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We study a possibility of constraining isotropic cosmic birefringence with help of cosmic microwave
background polarization data in the presence of polarization angle miscalibration without relying on any
assumptions about the Galactic foreground angular power spectra and in particular, on the correlation
between their E- and B-modes. For this purpose, we propose a new analysis framework based on a
generalized parametric component separation approach, which accounts simultaneously on the presence of
Galactic foregrounds, relevant instrumental effects, and external priors. We find that upcoming multi-
frequency cosmic microwave background (CMB) data with appropriate calibration priors will allow
producing an instrumental-effect-corrected and foreground-cleaned CMB map, which can be used to
estimate the isotropic birefringence angle and the tensor-to-scalar ratio, accounting on statistical and
systematic uncertainties incurred during the entire procedure. In particular, in the case of a Simons
Observatory-like, three small aperture telescopes, we derive an uncertainty on the birefringence angle of
σðβbÞ ¼ 0.07° (0.1°), assuming the standard cosmology and calibration priors for all (one) frequency
channels with the precision of σðαiÞ ¼ 0.1° as aimed at by the near future ground-based multifrequency
experiments. This implies that these experiments could confirm or disprove the recently detected value of
βb ¼ 0.35° with a significance between 3 and 5σ. We furthermore explore the impact of precision of the
calibration priors and of foreground complexity on our results and discuss requirements on the calibration
precision. In addition, we also investigate constraints on the tensor-to-scalar ratio, r, which can be derived
in the presence of isotropic birefringence and/or polarization angle miscalibration. We find that the
proposed method allows setting constraints on r in such cases, even if no prior is available, and with only a
minor increase of the final uncertainty as compared to cases without these effects.
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I. INTRODUCTION

Cosmic birefringence rotates the polarization angle of
cosmic microwave background (CMB) photons as a
consequence of some parity violating mechanism, which
could be due to multiple reasons ranging from a violation of
the Lorentz symmetry [1] to the impact of specific dark-
energy models [2] or dark-matter axionlike particles
through the Chern-Simons effect [3,4]. This parity violation
would lead to nonzero correlation between the E- and B-
modes (EB), even if the primordial EB correlation is zero as
it is the case in the standard cosmology. Cosmic birefrin-
gence can take many forms, depending on the details of the
underlying physical mechanism. It can be isotropic or
anisotropic, frequency dependent (similar to Faraday rota-
tion), time dependent or constant. In this paper, we focus on
the case of time- and frequency- independent, isotropic
birefringence. Hereafter, we will denote the direction-
independent birefringence angle as βb and assume no
primordial EB correlation, i.e., CEB;CMB

l ¼ 0. The proposed

framework is however adaptable to any nonzero primordial
EB correlations, as predicted by, e.g., anisotropic inflation
models [5] or an asymmetry in primordial GW handedness
[6,7] (chiral gravitational waves).
Detecting cosmic birefringence is of significant scientific

importance as it could provide valuable hints about the
physics beyond the standard model of particle physics.
This, however, requires efficient means of breaking an
inherent degeneracy between the birefringence angle and
an effective orientation of the polarization-sensitive CMB
detectors with respect to the sky coordinate. Cosmic
birefringence and the polarization angle miscalibration
can also affect the estimation of other cosmological
parameters such as the tensor-to-scalar ratio, r [8].
Here, we propose a self-contained framework, which

permits studying both these effects in a consistent and
statistically robust manner. We focus on the approach
where the degeneracy is broken with the help of calibration
constraints assumed to be available for all or some of
the single-frequency maps. The way these calibration
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constraints determine the effective polarization angle of the
recovered CMB map depends on the Galactic foregrounds
and the details of the instrument design, which we study in
the context of the generalized parametric component
separation method.
A number of studies have been published recently,

addressing some of the issues mentioned above. The most
relevant is the study by [8] who in the case of the Simons
Observatory (SO) estimate the precision with which the
polarization angle needs to be known in order to meet the
targeted precision goal on r of σðrÞ ≈ 10−3 [9]. They obtain
the value of a few tenths of a degree. Similarly, in LiteBIRD
[10], aiming at constraining r ≤ 10−3, they find that the
polarization angle precision should be even more stringent
and ranges between an arcminute and a few tens of
arcminutes depending on the frequency channel [11].
Our work generalizes these approaches by providing a
general, self-contained framework for such analyses,
allowing to correct for the angle miscalibration to the
extent possible, and setting simultaneous constraints on the
birefringence and r.
From observational perspective, there exists constraints

on time dependent [12–14] and on anisotropic birefrin-
gence [15–21] derived from BICEP Keck, SPT, WMAP,
POLARBEAR, SPT, and Planck, datasets. Such constraints
are independent on the knowledge of the absolute polari-
zation angle as they rely on the variability, temporal, or
spatial, of the signal.
For isotropic birefringence, Minami et al. [22] proposed

to lift the degeneracy between the polarization angle and
birefringence by assuming a model for the EB power
spectrum of the foregrounds. The method was further
elaborated on in [23]. With this model, it is possible to
estimate the polarization angle of the telescope by fitting
the parameters of the foreground EB to observations. The
first results using this method applied to the Planck datasets
are very promising and potentially hint at nonzero iso-
tropic birefringence with βb ¼ 0.35°� 0.14° [24]. Diego-
Palazuelos et al. [23] found similar results but had to
assume more complex foreground models such as filament
models from [25,26] as well as the COMMANDER sky
model [27] to ensure that the found value of birefringence
angle is independent on the area of observed sky. Even
more recently, Eskilt and Komatsu [28] used this method on
the Planck and WMAP data and found βb ¼ 0.37°� 0.14°
with fsky ¼ 0.62 and βb ¼ 0.342°þ0.094°

