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The axion is well motivated in physics. It solves the strong charge conjugation-parity reversal problem
CP in fundamental physics and the dark matter problem in astronomy. Its interaction with the
electromagnetic field has been expected but never detected experimentally. Such particles may convert
to radio waves in the environment with a strong magnetic field. Inspired by the idea, various research
groups have been working on theoretical modeling and radio data analysis to search for the signature of
radio signals generated by the axion conversion in the magnetosphere of compact stars, where the surface
magnetic field as strong as 1013–1014 G is expected. In this work, we calculate the observational properties
of the axion-induced radio signals (AIRSs) in the neutron star magnetosphere, where both the total intensity
and polarization properties of radio emission are derived. Based on the ray tracing method, assuming 100%
linear polarization of radio waves generated in each conversion, we compute the polarization emission
profile concerning different viewing angles. We note that plasma and general relativistic effects are
important for the polarization properties of AIRSs. Our work suggests that AIRSs can be identified by the
narrow bandwidth and distinct polarization features.
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I. INTRODUCTION

Since the 1970s, the StandardModel of particle physics has
been the most successful description of all fundamental
interactions other than gravity. It is a quantum field theory
that has in many cases been verified experimentally, mainly
with accelerators. Despite the successes, the Standard Model
has some theoretical shortcomings. One of these issues is the
strong CP problem. The strong CP problem is a puzzle that
the observations (e.g., the vanishing small electric dipole
moment for neutrons) indicate a conserved CP in spite of the
fact that the theory needs fine-tuning tomeet such a symmetry.
Dark matter constitutes the vast majority (∼30%) of

matter in our Universe. The evidence for the existence of
dark matter has been abundant and convincing over the past
several decades (e.g., [1–4]). Nevertheless, it seems that no
particles within the Standard Model can play the role
required of being cold, stable, and weakly coupled.
Axions may solve the strong CP problem [5] and dark

matter problem [6–8] in a coherent way. Axions are

expected to have the following properties. First, they are
pseudoscalar particles. Therefore, the axion’s equation of
motion is described by the simple Klein-Gordon equation.
Second, the axion mass ma, induced by quantum
chromodynamics (QCD) instantons can be calculated in
chiral perturbation theory [9], which is given by
ma;QCD ≈ 6 × 10−6 eV ½1012 GeV=ðfa=CÞ�, where fa=C is
a model-dependent value. Third, it is expected to weakly
interact with the electromagnetic field L ∝ gaγγaE · B.
At present, a large number of terrestrial experiments have

been made to probe the parameter space of axion-photon
couplings. The axion haloscopes have been designed to
search for photon signals from axions using the microwave
cavity resonators. Experiments based on such ideas include
examples of the Rochester–Brookhaven–Fermilab [10],
University of Florida [11] and ADMX [12–15].
Despite those terrestrial experiments, a variety of astro-

physical and cosmological observations can also be used to
constrain the parameter space of axions or axionlike particles.
The ratio of horizontal branch stars to red giants in the
Galactic globular clusters is affected by axion-photon con-
version inside stars and can be used to place a constraint on
axion-photon couplings [16]. A cosmological example is
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using the x-ray emission excess from axion-photon conver-
sion in the magnetic fields offered by the clusters of
galaxies [17].
Recently, it is widely discussed that axionsmay convert to

radio frequency photons in the magnetosphere of neutron
stars, a compact star with surface strong magnetic field [18].
The radio signature of such a process is a narrow spectral
line at a frequency mainly determined by the axion
mass [19–22]. Reference [23] first employed the ray tracing
method to obtain detailed observational properties of such
process. This was further developed to account for light
refraction andDoppler broadening in [24,25].Also, a variety
of groups have begun to work on analyzing radio data to
search for evidence of axion conversion [26–30].
In this work, we investigate the polarization properties

of axion conversion in the magnetosphere of compact
stars. Polarizations have been briefly discussed in the
supplemental material of [20], where they gave an
analytical description of the polarization profile by
assuming radial trajectories for axions and converted
photons. We extend the up-to-date ray tracing method
to provide more accurate polarization properties by
building a detailed numerical model for calculating
axion-induced emission from compact star systems.
Those unique polarization signatures can be helpful in
the future to identify axion-induced radio signals (AIRSs)
and mitigate potential false alarms.
The remainder of this paper is organized as follows. In

Sec. II, we describe the methods for calculating axion-
induced emission, paying particular attention to polariza-
tion properties. In Sec. III, we show the results of our
calculation. Finally, we give a conclusion in Sec. IV.

II. METHODS

A. Axion-photon conversion

To derive the axion-photon conversion probability, we
start from the standardLagrangian for the axion, photon, and
their couplings. Using the Euler-Lagrangian equation,
Ohm’s law, and assuming that the dielectric tensor and
magnetic field are time invariant, the equations ofmotion for
electric field E and axion field a are (see, e.g., [20–22,25])

−∂2t aþ∇2a ¼ m2
aa − gaγγE · B; ð1Þ

−∇2Eþ∇ð∇ ·EÞ ¼ ω2Dþ ω2gaγγaB; ð2Þ

whereD ¼ ϵE is the electric displacement field and ϵ is the
dielectric tensor. Although the plasma of the pulsar mag-
netosphere is believed to be relativistic [31], we take the
magnetoionic approximation (magnetized subrelativistic
plasma) in the current paper and leave thework of relativistic
plasma modeling for future work. Under the magnetoionic
approximation, the dielectric tensor depends on plasma
frequency and gyrofrequency (see Appendix A). Then, in

the short planar wave limit, the radio wave and axion
interaction is described by [20,25]
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where ω and ωp are the photon and plasma frequency
(angular frequency), θ̃ is the angle between magnetic field
and direction of axion propagation, andBt is the component
of the magnetic field transverse to the axion propagation.
Taking the Wentzel-Kramers-Brillouin (WKB) approxima-
tion will help to simplify the first equation to a Schrödinger-
like equation, which has a solution in integration form.
Using stationary phase approximation, this solution can be
further simplified to give the axion-photon conversion
probability (Appendix B),

Pa→γ ¼
1

ω2

����Ey

a

����2 ¼ πg2aγγB2
t

2ω0
pðxcÞvc

; ð4Þ

where ω0
pðxcÞ and vc are the derivative of plasma frequency

along the axion trajectory and axion velocity at the point of
resonant conversion, which is given by the stationary point
condition,

ωpðxcÞ2 ¼
m2

aω
2

m2
a cos2 θ̃ þ ω2 sin2 θ̃

: ð5Þ

In the nonrelativistic limit, the energy-momentum relation
becomesω → ma, and the resonance condition simplifies to
ωpðxcÞ ¼ ma. Note that Eq. (4) diverges when ω0

p → 0.
This occurs near the edge of images, which was pointed out
and discussed in [24]. The divergence is caused by the
breakdown of WKB approximation. One needs to solve
Eq. (B8) for the rigorous results or use a conservative
remedy like truncating the conversion length by some
typical value [22]. Here, we take the approach of
Ref. [24] by simply excluding the parameter space where
WKB approximation is invalid.

