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Over the past two decades, significant strides have been made in the study of dark matter (DM) admixed
neutron stars and their associated properties. However, an intriguing facet regarding the effect of DM on
magnetized neutron stars still remains unexplored. This study is carried out to analyze the properties of DM
admixed magnetized neutron stars. The equation of state for the DM admixed neutron star is calculated
using the relativistic mean-field model with the inclusion of a density-dependent magnetic field. Several
macroscopic properties, such as mass, radius, particle fractions, tidal deformability, and the f-mode
frequency, are calculated with different magnetic field strengths and DM configurations. The equation of
state is softer with the presence of DM as well as for the parallel components of the pressure and vice versa
for the perpendicular one. Other macroscopic properties, such as mass, radius, tidal deformability, etc., are
also affected by both DM and magnetic fields. The change in the magnitude of different neutron star
observables is proportional to the amount of DM percentage and the strength of the magnetic field. We
observe that the change is seen mainly in the core part of the star without affecting the crustal properties.
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I. INTRODUCTION

In recent years, the investigation of magnetars and
pulsars, characterized as highly magnetized neutron stars,
has emerged as a fascinating research field at the juncture of
nuclear physics and astrophysics. These enigmatic celestial
objects exhibit magnetic fields of remarkable strength
(B ∼ 1017–1018 G), surpassing those typically observed
in neutron stars by several orders of magnitude [1].
Such immensely powerful field conditions are presently
beyond the reach of terrestrial laboratories. Consequently,
pulsars and magnetars serve as extraterrestrial laboratories
for examining and advancing physical theories. These
objects present a plethora of exhilarating phenomena,
including manifestations of exotic QED mechanisms like
photon splitting and magnetic pair creation [2], outburst
and quiescent emissions [3], seismic activity [4], dissipative
processes in the magnetospheres [5], axionlike particles [6],
and dense matter physics [7], among others. The explora-
tion of these physical phenomena establishes the study of
magnetized neutron stars as a pivotal research area in
astrophysics, offering valuable insights into the behaviour
of matter and radiation in extreme environments [8].

It is a well-known fact with compelling evidence that
most of the matter in the Universe is dark matter (DM) [9].
Since neutron stars are highly compact and dense, the
collision between the DM particles and constituents of the
neutron star results in the loss of energy for the DM to
become bound to the gravitational pull of the neutron star.
Therefore, neutron stars have long been used as a tool in the
quest to uncover the particle nature of DM and their
scattering cross sections [10–13]. The DM admixture
neutron star results in significant deviation in the neutron
star observables such as mass-radius profile, tidal defor-
mation, luminosity [14], accretion [15], etc., and hence, can
act as a probe to measure the DM properties indirectly.
In the last two decades, there have been numerous

attempts to study the DM admixed neutron star and
associated properties [10,14,16–26]. However, despite
significant progress, the impact of DM on magnetized
neutron stars remains a scientific question that necessitates
immediate exploration. Since most of the observed neutron
stars are either pulsars or magnetars [27], it becomes
essential to study the influence of DM on these compact
stars. Recently strange star admixed with fermionic DM in
a strong magnetic field (MF) was analyzed using the MIT
bag model [7]. It was shown that tidal deformability gets
intensely affected by such stars.
In this paper, we aim to present an analysis of the

unexplored influence of DM on pure hadronic magnetized
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neutron stars over a MF range (1017–1019 G). We use the
magnetized neutron star formalism as described in [28–30]
and the effective relativistic mean field (E-RMF) model for
the nuclear interaction. The E-RMF theory has been
successfully applied to a wide range of nuclear physics
problems ranging from finite nuclei to the neutron
star [23,31–34]. This theory has recently been used to
address the DM admixed neutron star [35,36]. In the
present work, we use two E-RMF models, namely,
BigApple [37] and IOPB [32]. The BigApple force is
designed to account for the 2.6M⊙ and original constraint
on the tidal deformability of a 1.4M⊙ neutron star in accor-
dance with the secondary component of GW190814 [38].
At the same time, the IOPB parameter set reproduces the
maximum mass from massive pulsars such as PSR
J0740þ 6620, which estimate that the neutron star mass
should be greater than 2M⊙ (M ¼ 2.14þ0.10

−0.09M⊙) [39]).
These parameter sets also reproduce the nuclear matter and
finite nuclei observables in agreement with empirical and
observational constraints [32,40].
To model the DM interaction with the neutron star, we

consider the neutralino as a DM candidate, which belongs
to WIMP as taken in Ref. [41]. Further, DM is treated
analogous to a neutron, considering the DM as a chargeless
fermion. Other types of DM candidates are also hypo-
thesized, such as Bosonic, asymmetric, etc., having differ-
ent properties compared to the Fermionic one. Several
works have been done to explore such types of scenarios
that explore the effects of DM on the different NS proper-
ties [20–25,41]. However, there are still windows to explore
the DM effects on other properties of the compact star, its
particle nature, etc.
Henceforth, we aim to investigate the possible changes in

the DM admixed magnetized neutron star equation of state
(EOS), its composition, and neutron star observables,
which include mass-radius relations, tidal deformability,
and f-mode oscillation. Although the neutron star should
be deformed due to the anisotropic pressure in the presence
of the MF, for our purposes, we will adopt, as a preliminary
assumption, that the configuration of a highly magnetized
neutron star can be adequately characterized by utilizing

