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We perform an improvement in a thermodynamical consistent model with density-dependent quark
masses (m,, ;) by introducing effects of quark confinement/deconfinement phase transition, at high-
density regime and zero temperature, by means of the traced Polyakov loop (®). We use realistic values for
the current quark masses, provided by the Particle Data Group, and replace the constants of the interacting
part of m;, ; by functions of @, leading to a first-order phase-transition structure, for symmetric and stellar

quark matter, with @ being the order parameter. We show that the improved model points out the direction
of the chiral-symmetry restoration due to the emergence of a deconfined phase. In another application,
we construct quark star mass-radius profiles, obtained from this new model, and show to be possible to
satisfy recent astrophysical observational data coming from the LIGO and Virgo Collaboration, and the
Neutron star Interior Composition Explorer (NICER) mission concerning the millisecond pulsars PSR

JO030 + 0451 and PSR J0740 + 6620.
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I. INTRODUCTION

The quantum chromodynamics (QCD) [1-3] theory
establishes that quarks and gluons are, at the most
fundamental level, the degrees of freedom of systems
composed by strongly interacting particles. In principle,
infinite nuclear matter, finite nuclei, or even stellar matter
should also be described directly by this theory. However,
this is not a trivial task to be implemented due to the
nonperturbative nature of the QCD infrared region.
Because of that, different approaches are used to treat
systems of quarks and gluons, such as the lattice calcu-
lations [4,5], based on sophisticated numerical simula-
tions, application of Dyson-Schwinger equations in
Euclidean space [6,7], and the effective/phenomenological
quark/gluon models, developed in order to present as many
similarities with QCD as possible. In that direction, many
options were constructed over the years as, for instance,
the Massachusetts Institute of Technology (MIT) bag
model [8,9], in which the building block particles are
submitted to a confining potential mathematically repre-
sented by a “bag” constant, and the Nambu-Jona-Lasino
(NJL) model [10,11], in which dynamical breaking of
chiral symmetry is taken into account. Another class
of effective models explicitly considers density and/or
temperature-dependent quark masses [12,13] (in the MIT
bag model these quantities are kept fixed, and in the NJL
model such dependencies are obtained in an implicit way).
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A very relevant issue verified in these density-dependent
quark mass models is the break of thermodynamic con-
sistency observed in their equations of state. Basically, this
violation emerges because the pressure at a density corre-
sponding to the minimum of the energy per baryon is not
vanishing as it should be. However, such a problem was
solved in [14], a paper in which the authors proposed a
suitable expression for the density-dependent equivalent
quark masses, along with the direct connection between the
quark Fermi momentum, at 7 = 0 regime, with an effective
chemical potential instead of the real one. The resulting
model was named the equiparticle (EQP) model, in which
both energy density and particle number densities have the
same form of the respective free-particle system quantities.
The concept of effective chemical potentials used in that
description is also useful at finite-temperature regime [14].

Since the thermodynamic inconsistency has been cir-
cumvented, the authors of [14] were able to apply the
EQP model to the description of strange quark stars.
The concept of the existence of strange matter as the
true ground state instead of hadrons was proposed by
Bodmer [15], who claimed that quark matter could have
lower energy per baryon than normal nucleus (*°Fe), and
Witten [16], who considered stable strange matter as
composed by quarks up, down and strange, and also
proposed the existence of strange quark stars. These ideas
were named the Bodmer-Witten conjecture/hypothesis, and
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a final experimental/observational probe is not available
yet. Nevertheless, in the last years, a huge number of new
astrophysical data have arisen, especially due to the recent
detection made by the LIGO and Virgo Collaboration
[17-19], of gravitational waves coming from a binary
system with its respective electromagnetic counterparts
also detected by many observatories [20], and also due
to measurements from the x-ray telescope installed on the
International Space Station, named the NASA’s Neutron
star Interior Composition Explorer (NICER), regarding the
massive millisecond pulsars PSR J0030 + 0451 [21,22]
and PSR J0740 + 6620 [23,24]. These new data have been
often used as a constraint to test many effective hadronic
[25-27] and quark models nowadays.

In this paper, we propose an improvement in the EQP
model by including in it the confinement/deconfinement
phase-transition phenomenology (PTP), expected to occur
in strong interaction systems at high-density regions and
at zero-temperature regime. We follow the procedure
performed in [28-30] and describe the PTP through the
inclusion of the traced Polyakov loop (®) by making the
free parameters of the model suitable functions of ®. We
show that the new improved model exhibits a first-order
phase-transition structure that can be properly identified
through the analysis of its order parameter ®, or through
the signatures presented in the grand-canonical thermo-
dynamical potential as a function of both ® and the
chemical potential of the system. The new model is shown
to be in the direction of chiral-symmetry restoration since
a reduction in the values of the quark masses is now
verified. We also investigate the capability of the model in
producing quark star mass-radius diagrams compatible
with the aforementioned astrophysical observational data.
Furthermore, it is verified that a branch of such diagrams
is constructed from equations of state representing the
deconfined quark phase. For the sake of completeness, we
emphasize here that quark stars and hybrid stars represent
only two of the possibilities to explain the observed
compact objects. There are many equations of state for
neutron stars that are also consistent with the same
observational data; see for instance [31] and references
therein.