B. Magnetosphere

In order to determine the plasma frequency, a detailed
model describing the magnetosphere of compact stars is
required. We adopt the classical Goldreich-Julian (GJ)
model [32]. The GJ model assumes a static and corotating
magnetosphere in the presence of a dipole magnetic field
given by1

1Strictly speaking, the GJ model is not applicable to inclined
rotator nor active pulsars [33]. However, since we are mainly
interested in the region close to the star surface, the GJ model
provides a reasonable start.
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where χ is the inclination angle, ψ ¼ ϕ −Ωt, B0 is the
surface magnetic field of a compact star, R is the radius, and
Ω ¼ 2π=P is the angular rotation velocity. The GJ model
gives the charge number density,

nGJðrÞ ¼
2Ω ·B

e
1

1 −Ω2r2 sin2 θ
: ð9Þ

Assuming nc ¼ jnGJj and neglecting the relativistic cor-
rections in the denominator, the conversion surface can be
derived using

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2jnGJj

me

s
; ð10Þ

and the resonant conversion condition ωp ¼ ma. In prac-
tice, the GJ density may not give the true charge density in
the magnetosphere; that electron density can be 100–1000
times larger [31]. In addition, dipole magnetic field
configuration may not hold when approaching the surface
of compact stars; it will be more appropriate to include
multipolar fields [34]. Although we tested the effects of
multipolar fields with a perturbation of approximately 10%
quadrupole components, more rigorous work is left for
future work.

C. Axion density

In this paper, as axions are regarded as the dark matter
counterpart, the terms “axion” and “dark matter” are
interchangeable in the following text. In general, the
intensity of AIRSs equals axion flux density times
axion-photon conversion probability. Thus, the distribution
function is required to derive the local axion density near a
compact star (CS). According to Liouville’s theorem, the
distribution function is conserved along trajectories,
namely,

fðrCS; vÞ ¼ f∞ðr∞; v∞Þ; ð11Þ

where f∞ðr∞; v∞Þ denotes the distribution function far
away from the compact star, and v∞ ¼ v∞ðrCS; vÞ is the
velocity far away from the star for an orbit with velocity v at
location rCS. Assuming that the velocity distribution of
dark matter (in the Galactic rest frame) is given by the
Maxwell-Boltzmann distribution and is isotropic (in the

frame of a compact star) far away from the compact star,
then the distribution function is given by

f∞ðr∞; v∞Þ ¼
ρDM∞

ðπv20Þ3=2
exp

�
−
v2∞
v20

�
; ð12Þ

where ρDM∞ is the local Galactic dark matter density far
away from the compact star and v0 is the velocity
dispersion of dark matter. Because of the conservation of
energy, the relation between v∞ and v is [23,35]

v2∞ ¼ vðrÞ2 − 2GM
r

; ð13Þ

where M is the mass of the compact star. Substituting this
into Eq. (12) and integrating over all allowed velocities,
jvj ≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GM=r
p

, leads to the dark matter density at a given
radius r. Furthermore, since gravity dominates near the star
surface, i.e., 2GM=r ≫ v20, the enhanced local dark matter
density can be further approximated by [20,22,23,35]

ρðrÞ ≃ 2ρDM∞ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
1

v0
: ð14Þ

Here, the enhancement of dark matter density is a natural
consequence of compressing the momentum space volume.
Note that the assumption that darkmatter velocity distribution
is isotropic in the frame of a compact star (i.e., vCS ¼ 0) is not
necessarily valid, since the compact star and dark matter are
both moving subrelativistically, where their velocity is of the
same order of magnitude [22,23]. At present, we use the
isotropic dark matter density (14) for further calculation and
leave the anisotropic case for future investigations.

D. Polarization

Polarization, a statistical property of quasimonochro-
matic electromagnetic waves, is described by the Stokes
parameters. Following [36], for electric field components
E1 along x̂ and E2 along ŷ, the Stokes parameters
(fI; Q;U; Vg) are defined via the second-order correlation
of the electric field,

I ≡ hE1E�
1i þ hE2E�

2i; ð15Þ

Q≡ hE1E�
1i − hE2E�

2i; ð16Þ

U≡ hE1E�
2i þ hE2E�

1i; ð17Þ

V ≡ −iðhE1E�
2i − hE2E�

1iÞ: ð18Þ

The x-y plane is defined perpendicular to the direction of
the converted photon’s trajectory. Without loss of general-
ity, x̂ is chosen to be coplanar with the direction of the
compact star’s spin rotation Ω̂; in other words,
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ŷ ¼ Ω̂ × k̂; x̂ ¼ k̂ × ŷ; ð19Þ

where k̂ is the unit vector of the photon’s 3-momentum.
After determining the direction of momentum, we can
calculate the Stokes parameters in terms of the above bases.
We now show how to calculate polarization within our

framework using Eqs. (15)–(18). Polarization properties
can be inferred from the first equation of Eq. (3), where

gaγγBtω
2

1 − ω2
p

ω2 cos2 θ̃
a ð20Þ

acts as a source term to the electric field Ey. Hence, this
axion-induced electric field is aligned with the tangential
component of the compact star’s magnetic fields Bt.
Suppose that the magnetic field is B at the conversion
point, using the bases defined in Eq. (19), the angle
between Bt and x̂ is given by

cos θ ¼ B · x̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB · x̂Þ2 þ ðB · ŷÞ2

p ; ð21Þ

with the electric field denoted E whose magnitude is
proportional to the square root of the intensity of axion-
induced emission (namely, E ∝

ffiffi
I

p
), defining

E1 ¼ E cos θ; E2 ¼ E sin θ: ð22Þ

Thus, the Stokes parameters are calculated as

Ii ¼ E2
1;i þ E2

2;i; ð23Þ

Qi ¼ E2
1;i − E2

2;i; ð24Þ

Ui ¼ 2E1;iE2;i; ð25Þ

Vi ¼ 0; ð26Þ

for arbitrary photon i. Here, Vi is set to zero so that the
polarization is 100% linearly polarized for each converted
photon, since E is perfectly aligned with Bt. As the AIRSs
are incoherent emissions, the total Stokes parameters are