the conventional spherically symmetric equations gov-
erning stellar structure. These assumptions are based on
the fact that (i) the monopole nature of the chaotic magnetic
field inside the star validates the use of the spherical
symmetry for the background metric [42], (ii) in order
to construct realistic models of magnetized neutron stars, it
is crucial to incorporate both poloidal and toroidal MF
components simultaneously [43,44]. It has been established
that exclusively toroidal MFs cause the NS to become
prolate, while purely poloidal MFs tend to render it oblate
in shape. However, when the toroidal and poloidal com-
ponents are comparable in magnitude, it is plausible to
anticipate that the oblateness and prolateness effects
approximately cancel out, resulting in stars that closely
approximate spherical symmetry [45]. This assumption
holds good for the range of MF 1015–1018 G as the
deformation from spherical symmetry turns out to be less
than 1% [46–48]. It is seen that with an increasing DM
mass, the maximum mass of the neutron star decreases
[20]. On the other hand, it was shown that the maximum
mass of the neutron star is an increasing/decreasing
function of the MF depending on the perpendicular/parallel
pressure [46,47,49]. Therefore, it is interesting to examine
the combined effect of DM admixed neutron star.
Moreover, in the present work, we present separate results
for the perpendicular and parallel pressure in line with
Refs. [46,48,50].
The paper’s organization is as follows: In Sec II, we

describe the effect of MF on the EOS employing the
E-RMF framework and DM model. The results indicating
the EOS, composition, mass-radius relations, tidal deform-
ability, and f-mode oscillation are discussed in Sec. III.
Finally, we summarize our results in Sec. IV.

II. FORMALISM

A. RMF model

The effective Lagrangian in the E-RMF, which include σ,
ω, ρ, δ, and photon in association with the baryons can be
written as [21,31,51–53],

EðrÞ¼ψ†ðrÞ
�
iα ·∇þβ½M−ΦðrÞ−τ3DðrÞ�þWðrÞþ1

2
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Here ΦðrÞ, WðrÞ, RðrÞ, DðrÞ, and AðrÞ are the fields
corresponding to σ, ω, ρ, and δ mesons and photon,

respectively. The gs, gω, gρ, gδ, and
q2

4π (q ¼ e) are the
corresponding coupling constants and ms, mω, mρ, and mδ

are the corresponding masses.M is the mass of the nucleon.
In the process of fitting, the coupling constants of the

effective Lagrangian are ascertained using a collection of
experimental data that considers a significant portion of the
vacuum polarization effects within the no-sea approxima-
tion which is essential to determine the stationary solutions
of the relativistic mean-field equations [32,54]. The effec-
tive masses of proton, M�

p, and neutron, M�
n, are written as

M�
p ¼ M −ΦðrÞ −DðrÞ; ð2Þ

M�
n ¼ M −ΦðrÞ þDðrÞ: ð3Þ

Finally, the zeroth component T00 ¼ H and the third
component Tii of energy-momentum tensor [55]

Tμν ¼ ∂νϕðxÞ
∂E

∂ð∂μϕðxÞÞ − gνμE; ð4Þ

yields the energy density and pressure, respectively [32].
The expressions for energy density, pressure, and mean-
field equations can be found in Ref. [32].

B. DM model

In this section, we provide the formalism for the DM
admixed neutron star. The DM particles are captured inside
the NSs due to their huge gravitational potential and
immense baryon density. In this study, we choose the single
fluid model, where the DM particles interact with nucleons
by exchanging the Higgs. Therefore, the system energy
density and pressure are the addition of both nuclear matter
andDM.TheDMparticles are accreted inside theNSmainly
in the core part due to higher gravitational potential in
comparison to the crust [20,21,41]. Hence, in single-fluid
approximation, only one scenario is seen that the DM are
uniformly distributed throughout the core part, which is
independent of any fractions inside the star. However, in the
case of the two-fluid model, there are different scenarios
seen, such as DM core and DM halo, due to no interactions
with nucleons rather than self gravitational interaction
between DM. That means the evolution mechanism is
completely different. The magnitude of interactions mainly
depends on the type ofDMparticle and its fraction inside the
star. For more details, see the references [56,57].
In this study,we choose the single-fluidmodel. Therefore,

to calculate the DM fractions, we assumed that the
DM density is uniformly distributed inside the neutron
star [20,21,58]. Assuming the average number density of
nucleons (ρb) is 103 times larger than the average DM
density (ρDM), which implies the ratio of the DM and the

neutron star mass to be∼ 1
6
[41]. Since the nuclear saturation

density is ρ0 ∼ 0.16 fm−3, therefore, the DM number
density becomes ρDM ∼ 10−3ρ0 ∼ 0.16 × 10−3 fm−3.
Using the ρDM, the kDMf is obtained from the equation

kDMf ¼ ð3π2ρDMÞ1=3. Hence the value of kDMf is
∼0.033 GeV. Therefore, in our case, we vary the DM
momenta from 0, 0.02, and 0.04 GeV. In this study,
we choose neutralino as a DM candidate, which belongs
to Weakly interacting massive particles (WIMPs). The
interacting Lagrangian is in the following [20,21,24,36,41]:

LDM ¼ χ̄½iγμ∂μ −Mχ þ yh�χ þ 1

2
∂μh∂μh

−
1

2
M2

hh
2 þ fM

v
ψ̄hψ ; ð5Þ

ψ and χ are the baryons and DM wave functions respec-
tively. Here, we choose values of the DM-Higgs coupling
(y), proton-Higgs form factor (f), and vacuum value (v) of
Higgs as 0.07, 0.35, and 246 GeV, respectively, as consid-
ered in Refs. [21,36]. The free parameters are constrained
with the help of DM detection data available to date [21].
With this preliminary information, we can calculate the DM
scalar density (ρDMs ), energy density, and pressure using the
mean-field approximation as done in Refs. [20,41]