The study described above is structured in the paper as
follows. In Sec. II we show the main quantities related to
the original equiparticle model. We also obtain the stability
window by using recent values of the current quark masses
provided by the Particle Data Group (PDG) [32]. In Sec. III
we discuss the inclusion of the confinement effects in the
model by introducing ® in the density-dependent quark
masses. We investigate the modifications generated by
this phenomenology in both symmetric and stellar quark
matter. For the latter, we also construct strange quark star
mass-radius profiles for different parametrizations of the
improved model, named the Polyakov-equiparticle model,
and show they are compatible with the astrophysical

constraints mentioned before. All study presented here is
performed at zero-temperature regime.

II. EQUIPARTICLE MODEL

A. Main thermodynamical quantities

We start by presenting the main thermodynamical
quantities derived in [14] and used in [33], where a
baryonic density (p,)-dependent model at zero temperature
(T) is proposed, namely, the EQP model. Since the study
done in this work focuses on the equations at zero
temperature, we restrict ourselves to show the formalism
concerning this regime. We assume a system composed of
up (u), down (d) and strange (s) quarks with masses being

D 1/3
mi:mio—l—mlzmio%—ﬁ—FCpb/ . (1)
P

where m;y, (i =u, d, s) is the current mass of the i
quark and m; is its density-dependent part. The parameters
C and D are responsible for the interaction effects between
quarks and are chosen by following the same criteria of
the stability window used in [33], which will be better
explained in the next subsection. It is important to mention
that the parameter C is responsible for achieving higher
stellar masses when the model is applied to pure quark or
hybrid stars, which reinforces the need to include the
parameter in the mass scaling obtained in [14] and
presented in Eq. (1).

In order to ensure thermodynamic consistency, the
concept of effective chemical potentials, explained in [34],
is incorporated into the model through the Fermi momen-
tum given by

kpi = \/ /4?2 - mlz (2)

where y} is the effective chemical potential of the i quark.
The relationship between the effective and real chemical
potentials reads

1 0m; 0
+ 4 29 %% (3)

/’ti:ﬂi 3apbam1

Furthermore, the quark density is connected to the Fermi
momentum through the following equation:

7k3i
Pi = 67;; ) (4)

with y being the degeneracy factor = 3(color) x 2(spin).
The quark density relates to the baryonic one through
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Py = %Zpi- (5)

Energy density and pressure are given, respectively, by

0Q
€=Q)— /’t:ﬂ x 0 6
=Y (©
and

0Q, Oom; omy 092
P=-0 —p—L=-Q ——. (7
o+Zamjﬂz ;s O+pb0pb6m1 (7)

ij

The quantity identified as Q, refers to the particle con-
tribution of a free system, which for the unpaired case is
given by [35]

0 Zl. 2472 [‘ ik (k%i 2 12) 2 fn m; ]

allowing us to present explicitly the derivatives in Eq. (7).
The first one reads

0 D C
Rt o

Py 3p2/3 3pf]/3’

and the second as

09, ym; wi+ kg
_E:_' ke —m2 In———"1| 10
om; 4 Ar* {'ul I, (10

The grand-canonical thermodynamical potential can be
obtained by taking Q = —P. Finally, an explicit form for
the energy density is obtained from the direct evaluation
of the derivative in Eq. (6), or alternatively from the sum of
the i quark energy densities (¢ = >_; €;), where ¢; is given

in [36] as
v o [kos [ 2
€ =% k™) k* + m:dk. (11)
2w 0

Since the model is carefully treated in terms of thermo-
dynamic consistency, all equations above are according
to the fundamental thermodynamics, from which the real
chemical potentials are obtained, for example. One can
prove that by taking the derivative of —Q with respect to
and comparing it to the particle number density in Eq. (4) to
verify that they are equivalent, leading us to conclude that
this relation is consistent with the ones from fundamental
thermodynamics. In other words,

0Q)  oP
oy o

(12)

Pi =

Another important verification can be done for the
energy density through the following calculation:

P+e=up

Zpi + Zgi = Zﬂipi- (13)

It is also worth to mention that even with different quark mass
scaling being applied, such as the ones from [35,37-39], all
equations remain thermodynamically consistent.