I ¼
X
i

Ii; ð27Þ

Q ¼
X
i

Qi; ð28Þ

U ¼
X
i

Ui; ð29Þ

V ¼
X
i

Vi: ð30Þ

With the total Stokes parameters, one can derive degree of
linear polarization (Π) and position angle (χ) using the
definitions of

Π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

p
I

; χ ¼ 1

2
arctan

U
Q
: ð31Þ

E. Ray tracing

Ray tracing is a technique of computer graphics to
simulate lighting scenes. The ray tracing method obtains
an image by tracing the path of the light originating from
receivers toward the light sources. The basic algorithm of
the ray tracing is as follows: (1) grid the image plane into
small pixels; (2) determine each ray path according to the
receiver position and the center of a pixel in the image
plane; (3) trace each ray backward according to the geo-
metric optics until hitting the emitter; and (4) sum the
contribution of image pixels to compute the observed
quantities.
This method was first introduced in Ref. [23] to obtain

the observational properties of axion-induced emission. It
was further developed to consider an inhomogeneous and
time-dependent magnetosphere as well as including the
effects of gravity in [24]. At the same time, Ref. [25] also
tried to investigate the plasma effects on the converted
photons’ propagation. However, Ref. [25] employed a
forward ray tracing method, where photons start from
the conversion point and are traced forward to the celestial
sphere at infinity. The distinction between backward and
forward ray tracing is only methodological and should not
give a significant difference in the final results. In our
framework, we use the backward ray tracing method as was
used in [23,24].
With the ray tracing method, the flux of axion-induced

emission can be calculated with [23,24]

Fobs ¼
ðΔbÞ2
D2

X
i

�
nava
4π

Pa→γ

�
ðθiobs;ϕi

obsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Iiobsðθiobs;ϕi

obsÞ

; ð32Þ

where Δb is the size of each pixel, D is the distance from
the observer to the compact star, and na and va are the
number density and velocity of axion dark matter. Our ray
tracing procedures are concluded as follows.
(1) First, we define the projection image plane as a

square plane perpendicular to the line of sight toward
the compact star at a distance D from Earth. This
plane is located at a distance d from the compact star.
The latter distance is chosen to be larger than the
maximum distance at which the resonant axion-
photon conversion occurs. The total area of the
projection image plane should be large enough to
cover the whole conversion region. This plane is
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divided into square pixels of size Δb, whose center
identifies a specific photon trajectory i.

(2) For each pixel, we simulate photon trajectory toward
a compact star by numerically computing its geo-
desic starting from the center of the corresponding
pixel. The direction of initial velocity is taken to be
perpendicular to the projection plane.

(3) With a specific starting time for each photon, the
plasma frequency can be calculated along each
trajectory. The resonant conversion point is deter-
mined by solving equation ωpðrcÞ ¼ ma. The posi-
tion rc should be identified as the first point that
comes to satisfy the resonant condition along each
trajectory. Other possible solutions should be omit-
ted since these photons must have traveled through a
plasma region with ωp > ω, therefore they are
scattered during their travel. We do not need to
worry about such cases if we include plasma effects
since reflection is automatically embodied in the
geodesics. Also, the simulation of photon propaga-
tion should be truncated once it hits the surface of
the compact star since the resonant conversion
should take place outside the compact star.

(4) The power of axion-induced emission from each
pixel is computed in the conversion region using
Eq. (32) [terms in the summation notation times the
area of the pixel ðΔbÞ2]. Those pixels that do not
have a crossing between photon trajectories and
conversion surface of course do not contribute to the
total emission. The polarization of each pixel is
obtained using Eqs. (22)–(26) after the calculation of
its corresponding power.

(5) The total axion-induced emission power is obtained
by summing over all pixels in the projection image
plane. The total Stokes parameters are calculated in
the same way as is shown in Eqs. (27)–(30).

We consider two photon propagation models in this paper,
propagation in vacuum [23] and in cold plasma [24]. We
start with deriving the covariant theory of photon propa-
gation using the eikonal equation [37], where the eikonal
can be written as

Φðλ1; λ2Þ ¼
Z

λ2

λ1

dλkμ
dxμ

dλ
ð33Þ

using calculus of variation and one obtains

dkμ
dxν

dxμ

dλ
−
dkν
dλ

¼ 0: ð34Þ

Let the dispersion relation be written in the invariant
form Dðk; xÞ ¼ 0 in a slowly varying medium. The
dispersion relation must be satisfied everywhere along
the ray path; this requires not only Dðk; xÞ ¼ 0 but also
dDðk; xÞ=dλ ¼ 0 [38], i.e.,

dDðk; xÞ
dλ

¼ dkμ
dλ

∂Dðk; xÞ
∂kμ

þ dxμ

dλ
∂Dðk; xÞ

∂xμ
¼ 0; ð35Þ

be satisfied along the ray path. Identifying Eqs. (34) and
(35) leads to

dxμ

dλ
¼ ∂Dðk; xÞ

∂kμ
;

dkμ
dλ

¼ −
∂Dðk; xÞ

∂xμ
; ð36Þ

which are the Hamiltonian equations [39] for light propa-
gation. For a cold isotropic plasma, the dispersion relation
is given by D ¼ gμνkμkν − ω2

p. Inserting this into the above
equations gives

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ −

1

2
gμν∂νω2

p; ð37Þ

where λ is the worldline parameter. This is the equation
used for computing the photon propagation in the presence
of plasma in curved spacetime. Also, we can use Eq. (36) to
eliminate λ and just use coordinate time t as the worldline
parameter.
Including plasma refraction and curved spacetime has

two accompanying effects: plasma lensing and gravita-
tional redshift. They can be concluded in (see [24])

Iobs
n2obsω

3
obs

¼ Iem
n2emω3

em
; ð38Þ

where subscripts “obs” and “em” represent quantities
obtained at the location of the projection image plane
and the conversion region, respectively. Taking a
Schwarzschild metric for the compact star gives gravita-
tional redshift as