ρDMs ¼ hχ̄χi ¼ γ

2π2

Z
kDMf

0

k2dk
M⋆

χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M⋆2

χ þ k2
q ; ð6Þ

where kDMf is the Fermi momentum for DM. γ is the spin
degeneracy factor with a value of 2 for neutron and proton.
The energy density (ϵDM) and pressure (PDM) for neutron

star with DM can be obtained by solving the Eq. (5)

ϵDM ¼ 1

π2

Z
kDMf

0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q

þ 1

2
M2

hh
2
0; ð7Þ

and

PDM ¼ 1

3π2

Z
kDMf

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q −

1

2
M2

hh
2
0; ð8Þ

Mh is the Higgs mass equal to 125 GeV, and h0 is the Higgs
field. With the Higgs contribution, the effective mass of the
system becomes

M�
p;n ¼ M −Φ ∓ D −

fM
v

h0: ð9Þ

C. Effects of magnetic field

In the presence of a uniform external magnetic
field pointing in the z direction (B ¼ Bẑ) such that

∇! · B⃗ ¼ 0 [59], the transverse momenta of the charged
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particles with an electric charge q are restricted to discrete
Landau levels [29]. One can define the thermodynamic
potentialΩ [60], which depends upon the chemical potential
(μ), temperature (T) and magnetic field (B) such that it
follows canonical relations Ω ¼ −Pk ¼ ϵ −

P
i ρiμi and

P⊥ ¼ Pk −MB, with ϵ being the energy density, ρi the
density of ith particle, μi the corresponding chemical
potential, M the magnetization of the system, Pk and P⊥
are the pressure in the parallel and the transverse to the
magnetic field direction [28,29,46,60]. A detailed descrip-
tion and derivations of the various quantities required to
define the magnetized nuclear matter can be found in
Refs. [28,29,60]. Here, we present the necessary formalism
required in the zero-temperature limit following
Refs. [28,29].
The energy spectrum of the proton, which gets modified

due to the Landau level, is written as [28,29]

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ M̄p2

n;σz

q
þW − R=2; ð10Þ

and for charged leptons (electron and muon) as

Ee;μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ M̄e;μ2

n;σz

q
; ð11Þ

where

M̄p2

n;σz ¼ M�2
p þ 2

�
nþ 1

2
−
1

2

q
jqj σz

�
jqjB; ð12Þ

M̄ðe;μÞ2
n;σz ¼ M2

ðe;μÞ þ 2

�
nþ 1

2
−
1

2

q
jqj σz

�
jqjB: ð13Þ

Here, σz is the spin along the axis of the MF (B), n is the
principal quantum number, and kz is the momentum along
the direction of the MF. M�

p is the effective mass for the
proton defined in Eq. (2). The neutron spectrum is similar
to the Dirac particle and takes form,

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

n

q
þW þ R=2: ð14Þ

At T ¼ 0, the number and energy density at zero temper-
ature and in the presence of a MF is given by [28]

ρi¼e;μ;p ¼ jqjB
2π2

X
σz

Xnmax

n¼0

kif;n;σz ; ð15Þ

ϵi¼e;μ;p ¼ jqjB
4π2

X
σz

Xnmax

n¼0

×

�
Ei
fk

i
f;n;σz

þ M̄i2
n;σz ln

�����E
i
f þ kif;n;σz
M̄i

n;σz

����
�	

; ð16Þ

respectively. In the above equations, kif;n;σz is defined by

ki
2

f;n;σz
¼ Ei2

f − M̄i2
n;σz ; ð17Þ

where the Fermi energies are fixed by the respective
chemical potentials given by

El¼e;μ
f ¼ μμ;e; ð18Þ

Eb¼p;n
f ¼ μb −W � R=2: ð19Þ

In Eqs. (15) and (16), the nmax is the integer for which the
Fermi momentum remains positive in Eq. (17) and is
written as

nmax ¼
�
Ep2

f −M�2
p

2jqjB
	
; proton

nmax ¼
�
Ei2
f −M2

i

2jqjB
	
; electron&muon: ð20Þ

Here [x] represents the greatest integer less than or equal to
x. The scalar density for the protons is further determined
as [28]

ρsp ¼ jqjBM�
p

2π2
X
σz

Xnmax

n¼0

ln

�����E
p
f þ kpf;n;σz
M̄p

n;σz

����
�
: ð21Þ

The number, scalar, and energy density for the neutrons are
similar to the field-free case and can be written as [31,32]

ρn ¼
kn

3

f

3π2
; ð22Þ

ρsn ¼
M�

n

2π2

�
En
fk

n
f −M�2

n ln

�����E
n
f þ knf
M�

n

����
�	

; ð23Þ

ϵn¼
1

8π2

�
2En3

f knf−M�2
n En

fk
n
f−M�4

n ln

�����E
n
fþknf
M�

n

����
�	

: ð24Þ

Similarly, since the DM are considered chargeless fermion,
the scalar density and the energy density follow from
Eqs. (6) and (7). The total baryon energy density, which is
the sum of matter-energy density and the contribution from
the electromagnetic field, is written as [20,32,34]
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ϵb ¼ ϵp þ ϵn þ ρbW þ 1
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The pressure due to baryon then can be written as [20,32,34]

Pbðk=⊥Þ ¼ Ppðk=⊥Þ þ Pn þ
1

4!

ζ0W4

g2ω
−
m2

sΦ2

g2s

�
1

2
þ κ3

3!

Φ
M

þ κ4
4!

