
Collisional flavor instability in dense neutrino gases

Zewei Xiong ,1,* Lucas Johns ,2,† Meng-Ru Wu ,3,4,5,‡ and Huaiyu Duan 6,§

1GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
2Departments of Astronomy and Physics, University of California, Berkeley, California 94720, USA

3Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
4Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan
5Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

6Department of Physics and Astronomy, University of NewMexico, Albuquerque, New Mexico 87131, USA

(Received 8 December 2022; revised 15 February 2023; accepted 12 September 2023; published 2 October 2023)

Charged-current neutrino processes such as νe þ n⇌pþ e− and ν̄e þ p⇌nþ eþ destroy the flavor
coherence among the weak-interaction states of a single neutrino and thus damp its flavor oscillation. In a
dense neutrino gas such as that inside a core-collapse supernova or the black hole accretion disk formed
in a compact binary merger, however, these “collision” processes can trigger large flavor conversion in
cooperation with the strong neutrino-neutrino refraction. We show that there exist two types of collisional
flavor instability in a homogeneous and isotropic neutrino gas which are identified by the dependence of
their real frequencies on the neutrino density nν. The instability transitions from one type to the other and
exhibits a resonancelike behavior in the region where the net electron lepton number of the neutrino gas is

negligible. In the transition region, the flavor instability grows exponentially at a rate ∝ n1=2ν . We find that
the neutrino gas in the black hole accretion disk is susceptible to the collision-induced flavor conversion
where the neutrino densities are the highest. Further investigations are needed to confirm if the collisional
flavor instability will indeed result in the production of large amounts of heavy-lepton flavor neutrinos in
this environment which would have important ramifications in its subsequent evolution.

DOI: 10.1103/PhysRevD.108.083002

I. INTRODUCTION

The protoneutron star (PNS) in a core-collapse super-
nova (CCSN) and the black hole (BH) accretion disk/torus
formed in a compact binary merger are immersed in and/or
surrounded by dense neutrino media at birth. Emitted by
the rapidly cooling remnants, these neutrinos help to shape
the evolution of the physical environments through various
processes including

νe þ n⇌pþ e− and ν̄e þ p⇌nþ eþ: ð1Þ

Because the neutrinos emitted by the remnants typically
have different energy spectra and fluxes for different
species, a change of the neutrino flavor, νe⇌ νμ=τ and

ν̄e⇌ ν̄μ=τ, can have important consequences in the remnant
physics including but not limited to the nucleosynthesis in
their ejecta.
Although much has been learned in the last decade, the

flavor evolution of the neutrinos in the compact object
environment remains an unsolved problem. This is partly
because, through the neutrino-neutrino refraction [1–3], a
dense neutrino gas can experience flavor transformation
collectively [4–7]. It is a daunting task to include both the
neutrino flavor oscillations and the remnant dynamics in a
single numerical simulation because of the large disparity
between the time and distance scales of the two. But the
integration of these two kinds of calculations is probably
necessary given the discovery of the “fast flavor conver-
sion” which can occur on the timescale of a nanosecond or
shorter and even before the neutrinos are fully decoupled
from the matter [8–11].
Recently, yet another type of collective flavor trans-

formation is found that can take place inside the PNS or the
BH accretion disk [12]. This kind of flavor transformation
in a dense neutrino gas is triggered by the charged-current
processes such as those in Eq. (1). These processes,
when acting on a single neutrino, “measure” its flavor
and, therefore, destroy the coherence among the different
weak-interaction states of the neutrino. In a dense neutrino
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gas, however, these flavor decohering “collisions” can
induce significant flavor conversion because the flavor
evolution of different neutrino modes are tightly coupled by
the neutrino-neutrino refraction.
The study of the collision-induced flavor conversion in

Ref. [12] was carried out for a monochromatic neutrino gas.
The recent numerical simulation of the neutrino transport in
a spherically symmetric supernova model (with tempered
parameters) suggests that such flavor conversion can indeed
occur inside the CCSN [13]. Very recently, the collisional
flavor instability (CFI) has been shown to exist in the
neutrino gas with a continuous energy spectrum [14]. In
this work, we further demonstrate that both types of CFI
that were discovered in Ref. [12] can exist in a homo-
geneous and isotropic neutrino gas and are identified by the
frequencies of the corresponding neutrino oscillation
modes. We will also show that the CFI of one type can
transition to the other, e.g. in the hot BH accretion disk
(Fig. 1), where the number densities of νe and ν̄e are
similar.