ω3
obs

ω3
em

¼
�
1 −

rs
rc

�
3=2

; ð39Þ

where rs ¼ 2GM is the Schwarzschild radius of the
compact star. Plasma lensing is included in the refractive
index n, taking nobs ¼ 1, and [24]

n2em ≈
1

1 − rs=rc

�
rs
rc

þ v20

�
; ð40Þ

thus, n2obs=n
2
em ¼ 1=n2em ≫ 1; this is where plasma lensing

comes to work.
Furthermore, the influence on polarization due to light

bending should be studied carefully. For curved photon
trajectories, the directions of 3-momentum for different
photons are different at the location of conversion points.
Therefore, the basis vectors defined in Eq. (19) are not the
same for different photons, and then Stokes parameters
cannot be added directly using Eqs. (27)–(30). Instead, we
utilize the following equation to parallel transport the
polarization vectors [40]:
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df̂
ds

¼ −k̂
�
f̂ ·

dk̂
ds

�
; ð41Þ

where k̂ is the unit vector for the propagation direction, s is
the distance along the light ray, and f̂ is the unit polarization
vector. This propagation law can be derived from
Maxwell’s equations using eikonal approximation and is
shown to be consistent with Fermi-Walker transport in
three-dimensional space. Also, if we regard the refractive
index as a space metric, this formula implies that the unit
polarization vector is parallel transported along the light ray
(see Appendix C). With this formula, unit polarization
vectors can be transported to the projection image plane
where the basis vectors are the same, whereupon we can
add them incoherently as described in the ray tracing
procedure.
At this stage, the initial conditions can be set for

simulating the photon trajectories. The equation to be
solved is Eq. (37), which consists of four second-order
differential equations. We can divide them into eight first-
order differential equations for numerical integration. Since
we can eliminate the parameter λ and use the coordinate
time as the worldline parameter, we can just solve seven
first-order differential equations. The initial time for each
photon is set by the specific phase of the rotation period; the
initial 3-coordinate is set by the location in the projection
image plane. The 4-momentum comprises the frequency
and 3-momentum. The initial frequency should satisfy
jω −maj=ma ≤ v20 ∼ 10−6. The initial direction for the
3-momentum is set as described in the ray tracing proce-
dures which is perpendicular to the projection image
plane2; the amplitude of the 3-momentum is determined
by the frequency and dispersion relation. With the initial
conditions all set up, we can numerically solve the geo-
desics and follow the procedures described above to obtain
the axion-induced emission. Things get much easier for the
vacuum case, where photons travel in straight lines. We just
sample some points along a straight line and look for the
local maxima of plasma frequency. With these local
maxima of ωp, we can then search for the first point that
satisfies ωp ¼ ma. This method can be much more efficient
and accurate than propagating photons in a straight line.
Our code is written in C++. The fifth-order Runge-Kutta-

Fehlberg method [41] is employed to solve the coupled
differential equations, where the initial integration step size
is refined to achieve the relative error specification of 10−8.
Because of the geometric self-similarity, we use the radial
distance as the scale of initial trial integration step size, so
that h ¼ r=104 with r being the photons’ altitude. During
the step refining processes, the true step size can only be
smaller than the initial value. For the plasma case, our code

performs 5 × 105 trajectory simulations within 3.5 h on a
single CPU core, while it is much faster for the vacuum
case, which can simulate 5 × 105 trajectories within
only 12 s. Nevertheless, with the help of importance
sampling, the time cost of generating one projection image
for the plasma case reduces to 10–20 min without loss of
accuracy.

III. RESULTS

As an example, based on the above discussions, we
compute the AIRSs from a single isolated slow rotating
neutron star, J0806.4-4123. Its rotation period is
P ¼ 11.37 s. It is a nearby system, i.e., D ≈ 250 pc from
Earth [42]. Its magnetic field is expected to be strong
[surface magnetic field B0¼2.5×1013G ð1G¼10−4 TÞ].

FIG. 1. Radiated power in projection image plane: vacuum
versus plasma. Snapshots of the radio photons at frequencies
ω ¼ ma produced by axion conversion in the magnetosphere as
seen in the projection plane perpendicular to a viewing angle of
θ ¼ 36°. The benchmark scenario is chosen with an inclination
angle of χ ¼ 18°, gaγγ ¼ 10−12 GeV−1, and ma ¼ 0.5 μeV. The
left column shows the results of straight line propagation through
vacuum, reproducing the results of [23]. The right column results
from including plasma effects, reproducing the results of [24].
From top to bottom, we show the results for pulse phases of 0.3,
0.4, and 0.5. All six plots share the same color bar, which is
shown next to the right column and they are shown in log scale.

2Note that this is valid as long as the projection image plane is
placed at a relatively large distance.
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Those properties make it a good target to search for AIRSs.
We take the mass of the star to be 1M⊙, the radius of 10 km,
and ρ∞DM ¼ 0.3 GeV=cm3 and v0 ¼ 200 km=s for the local
density and velocity dispersion for dark matter particles,
respectively.

A. Projection image

The intensity of AIRSs in the projection image plane is
shown in Fig. 1. The viewing angle (the angle between line
of sight and the spin axis) of these projection images is
θ ¼ 36° with an inclination angle of χ ¼ 18°. The axion
mass chosen for calculation is ma ¼ 0.5 μeV and the
axion-photon coupling constant is gaγγ ¼ 10−12 GeV−1.
From the figure, one can see that including plasma and
general relativistic effects can cause significant differences
in the AIRSs. As is also mentioned in [24], the radiation
region gets smaller and splits up when including plasma
effects. Although the image size is shrunk relative to the
vacuum case, the total axion-induced emission power does
not decrease significantly (see the colors in Fig. 1 or the
axion-induced emission pulse profile shown later), in some
cases, it even increases significantly. Note that our calcu-
lations of projection image for the vacuum case reproduce
the results derived in [23] and for the plasma case
reproduce the results obtained in [24].