Φ2

M2

�
þ 1

2
m2

ω
W2

g2ω

�
1þ η1

Φ
M

þ η2
2

Φ2

M2

�

þ ΛωðR2 ×W2Þ þ 1

2

�
1þ ηρΦ

M

�
m2

ρ

g2ρ
R2 −

1

2

m2
δ

g2δ
D2ð−=þÞB

2

8π
: ð26Þ

While the contribution of the neutrons to the pressure is
straightforward [32,46], the contribution from the protons
can be written in terms of parallel (Pk) and perpendicular
(P⊥) components as [29,61]

Pðp;kÞ ¼
jqjB
4π2

X
σz¼�1

Xn¼nmax

n¼0

�
Ei
fk

i
f;n;σz

− M̄i2
n;σz

× ln

�����E
i
f þ kif;n;σz
M̄i
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����
�	

: ð27Þ

Pðp;⊥Þ ¼
jqj2B2

2π2
X
σz¼�1

Xn¼nmax

n¼0

n ln

�����E
i
f þ kif;n;σz
M̄i

n;σz

����
�
: ð28Þ

In order to estimate the neutron star EOS, the β-equilibrium
under weak interaction and charge neutrality constraints the
population of various particles as

μn ¼ μp þ μe; μe ¼ μμ: ð29aÞ

ρp ¼ ρe þ ρμ; ð29bÞ

where μp;n;e;μ are the chemical potential of the proton,
neutron electron, and muon, respectively. Finally, the total
energy and pressure of the dark matter admixed magnetized
neutron star can be written as

ϵ ¼ ϵb þ ϵDM þ
X
l¼e;μ

ϵl; ð30Þ

P ¼ Pb þ PDM þ
X
l¼e;μ

Pl: ð31Þ

It is relevant to mention here that, in the literature, the
B-dependent (divergent) vacuum contribution was also
accounted for when investigating the quark system to
explain phenomena such as magnetic catalysis [62–64].
Such an attempt, using the relativistic mean-field descrip-
tion of nuclear matter considering baryons, was carried out

by Ref. [65] and more recently by Ref. [46]. While it was
observed that the influence of vacuum contribution on the
binding energy of symmetric nuclear matter becomes
significant only under very strong magnetic fields [65],
our results remain unaffected by the utilization of B-
dependent vacuum contribution.

D. Density-dependent MF

In this work, the MF (B) is parametrized from the surface
to the center of the star as [47,66–68]

B

�
ρ

ρ0

�
¼ Bsurf þ Bc

�
1 − exp

�
−β

�
ρ

ρ0

�
γ
��

: ð32Þ

Here, ρ0 is the saturation density, Bsurf is the surface MF
taken to be 1015 G, and Bc is the MF at the center of the
star. The parameters β ¼ 0.02 and γ ¼ 3.00 are chosen to
reproduce the observational MF [69].

III. RESULTS AND DISCUSSION

A. Particle fractions and EOS

The particle fraction (PF) of the species, such as
neutrons, protons, electrons, muons, and DM, can be
calculated using the formula

Xi ¼ ρi=ρb; ð33Þ

where ρi is the density of each species, and ρb is the baryon
density.
In Fig. 1, we calculate the value of Xi for DM admixed

magnetized neutron star for three different DM momenta
kDMf ¼ 0.00, 0.02, and 0.04 GeV with the variation of the
core MF. The PF for neutron and DM are not taken as they
are chargeless particles. Hence, the MF has no interactions
with them. In this study, we have not included the
anomalous magnetic moment of the neutrons and protons
for simplicity of the results.
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From the upper panel of Fig. 1, we notice that protons
and electrons appear almost at the same density. However,
the muon appears ≈0.1 fm−3 for both BigApple and
IOPB-I cases. It is observed that a lower magnitude of
MF (for example, 1017 G) does not change the PF
significantly. However, with an increase in the MF strength
at the core, the population density changes and shows
oscillating behavior due to the subsequent filling of Landau
levels. This is because, with an increase in MF strength, the
mass of the charged particle becomes heavier, and the
oscillatory behavior becomes prominent, especially in the
core of the neutron star, as mentioned in Ref. [46]. In
addition to MF, it is also noticed that the neutron star with a
finite DM fraction does not affect the PF.
The EOSs for magnetized neutron stars with DM

admixture are calculated and presented in the lower panel
of Fig. 1, illustrating the dependence on the MF strength for

various DM fractions. The EOSs exhibit increased stiffness
(or softness) for the ⊥ (k) pressure. While the P⊥ and Pk
differ in their magnitude [see Eqs. (27) and (28)]; they only
become significantly different for very large B [29].
Therefore, the anisotropy in the pressure becomes signifi-
cant only at the higher strength of the central magnetic
field. Furthermore, the difference between the ⊥ and k
pressure [stiffness (softness) of the ⊥ (k) pressure] pri-
marily arises due to the sign [þð−Þ] of the contribution of
the pure magnetic term in the ⊥ (k) pressure as in Eq. (26)
(also see Fig. 6 and the associated description of Ref. [70]).
Additionally, the presence of DM introduces further soft-
ening effect on the EOSs, with the degree of softness
primarily determined by the DM content within the neutron
star. Comparing the models employed in this study,
BigApple demonstrates a stiffer EOS than IOPB-I.
However, the influence of the MF on the softness or

FIG. 1. The particle fractions (upper panel) of different species with the presence of MF and DM having Fermi momenta 0.00, 0.02,
and 0.04 GeV, respectively, for BigApple (left panel), and IOPB-I (right panel) parameter sets and their EOSs (lower panel).
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stiffness of the BigApple model is relatively less prominent
as compared to the IOPB-I case. This model dependency
of the MF effect on EOS stems from their effective masses
that control the number of Landau levels [see Eqs. (9)
and (20)].
In a previous study [30], we computed the EOSs for

magnetized crusts using the CLDM model. In the present
investigation, we employ the same model to determine the
crust EOS. However, for the core EOS, we consider RMF
models, namely BigApple and IOPB-I. Subsequently, we
construct unified EOSs encompassing the BigApple and
IOPB-I cases, as depicted in Fig. 1. It is worth noting that
the percentage of DM remains nearly constant throughout
the neutron star, predominantly concentrated within the
core region (single-fluid model) [20,41]. The MF, on the
other hand, exerts negligible influence on the crust EOS.
Consequently, the lower-density EOSs for both the
BigApple and IOPB-I models exhibit minimal variation
as a function of MF strength and DM fractions.