II. EQUATION OF MOTION

For simplicity, we consider the mixing of two neutrino
flavors, the e and x flavors with the latter being a linear
combination of the physical μ and τ flavor neutrinos. When

the neutrinos are in the nearly pure weak-interactions states,
the mean-field density matrix of the neutrino flavor [16]
can be written as

ρ ≈
fνe þ fνx

2
þ fνe − fνx

2

�
1 S

S� −1

�
; ð2Þ

where fνe and fνx are the occupation numbers in the
corresponding weak-interactions states, respectively, and
SE;vðt; rÞ (with jSj ≪ 1) is the flavor coherence of the
neutrino of energy E and velocity v at time t and position r.
We assume that the neutrinos are ultrarelativistic so that
jvj ¼ c, and we adopt the natural units with ℏ ¼ c ¼ 1
throughout this work.
The equation of motion at the linear order of S is [17,18]

0 ¼ �
ivβ∂β −

ffiffiffi
2

p
GFvβ

�
jβe þ jβν

�þ ωeff

�
SE;v

þ
ffiffiffi
2

p
GFvβ

Z
∞

−∞

E02dE0

2π2

Z
dv0

4π
v0βGðE0; v0ÞSE0;v0 : ð3Þ

In the above equation, GF is the Fermi constant, jβe ¼R ðfe− − feþÞuβd3p=ð2πÞ3 is the four-current density of
the net electron lepton number (ELN) (in the absence
of the heavy leptons), and jβν ¼

R ½ðfνe − fνxÞ − ðfν̄e −
fν̄xÞ�vβd3p=ð2πÞ3 is the νELN four-current density, where
vβ ¼ ð1; vÞ and uβ are the four velocities of the neutrino
and the charged lepton, respectively. In Eq. (3), we define
the νELN distribution as

GðE; vÞ ¼
	
fνe − fνx if E > 0

fν̄x − fν̄e if E < 0
; ð4Þ

where we denote the antineutrino as the neutrino with
negative energy. We have also incorporated the effect of the
flavor-decohering collisions [19] into the effective oscil-
lation frequency

ωeff ¼ cosð2θÞ


Δm2

2E

�
þ iΓE; ð5Þ

where Δm2 and θ are the mass-squared difference and the
vacuum mixing angle of the neutrino, respectively, and ΓE
is the average of the emission and absorption rates of the
electron flavor (anti)neutrino in Eq. (1).

III. COLLISIONAL FLAVOR INSTABILITY

A collective flavor oscillation mode of the neutrino gas
is given by SΩ;KE;v ðt; rÞ ∝ e−iðΩt−K·rÞ [17,20]. In general, the
frequency Ω ¼ ωP þ iγ of a collective mode with the (real)
wave vector K can be complex. A flavor instability is
identified when γ > 0 for a collective mode whose ampli-
tude growths as eγt until jSj ∼ 1 or the physical conditions
have changed significantly. In this work, we consider a

FIG. 1. The frequency Ω ¼ ωP þ iγ of the neutrino oscillation
mode with the maximum growth rate (solid curves) in the
equatorial plane of the BH accretion disk/torus model
M3A8m3a5 at t ¼ 20 ms [15]. Also plotted is the analytic
approximation of the frequencies of the two collective modes
in the continuous energy limit (dashed curves) [Eq. (11)]. The
CFI of the plus type (with ωP=μ ≈ 0) existing in the inner torus
transitions to the minus type [with ωP ∝ ðnνe − nν̄eÞ] in the outer
torus at x ≈ 103 km where nνe ≈ nν̄e and exhibits a resonancelike
behavior with γ ∝ μ1=2, where μ ∝ nνe .
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homogeneous and isotropic gas which can exist in the
compact object remnant where the neutrinos are trapped.
We also focus on the collective mode that preserves the
homogeneity and the isotropy, i.e. SΩ;KE;v → SΩE . Equation (3)
is greatly simplified in this case:

ðΩþ ωeffÞSΩE þ μ

Z
∞

−∞
gðE0ÞSΩE0dE0 ¼ 0; ð6Þ

where μ ¼ ffiffiffi
2

p
GFðnνe − nνxÞ is a measure of the strength of

the neutrino-neutrino refraction, and

gðEÞ ¼ E2

nνe − nνx

Z
dv

ð2πÞ3 GðE; vÞ ð7Þ

is the energy νELN distribution. We have applied the shift
Ω → Ωþ ffiffiffi

2
p

GFðj0e þ j0νÞ in Eq. (6) as is commonly done
in the literature [17].
Equation (6) implies SΩE ∝ 1=ðΩþ ωeffÞ [21], which

can be substituted back into Eq. (6) to obtain the self-
consistency equation

Z
∞

−∞

gðEÞdE
Ωþ ωeff

¼ −
1

μ
: ð8Þ

A solution to the above equation has been found in the large
μ limit by assuming ωP ∝ μ [14]. However, there are two
branches of the dispersion relation ΩðKÞ in a dense
neutrino gas that preserve the axial symmetry about the
wave vector K in the limit ωeff ¼ 0 [17]. Therefore, one
expects Eq. (8) to have two solutions that preserves the
homogeneity (i.e. K ¼ 0) and isotropy in the limit
jΩj ≫ jωeff j. In this limit, we expand the left-hand side
of Eq. (8) up to the first order of ωeff=Ω and obtain

Ω2 þ μDΩ − μhωeffi ≈ 0; ð9Þ

where

D ¼
Z

∞

−∞
gðEÞdE ¼ 1 −

nν̄e − nν̄x
nνe − nνx

ð10Þ

is a dimensionless measure of the net νELN, and hhi ¼R∞
−∞ hðEÞgðEÞdE is the average of an arbitrary function
hðEÞ weighted by the νELN energy distribution.
Equation (9) indeed has two solutions

Ω ≈
−μD
2

� μ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 4

hωeffi
μ

s
: ð11Þ

In the limit D2 ≪ jhωeffi=μj, we obtain

Ω ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μhωeffi

p
: ð12Þ

The above equation implies the existence of a flavor
instability that grows at a rate γ ∝ μ1=2 where the νELN
is negligible as long as hΓEi ≠ 0.1 In the opposite limit
D2 ≫ jhωeffi=μj, we find

Ωþ ≈
hωeffi
D

and Ω− ≈ −μD −
hωeffi
D

: ð13Þ

We note that Ω− is exactly the solution found in Ref. [14]
under the same conditions. We also note that these two
solutions correspond to the two types of CFI in the
monochromatic gas [12,24] which transition to one another
as D changes sign.
As a concrete example, we solve Eq. (8) with

μ ¼ 103 μs−1,

ωeff ¼ 1.8 μs−1


1 MeV

E

�
þ iαC
103 μs



E

1 MeV

�
2

; ð14Þ

and

gðEÞ ¼ 2αN
3ζð3Þ

�
E2=T3

expðjEj=TÞ þ 1

�
; ð15Þ

where αC ¼ αN ¼ 1 and T ¼ 4 MeV for the neutrino
(E > 0), and αC ¼ 0.3, αN ¼ D − 1, and T ¼ 5 MeV for
the antineutrino (E < 0). We plot the real and imaginary
parts of the frequencies of the two collective modes as
functions of D in Fig. 2. As comparison, we also plot the
approximate solutions in Eq. (11) as dashed curves in the
same figure.
Figure 2 demonstrates a resonancelike instability where

the net νELN is negligible (D2 ≪ jhωeffi=μj) [Eq. (12)]. On
the side of the resonance where D < 0, the upper-branch
solution is well approximated by Ω−. We shall call this
flavor instability the minus type, which has ωP ∝ μ. We call
the instability on the other side of the resonance the plus
type, which has ωP=μ ≈ 0 in the large μ limit. Following
Ref. [14] we define