B. Axion-induced emission pulse profile

In Figs. 2–4 we report the total axion-induced emission
power (assuming the contribution of all the pixels) along
with polarization properties as a function of pulsar rota-
tional phases. The same as the projection image, we show
the results of both the vacuum case and plasma case for

comparison. The three figures correspond to three different
viewing angles θ ¼ 36°; 54°, and 72°, while inclination
angle, axion mass, and axion-photon coupling constants are
the same as before. Within each figure, the upper panel is
the position angle of polarization, the middle panel is the
degree of linear polarization, and the lower one is the axion-
induced emission pulse profile in units of watts.
From the three lower panels, as mentioned above,

including plasma effects does not decrease the maximum
radiated power significantly. However, the profile shape
changed significantly so that the contrast (i.e., the pulse
amplitude divided by mean flux) of the signal pulse
becomes higher. It also causes larger variations concerning
different viewing angles. From the three middle panels, a
larger variation also occurs in polarizations. First, we find
that the degree of linear polarization changes along with
axion-induced emission power for the vacuum case, while
it does not evolve along with total power in the plasma case
and gets more complicated. Second, the degree of linear
polarization in the vacuum case ranges from 0 to 0.2
(θ ¼ 36°), while it gets higher in the plasma case, ranging
from 0.1 to 0.8 (θ ¼ 36°). This can be explained qualita-
tively. In our framework of calculating polarizations, we
assumed 100% linear polarization for each pixel. To obtain
total polarizations, we sum over all pixels incoherently,
which decreases the degree of linear polarization. However,
as can be seen from Fig. 1, including plasma effects splits
the projection image into several smaller regions, and
within each region the degree of linear polarization is
high due to the pixels therein sharing similar position
angles. Thus, summing over these localized highly linearly
polarized regions produces a higher degree of linear
polarization.

FIG. 2. Axion-induced radio emission as a function of pulse phases: vacuum versus plasma. A comparison of axion-induced emission
pulse profiles and polarizations without and with plasma is shown in the left and right columns, respectively. Each column shows the
position angle (P.A.) of polarization (upper), the degree of linear polarization [see Eq. (31)] (middle), and the total power (unit in watts)
of axion-induced emission (lower). The viewing angle of this figure is 36°. Other parameters are set the same as the benchmark scenario
used in Fig. 1.
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C. Convergence and robustness tests

We check the convergence and robustness of our
calculation by comparing the results computed with differ-
ent setups, i.e., number of pixels, integration step size, and
small perturbations to magnetic field models. The results
show that our calculation achieves convergence at the 7%
level for different numbers of pixels and 3% level for a
different choice of step size. Also, we note that a 10%
perturbation to the dipole magnetic field configuration will
not make a significant difference to the AIRS pulse profile
or polarization. The details can be found in Appendix D.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have developed the framework to
numerically compute the AIRSs from the magnetosphere of
neutron star systems, where the intensity and polarization
properties can be computed with the ray tracing method.

We find that an inclined magnetic field configuration of a
neutron star leads to nontrivial polarization structures in
AIRSs. Our calculation reveals that the AIRSs are domi-
nated with linear polarization, which can be even higher
considering plasma effects in photon propagation. We note
that the position angle of linear polarization for the AIRSs
does not follow the well-known “S” curve seen in many
pulsars and modeled by the rotating vector model [43]. In
our case, although the direction of the electric field of
AIRSs at the emission point still follows the local magnetic
field direction, the parallel transport and superposition of
polarization vectors lead to a more complex situation. Thus,
the AIRSs can be identified from pulsar emission (if any)
by (1) a narrow band radio signal with a frequency centered
at axion mass, (2) a distinct polarization feature within the
narrow frequency band compared to the neighbor frequen-
cies, and (3) linear polarization being dominant in the
narrow band. Given that radio frequency interference is

FIG. 3. Axion-induced radio emission as a function of pulse phases: vacuum versus plasma. This figure is the same as Fig. 2, only with
a different viewing angle of 54°.

FIG. 4. Axion-induced radio emission as a function of pulse phases: vacuum versus plasma. This figure is the same as Fig. 2, only with
a different viewing angle of 72°.
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usually circularly polarized and pulsar radiation properties
in general evolve smoothly as functions of frequency, the
polarization feature will help us truly “identify” the axion
events in future observations.
There are three caveats in our modeling. We excluded the

region where the WKB approximation is invalid, assumed
an isotropic distribution of dark matter particles, and
adopted the stationary GJ magnetosphere model. As one
would expect, the AIRS flux is low in the region where
WKB approximation is invalid and dark matter should be
isotropic at the small scale of the pulsar magnetosphere; the
key issue here is the unknown magnetic field configuration.
We had estimated the effects of the magnetic field con-
figuration via tests of perturbing the dipole field. Since the
dominant radiation originates from the low altitude (strong
magnetic field and higher plasma density), we expect the
surface magnetic field of neutron stars plays a vital role in
determining the properties of AIRSs. In the future, a more
realistic model on AIRSs is required to account for the
effect.
We compare our results with those in [23,24]. Our results

for the vacuum case agree perfectly with [23], whereas for
the plasma case, there exist some differences with [24]. The
main difference comes from the scenario with a viewing
angle of θ ¼ 54° and axion mass ofma ¼ 0.5 μeV. We find
that the profile shows two local maxima (or peaks) at the
pulse phase of 0.25 and 0.75. The same conflict remains
when we switch off the plasma effects. Peaks at such phases
are expected. In the GJ magnetosphere model, there exists a
null charge surface where plasma frequency is zero (i.e.,
whereΩ ·B ¼ 0). This surface is located at a polar angle of
θ ¼ arccosð1= ffiffiffi

3
p Þ ≈ 54°. Therefore, photons at low alti-

tudes can propagate along the null charge surface slit
without being significantly affected by the plasma effects.
Those photons are at the pulse phase of 0.25 and 0.75 with
an inclination angle of 18° and a viewing angle of 54°. A
more recent work [44] resembles the double-peak features
of our results at phase 0.25 and 0.75. However, due to
different settings of model parameters, it is hard to evaluate
if the results are compatible with our findings.
At low altitudes, the axion-photon conversion proba-

bility gets higher due to the higher magnetic field [Eq. (4)],
thus giving a peak to the pulse profile at those phases. Thus,
if the viewing angle is 36°, then we would expect a peak at
the pulse phase of 0.5 (since 36° ¼ −18°þ 54°), as is
shown in Fig. 3. If the viewing angle is 72°, then a peak
should be expected at the pulse phase of 0 or 1 (since
72° ¼ 18°þ 54°, see Fig. 4).
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APPENDIX A: DIELECTRIC TENSOR