B. Mass-radius relations, tidal deformability

The mass-radius (M − R) relations are obtained with
Tolmann-Oppenheimer-Volkoff [71,72] equations for the
range of central densities, which is shown in Fig. 2. We
calculate theM − R profiles for both BigApple and IOPB-I
EOSs with k and ⊥ components of pressure (taking Pk and
P⊥ in the TOV equations) by varying DM momenta 0.00,
0.02, and 0.04 GeV. The magnitude of the maximum mass
and its corresponding radius decreases for Pk and vice versa
for the P⊥. In addition to MF, the DM also reduces the
magnitude of M and R values, which depend on its
percentage inside the star. In the case of the BigApple
(IOPB-I) case, the maximummass is 2.60ð2.15ÞM⊙, and its

corresponding radius is 12.41(11.91) km without the
inclusion of the DM and MF.
With the inclusion of MF/DM, the magnitude of the

maximum mass and its corresponding radius decreases
∼4–5%. For kDMf ¼ 0.00, 0.02 GeV with all MF compo-
nents, the curves corresponding to the BigApple model
reasonably satisfy the overlaid observational data.
However, with kDMf ¼ 0.04 GeV, all curves satisfy only the
maximum mass constraint given by PSR J0740þ 6620
[39]. Moreover, the canonical radii corresponding to
0.04 GeV for the BigApple case do not pass through
NICER and revised NICER limits [73,74]. In the case
of the IOPB-I parameter set (right panel of Fig. 2) with
kDMf ¼ 0.00, 0.02 GeV, only parallel components of pres-
sure satisfy all the constraints imposed by Cromartie et al.,
pulsar, and NICER. However, for kDMf ¼ 0.04 GeV, none
of the constraints is satisfied for IOPB-I set. Hence, from
this study, we observe that one can put constraints on the
amount of DM percentage and the strength of the MF by
employing diverse observational data. It is relevant to
mention here that the information on the mass-radius
profile of the neutron star essentially comes from gravita-
tional waves (GW), pulsar hotspot, and x-ray measure-
ments. Observational data from these techniques regarding
the mass and radius of neutron stars typically do not
directly account for the presence of magnetic field.
However, the majority of the information on the mass
and radius of the star comes from the pulsars, which are
rotating neutron stars with surface magnetic field strengths
of the order of 1010−15 G. Although various magnetic
properties of these objects are measured, such as surface
magnetic field, magnetic dipole moment, etc., their mass-
radius profile is not mapped to the strength of the magnetic

FIG. 2. Mass-radius relations for the DM admixed magnetized neutron star with varying the MF strength for BigApple (left) and
IOPB-I (right). The overlaid bands are the observational data given by different observations (see text for details).
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field. In other words, we do not yet have observational
evidence of the influence of the magnetic field on the mass-
radius profile of the star, primarily due to the unknown
nature of the neutron star’s inner core.
Through the preceding analysis, it is evident that the

EOS and mass-radius profile of DM admixed magnetized
neutron stars are governed by two competing mechanisms.
First, the EOS experiences stiffening (softening) due to the
⊥ (k) pressure, while, second, it undergoes softening as a
consequence of increased DM content. To investigate the
potential influence of MF on the rate at which the neutron

star mass decreases due to the presence of DM, we
construct a plot of the maximum mass as a function of
DM Fermi momenta for varying MF strengths, as illus-
trated in Fig. 3. Remarkably, for higher MF strengths, the
rate of maximum mass reduction caused by DM content
exhibits a slight decrease. In other words, the MF exerts an
attenuating effect on the DM within the neutron star.
Nonetheless, this effect is primarily notable under high
MF strengths, indicating that the MF does not significantly
impact the DM’s influence on the properties of neutron
stars.
Next, we calculate the dimensionless tidal deformability

of the DM admixed magnetized neutron star. The dimen-
sionless tidal deformability (Λ) of the star is calculated
using the relation [75]

Λ ¼ 2

3
k2C5; ð34Þ

where k2 is the Love number for the quadrupole case. The
solution for k2 can be found in Refs. [40,75]. C is the
compactness defined as M=R. We calculate the Λ for
different DM momenta with the variation of MF, which is
shown in Fig. 4 for BigApple and IOPB-I E-RMF sets.
With the addition of DM, the values of Λ decrease. The
curves corresponding to all the magnetized EOSs, includ-
ing different DM momenta, are observed to be relatively
diminished in the lower mass regimes. However, substan-
tial changes have been observed at the maximum mass
limit. Different error bars are taken from the GW170817
and GW190814 events to constrain the value of Λ. Except
for DM momenta 0.04 GeV, none of the curves passes
through the GW170817 data. However, all the curves

FIG. 3. Maximum mass of magnetized neutron star admixed
with the DM as a function of DM momentum for different MF
values.