B. Symmetric and stellar matter

For symmetric quark matter, the system must obey the
condition of y, = py = u; = p. Since the model introduces
effective chemical potentials in order to maintain thermo-
dynamic consistency, it is possible to find a equivalent
relationship between these quantities instead. From Eq. (3)
we see that the latter term is what differs u; from y; and, by
being the same for every quark flavor, it allows us to find
My = py = . It is worth to notice that the definition of
symmetric matter done here considers only equal chemical
potentials between quarks, which means that the quark
masses, and densities, are not the same. This concept is
different from the one described in hadronic models, where
nucleons have equal densities and equal chemical poten-
tials, since their rest masses are almost the same. Here, all
quark masses have its own value, since we are relying on
the values provided by PDG [32] to model as close as
possible the reality of what symmetric matter could be, as
well as stellar matter. Therefore, although quarks u# and d
have low and relatively close masses, the strange quark has
a higher one. Therefore, the quark densities will be different
from each other.

For the stellar matter at zero-temperature and high-
density regime, effective quark models are useful in order
to describe compact stars, such as pure quark or hybrid ones
[40-47]. The characteristics found in these systems are
charge neutrality and beta equilibrium conditions. Due to
the presence of leptons (electrons in this case), weak
interactions happen such as d,s <> u + e + 7,. After the
Urca process [48,49], where the compact stars cool down
by emitting neutrinos, and consequently losing much of its
initial energy, beta equilibrium takes place once neutrinos
have left the system, and its condition is expressed in terms
of the chemical potentials of the particles, namely,
Uy + po = g = ug. As well as done previously for sym-
metric matter, this relationship can be given in terms of
the effective chemical potentials as u;, + u, = p; = uj,
where we see that the electron chemical potential remains
the same because electrons have constant mass and
do not participate in strong interactions. Furthermore,
since compact stars are electrically neutral objects, the
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charge-neutrality condition requires that3p, —$p, —1p, —
p. = 0. Finally, total energy density (¢) and pressure (p) of
matter in beta equilibrium take into account the lepton’s
contribution. In the case in which only (massless) electrons
are included, these expressions are given by

4
He

e=c¢€-+ e (14)

and

4
He

=P+ 15

P=rt e (15)

respectively, with pu, = (37%p,)"/3.

C. Stability window for recent current quark masses

The study of strange quark matter (SQM) done through
phenomenological effective models takes Bodmer-Witten
hypothesis [15,16] into account. The stability of SQM is
established by investigating it against nuclear matter and is
represented by the stability window. In order to construct it
from the EQP model, we take a large set of values for the C
and /D parameters. Then, the minimum of the energy per
baryon, namely, (E/A)in = (£/pp)min Where £ = € (¢) for
symmetric (stellar) matter, is evaluated and classified
according to the following criteria:

(i) SQM stable: (E/A) i, <930 MeV. The minimum
energy per baryon is lower than the binding energy
of *Fe.

(i) SQM metastable: 930 MeV < (E/A), i, <939 MeV
(nucleon mass).

(iii) SQM unstable: (E/A),;, > 939 MeV.

Furthermore, the two-flavor quark matter (2QM) must be
unstable when applied in the model for the same set of C
and /D parameters, because we did not find matter
containing deconfined u# and d quarks in nature either in
terrestrial experiments; i.e., the condition of (E/A)
930 MeV has to be satisfied in this case.

The first results of our study refer to the calculation of the
stability window for both symmetric and stellar matter.
Differently from the analysis performed in [33], here we
consider the recent data published by PDG [32] regarding
the ranges for the current quark masses, namely, m,, =
2.161050, mag = 4.67201% MeV and myy = 93.475¢ MeV.
For symmetric (stellar) matter we use m,, = 1.90 MeV
(2.16 MeV), myy = 4.67 MeV (5.15 MeV), and my =
93.4 MeV (90 MeV). In Fig. 1 we show the stability
window for symmetric matter. The area of interest of our
study corresponds to the green one, where SQM is
absolutely stable. The blue region below this area corre-
sponds to where the 2QM is stable, which means that this is
aregion where the SQM is forbidden to happen. Above the
SQM stable area, we have the metastability region in
orange and the unstable SQM in red.

min >

u SQM Stable

SQM Metastable
= SQM Unstable
u 20M Stable

D' MeV)

FIG. 1. Stability window for symmetric matter: EQP model.

For stellar matter, we have again the lower region as the
forbidden one, where 2QM would be stable, as shown in
blue in Fig. 2. The SQM stable region is indicated by green
and the metastable one is within the orange region. In red,
once more, there is the unstable region. Since we have both
stability windows, it is possible to see that the first one
(symmetric matter, Fig. 1) includes higher values of v/D
and lower values of C in comparison with what occurs in
the second window (stellar matter, Fig. 2). On the other
hand, the stellar stability window contemplates higher
values for C, which are responsible for providing higher
values of maximum masses when it is applied to pure quark
or hybrid stars. Besides, the stable and metastable region of
stellar matter is thinner than the one of symmetric matter.
These differences make it clear that since electrons are
entered into the system, they make a huge impact on the
model results.