In this appendix, we describe the derivation of the cold
plasma dielectric tensor relevant for solving axion electro-
dynamics in Sec. II A. We follow the single particle theory
here. For the current problem, the single particle theory
delivers the same results as the more refined kinetic
theory for plasma [45]. The equation of motion for a
nonrelativistic charged particle is

m
dv
dt

¼ qðEþ v × BÞ; ðA1Þ

along with the expression for the current,

j ¼ nqv: ðA2Þ

For the time-harmonic field with a static background
magnetic field B0, we have

E ¼ E1eiðk·r−ωtÞ; ðA3Þ

B ¼ B0 þ B1eiðk·r−ωtÞ; ðA4Þ

v ¼ v1eiðk·r−ωtÞ; ðA5Þ

where the coordinate is chosen such that static magnetic
field B0 is along the z direction, and jB0j ≫ jB1j. Hence,
Eq. (A1) becomes

−iωmv1 ¼ qðE1 þ v1 ×B0Þ; ðA6Þ

where the second-order terms (e.g., v1 ×B1) have been
neglected. The solution to this equation is given by

vx ¼
iq

mðω2 − ω2
cÞ
ðωEx þ isgnðqÞωcEyÞ; ðA7Þ

vy ¼
iq

mðω2 − ω2
cÞ
ð−isgnðqÞωcEx þ ωEyÞ; ðA8Þ

vz ¼
iq
mω

Ez; ðA9Þ

where sgnðqÞ ¼ q=jqj denotes the sign of the charge and
ωc ¼ jqjB0=m is the cyclotron frequency. Using Ohm’s
law, j ¼ σ · E, and the definition for dielectric tensor
ϵ ¼ I − 4π σ

iω, the electric displacement field is

D ¼ Ryz
θ ·

0
B@ ε ig 0

−ig ε 0

0 0 η

1
CA · Ryz

−θ ·

0
B@Ex

Ey

Ez

1
CA; ðA10Þ

IDENTIFYING AXION CONVERSION IN COMPACT STAR … PHYS. REV. D 108, 083009 (2023)

083009-9



where the external magnetic field B lies in the ðy; zÞ plane
at an angle θ with positive z axis. Ryz

θ is the rotation matrix
in the ðy; zÞ plane. The coefficients ε, g, and η are

ε¼1−
ω2
p

ω2−ω2
c
; g¼ ω2

pωc

ωðω2−ω2
cÞ
; η¼1−

ω2
p

ω2
: ðA11Þ

For high frequency limit (ωc ≫ ω;ωp), ε → 1 and g → 0,
and the displacement field becomes

D≃

0
BB@

1 0 0

0 1− ω2
p

ω2 sin2 θ
ω2
p

ω2 cosθ sinθ

0
ω2
p

ω2 cosθ sinθ 1− ω2
p

ω2 cos2 θ

1
CCA ·

0
B@Ex

Ey

Ez

1
CA: ðA12Þ

APPENDIX B: AXION ELECTRODYNAMICS

In this appendix, we revisit the derivation of axion-
photon conversion probability [20–22,25,46], i.e., Eq. (4).
The equation of motion of axion fields and electric fields is
given by Eqs. (1) and (2) and is reshown here,

−∂2t aþ∇2a −m2
aa ¼ −gaγγE ·B; ðB1Þ

−∇2Eþ∇ð∇ ·EÞ − ω2D ¼ ω2gaγγaB: ðB2Þ

One can regard both equations as the wave equations driven
by source terms on the right-hand side. We take the axion’s
direction of motion to be ẑ and the direction of the magnetic
field described below Eq. (A10). When considering the
case of axion-photon mixing in a slowly varying and
locally uniform plasma, all derivatives that do not involve
the derivative in the z direction can be neglected. Therefore,
with the expression of electric displacement tensor (A10),
the x component of Eq. (B2) can be simplified to

−∂2zEx þ ∂xzEz ¼ ω2Ex; ðB3Þ

with the planar wave approximation, derivatives that
involve the x direction (or y direction) can be neglected.
Therefore, from the above equation, we can see that Ex
does not couple to the axion fields directly. Then the y
component of Eq. (B2),

0 ¼ �
ω2 − ω2

psin2θ
�
Ey þ ω2

p cos θ sin θEz

þ ∂
2Ey

∂z2
þ ω2gaγγaB sin θ; ðB4Þ

and similarly for the z component,

0 ¼ �
ω2 − ω2

psin2θ
�
Ez þ ω2

p cos θ sin θEy

þ ω2gaγγaB cos θ: ðB5Þ

Plugging Eq. (B5) into Eq. (B4), one gets

−
∂
2Ey

∂z2
¼ ω2 − ω2

p

1 − ω2
p

ω2 cos2 θ
Ey þ

ω2 sin θ

1 − ω2
p

ω2 cos2 θ
gaγγaB; ðB6Þ

which is the first equation in Eq. (3). With a slowly varying
plasma, the electric fields and axion fields can be written as

Ey ≡ ẼyðzÞeiðωt−kzÞ; a≡ ãðzÞeiðωt−kzÞ: ðB7Þ

Take the WKB approximation, which assumes that
k∂Ẽy=∂z ≫ ∂

2Ẽy=∂z2. Neglecting the generation of secon-
dary axions from self-interaction of the electromagnetic
field [at Oðg2aγγÞ], Eq. (B1) leads to the axion energy-
momentum relation k2 þm2

a − ω2 ¼ 0. With Eq. (B7),
Eq. (B6) is further simplified to

i
∂Ẽy

∂z
¼ 1

2k

�
m2

a − ξω2
p

�
Ẽy þ

ω2ξ

2k sin θ
gaγγBã; ðB8Þ

where we have defined

ξ ¼ sin2 θ

1 − ω2
p

ω2 cos2 θ
: ðB9Þ

Note that Eq. (B8) has a solution in integration form,

iẼy ¼
Z

z

0

dz0
1

2k
ω2ξ

sin θ
gaγγBãe

−i
R

z0
0

dz00 1
2kðm2

a−ξω2
pÞ: ðB10Þ

This solution can be generalized as
R
t
0 dsgðsÞeifðsÞ. The

WKB approximation computes the integral by finding the
stationary trajectory, namely, f0ðs0Þ ¼ 0. After Taylor
expanding the phase and taking the limits of integration
to infinity, stationary phase approximation givesZ

t

0

dsgðsÞeifðsÞ ≈ gðs0Þeifðs0Þ
Z

∞

−∞
dse

if00ðs0Þ
2

ðs−s0Þ2

¼ gðs0Þeifðs0Þþsign½f00ðs0Þ�iπ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

jf00ðs0Þj

s
:

ðB11Þ

With this approximation, one can then derive the analytical
expression of axion-photon conversion probability (4),
which is defined as the energy flux (derived from the
stress-energy tensor) ratio between the photon and axion
fields [20,23],

