will be reached in the limit
that no larger factors exist. Since the measurement of the
atom populations at the end of the experiment is dictated in
large part by the timing of lasers, we expect this timing
precision to be achievable. While this technique holds
promise for completely eliminating aliasing effects from
atom gradiometer data, its implementation would require
the application of the Lomb-Scargle periodogram [52],
which would modify both the statistical features of the
signal as well as the analytical form of the signal and
background. Therefore, further investigation of this
approach is deferred to future studies.
Finally, we emphasize that while our discussion has been

specifically tailored to scalar ULDM searches, the analysis
and findings of this work can be readily adapted to other
ULDM searches utilizing atom gradiometers, such as spin-1
DM [53], provided that the assumptions made here remain
valid. More generally, the conclusions of this work would
also be relevant to other state-of-the-art broadband experi-
ments hunting for ULDM candidates, including broadband
sensors searching for axionlike particles.
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APPENDIX A: DERIVING ALIASING FROM THE
PROPERTIES OF THE FOURIER TRANSFORM

In this Appendix, we will show how aliasing arises from
the properties of the Fourier transform of a continuous
time-dependent signal, which is sampled in the time
domain. For the sake of clarity and generality, we will
present an argument that is independent of the exact form of
the ULDM signal discussed in this work.
Let ΦðtÞ be a continuous time-dependent signal that we

wish to measure and analyze in the frequency domain. Let
us also assume that the signal is sampled at a rate fs ¼
1=Δt for a time T int → ∞, i.e., our time series is infinitely
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long.15 The sampled time-dependent signal can then be
written as ΦsðtÞ ¼ ΦðtÞШðtÞ, where ШðtÞ is the Dirac
comb and is defined as

ШðtÞ ¼
X∞

m¼−∞
δðfst −mÞ: ðA1Þ

Hence, the Fourier transform of the sampled signal ΦsðtÞ
takes the form

fΦsðfÞ ¼
Z

∞

−∞
ΦsðtÞe−2πiftdt

¼
Z

∞

−∞
ΦðtÞШðtÞe−2πiftdt: ðA2Þ

After making use of the Fourier series expansion of the
Dirac comb, namelyШðtÞ ¼ P∞

κ¼−∞ e2πiκfst [22], Eq. (A2)
can be written as

fΦsðfÞ ¼
X∞
κ¼−∞

Z
∞

−∞
ΦðtÞe−2πiðfþκfsÞtdt

¼
X∞
κ¼−∞

Φ̃ðf þ κfsÞ: ðA3Þ

That is, the Fourier transform of the sampled signal at f
corresponds to the sum of the Fourier transform ofΦðtÞ at f
and all of its aliases. Using the notation of Ref. [47], we
have

fΦsðfÞ ¼ Φ̃ðfÞ þ
X
κ≠0

Φ̃ðf þ κfsÞ: ðA4Þ

In turn, this implies that the PSD of the sampled signal Φs
is (up to a normalization factor)

SsðfÞ ¼ jfΦsðfÞj2

¼ jΦ̃ðfÞj2 þ
X
κ≠0

jΦ̃ðf þ κfsÞj2

þ 2
X
κ≠0

RefΦ̃ðfÞΦ̃�ðf þ κfsÞg

þ 2
X
κ≠κ0

κ;κ0≠0

RefΦ̃ðf þ κfsÞΦ̃�ðf þ κ0fsÞg: ðA5Þ

In the case of stochastic signals, it is natural to consider
the expectation value of the PSD. In particular, let us
assume that the signal of interest is a superposition of
Fourier modes, each of which is characterized by a random
phase that is uniformly sampled between 0 and 2π. In this

case, as the phases of different Fourier modes are uncorre-
lated and independent, the expectation value of the terms in
the last line of Eq. (A5) vanish, such that

hSsðfÞi ¼ hjΦ̃ðfÞj2i þ
X
κ≠0

hjΦ̃ðf þ κfsÞj2i

¼ hSðfÞi þ
X
κ≠0

hSðf þ κfsÞi: ðA6Þ

That is, the expected value of the PSD of the sampled signal
at f is the PSD of the continuous function SðfÞ plus the
sum of all of its aliases. As Φ̃ðfÞ¼ Φ̃�ð−fÞ, Φ̃ðf− jκjfsÞ¼
Φ̃�ð−fþjκjfsÞ. Thus, we can rewrite Eq. (A6) as a sum
over positive frequencies (i.e., f > 0 and κ ≥ 1), i.e.