III. POLYAKOV EQUIPARTICLE MODEL

The purpose of our work is to introduce the confinement/
deconfinement phase transition in the quark system

200

= SQM Stable
190 SQM Metastable
= SQM Unstable
= 2QM Stable

180

9 170

[}
2 160
Q
A 150
140

130

120

-0.4 -0.2 0.2 0.4 0.6 0.8
C

FIG. 2. Stability window for stellar matter: EQP model.
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described by the EQP model. This phenomenology is
implemented in an effective way through the inclusion
of the traced Polyakov loop,

1 yr
O=_Tr [exp (1/ dTA4)] )
3 0

1 [ei(@s+ds/V3) 4 oil=batds/V3) 4 o=2i0s/V3]  (16)

3

where A, = iAy=T¢, Ay = gA%,/2 (g is the gauge
coupling) and ¢ = ¢35 + ¢pgdg (Polyakov gauge). This
quantity mimics the gluonic dynamics of the strong inter-
action and was first used in the NJL model [10,11,50-53] at
finite temperature in [54] to generate the so-called Polyakov-
Nambu-Jona-Lasinio (PNJL) model [55-61]. In this
approach, confinement is characterized by ® = 0 and ® —
1 means that deconfinement is attained. These numbers
come from the definition of ® in terms of the free energy of
the system, F, namely, ® = ¢ */7: (i) F = oo and T finite
lead to ® = 0 (confinement), and (ii) F finite and 7 — co
lead to ® = 1 (deconfinement).

Besides incorporating these important physics in the
system, the PNJL model is not able to describe the confine-
ment/deconfinement transition at 7 = 0, since in this regime
all thermodynamical quantities are reduced to the ones
related to the NJL model, which does not take into account
the traced Polyakov loop. A proposal to circumvent this
problem was implemented in [62] where a dependence on
the quark density was introduced in the b,(7) function of
present in the Polyakov potential. Another procedure was
adopted in [28-30], in which the coupling constants of the
two- and three-flavor PNJL model were made dependent on
D as Gs - gs(Gw(I)) = G\(l - (I)z)’ GV - gV(GV9¢)) =
Gy(1 —®?), and K - K(K,®) = K(1 — ®?). The moti-
vation is to make these couplings vanish at the deconfine-
ment phase, i.e. at ® = 1. Here we follow the same approach
in order to also allow the EQP model encompassing
deconfinement effects at 7 = 0, by making the parameters
C and D depending on @ as

C— C(C,®)=C(l —d?), (17)
and

D — D'(D,®) = D(1 — ®?). (18)
Therefore, the equations of state for the new model,

named here as Polyakov-equiparticle (PEQP) model, are
rewritten as

D'(D,®
m; = m;y + my = my + (17/3) + C'(C, q’)ﬂila/3’ (19)
b
0Q
epgQp = €2 — z:/vljf a,u’-? + Up(P), (20)

. lom)oQy
"3 dpy, om),

Hi=H : (21)

and

om’, 09
P —_ 1 0 _
pEQP = —$20 + ) _dph on,

Up(@),  (22)

in which we also introduced the term
Uy(D) = a3T3 In(1 - 6D? + 83 — 3<D4), (23)

where as is a dimensionless free parameter, and T is the
transition temperature for the pure gauge system. The term
Uy (D) is included in order to ensure ® # 0 solutions and
also to limit @ in the physical range of 0 < ® < 1, according
to the findings of [28,29] (also as in the referred works, we
consider @ = ®*). We can use this feature to reconstruct the
original EQP model, i.e., by taking a; = 0, one has Uy = 0
and consequently ® =0, C' = C, and D' = D.

A. Symmetric matter case

Now that we have constructed the PEQP model, we are
able to analyze the behavior of its thermodynamical
quantities in the SU(3) system. We have defined in
Sec. II C the values of the current quark masses according
to the recent results provided by PDG [32], but there are
some other parameters that need to be defined as well,
namely, as, Ty, C and \/D. The ones responsible for the
gluonic sector of the model are a; and T, present in
Eq. (23). The latter one is fixed to be equal to 190 MeV
[29,55], and a3 was first used in [59], where it was
determined to reproduce lattice data and information about
the phase diagram, as the authors explain there. They have
obtained a; = —0.4. However, this value is not suitable to
provide solutions of @ # 0 when discussing symmetric
matter, since their model is very different from the one
presented here. Therefore, a; becomes a free parameter
here and in this case, we have some freedom to test different

values for it. Finally, the parameters C and /D are chosen
from the stability window presented in Fig. 1.

Before performing the full analysis concerning the PEQP
model, it is important to verify whether its stability
windows are different from those presented in Sec. II C.
This is done, in the case of symmetric quark matter, by
taking the energy per baryon with € given in Eq. (20), and
plotting it as a function of the baryonic density for both
EQP (a; = 0) and PEQP (a3 # 0) models, as Fig. 3 shows.