FIG. 4. Dimensionless tidal deformability for the DM admixed magnetized neutron star with varying the MF strength for BigApple
(left) and IOPB-I (right). The value of Λ1.4 ¼ 190þ390

−120 and Λ1.4 ¼ 616þ273
−158 taken from the GW170817 and GW190814 events,

respectively.
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well reproduced the GW190814 limit except for kDMf ¼
0.04 GeV for both BigApple and IOPB-I cases. In com-
parison to DM, the change in the value of Λ for both k and
⊥ pressure components are bleak for the canonical mass
(1.4M⊙), i.e., the theoretical estimates of Λ1.4 are not
sensitive to the presence of a magnetic field for both EOSs.
However, the Λ changes considerably for maximum
neutron star mass depending on the strength of MF.
Hence, we observed a significant effect due to the DM
for both BigApple and IOPB-I cases.

C. Calculation of f -mode oscillation
of the magnetized neutron star

In the present section, we use the formalism required to
calculate the f-mode frequency as done in our previous
study with the relativistic Cowling approximation [23,42].
The f-mode frequency for the quadrupole case is cal-
culated with the variation of MF strength for different
DM fractions, as shown in Fig. 5. We find the marginal
changes in the f-mode frequency in the case of the
BigApple. With the increase in kDMf , the EOS becomes
softer, which gives the lower values of the maximum mass
and its corresponding radius. Also, a relatively lower
massive star oscillates with a higher frequency and vice
versa. Therefore, the magnitude of f-mode frequency for
kDMf ¼ 0.04 GeV is higher than other DM momenta. We
observe that the parallel and perpendicular MF components
have marginal effects on the f-mode frequency of the star.
In the case of IOPB-I (right panel in Fig. 5), there are

significant changes for both MF as well as DM. This is
because the MF considerably affects the EOSs for the
IOPB-I. The magnitude of f-mode frequency is higher for
IOPB-I because it has a softer EOS compared to BigApple.
Therefore, it oscillates with a higher magnitude and radiates
more f-mode frequency.

D. Relative change in the magnitude
of neutron star properties

Given the significant impact of both MF and DM on
neutron star properties, it becomes imperative to thoroughly
investigate and understand their relative influences on
various aspects of neutron stars. To examine this, in
Fig. 6, we calculate the percentage change in the magnitude
of the mass, radius, tidal deformability, dimensionless
moment of inertia, and f-mode oscillation frequency in
comparison to zero MF strength and DM content for three
different DM percentage. The pink and cyan bars represent
the perpendicular and parallel components of the pressure
corresponding to that central MF (Bc).
The relative changes in the neutron star properties are

contingent upon three key components: (i) the strength of
the MF, (ii) the percentage of DM, and (iii) the specific
EOS employed. Notably, for MF strengths below
1 × 1018 G, both the parallel and perpendicular pressure
components exhibit negligible variations, as the emergence
of anisotropy becomes evident only at higher MF strengths.
In the presence of higher MF strengths, the parallel pressure
component facilitates a decrease in the maximum mass due
to the influence of DM, while the perpendicular pressure
component mitigates the rate at which this decrement
occurs. In contrast to the maximum mass, the radius of
the star exhibits the opposite behavior. Specifically, for
higher MF strengths, the perpendicular component of
the pressure contributes to a decrease in the radius, while
the parallel pressure component attenuates this effect. The
maximum mass and corresponding radius of the star can
exhibit changes as high as 10%, highlighting significant
variations in these properties due to the presence of MF
and DM.
The dimensionless tidal deformability (Λ) and the

normalized moment of inertia (Ī) are notably more

FIG. 5. f-mode oscillation frequency of the magnetized neutron star with different fractions of DM for BigApple (left) and IOPB-I
(right) cases.
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FIG. 6. Relative change in the magnitude with respect to zero magnetic cases in the center (Bc) for ΔM, ΔR, ΔΛ, ΔĪ, and Δf-mode
frequency compare with different DM fractions for BigApple (upper) and IOPB-I (lower) cases.
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influenced by the presence of MF compared to DM.
Additionally, the changes in these properties demonstrate
sensitivity to the chosen EOS. The combined effects of DM
and MF offer a range of possibilities that prove valuable in
reproducing specific observational data associated with Λ
and Ī.
Furthermore, the f-mode oscillation frequency is found

to be influenced by the presence of MF and DM. The
introduction of DM significantly increases the f-mode
frequency, reaching up to 2% for kDMf ¼ 0.02 and 10% for
kDMf ¼ 0.04. The presence of MF further impacts this
frequency increase. The influence of MF on top of DM
depends on the strength of the MF and the chosen EOS
used in the analysis.

IV. SUMMARY AND CONCLUSION

This study explores the different properties of the DM
admixed magnetized neutron star. The magnetized EOSs
are calculated with the relativistic mean-field model with
density-dependent MF. The well-known RMF models,
namely BigApple and IOPB-I, are used to obtain the
EOSs for the magnetized neutron star. In the case of the
DM, we choose the simple DM model, where the DM
particle interacts with nucleons by exchanging Higgs. The
MF strength in the core is varied by fixing the surface MF.
Moreover, the DM fraction is almost constant throughout
the neutron star. To see its effect on the magnetized neutron
star, we vary its fraction from 0.00–0.04 GeV. We have
calculated various properties such as mass, radius, tidal
deformability, f-mode frequency with different interaction
strengths for MF, and percentage of DM.
The EOSs of the DM admixed magnetized neutron star