hSsðfÞi ¼ hSðfÞi þ
X
κ≥1

hSðf þ κfsÞi þ hSð−f þ κfsÞi:

ðA7Þ
This completes the derivation. Importantly, we made no
assumption concerning the form of the amplitude of the
signal, so the results shown here apply for all stochastic
signals affecting an experiment. Within the context of atom
gradiometer experiments, these include the scalar ULDM
signal and colored noise, such as GGN.
White noise, e.g., atom shot noise, however, cannot be

described using the above analysis. Indeed, as white noise,
by definition, is nonzero at all frequencies, its aliased
spectrum would be infinite. Therefore, when considering
shot-noise limited experiments, we will assume that the
noise spectrum is band limited, which implies that aliasing
and folding do not affect the background.

APPENDIX B: TEST STATISTIC
FOR SETTING UPPER LIMITS

In this Appendix, we study the test statistic for setting
upper limits on the ULDM-SM coupling at particular mass
values. As before, we set θsig ¼ ðmϕ; d2ϕÞ, where we remind
the reader that mϕ is the ULDM mass and dϕ is the
coupling strength of the relevant linear interaction between
ULDM and SM operators. Thus, we can define the test
statistic for setting upper limits on the ULDM-SM coupling
dϕ as

qðmϕ; d2ϕÞ ¼

8>><
>>:

2 ln
LðdjMSþB;f ˆ̂θnuis;mϕ;d2ϕgÞ
LðdjMSþB;fθ̂nuis;mϕ;

bd2ϕgÞ d2ϕ ≥ cd2ϕ;
0 d2ϕ < cd2ϕ;

ðB1Þ

wherecd2ϕ is the value of d2ϕ that maximizes the likelihood at

fixed mϕ. Here, θ̂nuis denotes the values of the nuisance
parameters that maximize the likelihood in the signal-plus-
background hypothesis given the best-fit value of the

squared coupling strength cd2ϕ (i.e., the denominator term);
15We take this limit to avoid spectral leakage due to windowing

and to simplify the derivation.
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ˆ̂θnuis represents the values of the nuisance parameters that
maximize the likelihood in the signal-plus-background
hypothesis given the squared coupling strength d2ϕ (i.e.,
the numerator term).
In the limit of a large data sample, i.e., T int ≫ τc, the

signal is spread over multiple frequency bins. Hence, we
can invoke the Wald approximation and Wilks’s theorem
[37], which imply that the test statistic q at fixed mϕ is
described by a half chi-squared distribution with 1 degree
of freedom [61].16 For a given mϕ, the 95% confidence
level limit on d2ϕ is set when qðmϕ; d2ϕ;95%Þ ≈ −2.706. In
this limit, the Nσ confidence intervals on d2ϕ;95% can then be
computed via

qðmϕ; d2ϕ;95%�NσÞ ¼ −ðΦ−1ð0.95Þ � NÞ2; ðB2Þ

where Φ−1 is the inverse of the cumulative distribution
function for the Normal distribution. For our choice of
integration time T int ¼ 108 s and no stacking, this regime
applies for ULDM masses above ∼10−17 eV, i.e., frequen-
cies above 10−2 Hz. With mild stacking (e.g. Nstacks ¼ 10),
which reduces the value of the integration time by the
number of stacks Nstacks, this regime will still apply for
signals oscillating at frequencies greater than Oð0.1 HzÞ.

APPENDIX C: MONTE CARLO SIMULATIONS

In this section, we discuss in detail our approach toward
generating MC simulations of the data. We will first focus
on MC simulations of the signal in the time domain, which
we convert to a PSD in the frequency domain. After
showing that the statistical properties of the MC data agree
with Ref. [20], we will argue that the MC simulations can
be performed directly in the frequency domain. In light of
the noticeable reduction in computational time required to
generate the data, we highlight that all of the analysis
results presented in this work were performed on data
generated via the latter approach.