As previously described, the minimum of the energy per
baryon needs to be lower or equal to 930 MeV in order for
the SQM be stable, which can be confirmed in the figure.
At this point (represented by the black dot), the pressure
is zero and, therefore, the thermodynamic consistency is
ensured. Notice that for the case of the PEQP model, in
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3

o
£
=

920 -

FIG. 3. Energy per baryon, E/A = ¢/p,, as function of p, for
EQP (a3 = 0) and PEQP (a3 # 0) models.

which a; # 0, the minimum of E/A is not modified by the
emergence of @ # 0 solutions. In this case, it is safe to
consider the same stability window shown in Fig. 1 also for
the PEQP model at symmetric quark matter, and then use

the pairs (C, /D) that produce stable SQM. By doing so,
we analyze Qpgop = —Pppgp as function of the traced

Polyakov loop for the pair C = 0.2, v/D = 150 MeV, for
instance in Fig. 4. For each panel, all curves were
constructed by rewriting Eq. (21) in terms of the quark’s
Fermi momenta, Eq. (2), and the quark’s densities, Eq. (4),
resulting in a system of three equations to determine p;
given y, = uy = p, = p and a; as inputs. In this case, @ is
free to run. Notice that it is possible to obtain solutions of
® # 0 for some values of a3 in each panel, i.e., for each
chosen u.

The analysis concerning the minima in the Qpggp X @
curves plays an important role in the confinement/decon-
finement phase transition since there is a particular value
for the chemical potential, named here as pi.y,s, in Which
these curves present two minima, characterizing the

200——T——T T T 7T Ay — T T T TS
F (@) p =292.7 MeV 74 F () p=3127MeV ,/ / 4
100 a1 C S

0\

PPEPP

cocooo
ZE2ER

-100

- ee°

»200- N R R PR B
200
300
-400 :
-500F -
600 €= 0.2: .
700F D™ =150 Mev y

goolo L v 1111
02 0 02 04 06 08

S — . ———
[ (c) p=489.6 MeV 1 () p=509.6 Mev 'r

3
Qppop MeVifm’)

PR R RN R NI |
1-02 0 02 04 06 08 1

[}

FIG. 4. Qpgqp as function of @ for the pair C = 0.2, VD =
150 MeV for different values of u, panels (a) to (d).

2T T T T T T T ]
\ ” ! :
v C=0.2;D " =150 MeV J B
=
Q
2
[
o
&
a 6
u=319 MeV
Qs e
-0.2 0 02 0.4 0.6
O]
FIG. 5. Qpgqp as function of ® for three different values of p.

transition from a confined system to a deconfined one
(® is the order parameter related to this transition). In order
to explicitly illustrate it, we plot in Fig. 5 curves for a; =
—0.14 and different values of u. One can see that p.o,; =
316.629 MeV in this case. For u < pconr (1 = 314 MeV
for instance) it is only possible to obtain minima at ® = 0,
indicating the confined phase. On the other hand, for y >
Heonr (0 = 319 MeV for instance), minima at @ # 0 start
appearing and then deconfinement is established. Exactly at
U = Heont the first-order phase transition takes place, and
the two minima emerge at Qppgp ~ —5.7 MeV/ fm? (points
p; and p, in Fig. 5). The same thermodynamical analysis,
performed in other contexts, can be found for instance
in [63].

It is also possible to verify the confinement/deconfine-
ment transition exhibited by the PEQP model from another
perspective, namely, by investigating how the traced
Polyakov loop depends on the chemical potential. For this
purpose, we run u and for each value used as input, we
determine the respective @ by selecting the one that
minimizes Qpgqp (i, @) = —Pppop (4, P). In other words,
we find ® from the condition 0Qpgqp/0® = 0, leading to
the results displayed in Fig. 6. From the figure, we clearly

—T— —T— — T T
05t /
I a,=-0.14 ]
04 : B
C=0.20;
12
D " =150 MeV
03 b
S
confinement deconfinement
02 (B < Bg) (h> 1) 7
0.1 B,y = 316.620 MeV 7
0 —
PSS N SR SN S AN SR S SR S TR SR R S S
305 310 315 320 325 330

p (MeV)

FIG. 6. @ as a function of the common quark chemical
potential.
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2 .
= 4 i
= a, =-0.14
% B 12
= C=0.20;D" = 150 MeV
= 6
o
53]
Y
G
-8+
Mooy = 316.629 MeV :
-10 N T N S R
310 312 314 316 318 320
p (MeV)
FIG. 7. Qpggp as function of the common quark chemical
potential.

identify a first-order phase transition characterized by a
discontinuity in the values of the traced Polyakov loop,
from ® = 0 to @ # 0, and with the different phases being
defined by the regions in which u < peonr and p > peons-
These ® solutions can now be inserted into Qpgqp(u, @) in
order to generate Qpggp as a function of u, as depicted
in Fig. 7. It is worth to mention that the crossing point
in the curve is located exactly at u = 316.629 MeV and
Qpgop & —5.7 MeV/ fm>. It becomes clear, therefore, that
this kind of behavior presented by the grand-canonical
potential as a function of y is another signature of the first-
order phase transition exhibited by the model.