−0.091° with fsky ¼ 0.92.
They also found the constraints consistent with a frequency
independent birefringence angle in agreement with the
Planck PR4 data only analysis [29]. While these results
potentially hint at the nonzero birefringence, they all rely
on assumptions about the EB angular power spectrum of
the foregrounds for which reliable models or measurements
are lacking at this time. The approach discussed here is thus
complementary to these studies.
Other relevant methods include the so-called self-

calibration method of [30] and the birefringence tomo-
graphy proposed in [31]. The self-calibration method

constrains the polarization angle so that the EB correlations
of the signal contained in the map vanishes. This allows us,
in principle, to calibrate the angle with high precision, but,
by assumption, it rules out any possible detection of
isotropic cosmic birefringence. The birefringence tomog-
raphy aims at measuring the difference between a bire-
fringence angle induced at recombination and one at
reionization (corresponding respectively to small and large
angular scales of the CMB spectra) therefore constraining
the change of the birefringence angle between the two
corresponding redshifts. Both these methods should ideally
be applied to the foreground-cleaned CMB maps as
produced at the outcome of the component separation
procedures. For multifrequency observations with poten-
tially different miscalibration angles at different frequen-
cies, this however requires understanding the impact of
such effects on the component separation and the expected
level of foreground residuals in the recovered maps. This
work is therefore also relevant for these methods.
In this paper, we first generalize a parametric component

separation method as applied to a multifrequency set of
Stokes maps so it can correct jointly for instrumental effects
and clean complex foregrounds. We use calibrations of the
polarization angle of the telescopes to break the polariza-
tion angle-birefringence degeneracy, whatever are the
spatial properties of the foregrounds or whether cosmic
birefringence is present or not. We then assess the impact of
this procedure on the joint estimation of the birefringence
angle, βb, and the tensor-to-scalar ratio, r. This approach
can be seen as a generalization of the self-calibration
method [30] extended to allow for a detection of isotropic
birefringence, simultaneously with the amplitude of the
primordial gravitational waves, and explicitly accounting
on the foreground contaminations.
While the presented approach should be eventually

implemented within an actual CMB data analysis pipeline,
hereafter we recast it as a forecasting tool in order to derive
realistic and robust, ensemble-averaged constraints on the
cosmological parameters, βb and r, and to provide mean-
ingful precision requirements for the calibration priors.

II. METHOD

Our method is composed of two steps. The first step
consists in a simultaneous estimation of foreground and
instrumental parameters performed as part of the general-
ized parametric component separation described in [32]. It
uses a generalized version of the so-called spectral like-
lihood and yields constraints on foreground and instru-
mental parameters. These are then used to derive estimates
of the sky components including that of the CMB, as well
as their generalized statistical uncertainties.
The second step then constraints cosmological param-

eters from the CMB maps and their covariances as derived
on the first step. This is done with help of the likelihood
obtained assuming that CMB signal is (nearly) Gaussian
and isotropic, and its covariance is given by the CMB
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power spectra, which in turn depend on cosmological
parameters. Consequently, the covariance model does not
account for the presence of foreground residuals in the
CMBmap estimated on the first step. This may then lead to
systematic errors in the estimated parameters, which we
study hereafter, together with their statistical uncertainties.
We describe the entire procedure in detail below.

A. Data model

The input for the component separation step are single
frequency maps reconstructed from actual measurements of
a CMB experiment. These maps are gathered in a single
data vector d; for each sky pixel, we store the measured sky
amplitudes for each frequency, so d contains nstokes × nf
maps. We model d as

d ¼ XABcþ n; ð1Þ

where n stands for the noise in all maps concatenated
together. c is a vector composed of all maps of the sky
signals. It contains therefore nstokes × ncomp maps.B acts on
c and models the impact of birefringence on the CMB. A is
the mixing matrix that acts on the component vector
synthesizing them into the corresponding frequency maps
for each observation channel of the considered telescope.
Finally, X is the instrumental response matrix that

models how the instrument’s characteristics may affect
the sky signal at each frequency.
We will specifically focus on the Q and U Stokes

parameters, ignoring I. Indeed the observation of temper-
ature anisotropies with SO SAT-like instruments is quite
limited especially at large angular scales. This is primarily
due to 1/f noise, which is greatly reduced in polarization
thanks to the half wave plate. Consequently, we also
exclude the TB correlation when determining the birefrin-
gence angle. The formalism can however be easily gener-
alized and can include TT and TB signals.
We define the mixing matrix for each sky pixel p as

ApðfβfggÞ. It scales the sky component amplitudes in
frequency and coadds them together. Each column of A
corresponds to a component, and each row to an observa-
tion frequency for each considered Stokes parameter, either
Q or U in the following. The scaling of foreground
components with respect to frequency is assumed to be
parametrized by a set of spectral parameters fβfgg. We
adopt the CMB units so that the elements of A acting on the
CMB sky signal are all equal to 1. The mixing matrix has
ðnstokesnfÞ × ðnstokesncompÞ elements. Here, the mixing
matrix does not mix between different Stokes parameters
and corresponding elements of the mixing matrix vanish,
leaving only nstokesnfncomp nonzero elements, and the
elements of A corresponding to Q and U are equal.
Given that our focus is on isotropic cosmic birefringence

B, we consider polarization angle misalignment as the only

instrumental effects. Other effects should be considered in a
more complete analysis as discussed in Sec. V. As we
consider only Q and U Stokes parameter maps, both on the
input and the output of the component separation pro-
cedure. Hereafter, nstokes ¼ 2. The general rotation matrix
inQ andU space for the spin 2 polarization headless vector
is denoted RðαÞ and is defined as1

�
Qout

Uout

�
¼

�
cosð2αÞ sinð2αÞ
− sinð2αÞ cosð2αÞ

��
Qin

Uin

�

≡RðαÞ
�
Qin

Uin

�
: ð2Þ

Effects of cosmic birefringence at the component map
level can be represented as a block diagonal matrix, with
each block corresponding to a different sky pixel. As
birefringence acts only on the CMB Q and U maps, the
CMB-CMB subblock of each block of B is a rotation
matrix RðβbÞ, where βb the birefringence angle. The other
components are unchanged by B and the remaining
diagonal blocks of the matrix are equal to the identity
matrix, and all off diagonal subblocks vanish. For definite-
ness, we will assume that properties of the “primordial”
CMB, i.e., as contained in the component vector, c, are
well-defined and known, and for simplicity throughout this
paper, we will take the “primordial” CMB EB cross-
correlation to be zero. This makes the definition of the
birefringence angle (in the absence of other effects studied
below) well defined. However, incorporating the cases with
some specific, nonvanishing, “primordial” EB correlations
is straightforward. We redefine the sky signal to an effective
sky signal after birefringence as: sp ≡BðβbÞcp. We also
note that the framework could be generalized to the
anisotropic case by simply allowing the birefringence angle
to vary between sky pixels.
For simplicity, we model polarization miscalibration with

a single angle for each single frequency map. This can be
modified as needed depending on specific experiment
conditions, assigning one angle per focal plane wafer or
on the contrary using one angle per entire multifrequency
instrument, for instance. The miscalibration of polarization
angles is described as a rotation matrix acting on each
pixel of Q and U maps of a particular frequency channel.
The corresponding instrumental response matrix,
Xðfα1;…; αnfgÞ, is then a block diagonal matrix with a
block assigned to each sky pixel and composed of fre-
quency-specific sublocks given by a rotation matrix RðαiÞ
acting on theQ andU Stokes parameters of the ith frequency
channel of the vector given by ApðfβfggÞBðβbÞcp.