1. Time-domain approach

To simulate the signal in the time domain, we closely
follow the methodology developed in Ref. [24], which
consists of constructing the ULDM signal from the distri-
butions describing individual nonrelativistic classical scalar
fields. We build the total signal by summing over Nϕ ≫ 1
single field contributions.17 In detail, we define the contri-
bution to the signal from a single field as

ϕiðv; tÞ ¼
ffiffiffiffiffiffiffiffi
ρDM

p
mϕ

ffiffiffiffiffiffi
Nϕ

p Bi cos ðωitþ θiÞ; ðC1Þ

where i∈ 1;…; Nϕ identifies a specific ULDM particle, and
θ∈ ½0; 2πÞ is a random phase. The angular frequency ωi ¼
mϕð1þ v2i =2Þ of eachULDMfield is set by theDMmassmϕ

and DM speed vi ∼ 10−3. The amplitude of the signal is
defined as

Bi ¼ 8dϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p ωA

ωi
sin

�
ωinL
2

�
sin

�
ωiT
2

�

× sin

�
ωiðT − ðn − 1ÞLÞ

2

�
; ðC2Þ

where all of the variables are defined in Sec. II A.We remind
the reader that we assume a constant sampling frequency, so
that the fieldwill be evaluated atΔt time intervals for t ≤ T int.
To check the validity of our likelihood model, we

computed the average of the PSDs from multiple realiza-
tions of the total ULDM signal and found it to be in
excellent agreement with the expected PSD in Eq. (10) for
the case of nonaliased, aliased and distorted signals. As an
example, consider an aliased ULDM signal in Fig. 12
between 0 and fNy ¼ 0.5 Hz at f ¼ 0.2 Hz when mϕ ¼
2π × 9.2 Hz and d2ϕ ¼ 1; the experimental parameters are
the same as in Table I, except for T int ≈ 100τc ∼ 103 s,
atom shot noise variance of 10−6 and unphysical speed

FIG. 12. Comparison between the expected PSD of a time-
dependent ULDM signal with atom shot noise (dashed line) vs
PSD averaging over 500 MC simulations performed in the time
domain (filled bars). The signal is generated for mϕ ¼ 2π×
9.2 Hz, d2ϕ ¼ 1 and an atom shot noise variance of 10−6, except
for unphysical speed distribution parameters, namely v0 ¼ 2.38 ×
104 km=s and vobs ¼ 2.52 × 104 km=s; the experimental param-
eters are the same as in Table I.

16This follows from the fact that we do not consider downward
fluctuations of the background as evidence against the back-

ground-only hypothesis, i.e., we are effectively testing forcd2ϕ ≥ 0.
17Owing to the computational cost associated with building

fields with large occupation numbers, we set Nϕ ≳ 103.
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distribution parameters, namely v0 ¼ 2.38 × 104 km=s and
vobs ¼ 2.52 × 104 km=s.18 The dashed line in Fig. 12
shows the sum of the expected PSD for the ULDM signal
in Eq. (10) and atom shot noise, whereas the filled bars
correspond to the result of PSD averaging over 500 MC
simulations of the ULDM signal plus atom shot noise data
in the time-domain. As expected, there is an excellent
agreement between the two results, thereby providing a
validation of our approach.

2. Frequency-domain approach

In the previous section, we showed that by generatingMC
simulations of a time-dependent ULDM signal in time-
domain, and taking the PSD average ofmultiple simulations,
the resulting PSD matches well with Eq. (10). However,
for realistic ULDM signals that have a coherence time of
OðyearsÞ, simulations in the time-domain are not ideal due to
a large computational cost associated with sampling the
ULDM field over multiple coherence times, especially when
the sampling rate (or time separation) is high (small); the
time-series data in such case would be too enormous to store
and analyze. In this case, MC simulations in the frequency
domain directly offer a viable solution.
As shown in Ref. [24], the expected PSD value for a time-

dependent ULDM signal is exponentially distributed with a
mean given by Eq. (10). Thus, we can generate an expected
PSD sample for a ULDM signal by simply taking random
samples from this distribution at each frequency bin, which
drastically reduces the time required togenerate aMCsample.
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