are found to be softer for the parallel component of the
pressure and stiffer for the perpendicular one. The softness
also depends on the DM contained inside the neutron star.
The particle fraction for the magnetized neutron star
exhibits an oscillating nature (predominantly in the core
region of the star), due to an increase in the proton mass and
filling of Landau levels for the high MF. The macroscopic

properties are significantly affected by the DM as well as
the MF. A higher DM percentage having high MF strength
in the core has pronounced effects on the neutron star.
It has been observed that the maximum mass and its

corresponding radius decreases ∼4–5% for DM admixed
neutron star. The resulting maximummass and radius of the
magnetized neutron star admixed with DM then result from
the competitive behavior of MF strength and DM percent-
age. Furthermore, the rate at which the maximum mass
decreases with increasing DM percentage is attenuated by
the presence of MF. The combined inclusion of both DM
and MF proves instrumental in reproducing certain obser-
vational data that could not be predicted in the absence of
these interactions.
The tidal deformability (Λ) and f-mode oscillation

frequency are obtained for both BigApple and IOPB-I
cases by varying the MF strength and DM percentage. The
k components have a higher magnitude of Λ in comparison
to ⊥ one. We found similar results for the f-mode
frequency of the star. It has been observed that a significant
change arises in (Λ) and f-mode oscillation frequency due
to both MF and DM.
In future studies, it is possible to explore additional

macroscopic properties of both static and rotating DM
admixed magnetized neutron stars. In this work, a spheri-
cally symmetric neutron star model is considered as a
simplifying assumption. However, to calculate the proper-
ties of neutron stars more efficiently, advanced techniques
such as Lorene and numerical relativity can be employed
for both the static and rotating cases. Such techniques may
provide a comprehensive insight into the properties of DM
admixed magnetized neutron stars.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for the
careful reading of our manuscript and their insightful
suggestions. We sincerely appreciate all valuable com-
ments and suggestions, which helped us to improve the
quality of the manuscript.

[1] K. Makishima, T. Enoto, J. S. Hiraga, T. Nakano, K.
Nakazawa, S. Sakurai, M. Sasano, and H. Murakami, Phys.
Rev. Lett. 112, 171102 (2014).

[2] M. G.Baring andA. K.Harding,Astrophys. J. 547, 929 (2001).
[3] D. C. Ellison, E. G. Berezhko, and M. G. Baring, Astrophys.

J. 540, 292 (2000).
[4] S. K. Lander, Astrophys. J. Lett. 947, L16 (2023).
[5] K. Hu, M. G. Baring, A. K. Harding, and Z. Wadiasingh,

Astrophys. J. 940, 91 (2022).

[6] J.-F. Fortin, H.-K. Guo, S. P. Harris, E. Sheridan, and K.
Sinha, J. Cosmol. Astropart. Phys. 06 (2021) 036.

[7] O. Ferreira and E. S. Fraga, J. Cosmol. Astropart. Phys. 04
(2023) 012.

[8] V. M. Kaspi and A. M. Beloborodov, Annu. Rev. Astron.
Astrophys. 55, 261 (2017).

[9] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279
(2005).

[10] G. Bertone andM. Fairbairn, Phys. Rev. D 77, 043515 (2008).

INFLUENCE OF DARK MATTER ON MAGNETIZED NEUTRON … PHYS. REV. D 108, 083003 (2023)

083003-11

https://doi.org/10.1103/PhysRevLett.112.171102
https://doi.org/10.1103/PhysRevLett.112.171102
https://doi.org/10.1086/318390
https://doi.org/10.1086/309324
https://doi.org/10.1086/309324
https://doi.org/10.3847/2041-8213/acca1f
https://doi.org/10.3847/1538-4357/ac9611
https://doi.org/10.1088/1475-7516/2021/06/036
https://doi.org/10.1088/1475-7516/2023/04/012
https://doi.org/10.1088/1475-7516/2023/04/012
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1103/PhysRevD.77.043515


[11] N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas,
and M. Virgato, Phys. Rev. Lett. 127, 111803 (2021).

[12] B. Kain, Phys. Rev. D 103, 043009 (2021).
[13] D. Rafiei Karkevandi, S. Shakeri, V. Sagun, and O.

Ivanytskyi, Phys. Rev. D 105, 023001 (2022).
[14] C. Kouvaris, Phys. Rev. D 77, 023006 (2008).
[15] A. de Lavallaz and M. Fairbairn, Phys. Rev. D 81, 123521

(2010).
[16] F. Sandin and P. Ciarcelluti, Astropart. Phys. 32, 278 (2009).
[17] P. Ciarcelluti and F. Sandin, Phys. Lett. B 695, 19 (2011).
[18] J. Ellis, G. Hütsi, K. Kannike, L. Marzola, M. Raidal, and V.

Vaskonen, Phys. Rev. D 97, 123007 (2018).
[19] D. Hooper and L.-T. Wang, Phys. Rev. D 69, 035001 (2004).
[20] A. Das, T. Malik, and A. C. Nayak, Phys. Rev. D 99, 043016

(2019).
[21] H. C. Das, A. Kumar, B. Kumar et al., J. Cosmol. Astropart.

Phys. 01 (2021) 007.
[22] H. C. Das, A. Kumar, B. Kumar, and S. K. Patra, Galaxies

10, 14 (2022).
[23] H. C. Das, A. Kumar, S. K. Biswal, and S. K. Patra, Phys.

Rev. D 104, 123006 (2021).
[24] H. C. Das, A. Kumar, and S. K. Patra, Mon. Not. R. Astron.