B. Stellar matter case

We also analyze the effect of including the traced
Polyakov loop in a system composed of quarks and leptons
(electrons) under charge neutrality and weak equilibrium
conditions. As already mentioned in Sec. IIB, such
restrictions must be taken into account in the description
of compact stars (pure quark or hybrid stars).

Because of the presence of electrons, the stability
window is wider, as shown in Fig. 2. This feature gives
us more possibilities of choice for the parameters C and
\/5. Hereafter, we take this set as being C = 0.81 and
VD = 127 MeV. However, as done in the previous sec-
tion, the first analysis needs to verify the stability window
for the stellar matter system. This can be seen in Fig. 8. In
this figure we show the energy per baryon, given by

He
€ = €pgQp T a2 (24)
plotted as a function of the baryonic density, of the EQP
(a3 =0) and PEQP (a3 # 0) models. The black circle
represents the minimum of the energy per baryon, which
must be lower than 930 MeV as requested for SQM to be
stable. Although it is hardly visible from the curves, this

value is 929.92 MeV, and it is the same even for values of

1300 — ; ; ; —
A
..... a;=0 RS0 s
— - a,=-050 e P
a,=-040 % S
1200 --- a;=-035
ay=-030
>
Q
2
=< oo
=~ 12
o Cc=0381;D0" = 127 MeV
1000 [ .
.................................................... 930 MeV. |
| L | L | L | L | L
02 04 0.6 038 1
p, (fm™)
FIG. 8. Energy per baryon, E/A = ¢/p,, as function of p, for

EQP (a3 = 0) and PEQP (a3 # 0) models.

asz #0, meaning that the PEQP model maintains the
minimum of the curve at the same point. This analysis
allows us to rely on the stability window shown in Fig. 2 for
the next applications of the PEQP model.

We now evaluate the grand-canonical potential of the
system through

4
M
Q:—p:—PPEQP——e 5

127 (25)

and display it in Fig. 9. Once again, Q. is presented as a
function of u in order to determine g ;. From the figure, it
is possible to see the typical structure of systems that
present a first-order phase transition, exactly as in the case
of symmetric matter presented before. For reference, we
also show the curve related to the original EQP model
(a3 = 0). For each aj value in the PEQP model, there is a
corresponding value of y.,r. Notice that as a; decreases,
lower values of Qi (Heont) are obtained, and for the
chemical potential related to the deconfinement phase
transition, the opposite happens, namely, it is higher when

— 7T
80 Nt = 419485 MeV

L . | oy = 439.289 MeV
-100 |- ;

-120 Hne = 488.596 MeV

i
M’E* r | N
; —140-— I _
CIRCY n_
S | c=081;D"=127Mev
c-180F !
L :
- a,=0 .
-200 4=-050 |
ay=-040 .
=220 - a,=-035 |
— ay=-030 . .
240, 0y o Ny iy ! AN
410 420 430 440 450 460 470 480 490 500

u (MeV)

FIG.9. Qas afunction of the common quark chemical potential
for different values of a;.
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I c=0s1;
L D" =127 MeV
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«

. 3
P —— ay=-050;r, =52411,=6.84
- -0.40;r =4.10;1,=5.52
=-035:r
a,=-030;T,

\
— | =352ir, =488
=204 =4.19 |

—
" DM =439.289 MeV  p = 488.596 MeV

* Hopr = 419.485 MeV
" | .
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FIG. 10. p,/po as a function of the common quark chemical
potential for different values of as.

as is lower: for ay; = —0.30, peonr = 419.485 MeV, but
when a; = —0.50, p.on¢ increases to 488.596 MeV.

Since quarks are expected to be asymptotically free at
high densities, a regime found in compact stars, it is
interesting to verify the values predicted by the PEQP
model for the baryonic density at the phase-transition point.
This analysis is displayed in Fig. 10 where we plot the ratio
of the baryonic density to the nuclear saturation density,
taken here as p, = 0.15 fm™3. Usually, p,, is expected to be
at least 2 or 3 times higher than p,. In the case of the PEQP
model, when a3 = —0.30, p,, is 2.94 times higher than p,
when the phase transition starts, and equal to 4.19p, at the
final border of the coexistence phase. From the figure, we
notice that as a3 decreases, the ratio p,/p, is even higher,
namely, for a; = —0.50, p,, is 5.24p, at the phase transition
beginning, and 6.84p, at the end. For a; = 0, when the
original EQP model is restored, we can see that the (blue)
curve is continuous, i.e., there are no deconfined phase
transitions associated.

As alast remark concerning Figs. 8—10, we see that with
a decrease of the parameter a3, i.e., with increasing
deviation from the EQP model (a; = 0), the dependencies
on the density or on the chemical potential of the quarks
approach the EQP model. This feature can be understood
from the results displayed in Fig. 4. Notice that the decrease
of a; generates smaller @ # 0 solutions, i.e., the traced
Polyakov loop presents values increasingly close to zero
and, therefore, the system goes in the direction of recov-
ering the original EQP model.