1Note that some references use the other sign convention for
the rotation matrix; however, this does not affect the results
presented in this work.
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The miscalibration angles are estimated at the same
time as foreground spectral indices. We therefore introduce
an effective mixing matrix defined as ΛpðfΓgÞ≡
Xðfα1;…; αnfgÞApðfβfggÞ, where fΓg≡ ffαg; fβfggg
and fαg denotes fα1;…; αnfg. A generic element of fΓg
will be referred to as γ. We can now rewrite the data model
in Eq. (3) as

dp ¼ Xpðfα1;…; αnfgÞApðfβfggÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΛpðfΓgÞ

BðβbÞcp|fflfflfflffl{zfflfflfflffl}
sp

þnp: ð3Þ

In this perspective, the instrumental and foreground param-
eters are both merely unknowns of a global fitting problem;
however, the manner in which they impact the entire
procedure is rather different. The foreground parameters
are sky-component specific and depend on the assumed
model; hence, they do not depend on the number of
available frequency channels. More channels permits in
general better estimation of the foreground parameters.
This is not always so for the instrumental parameters, as
they are commonly specific to frequency channels and
more frequencies typically mean more parameters. This is,
for instance, the case of the polarization angle misalign-
ment as discussed in detail later in this work. (See Ref. [33]
for a counter example). In such cases, increasing the
number of available channels may not improve the prob-
lem’s stability and instead other means, such as priors, may
need to be incorporated in the component separation
formalism.
Let us consider an arbitrary instrumental angle α0, we

can always write

Xpðfα1;…;αnfgÞ¼Xðfα1−α0;…;αnf −α0gÞ
×Xpðfα0;…;α0g
¼Xpðfα01;…;α0nfgÞXpðfα0;…;α0gÞ; ð4Þ

where all the angles with a prime include an extra common
rotation by an angle −α0 and the rightmost factor in the last
equation rotates all channels by the same angle α0 to
compensate for this. We note that rotating all frequency
channels by the same angle is equivalent to rotating all sky
components by the very same angle, i.e.,

Xpðfα0;…; α0gÞApsp ¼ ApX̃pðfα0;…;α0gÞsp; ð5Þ

where X̃p is a rotation operator analogous to Xp but
operating on the sky components instead of the frequency
channels and for definiteness, we assume, as always, that
CMB is the first component. We can therefore rewrite the
signal term of our data model in Eq. (3) as

ApX̃pðfα0;…;α0gÞBðβbÞcp ¼ ApX̃pðfα0 þ βb;…;α0gÞcp
¼ ApBðα0 þ βbÞc0p: ð6Þ

The new sky components, c0, defined above, contain the
same CMB signal as c, and, in particular, its EB correlation
continues to vanish as is required throughout here. The
foregrounds signals are however modified due to the
rotation by the angle α0. In the absence of any additional
assumptions both c and c0 and the corresponding birefrin-
gence angles, βb and βb þ α0, are consistent with the data,
d. Consequently, the problem does not have a unique
solution for foreground components and the birefringence
angle. In practice, this implies that employing any of the
standard methods of solving the inverse problem in Eq. (3)
is going to have a degeneracy and that we will need some
additional assumptions to break it. These extra assumptions
could concern any of the foreground components, e.g.,
defining their EB cross-correlations, as done, for instance,
in the approaches of [22,23], or provide some external
constraints on the common rotation angle, α0. While both
of these could be considered in the framework proposed
here, this is the second option we focus on in the following.

B. Joint parametric component separation
and systematic effects correction

1. Parameter estimation

We adapt the fiducial parametric component separation
methods of [32] to take into account the generalized data
model of Eq. (3). We replace the standard mixing matrix of
[32] with the effective mixing matrix Λp and the sky signal
vector with the effective one sp, and we jointly fit for
systematic effects and foreground parameters. Depending
on the considered systematic effects some parameters
might be degenerate, such as the absolute polarization
angles of the detectors. As mentioned before, some of these
degeneracies can be lifted using calibration priors. But the
impact of those on the statistical error of the parameter
estimation needs to be assessed and propagated correctly
throughout the pipeline.
As in verges2020, adapting the spectral likelihood

maximized over sky signals from [32] results in the
following log-likelihood:

S≡ −2 lnðLðfΓgÞ
¼ cst −X

p

trðN−1
p ΛpðΛt

pN−1
p ΛpÞ−1Λt

pN−1
p dpdtpÞ; ð7Þ

whereNp is the noise covariance matrix. Here it is assumed
that the noise is uncorrelated between pixels. Relaxing this
hypothesis in this formalism can be computationally very
costly. And it could be addressed, for instance, by imple-
menting the entire formalism in the time domain. We leave
this for future work.
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Optimizing this likelihood gives us an estimation of both
foreground parameters βfg and instrumental parameters
fαg. This is the likelihood we would use while analyzing a
specific, actual or simulated, dataset. In the forecasting
procedure, we average the likelihood over both CMB and
noise realization similarly as in [32],

hSi ¼ −
X
p

trððN−1
p − PpðfΓgÞÞhdpdtpiÞ; ð8Þ

where Pp is the projection operator defined as

PpðfΓgÞ≡ N−1
p − N−1

p ΛpðΛt
pN−1

p ΛpÞ−1Λt
pN−1

p ; ð9Þ

and hdpdtpi is given by

hdpdtpi ¼ hΛ̂pŝpŝtpΛ̂t
pi þ hnpntpi

¼ ΛpðfΓ̂gÞhŝpŝtpiΛt
pðfΓ̂gÞ þ Np: ð10Þ

In Eq. (10), Λ̂p is Λp evaluated at the true values of
parameters fΓ̂g for both instrumental parameters fα̂g and
foreground parameters fβ̂fgg, and ŝp is the true effective
sky signal containing CMB and foregrounds.
We can express Λ̂p and ŝp in such a way as to distinguish