Γ ¼
R
∞
0 gðEÞΓEdER∞
0 gðEÞdE and Γ̄ ¼

R
0
−∞ gðEÞΓEdER
0
−∞ gðEÞdE ð16Þ

as the average collision rates of the neutrino and the
antineutrino, respectively. The numerical example shown
in Fig. 2 has Γ=Γ̄ ≈ 2.13 > 1, and the CFI exists in the
range

Γ̄
Γ
≲ 1 −D ¼ nν̄e − nν̄x

nνe − nνx
≲ Γ
Γ̄
: ð17Þ

1An acute reader may realize the existence of a flavor
instability in the collisionless gas if hωi < 0. This corresponds
to the bipolar type of the neutrino oscillations [4,22] which can be
understood as a flavor pendulum [23].
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The higher end of the inequality (or the lower limit of D) is
determined by Ω− in Eq. (13). We use the criterion in the
monochromatic gas [12] for the lower end of the inequality
(or the upper limit ofD) because the condition jΩj ≫ jωeff j
is no longer satisfied for the upper-branch solution at D ≫
jhωeff=μij in Fig. 2. The direction of the inequality in
Eq. (17) is reversed if Γ=Γ̄ < 1.

IV. BLACK HOLE ACCRETION DISK

To investigate the existence of the CFI in the BH
accretion disk/torus, we look into the model M3A8m3a5
from [15] which is a long-term axisymmetric simulation of
a remnant BH-torus system including both the energy-
dependent neutrino transport and a viscosity parameter.
In the upper row of Fig. 3 we plot the net νELN parameter
D ¼ 1 − nν̄e=nνe in three representative snapshots at
t ¼ 20, 35, and 50 ms, respectively. Following Ref. [25],
we also plot

Fνðt; rÞ ¼
j R vfνðt; r;pÞd3pjR

fνðt; r;pÞd3p
¼ 1

3
ð18Þ

for ν ¼ νe and ν̄e as the solid and dashed curves, respec-
tively. The condition of homogeneity and isotropy, which is
one of the assumptions of this work, is approximately

satisfied in the inner part of the disk where Fν is small.2

M3A8m3a5 does not include heavy-lepton neutrinos which
have much smaller densities than νe and ν̄e in the BH-torus
system.
The high electron degeneracy in the inner disk favors the

production of νe over ν̄e which leads to a positive νELN.
Above the emission surface, however, ν̄e generally has a
higher flux than νe as a result of the protonization of the
disk which is extremely neutron rich. The only exception is
near the polar region at later times where the larger
emission surface of νe causes a higher concentration of
νe than ν̄e [25]. More physics details of the model can be
found in Refs. [15,25].
For the neutrino gases with discrete energy groups,

Eq. (6) becomes

X
j

f½Ωa þ ωeffðEiÞ�δij þ μgjΔEjgSaj ¼ 0; ð19Þ

where Ej, gj, and ΔEj are the energy, the νELN weight,
and the width of the neutrino in the jth energy group,
respectively. (The antineutrinos are counted as the neu-
trinos with negative energies.) There are N normal modes
for N discrete neutrino energy groups, and Ωa and Sa