Another interesting investigation is about the mass of the
quarks, presented in Fig. 11. Here we take a single value
of a3 and observe the behavior of each quark mass as a
function of the chemical potential. The expression for the
quark masses, given by Eq. (1) for the EQP model, leads us
to conclude that there will be a drop in its value and then it
will slowly increase because of the latter term, as can be
confirmed by the curves of the quarks u, d and s with
a;z = 0 in the figure. However, for the PEQP model, the
quark masses are now written as in Eq. (19). The inclusion

S T -
320} ‘\~~—_——-————-"”§~'~' .
- i
1
280 €=081;D" =127 Mev ; -
A
S AN I 7
> 240+ Ssee e & .
NS . | R
g 200f m a3:0 | ~a
—emysay=0 I\
— _ms'; a3:0 AN
160~ m5a,=-05 NS g
——-m5a,=-05 S
_—— ms’; a;: 0.5 \‘\\
120+ Hion = 488.596MeV: ==
L 1 L 1 L 1 | L 1 L
300 350 400 450 500 550 600

p (MeV)

FIG. 11. Quark masses, calculated as in Eq. (19), as function of
the common chemical potential for a; = —0.50 (PEQP model)
and a3 = 0 (EQP model).

of the traced Polyakov loop results in a significant
reduction of these quantities when comparing PEQP and
EQP models. This is a very important result since it
indicates that the new model makes the system be in the
direction of the chiral-symmetry restoration, associated
with the reduction of the constituent masses, specially
m,, and m,. This effect is observed in other effective QCD
quark models, such as the NJL one [10,11,50,51,52,53].
Furthermore, this feature is also verified when deconfine-
ment phenomenology is implemented in the NJL model
itself through the Polyakov loop, in the PNJLO model
developed in [29].

In Fig. 12 we show the relation between the total energy
density, Eq. (24), and the total pressure of the system,
obtained from Eq. (25). We notice, from the figure, another
clear consequence of the confinement/deconfinement phase
transition exhibited by the PEQP model, namely, the
simultaneous emergence of a plateau in the pressure and
a gap in the energy density. For each value of a3, the values
of the transition pressure (prns), as well as the energy
density gap at the transition point (Aér,,,s), are also shown.
From these numbers, one sees that both quantities increase
when a; decreases. This same pattern was also observed in
the study performed in [29] where pruns and Aéq
were generated by a hadron-quark phase transition. The
PNJLO model (NJL model at 7 = 0 with ® included in
the equations of state) was used in the quark sector of the
transition. We use these curves as input to solve the
Tolman-Oppenheimer-Volkoff equations [64,65], given by

dp(r)  [e(r) + p(r)]m(r) + 4zr p(r)],
dr > —2rm(r) (26)
dm(r) B
= dnr’e(r), (27)

for which the solution is constrained to p(0) = p,. (central
pressure) and m(0) = 0, with the conditions p(R) = 0 and
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FIG. 12. Equation of state p x ¢ for different values of a;.

m(R) = M satisfied at the star surface. R is the radius of
the respective quark star of mass M. Notice that we are
using the system of units in which G = ¢ = 1, where G is
the gravitational constant, and c is the speed of light. The
mass-radius diagrams for the quark stars obtained from
this procedure are plotted in Fig. 13. The hybrid star
configurations are identified in this figure by the linear
branches that occur for all PEQP parametrizations used in
the work. In particular, notice that the emergence of all
branches takes place for very massive stars, in the case
of masses greater than two solar masses (2My). This
feature is due to the confinement-deconfinement transi-
tion that happens at higher values of the pressure for all
parameter sets adopted here; see Fig. 12. If we had lower
values for the transition pressure, the starting point for the
hybrid star configurations would take place at values
lower than 2M .

The appearance of linear branches was also observed in
the hadron-quark phase transitions present in the hybrid
stars analyzed in [30] in which the quark sector was
described by the PNJLO model, which also contains the
Polyakov loop in its structure. The inclusion of the
Polyakov loop in both PEQP and PNJLO models leads,
in principle, to the conclusion that the hybrid stars con-
structed from these models are unstable since they do not
satisfy the criterion of 0M/de > 0. However, another kind
of analysis can be performed in order to verify the stability
of such star configurations. It is based on the specific
response of the stars to radial oscillations [66—73], that can
be verified through the solution of the following coupled
equations:

a _ 1 Ap\ _dp_ ¢
dr r<3§+1“p) dr(p+e)’ (28)

and

W7
[ PSR JO704+66;0,,,,/”’"”"—(“”( """""""""""""""""""""" ]
2 t = —
ols5 C -
= L
= b ]
L 3
e .
05 3 : -
C L =-0.
I L =-0.30
[ 1 L L [ L L .
"0 12 14 16
R (km)
FIG. 13. Mass-radius diagrams constructed from the PEQP

model for different values of a3. The contours are related to data
from the NICER mission, namely, PSR J0030 + 0451 [21,22]
and PSR J0740 4 6620 [23,24], and the GW 190425 event [19],
all of them at 90% credible level. The violet horizontal lines are
also related to the PSR J0740 + 6620 pulsar [74].