between the CMB terms and the foregrounds term in
Eq. (10). ŝcmb

p represents the two rows of ŝp that correspond

to the Q and U CMB signals, and ŝfgp to all the leftover

components. Similarly, Λ̂cmb
p is made of the two columns of

Λ̂p that act on the CMB components in ŝp, and Λ̂fg
p the other

columns. Equation (10) becomes

hdpdtpi ¼ Λ̂cmb
p hŝcmb

p ŝcmb;t
p iΛ̂cmb;t

p

þ Λ̂fg
p ŝ

fg
p ŝ

fg;t
p Λ̂fg;t

p þ Np: ð11Þ

This expression can be straightforwardly generalized to the
cases when the underlying foreground model is nonpar-
ametrizable. This can be done by replacing Λ̂fg

p ŝ
fg
p by a

vector of foreground signals at each frequency modified by
the instrumental effects operator computed for the true
values of the instrumental parameters, i.e., X̂p f̂p. The
parametric model used in the effective mixing matrix Λp

would then mismatch the data what could lead to fore-
ground residuals and a bias in the cosmological parameters.
The average over CMB and noise realizations does not
affect f̂p, and we use the output frequency maps from PySM

to compute the f̂p f̂
t
p term.

The CMB term can be expressed as an average over pixel
of the correlation between theQ andU CMB signals. Here,
we focus on the case where the effective mixing matrix Λp,
the instrument matrix, X̂p, and the noise covariance matrix
Np are all pixel independent. We can then rewrite Eq. (8) as

hSi ¼ −tr
�
ðN−1 − PÞ

�
npixN þ Λ̂cmb

�X
p

hŝcmb
p ŝcmb;t

p i
�
Λ̂cmb;t þ X̂

X
p

f̂p f̂
t
pX̂

t

��
ð12Þ

¼ −trfnpixðN−1 − PÞðN þ Λ̂cmbScmbΛ̂CMB;t þ X̂FX̂tÞg; ð13Þ

where npix is the total number of observed pixels over
which the summation acts. And we dropped the subscript p
for all the pixel-independent objects. We denote the pixel
averages of the CMB sky component as Scmb and of
foregrounds frequency maps as F,

Scmb ≡ 1

npix

X
p

hŝcmb
p ŝcmb;t

p i ð14Þ

F≡ 1

npix

X
p

f̂p f̂
t
p: ð15Þ

Only the projection matrix P needs to be updated when
exploring the likelihood, Eq. (12), which makes it more
efficient to explore the parameter space fΓg. We refer to the
objects defined in Eqs. (14) and (15), as signal covariances

and together with the noise covariance; they provide
a complete and necessary description of the input data,
which is needed by our forecasting pipeline as shown in
Fig. 1.
Depending on the number and specific nature of instru-

mental and foreground parameters considered in the prob-
lem, some degeneracies between the parameters may arise,
see, e.g., Eq. (6) and a discussion there, preventing a robust
determination of at least some of them. To deal with those,
prior knowledge of some parameters may be required. It
can come from instrumental calibration, for instance. We
allow for priors on the miscalibration angles, fαig and
assume them to be Gaussians with a mean, α̃i, correspond-
ing to the value of the parameter as measured during the
calibration campaign and the dispersion, σαi , reflecting the
error of the measurement. This can be straightforwardly
generalized to other parameters. The complete log-like-
lihood is then given by
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S0 ≡ hSi þ
X
αi

ðαi − α̃iÞ2
σ2αi

: ð16Þ

In the following, we will assume that our priors are
unbiased in a sense that if multiple calibration campaigns
were to be performed, the best-fit values obtained from
each measurement will be drawn from a Gaussian with the
mean corresponding to the true value of the parameter and
the dispersion set by the measurement error. We will then
average our likelihood over the ensemble of the calibration
procedures. The effective log-likelihood we will use here-
after therefore reads

S0 ≡ hSi þ
X
αi

ðαi − α̂iÞ2
2σ2αi

: ð17Þ

2. Residuals

For each set of sampled spectral and instrumental para-
meters Γ, we compute the effective mixing matrixΛ and use
it to get the estimate of the separated sky components,

mp ¼ ðΛtN−1ΛÞ−1ΛtN−1dp ≡Wpdp

¼ WpΛ̂cmbŝcmb
p þWpX̂f̂p þ np

¼ WpΛ̂ŝp þ np; ð18Þ

where the last equality is only true if the actual foreground
signal at the required frequencies can be represented as a
linear combination of the foreground component templates.
The sought-after CMB map corresponds then to the first
element of the sky component estimates, m. The latter
provides an unbiased (over the statistical ensemble of
noise realizations) estimate of the true sky components if
WpΛ̂ ¼ 1 for all pixels p. This will be in general only true if
the foregrounds can indeed be modelled as a linear combi-
nation of some templates [as in the last line of Eq. (18)], and
the true mixing matrix known, so Λ ¼ Λ̂. However, if Λ
needs to be recovered from data then, in the best case, the
equality above will hold only on average and, case-by-case,
the estimates of the sky components will include contribu-
tions from the others. Hereafter, we refer to these additional
contributions as residuals.
We split the component vector, s, the mixing matrix, Λ,

and the map-making operator, Wp into a CMB and fore-
ground parts. For Wp the split is performed row-wise. We
can then express noise-free CMB map estimate as

scmb
p ¼ WcmbðΛ̂cmbŝcmb

p þ X̂f̂pÞ: ð19Þ

Note again that here scmb
p has two elements corresponding

to two Stokes parameters.
As highlighted by Eq. (19), there are two types of effects

which affect the estimation of the CMB map:
(i) A multiplicative effect coming from the action of

WcmbΛ̂cmb on ŝcmb
p .WithoutmiscalibrationWcmbΛ̂cmb

would be the identity. However, this is not so here due
to the a priori unknown instrumental response matrix
X. Consequently, and unlike in [32], in our case not all
of the actual CMB signal is bound to end up in the
CMBmap estimate. Instead, part of it may leak to the
estimates of the other components, and the CMB
signal found in the CMB estimate may be corrupted.

(ii) An additive effect coming from the contamination of
foregrounds in WcmbX̂f̂p which is closely related to
the usual definition of residuals in the context of
parametric component separation.