Pa→γ ≡ Fγ

Fa
¼ 1

ω2

k2γ
k2a

����EðzÞað0Þ
����2 ≃ 1

ω2

����Ey

a

����2; ðB12Þ

where Fa ∝ k2ajaj2 is the energy flux of plane wave axion
field a, and similarly Fγ is the energy flux for the photon
field. ka and kγ are the momentum of the axion and photon
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fields, respectively. The stationary point condition
[f0ðs0Þ ¼ 0] is the resonance condition,

m2
a ¼ ξω2

p ¼ ω2
p sin2 θ

1 − ω2
p

ω2 cos2 θ
; ðB13Þ

which simplifies to

ωpðxcÞ2 ¼
m2

aω
2

ω2 sin2 θ þm2
a cos2 θ

: ðB14Þ

As a summary of this section, due to the WKB approxi-
mation, we regard that the axion is converted to the photon
locally. The position of conversion is determined by the
resonance condition, and the amplitude of the radio wave is
described by the conversion probability.

APPENDIX C: PROPAGATION OF POLARIZED
RADIO WAVES

In this appendix, we will show that the propagation of
polarized radio waves can be computed from either
electrodynamics, Fermi-Walker transport (spin theory),
or parallel transport (optical theory).

1. Derivation of propagation law

Starting with Maxwell’s equations,

∇ · D ¼ 4πρ; ðC1Þ

∇ ·B ¼ 0; ðC2Þ

∇ ×Eþ ∂tB ¼ 0; ðC3Þ

∇ ×H − ∂tD ¼ 4πj: ðC4Þ

UsingD ¼ ϵE andB ¼ μH, one obtains the wave equation

∇2E − ϵμ∂2tEþ ð∇ ln μÞ × ∇ ×Eþ∇ðE ·∇ ln ϵÞ ¼ 0;

ðC5Þ

and a similar equation for H,

∇2H − ϵμ∂2tHþ ð∇ ln ϵÞ × ∇ ×Hþ∇ðH · ∇ ln μÞ ¼ 0:

ðC6Þ

Following [39], for the time-harmonic field we have

Eðr; tÞ ¼ eðrÞeik0SðrÞe−iωt;Hðr; tÞ ¼ hðrÞeik0SðrÞe−iωt;
ðC7Þ

where eðrÞ and hðrÞ are vector fields of position, k0 is the
vacuum wave vector, and SðrÞ is the optical path length.

The refractive index is defined as n ¼ ffiffiffiffiffi
ϵμ

p
. With these

expressions (C7), Maxwell’s equations become

e ·∇S ¼ 0; ðC8Þ

h · ∇S ¼ 0; ðC9Þ

e ×∇S þ μh ¼ 0; ðC10Þ

h ×∇S − ϵe ¼ 0; ðC11Þ

where we neglect terms that are higher than the first order of
1=ðik0Þ, and the medium (plasma) responses are described
by ϵ and μ.
Substitute the first equation of Eq. (C7) into the wave

equation (C5) and one obtains

Kðe;S; nÞ þ 1

ik0
Lðe;S; n; μÞ þ 1

ðik0Þ2
Mðe; ϵ; μÞ ¼ 0;

ðC12Þ

where

Kðe;S; nÞ ¼
h
n2 − ð∇SÞ2

i
e; ðC13Þ

Lðe;S; n; μÞ ¼ �∇S ·∇ ln μ −∇2S
�
e − 2ðe ·∇ ln nÞ∇S

− 2ð∇S ·∇Þe; ðC14Þ

Mðe;ϵ;μÞ¼∇×e×∇ lnμ−∇2e−∇ðe ·∇ lnϵÞ: ðC15Þ

For sufficiently large k0, K ¼ 0 is required at the first
order. This is the eikonal equation that ∇S=n is a unit
vector, i.e.,

∇S
n

¼ ∇S
j∇Sj : ðC16Þ

For isotropic media, the direction of the light ray can be
taken as the direction of the averaged Poynting vector,
which is

hSi ¼ 1

8π
ℜðE0 ×H�

0Þ; ðC17Þ

where E0 and H0 are the spatial dependence of electro-
magnetic waves. With Eq. (C7), this turns into

hSi ¼ 1

8πμ
ðe · e�Þ∇S: ðC18Þ

Therefore, the ray equation can be written as
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dr
ds

¼ ∇S
n

: ðC19Þ

To the next order of ik0, L ¼ 0, using ∂=∂τ ¼ ∇S ·∇,
equations L ¼ 0 become

∂e
∂τ

þ 1

2

�
∇2S −

∂ ln μ
∂τ

�
eþ ðe ·∇ ln nÞ∇S ¼ 0: ðC20Þ

Multiplying this by e� and adding its complex conjugate,
one finds

∂

∂τ
ðe · e�Þ þ

�
∇2S −

∂ ln μ
∂τ

�
e · e� ¼ 0: ðC21Þ

The polarization base vector (f̂) is the normalized vector of
electric field amplitude that

f̂ ¼ effiffiffiffiffiffiffiffiffiffiffi
e · e�

p : ðC22Þ

Substituting into Eq. (C20), one obtains

df̂
dτ

¼ n
df̂
ds

¼ −
	
f̂ ·∇ ln n



∇S; ðC23Þ

⇒
df̂
ds

¼ −
	
f̂ · ∇ ln n



k̂; ðC24Þ

where Eq. (C21) has been used in deriving the above
equation. s is the geometric length along the light ray
and k̂ ¼ dr=ds.
From the eikonal equation, one arrives at

1

n
∇ dS

ds
¼ 1

n
d
ds

∇S; ðC25Þ

⇒
1

n
∇
�
∇S ·

dr
ds

�
¼ 1

n
d
ds

∇S; ðC26Þ

⇒ ∇ ln n ¼ 1

n
d
ds

ðnk̂Þ; ðC27Þ

⇒ f̂ ·∇ ln n ¼ f̂ ·

�
d ln n
ds

k̂þ dk̂
ds

�
¼ f̂ ·

dk̂
ds

; ðC28Þ

where the transverse wave condition k̂ · f̂ ¼ 0 is used in
deriving the above equation. Plugging into Eq. (C24), then

df̂
ds

¼ −k̂
�
f̂ ·

dk̂
ds

�
; ðC29Þ

which is exactly Eq. (41) shown in the main text [40].
Note that, following a similar procedure, the propagation

law for the direction of h is the same equation shown
above.