dAp _ 2 v _ d_p
o —f[a)e (p+e)r 4dr]
dp\? r .
JH"&[(E) p+€—87re (p+€)pr}
dp 1
Ap|L_— 4 2 2
PP —wrere|. @)

with e = 1-2m(r)/r, dv/dr = =2(dp/dr)(p +€)~!, and
I'=(1+e¢/p)(dp/de). & is the relative radial displace-
ment, and Ap is the pressure perturbation, both quantities
time dependent as e’ in which o is the eigenfrequency. In
the case of stellar configurations with a first-order phase
transition, as the ones we are analyzing here, it is possible
to have @”> > 0 after the point of maximum mass when we
consider slow phase transitions [66—-69]. That is, stable
stars can be found in configurations such as those presented
by the PEQP and PNJLO models, namely, the linear
branches in Fig. 13. In this approach, the last stable star
is found in the point of the mass-radius diagram where
o = 0. By following this method, we verify that all
parametrizations of the PEQP model used to construct the
mass-radius profiles present @® > 0, i.e., all of them are
stable under radial oscillations when the slow phase tran-
sitions are considered. Therefore, one verifies that a par-
ticular class of twin quark stars (stars with the same mass but
different radii), namely, one of them composed by confined
quarks, and the other one in which deconfined strongly
interacting particles are found. Still regarding Fig. 13, we
compare our results with the recent observational astro-
physical data provided by the NICER mission regarding the
millisecond pulsars PSR J0030 + 0451 [21,22] and PSR
JO740 + 6620 [23,24], and with data from the gravitational
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wave event named GW190425 [19] analyzed by LIGO and
Virgo Collaboration. Additionally, we also display the PSR
J0740 + 6620 data extracted from [74], that corresponds to
M =2.08 £0.07M at 68.3% of credible level. Our find-
ings point to agreement between the results generated by the
PEQP model and all observational data.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we proposed an improvement in a density-
dependent quark model with thermodynamic consistency
verified [14], namely, the implementation of the Polyakov
loop (@) in its equations of state, effective quantity
representing the gluonic dynamics of the strong inter-
action. This modification makes the model capable of
describing, at zero-temperature regime, the quark matter
transition from confined to deconfined phase. We pre-
sented the main equations of the original equiparticle
model, as well as its stability windows for recent values for
current quark masses, m,y = 1.90 MeV, my, = 4.67 MeV
and my, = 93.4 MeV, all of them extracted from PDG [32].
Then, we specifically showed our proposal of including ®
in the EQP model free parameters, replacing them with the
following ®- dependent functions: C'(C, ®) = C(1 — ®?)
and D'(D,®) = D(1 — ®?). This requirement is done in
order to ensure that interactions vanish at the deconfined
phase ® ~ 1 (deconfined phase). We named the improved
model PEQP model.

The symmetric PEQP matter case was investigated. First,
the thermodynamic consistency was tested, allowing us to
rely on the stability window provided by the original EQP
model. Then, we analyzed the confinement/deconfinement
phase transition through the grand-canonical thermody-
namic potential, Qpgqp, as a function of ®. It was possible
to clearly identify a particular chemical potential () that
produces two minima of these curves with the same value
of Qpggp, an unequivocal signature of first-order phase
transitions, with @ being the order parameter in this case.
Another equivalent analysis was performed by means of the
plots of Qpggp as a function of u. It was shown that such
curves present a crossing point, a structure also used to
identify first-order phase-transition signatures.

By applying charge neutrality and beta equilibrium
conditions, we could also analyze the model predictions
regarding stellar matter and quark stars more specifically.
Once again, the thermodynamic consistency was verified
to be consistent with the original model, and its stability
window for stellar matter to be reliable. Two interesting
features analyzed for this case were the asymptotic freedom
of quarks at high densities and the quark masses. For the
first one, the results indicated that baryonic density (p,)
undergoes a discontinuity exactly at the transition point,
and the deconfined phase is attained for values of p;, in a
range of around 3 to 7 times the nuclear matter saturation
density. With regard to the quark masses, it was shown that
the emerging of @ # 0 solutions leads these quantities
to a strong reduction, indicating a trend of the system to
the chiral-symmetry restoration, a phenomenon associated
with the constituent quark masses vanishing.

Finally, we also generated the mass-radius diagrams for
the PEQP model. We verified that the decreasing of the
additional free parameter of the model increases the
transition pressure plateau and the gap in the energy density
presented by the confinement/deconfinement phase tran-
sition. For the mass-radius profiles themselves, the PEQP
model was shown to be capable of generating quark star
stable configurations in agreement with recent observatio-
nal data provided by the NICER mission concerning the
millisecond pulsars PSR J0030 + 0451 [21,22] and PSR
J0740 4+ 6620 [23,24], and by the LIGO and Virgo
Collaboration regarding the gravitational wave event
named GW190425 [19].
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