Soc. 507, 4053 (2021).
[25] P. Routaray, H. C. Das, S. Sen, B. Kumar, G. Panotopoulos,

and T. Zhao, Phys. Rev. D 107, 103039 (2023).
[26] L. L. Lopes and H. C. Das, J. Cosmol. Astropart. Phys. 05

(2023) 034.
[27] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,

Astron. J. 129, 1993 (2005).
[28] A. Broderick, M. Prakash, and J. M. Lattimer, Astrophys. J.

537, 351 (2000).
[29] M. Strickland, V. Dexheimer, and D. P. Menezes, Phys. Rev.

D 86, 125032 (2012).
[30] V. Parmar, H. C. Das, M. K. Sharma, and S. K. Patra, Phys.

Rev. D 107, 043022 (2023).
[31] S. K. Patra, M. Centelles, X. Viñas et al., Phys. Rev. C 65,

044304 (2002).
[32] B. Kumar, S. K. Patra, and B. K. Agrawal, Phys. Rev. C 97,

045806 (2018).
[33] A. Kumar, H. C. Das, S. K. Biswal et al., Eur. Phys. J. C 80,

775 (2020).
[34] V. Parmar, H. C. Das, A. Kumar, M. K. Sharma, and S. K.

Patra, Phys. Rev. D 105, 043017 (2022).
[35] H. C. Das, A. Kumar, and S. K. Patra, Phys. Rev. D 104,

063028 (2021).
[36] H. C. Das, A. Kumar, B. Kumar, S. K Biswal,

T. Nakatsukasa, A. Li, and S. K. Patra, Mon. Not. R. Astron.
Soc. 495, 4893 (2020).

[37] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and B. Reed,
Phys. Rev. C 102, 065805 (2020).

[38] B. P. Abbott, R. Abbott, T. D. Abbott et al., Astrophys. J.
892, L3 (2020).

[39] H. T. Cromartie, E. Fonseca, S. M. Ransom et al., Nat.
Astron. 4, 72 (2020).

[40] H. C. Das, A. Kumar, B. Kumar et al., Int. J. Mod. Phys. E
30, 2150088 (2021).

[41] G.Panotopoulos and I.Lopes, Phys.Rev.D96, 083004 (2017).
[42] C. V. Flores, L. L. Lopes, L. B. Castro, and D. P. Menezes,

Eur. Phys. J. C 80, 1 (2020).

[43] J. Frieben and L. Rezzolla, Mon. Not. R. Astron. Soc. 427,
3406 (2012).

[44] R. Ciolfi and L. Rezzolla, Mon. Not. R. Astron. Soc. 435,
L43 (2013).

[45] M. Mariani, M. G. Orsaria, I. F. Ranea-Sandoval, and G.
Lugones, Mon. Not. R. Astron. Soc. 489, 4261 (2019).

[46] N. K. Patra, T. Malik, D. Sen, T. K. Jha, and H. Mishra,
Astrophys. J. 900, 49 (2020).

[47] G. H. Bordbar and M. Karami, Eur. Phys. J. C 82, 74 (2022).
[48] P.-C. Chu, X. Wang, L.-W. Chen, and M. Huang, Phys. Rev.

D 91, 023003 (2015).
[49] I. A. Rather, U. Rahaman, V. Dexheimer, A. A. Usmani, and

S. K. Patra, Astrophys. J. 917, 46 (2021).
[50] X.-G. Huang, M. Huang, D. H. Rischke, and A. Sedrakian,

Phys. Rev. D 81, 045015 (2010).
[51] H. Müller and B. D. Serot, Nucl. Phys. A606, 508 (1996).
[52] P. Wang, Phys. Rev. C 61, 054904 (2000).
[53] A. Kumar, H. C. Das, S. K. Biswal et al., Eur. Phys. J. C 80

(2020).
[54] P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[55] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1

(1986).
[56] A. E. Nelson, S. Reddy, and D. Zhou, J. Cosmol. Astropart.

Phys. 07 (2019) 012.
[57] M. Cassing, A. Brisebois, M. Azeem, and J. Schaffner-

Bielich, Astrophys. J. 944, 130 (2023).
[58] G. Panotopoulos and I. Lopes, Phys. Rev. D 96, 083004

(2017).
[59] J. Fang, H. Pais, S. Pratapsi, S. Avancini, J. Li, and C.

Providência, Phys. Rev. C 95, 045802 (2017).
[60] A. GOYAL, V. K. GUPTA, K. GOSWAMI, and V. TULI,

Int. J. Mod. Phys. A 16, 347 (2001).
[61] S. Chakrabarty, Phys. Rev. D 54, 1306 (1996).
[62] D. Ebert, K. G. Klimenko, M. A. Vdovichenko, and A. S.

Vshivtsev, Phys. Rev. D 61, 025005 (1999).
[63] G. N. Ferrari, A. F. Garcia, and M. B. Pinto, Phys. Rev. D

86, 096005 (2012).
[64] E. S. Fraga andL. F. Palhares, Phys. Rev.D 86, 016008 (2012).
[65] A. Haber, F. Preis, and A. Schmitt, Phys. Rev. D 90, 125036

(2014).
[66] A. Rabhi, H. Pais, P. K. Panda, and C. Providência, J. Phys.

G 36, 115204 (2009).
[67] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, Phys. Rev.

Lett. 79, 2176 (1997).
[68] R.Mallick and S. Schramm, Phys. Rev. C 89, 045805 (2014).
[69] R. H. Casali, L. B. Castro, and D. P. Menezes, Phys. Rev. C

89, 015805 (2014).
[70] M. Mariani, L. Tonetto, M. C. Rodríguez, M. O. Celi, I. F.

Ranea-Sandoval, M. G. Orsaria, and A. Pérez Martínez,
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