Both these effects will in general give rise to a residual in
the recovered CMB map either by adding some spurious
foreground signal—the additive effect—or by directly
misestimating the CMB signal—the multiplicative effect.
This residual can subsequently potentially bias the estima-
tion of cosmological parameters. We note that due to the
presence of the multiplicative effect, related to the inclusion
of the instrumental effects, the expression for the residual
becomes more complex in our case than it was in the
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FIG. 1. Diagram depicting the main features of the method in its
forecasting rendition. In red, there are the two main steps of the
algorithm, in orange—the basic assumptions going in construct-
ing the likelihoods, and in black—the various inputs and outputs
of each of the main steps.
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original formalism of [32], see, e.g., [33]. Consequently, a
direct generalization of that formalism is rather more
cumbersome. In the formalism proposed hereafter, we
therefore do not perform Taylor expansion of the residuals
with respect to the parameters. Instead, while computing
the data matrix, we compute analytically only the term due
to the multiplicative effect while the additive effect is
computed numerically as in Eq. (19) for any value of
instrumental and foreground parameters and averaging over
these is performed with the help of sampling of the spectral
likelihood. This simplifies the formalism significantly and
makes no assumption that the errors on spectral parameters
derived from the spectral likelihood are small. A possible
downside of this approach is that we lose some insight into
the morphology and sources of the residuals.

C. Cosmological parameter estimation

We use the cleaned and corrected CMB map obtained in
the previous step, Eq. (18), in order to estimate the
cosmological parameters that we are interested in, using
the standard cosmological likelihood. The estimated CMB
maps consist of multiple contributions as detailed in
Eq. (19). We use it then to characterize the statistical
properties of the estimated maps averaged over the ensem-
ble of CMB and noise realizations, thus including the
effects due to the component separation. These are then
incorporated in a construction of the ensemble averaged
cosmological likelihood, which is subsequently used to
derive forecasts concerning cosmological parameters.
In the reminder of this section, we detail the procedure

and mathematical framework in its most general rendition,
specializing it to the case of the joint estimation of the
tensor-to-scalar ratio, r, and the cosmic birefringence angle,
βb, only at the end.

1. CMB covariances in harmonic domain

We build the cosmological likelihood in the harmonic
domain as this is convenient and sufficient for the purpose
of the forecasting pipeline. However, the analogous con-
structions can be performed in the pixel domain as could be
more appropriate for actual, case-by-case applications of
the procedure. In the harmonic domain, we represent sky
maps via their harmonic expansion coefficients denoted as
aj, where j is related to the multipole numbers ðl; mÞ as
j≡ l2 þ lþm. As before, we use a hat to distinguish the
true values from their estimates. We collect the harmonic
coefficients for the combined foreground signals for all
frequency bands in a single vector denoted, afg, and those
of the CMB signals into a single vector acmb. The CMB
signal estimate in the harmonic domain after the general-
ized component separation is then computed case by case
for each set of values of Γ, e.g., a sample from the
generalized spectral likelihood, it is given by

acmb
j ¼ WcmbΛ̂cmbâcmb

j þWcmbX̂âfgj þWcmbânoisej : ð20Þ

Our cosmological likelihood is averaged over the
CMB and noise realizations, and therefore the data are
represented by the covariance of the recovered CMB maps
after generalized component separation defined as
Ejj0 ≡ hajatj0 i. Using Eq. (20) and assuming that there is
no cross-correlations between the CMB, foregrounds and
the noise, we get

Ejj0 ¼ WcmbΛ̂cmbCcmb
l δjj0Λ̂cmb;tWcmb;t

þWcmbX̂âfgj â
fg;t
j0 X̂tWcmb;t þ Cnoise

l δjj0 ; ð21Þ

where Ccmb
l ≡ 1

2lþ1

P
mhâcmb

j âcmb;t
j i, and Cnoise

l stand for the
CMB and noise spectra, respectively. As we considerQ and
U polarization information only, the harmonic coefficients
are either of E or B type and the spectra contain the auto-,
EE, BB, and cross-, EB, spectra. As we treat the foreground
as templates, âfgj is not affected by the averaging over noise

and CMB realizations and the matrix âfgj â
fg;t
j0 contains

products of all multipole coefficients of polarized fore-
ground component. Computing those may pose a signifi-
cant challenge as they may depend on fine details of the
foreground models. However, as discussed in [32] and
shown below, in the computation of the likelihood we in
fact only need the auto- and cross- spectra of all foreground
signals. This not only speeds up the calculations but as the
spectra are generally much better known, our predictions
are more robust and reliable.
The first term of Ejj0 in Eq. (21) depends explicitly on

Wcmb reflecting the effect of the estimation of the instru-
mental parameters in the generalized likelihood on the
CMB content in the estimated CMB signal. As mentioned
earlier, see also [32], in the case without instrumental
effects, WcmbAcmb ¼ 1, this term would reduce to Ccmb

l δjj0 .
The instrumental parameters also affect the second term of
Eq. (21). This term produces a nonvanishing contribution
even in the absence of instrumental effects; it is however
modified if they are present.
The last term quantifies the contribution due to the noise

in the CMB map obtained after generalized component
separation and expressed via its power spectrum given by

Cnoise
l ¼ Wcmb 1

2lþ 1

X
m

hânoisej ânoise;tj iWcmb;t

¼ ½ðΛtN−1
l ΛÞ−1�cmb×cmb; ð22Þ

where the power spectrum Nl, for each frequency band is
defined using the characteristics of the considered instru-
ment; for instance, for the Simons Observatory, it is
given by the following formula with the SAT’s 1=f power
index [9],
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Ni
l ≡ ðwiÞ−1e

�
lðlþ1ÞFWHM2

i
8 log 2

���
l

li
knee

�
−2.4

þ 1

�
; ð23Þ

with w−1
i the sensitivity of the frequency channel i in

ðμK: radÞ2. Here, we also take into account the effect of the
beam and the correlated noiseWe note that, as mentioned in
[32], our procedure is not fully consistent concerning the
beam and correlated noise treatment; as for simplicity in the
generalized spectral likelihood, the noise is assumed to be
whitelike all the way down to the pixel scale, and no beams
are accounted for. Here, FWHMi stands for the full-width
half maximum for the ith channel, in radians. 1=f noise is
also included via the last term and li

knee is the position of
the knee in harmonic space for the ith frequency band. We
therefore include these two effects only once the general-
ized mixing matrix parameters are estimated. We have
assumed no frequency to frequency correlations here.