(a ¼ 1;…; N) are the eigenvalues and eigenvectors of the
matrix with the elements Λij ¼ −½ωeffðEiÞδij þ μgjΔEj�,
respectively. We solve the frequencies of the normal modes
in M3A8m3a5 with Δm2 ¼ 2.5 × 10−3 eV2, θ ¼ 8.6°,
and the emission and absorption rates of νe and ν̄e in
Eq. (1) [27]. In Fig. 3 we show both the real and imaginary
components of the frequency of the normal mode that has
the largest growth rate in each spatial grid. One can see that
the growth rates of the flavor instabilities are the largest
where the net νELN is negligible, which is expected from
the previous analysis.
Throughout the BH-torus system, one has Γ=Γ̄ > 1

because the collision rates are dominated by the neutrino
absorption rates and there are more neutrons than protons in
this region. Although the entire accretion disk tends to emit
more ν̄e than νe, the density of νe in the inner torus is
actually larger where the chemical potential of the electron
is significant. Therefore, we expect only the CFI of the plus
type (with ωP=μ ≈ 0) can exist in the inner torus. Earlier in
Fig. 1 we have shown the frequency Ω of the normal mode
with the largest growth rate in the equatorial plane of the
accretion disk at t ¼ 20 ms. It is clear from Figs. 1 and 3
that the CFI in the inner torus is indeed of the plus type,
while the instability in the outer region of the torus is of
the minus type [ωP ∝ ðnνe − nν̄eÞ] if our analysis can be
generalized to the anisotropic environment.

FIG. 2. The collective frequenciesΩ ¼ ωP þ iγ in Eq. (8) (solid
curves) and the approximate solutions in Eq. (11) (dashed curves)
with μ ¼ 103 μs−1 and ωeff and gðEÞ defined in Eqs. (14) and
(15), respectively. The solutions away from the resonance at
D ¼ 0 are labeled as the plus and minus types according to
Eq. (13). The vertical dot-dashed line in the lower panel
corresponds to the approximate upper limit of D ≈ 0.53 of the
instability which is obtained from Eq. (17) and is slightly higher
than the actual upper limit D ≈ 0.50. The lower limit of the
instability at D ≈ −1.13 is not shown.

2However, a recent study [26] which appeared while this work
was under review suggests that the qualitative results discussed
here may still be valid even in anistropic environments.
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V. DISCUSSION AND CONCLUSIONS

We have shown that there exist two types of CFI in a
dense neutrino gas that preserves the homogeneity and
isotropy. The CFI transitions from one type to the other
where the net νELN is zero and has a resonancelike
instability that grows at a rate ∝ n1=2ν . But this is only part
of the story. There can exist the CFI that breaks these
symmetries or even in the inhomogeneous and aniso-
tropic environment as one maps out the full dispersion
relation ΩðKÞ of the collective neutrino oscillation wave.
Numerical simulations are needed to confirm if the exist-
ence of the CFI can lead to significant flavor conversion
before the physical conditions change.
We would like to emphasize that, although the CFI

can interplay with the fast neutrino flavor conversion
[12,24,28], its existence does not require a crossing of
the νELN angular distribution as the latter does. Therefore,
the CFI can exist in CCSNe and compact binary merger
remnants in the regions and at the epochs where/when fast
flavor instabilities do not yet exist (see, e.g., Ref. [29]).
Our result is strong motivation for follow-up work

assessing how the CFI impacts the dynamics, element
production, and kilonova emission of neutron-star mergers.
For example, substantially more νμ=τ and ν̄μ=τ can be
produced by the BH accretion disk through flavor con-
version and thus cool the remnant faster. The change of the

physical conditions will, of course, affect the existence of
the CFI as well as the condition of fast flavor instabilities.
This again cries out for the integration of the flavor
oscillations into the neutrino transport in the simulations
of CCSNe and compact binary mergers.
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FIG. 3. The νELN excess parameter D ¼ 1 − nν̄e=nνe (upper row) and the frequency Ω ¼ ωP þ iγ of the normal mode with the
maximum growth rate γ > 10−3 μs−1 (middle and lower rows) at three snapshots (as labeled) in the BH accretion disk model
M3A8m3a5 of Ref. [15]. The solid and dashed curves are the contours with Fνe ¼ 1=3 and Fν̄e ¼ 1=3, respectively. [See Eq. (18)]. The
dot-dashed curves are the contours with D ¼ 0.
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