2. Derivation using Fermi-Walker transport

Any smooth vector field va is said to be Fermi-Walker
transported along a curve if

DFva

ds
¼ Dva

ds
þ �

AaZb − ZaAb
�
vb ¼ 0; ðC30Þ

where Dva=ds is the covariant derivative of vector va, Za is
the covariant velocity, Aa is the covariant acceleration,
and s is the affine parameter for this curve. In three-
dimensional space, s is the distance along the ray; if we
choose the covariant velocity to be k̂, then the acceleration
is given by

A ¼ kb∇bk̂ ¼ dk̂
ds

: ðC31Þ

Therefore, Fermi-Walker transport requires that the propa-
gation for unit polarization vector f̂ is

df̂
ds

−
�
dk̂
ds

k̂ · f̂ − k̂
dk̂
ds

· f̂

�
¼ 0: ðC32Þ

The transverse wave condition requires f̂ · k̂ ¼ 0, and the
above equation simplifies to Eq. (C29).

3. Derivation using parallel transport

Equations (41) or (C24) is equivalent to the parallel
transport of the polarization vector in a curved space [47].
Because of the refractive index, the effective line element
for light propagation is

dσ2 ¼ n2ds2 ¼ n2ðdx2 þ dy2 þ dz2Þ; ðC33Þ

i.e., the corresponding metric is

gij ¼ n2ðx; y; zÞδij; ðC34Þ

and the connections are

Γk
ij ¼

1

n

�
δkj∂inþ δki ∂jn − δij∂

kn
�
: ðC35Þ

The parallel transportation of a vector field vaðσÞ along a
given curve xaðσÞ is described by the covariant derivative
that

dva

dσ
þ Γa

bcv
b dx

c

dσ
¼ 0: ðC36Þ

Plugging into the connection components, one obtains
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dvk

dσ
þ1

n
∂invi

dxk

dσ
þ1

n
∂jnvk

dxj

dσ
−
1

n
∂
knvi

dxi

dσ
¼0; ðC37Þ

which can be rewritten as

dðnvkÞ
dσ

þ1

n
dxk

dσ
ðnvi ·∂inÞ−

1

n
∂
kn
�
nvi ·

dxi

dσ

�
¼0: ðC38Þ

Parallel transport of the tangential vectors dxi
dσ yields a

similar expression

d
dσ

�
n
dxk

dσ

�
þ 1

n

�
n
dxi

dσ
· ∂in

�
dxk

dσ

−
∂
kn
n

�
n
dxi
dσ

·
dxi

dσ

�
¼ 0: ðC39Þ

The two equations shown above can be simplified to

d
dσ

�
n2vi ·

dxi

dσ

�
¼ 0: ðC40Þ

Therefore, if va is perpendicular to dxa
dσ at one point on the

curve, then this holds at all points on the curve. Thus, the
third term of Eq. (C38) vanishes,

d
dσ

ðnvkÞ þ 1

n
ðnvi · ∂inÞ

dxk

dσ
¼ 0: ðC41Þ

Comparing this with Eq. (C24), one finds that 1
n f satisfies

the above condition and hence proves the parallelism of the
directions f̂ along the curve.

APPENDIX D: CONVERGENCE AND
ROBUSTNESS TESTS

In this appendix, we describe different convergence
checks and robustness tests of our codes. These include
the tests of integral and model dependence.

1. Integrals

The integrals in our calculation can be divided into two
parts. One is the integral on the projection image to obtain
the total axion-induced emission power and polarization.
The other one is the integral of geodesic Eq. (37) to obtain
the photon’s trajectory. To verify the convergence of
these integrals, we try to compare the result with a larger
number of pixels and a lower relative error tolerance.
In the left panel of Fig. 5, we show the axion-induced
emission pulse profiles of viewing angle 36° and axion
mass ma ¼ 0.5 μeV with different numbers of pixels
(N ¼ 7002; 10002) and different choices of adaptive size
control. One has a maximum step size of r=104 with
relative error tolerance 10−8; the other one has a maximum
step size of r=ð3 × 104Þ with relative error tolerance 10−9.
The right panel is the relative error of these different
choices.

2. Magnetic field configuration

In the main text, we assume an exact rotating dipole field
configuration for a compact star’s magnetic fields, which is
unlikely in reality. So, this code test is to find out the
consequence if we add a perturbation to the dipole field
configuration.
First, we assume the exponent of r dependence deviates

from 3; therefore, the magnetic field turns to

Br ¼ B0

�
R
r

�
3þδ

ðcos χ cos θ þ sin χ sin θ cosψÞ; ðD1Þ

FIG. 5. Convergence checks. Left: the comparison of axion-induced emission pulse profiles with different choices of number of
pixels (N ¼ 7002; 10002) and different maximum step sizes and error tolerance in integrating the photon trajectories
[h ¼ r=104; 10−8; h ¼ r=ð3 × 104Þ; 10−9]. Right: histogram of relative error of pulse profile of each pulse phase. Note that the
relative error of pulse profiles is different from the error tolerance of photon trajectory. The green bars are for the difference between the
case of N ¼ 7002 and 10002, whereas the red bars are for the difference between photon trajectory tolerance of h ¼ r=104; 10−8 and
h ¼ r=ð3 × 104Þ; 10−9.

IDENTIFYING AXION CONVERSION IN COMPACT STAR … PHYS. REV. D 108, 083009 (2023)

083009-13



Bθ ¼
B0

2

�
R
r

�
3þδ

ðcos χ sin θ − sin χ cos θ cosψÞ; ðD2Þ

Bϕ ¼ B0

2

�
R
r

�
3þδ

sin χ sinψ : ðD3Þ

For a slight deviation, we choose δ ¼ 0.1;−0.1, and the
result is shown in Fig. 6.
Second, we assume a perturbation to the dipole

magnetic field. Then, the total magnetic field can be
written as

B ¼ BD þ BQ; ðD4Þ

where BD is given by Eqs. (6)–(8) and a quadrupole
magnetic field component is given by

BQ
r ¼ B0ϵ

2

�
R
r

�
4

ð3 cos 2θ þ 1Þ; ðD5Þ

BQ
θ ¼ B0ϵ

�
R
r

�
4

sin 2θ; ðD6Þ

BQ
ϕ ¼ 0: ðD7Þ

For ϵ, we choose ϵ ¼ 0.1, and the result of this perturbation
is shown in Fig. 7.
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