2. Cosmological likelihood

All the terms that compose our recovered CMB data in
harmonic domain, Eq. (19), notwithstanding, our cosmo-
logical likelihood accounts only on the CMB signal and the
noise. The corresponding covariance matrix, C, is then
given by

Cjj0 ¼ Ccmb;model
l ðθÞδjj0 þ Cnoise

l δjj0 ; ð24Þ

where the CMB covariance includes birefringence effect,
described by the birefringence angle βb, and the B-modes
signal, described by the tensor-to-scalar ratio, r, and reads

Ccmb;model
l ðr;βbÞ

≡RðβbÞ
�
CEE;p
l 0

0 r:CBB;p
l þAL:C

BB;lens
l

�
R−1ðβbÞ: ð25Þ

Here, CBB;p
l is a primordial B-mode spectrum computed

for r ¼ 1 and CBB;lens
l stands for the lensed B mode power

spectrum. AL encodes the delensing, where AL ¼ 1 means
no delensing and AL ¼ 0 means total delensing. In the
following, we only consider AL ¼ 1. CEE;p

l is the E-mode
spectrum including lensing, and, as usual, the primordial
CMB EB cross spectra is set to zero. Models predicting
nonzero primordial EB could be accounted on here in the
covariance matrix, but we choose to ignore such models for
simplicity and consider them in future work. We ignore the
effect of r and delensing on the EE power spectrum.
The equation above assumes that isotropic birefringence

acts on the lensed CMB spectra. This does not imply any
loss of generality as isotropic birefringence commutes with
lensing since it is scale independent. This is related to the
fact that the lensing effect does not depend on the
coordinate frame while the effect of isotropic birefringence
can be seen as merely a coordinate change. The effect of a
nonzero birefringence angle on the CMB power spectra is
depicted in Fig. 2.
We can then finally input our model and data in the

cosmological likelihood, which is computed case by case
for each set of Γ parameters drawn from the generalized
spectral likelihood distribution, e.g., Tegmark et al. [34],

hScosi ¼ trC−1Eþ ln detC

¼ fsky
Xlmax

l¼lmin

ð2lþ 1Þ
2

ðTrðC−1
l ElÞ þ lnðdetðClÞÞÞ;

ð26Þ

where

El ≡ 1

2lþ 1

X
m

Ejj; and j ¼ l2 þ lþm: ð27Þ

This shows that we only need to know m-averaged,
diagonal elements of the data matrix, E, which are fully
defined by the cross spectra of all the foreground signals as
well as the CMB power spectra. We note that this

FIG. 2. Impact of an isotropic birefringence angle on the CMB lensed spectra. The Galactic foregrounds power spectra, unaffected by
birefringence and estimated here at 93 GHz on a fsky ≈ 10% SO SAT-like patch [9], are represented in dark red.
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conclusion as well as Eq. (26) hold only if the noise is
isotropic.

D. Implementation

The overall implementation of the method follows its
main stages as described in the Introduction of this section
and as shown in Fig. 1 in the case of the forecasting
framework. Here, we provide a few more details concern-
ing the implementation of some of the key stages for each
of the two steps of the method.
On the first step, in order to evaluate spectral likelihood,

we need to estimate Scmb, F [defined in Eqs. (14) and (15),
respectively] and N for the CMB, foreground and noise
signals. Those values are averaged over observed sky pixels
as well, resulting in a 2 × 2 matrix encoding QQ, UU, and
QU correlations only. Here we are focusing on polarized
signal only, but it could be easily generalized to intensity
signal as well. In practice, to get Scmb, we average
1000 CMB map realizations generated using the synfast
function in HEALPY

2 [35,36] and using as input power
spectra those generated by CAMB3 assuming the cosmo-
logical parameters estimated in the Planck 2018 release
[37], with lmin ¼ 2 and lmax ¼ 4000. In this paper, we will
use two sets of ðr; βbÞ parameters that will be described in
Sec. III B 2. The assumed resolution, sky coverage, and the
noise covariance, N, depend on the instrument for which
the forecast is performed.
The foregrounds covariance matrix, F, is computed for

noiseless frequency maps produced by PySM [38] and
subsequently averaged over all observed pixels. The
experimental and cosmological parameters, as well as
foreground models are detailed in Sec. III.
The component separation code used here is based on the

ForeGroundBuster (FGBuster) library4 and has been
adapted to account for systematic effects such as polari-
zation angles and the addition of priors as mentioned
earlier. The sampling of the generalized spectral likelihood
is performed using the EMCEE package [39]. We used two
walkers per dimension, with 13,000 steps, and we burned
the 5,000 first ones. For the fiducial SO SAT-like case
explored in this paper with six miscalibration angles and
two foreground parameters, it totals 128,000 samples.
On the second step, in order to evaluate the cosmological

likelihood, we need to construct observed and model CMB
power spectra Ccmb

l we use the same Planck CMB power
spectra templates as the one used for the generation of
CMB maps in the first step and simulations.
We use the same frequency maps generated by PySM that

were utilized in the first step to compute all the auto- and
cross spectra needed to compute âfgj â

fg;t
j0 . Once computed

for a given sky model and instrumental characteristics, the

relevant WcmbX̂ factors are applied to evaluate the con-
tribution of foregrounds to the data after generalized
component separation. It is only this last step that needs
to be done for each sample of the spectral likelihood. As in
the first step, we are only using polarized power spectra EE,
BB, and EB, but the total intensity could easily be added if
desired.
In order to propagate the statistical uncertainties incurred

on the first step all the way to the estimation of cosmo-
logical parameters, we perform double sampling in which
for each sample (after burning) of the spectral likelihood we
compute the corresponding CMB correlation matrix El,
Eq. (21) and subsequently, draw a sample from the
corresponding cosmological likelihood Eq. (26). To avoid
any bias coming from initial values on each of these steps
when drawing from the cosmological likelihood, we use
once again EMCEE with 300 steps and a burn of 299 so that
we only keep the last point. Both samples put together
constitute a single sample drawn from an effective joint
distribution of spectral, instrumental, and cosmological
parameters. We resort to this rather intricate way of
sampling in order to alleviate biases due the method itself,
first on the spectral/instrumental parameters and then, as a
consequence, on the cosmological ones, [40]. The down-
side, in addition to the computational cost, is that the
effective joint distribution we sample from is not merely a
product of the spectral and cosmological likelihoods.

III. APPLICATION

In this section, we discuss the application of the fore-
casting method described in the previous section. We focus
here on the case of a typical CMB ground-based telescope
of third generation demonstrating the proposed framework
and its performance on a specific experimental setup as
described in the next section. The framework is however
general and can be applied to any other CMB experiment.
Below we first describe the instrument configuration,
followed by the sky simulation used in the application
and finally the specific analysis assumptions that we
consider in this work, such as the modeling of the
instrumental response matrix X.

A. Instrument specifications

For concreteness, we use the configuration and noise
specifications of the upcoming Simons Observatory’s (SO)
small aperture telescopes (SAT) as described in [9]. The
three SO SATs are planned to observe the sky in six
frequency channels: 27, 39, 93, 145, 225, and 280 GHz.
This will help to separate the CMB signal from the
astrophysical foregrounds.
The SATswill observe fsky ≈ 10% of the sky and generate

sky maps with a typical resolution of nside ¼ 512, which
corresponds to ∼6.8 arcmin using the HEALPix convention
[35,36]. This results in around 3 × 105 observed sky pixels.

2http://healpix.sf.net.
3https://camb.info.
4https://github.com/fgbuster/fgbuster.
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Given the resolution, sky coverage, and noise property, we
fix the multipole scales at lmin ¼ 30 and lmax ¼ 300.
We use the publicly available code V3calc

5 and the
sensitivities from the SO science goals and forecast paper
]9 ] to compute the sensitivity per frequency w−

i 1 after five
years of observation for the high frequencies focal plane
(225 and 280 GHz), 5 and 4 years for two middle
frequencies focal planes (93, 145 GHz), and 1 year of
observation for the low frequencies focal plane (27,
39 GHz). The resulting sensitivities of the baseline white
noise case used are detailed in Table I. We then define the
noise per sky pixel for each frequency band i, Ni

p, used in
Eq. (10), as

Ni
p ¼ w−1

i

Ω2
pix

; ð28Þ

where we converted the sensitivities from Table I to
ðμK:radÞ2 to get w−1

i , as in Eq. (23). And Ω2
pix is the area

of a pixel in the sky in rad2. Such noise covariance
corresponds to the white noise, which is uncorrelated
between pixels and frequencies. This turns out to be a
reasonable assumption given the latest available SO simu-
lations [41] and sufficient for the spectral likelihood
evaluation.
For the cosmological likelihood, we take into account

beam effects and 1=f noise in Eq. (23). For the computation
of Ni

l, we use the baseline sensitivity and so-called
optimistic 1=f modes of SO SAT, as well as the SAT’s
beams as detailed in Table I.
For the calibration priors, we typically assume a fiducial

precision of σðαÞ ¼ 0.1°. This is on the conservative
side for a drone-borne calibrator currently validated on
several telescopes in the Atacama such as ACT [42,43] and
CLASS [44] and also planned to be applied to SO SATs.
Current forecast for this method is 0.01° ≤ σðαÞ ≤ 0.1°,
which should be achievable in several frequency channels
[45]. Other approaches, such as a mobile rotating wire grid
or astrophysical sources, give typically comparable but
somewhat worse precision, < 1° for the grid [46] and
≳ 0.3° for Tau A [47,48]. Therefore, in the following, we
discuss the impact of the calibration precision on our
conclusions.

B. Input sky simulations

1. Foregrounds

As the fiducial foreground case, we take the “d0s0”
model of PySM [38]. For dust, this assumes a modified
blackbody parametrized by its spatially constant temper-
ature Td and spectral index βd. The synchrotron emission is
modeled as a power law characterized by the constant
spectral index βs. The spectral emission densities for those
two components are expressed as

Ysync;pðν; βsÞ ¼ Ysync;pðν0;sÞ
�

ν

ν0;s

�
βs
; ð29Þ

Ydust;pðν; βd; TdÞ ¼ Ydust;pðν0;dÞBðν; TdÞ
�

ν

ν0;d

�
βd
; ð30Þ

where Y can be aQ or U map of a component, expressed in
MJy=sr. Ysync;pðν0;sÞ and Ydust;pðν0;dÞ are the template maps
for synchrotron and dust at their respective reference
frequencies ν0;s ¼ 23 GHz and ν0;d ¼ 353 GHz that are
then scaled at the frequencies of interest for observations.
Bðν; TdÞ is a blackbody at temperature Td and frequency ν.
In the PySM “d0s0” simulation, the spatially constant
spectral parameters are based on Planck results [49] and
are given by

βd ¼ 1.54; Td ¼ 20 K; βs ¼ −3: ð31Þ

As examples of a more complex foreground model, we use
the “d1s1” model which is similar to “d0s0” but allows for
spatial variability of the spectral parameters, βdðpÞ, TdðpÞ
and βsðpÞ, as well as the model referred to as “d7s3”. Here
“s3” denotes the synchrotron model which adds an extra
curvature term, C, to the standard power law frequency
scaling, which is constant over the sky,

Ysync;pðν; βsÞ ¼ Ysync;pðν0;sÞ
�

ν

ν0;s

�
βsðpÞþC lnðν=ν0Þ

: ð32Þ

We also use PySM dust model “d7”, which uses as a
template the same Planck 353 GHz map as the other
two models but the frequency scaling used is based on dust
grain models with different physical properties, shape, size,
and temperature described in detail in [50,51]. This dust
model does not have an analytic function to describe the
frequency scaling of the dust template and is therefore a
good benchmark to test the parametric component separa-
tion since it does not trivially conform with the assumptions
of the method.

2. CMB

For the CMB, we set all the parameters to the best-fit
values provided by Planck [37] and only vary two

TABLE I. SO SAT baseline white noise levels, 1=f noise
properties, and FWHMs.

Frequency channel [GHz] 27 39 93 145 225 280
Polarization sensitivity
[μK-arcmin]

49 30 3.8 4.7 9.0 23

lknee 15 15 25 25 35 40
FWHM [arcmin] 91 63 30 17 11 9

5https://github.com/simonsobs/so_noise_models.
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parameters, the tensor-to-scalar ratio r and the birefrin-
gence angle βb. We do not consider delensing in this work,
i.e., AL ¼ 1 in Eq. (25). However this can be straightfor-
wardly included in our framework. The input CMB
power spectra used to get the frequency maps (as described
in the previous section) are computed using the same
equation as the model CMB in Eq. (25). We choose two
sets of cosmological parameters in addition to the fiducial
ΛCDM cosmological parameters from Planck 2018 [37],

r ¼ 0.0; βb ¼ 0.0° ð33Þ

r ¼ 0.01; βb ¼ 0.35°: ð34Þ

With βb ¼ 0.35° corresponding to the central value found
in the work of Minami and Komatsu [24].

3. Instrumental effects

In the simulation, we consider the effect of a potential
miscalibration of the polarization angle of each of the
frequency bands of the telescope. We model this effect
assuming that each recovered single frequency map has its
own independent polarization angle. This angle is then to
be understood as an effective angle resulting from detector-
level miscalibration averaged during the map-making
procedure. This assumption can be adjusted as needed:
our approach is generalizable to a miscalibration angle per
focal plane, one per wafer, one per pixel, etc. We also
assume that the miscalibration angle is the same for all
pixels of the considered maps. Again this can be relaxed if
needed. In this work, for concreteness, we assume some
specific, true values of the miscalibration angle for each
map. They are summarized in Table II. But the presented
results do not depend on the specific values assumed.

C. Analysis model and priors

For the analysis, we model the data assuming the
foreground scaling models as in Eq. (30) with both dust
and synchrotron parameters assumed constant over the sky.
Moreover, we fix dust temperature to Td ¼ 20 K as
suggested by Planck results [49] given that the SO SATs
do not have enough high frequency observation bands to
discriminate between Td and βd. Importantly, this is in
agreement with one of the “d0s0” assumption, Eq. (31) and
therefore, the foreground model assumed in the analysis
allows for an accurate description of the data simulated in
the case of the “d0s0” model of PySM. This is however not
the case for the “d1s1” and “d7s3” models. For the
instrumental matrix X, we assume an isotropic rotation

of the polarization angle for each of the frequencies, exactly
as for the sky simulations with rotations angles at each
frequency treated as free parameters. We use Gaussian
priors with a precision of σαi ¼ 0.1°, Eq. (17), in the
spectral likelihood to break the degeneracies between these
parameters. Unless specified otherwise, the priors are
centred on the true input polarization angles.

IV. RESULTS

First, we present the results of the first analysis step that
retrieves the spectral indices and the miscalibration angles
from noisy, foreground-contaminated, and miscalibrated
frequency maps. Then, we present the results of the second
step that constrains cosmological parameters. We discuss
various examples to demonstrate the effects of the different
contaminants on the cosmological parameters estimation,
such as biases or precision loss. We then investigate the
dependence of the constraint on cosmological parameters
as a function of prior precision. And finally, we explore the
case where calibration priors are biased and their impact on
instrumental and cosmological parameters estimations.

A. Fiducial case: “d0s0”, r= 0, βb = 0°

We start with the simplest case of the “d0s0” PySM model
that assumes constant foreground spectral parameters
across the sky. Since consistent assumptions were used
to build the mixing matrix A, Eq. (3)—which is used
throughout this work—should accurately describe the input
foreground maps.
We explore two cases, one with a prior on each frequency

channel and the other with a prior on the 93 GHz channel
only. In both cases, the prior precision is σαi ¼ 0.1°.

1. Prior on a single channel

First, we consider a prior on the 93 GHz channel only
with a precision of σα93 ¼ 0.1°. We choose this channel as
at this frequency the foregrounds amplitude is close to
minimal as compared to the CMB signal and this is where
most of the calibration effort is currently being allocated.

Generalized spectral likelihood results.—As described in
Sec. II D, we explore the generalized spectral likelihood,
Eq. (17) with help of MCMC sampling. The results are
shown in Fig. 3, where the orange contours are obtained
from the MCMC samples, the purple dashed line represents
the Gaussian prior on the 93 GHz channel, and the gray
dashed lines the input parameters. The 1σ statistical errors
of the parameter estimations are detailed in Table III.
We notice that with only one prior on one polarization

angle we are able to have an unbiased estimate for all six
polarization angles and two spectral indices. Indeed the fact
that we use all six frequency maps simultaneously in the
generalized spectral likelihood allows for deriving tight
constraints on the relative angles of all the considered
frequency channels with respect to a global “instrument”

TABLE II. Input polarization angle per frequency bands.

Frequency channel [GHz] 27 39 93 145 225 280
Input polarization angle [°] 1 1.66 2.33 3 3.66 4.33
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orientation angle. The role of the prior is then to constrain
the global angle which is necessary and sufficient to break
the likelihood degeneracy.
The accuracy with which we can estimate the absolute

polarization angles for any of the channels is therefore
limited by the prior precision as summarized in Table III.
The 93 GHz channel achieves the best precision on
polarization angle, σðα93Þ ¼ 0.099°, which corresponds
to the prior precision (within the accuracy provided by
the sampling). All other channels show larger errors as they
include the error on the relative angle as set by the
likelihood problem. The overall increase of the error is
subdominant as compared to the prior-driven constraint on
the global angle, showing that indeed the relative angles are
constrained with high precision. The presence of the strong

correlations between polarization angles recovered for
different frequency channels reflects the fact that the data
can only constrain internally the relative angles between the
frequency channels and not a common, global miscalibra-
tion error. This latter is only constrained with help of the
priors. For the channels for which the relative angle
uncertainty is much smaller than the prior, the constraint
on the polarization angles are strongly elongated in the
direction corresponding to the common change in both the
angle. The effect is less pronounced, and the error contours
more round, in the cases when the constraints on the
relative angles are more comparable to the prior precision.
The relative angle precision depends on the noise levels in
both single frequency maps but also how different the
underlying sky is in both the cases.

FIG. 3. Results of the generalized spectral likelihood with “d0s0” input foregrounds model. There is only one prior on the 93 GHz
channel, with a precision of σα93 ¼ 0.1°. The dashed purple lines correspond to the Gaussian priors. The orange contours correspond to
the sampling of the generalized spectral likelihood. The gray dotted lines correspond to the input values.
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Furthermore, we are able to retrieve the foreground
spectral parameters with a precision comparable with the
standard version of parametric component separation using
FGBuster applied to a SO-like case but without instru-
mental parameter estimation [9].
As expected, the generalized spectral likelihood yields

unbiased estimates of instrumental and spectral parameters,
which we then use on the next step: the estimation of
cosmological parameters.

Cosmological likelihood results.—As detailed in Sec. II D,
for each sample of the spectral likelihood displayed in Fig. 3,
we draw one sample of the corresponding cosmological
likelihood. This approach allows us to efficiently sample the
full distribution, without reintroducing any method-related
biases. The result is shown in Fig. 4, where the orange
contours are theMCMC samples obtained assuming a single
93GHz prior, and the gray dashed lines the input parameters.
The estimations of both r and βb are unbiased and with
r ¼ 0.0002þ0.0015

−0.0017 , which is compatible with the SO SATs
published forecasts [9], and σðβbÞ ¼ 0.11°, which is 10%
bigger than the error bars expected from prior precision
alone, which can be explained by the presence of noise and
cosmic variance as we will see in Sec. IVD.
We conclude that in the case with simple foreground

SEDs that match our model, and with nonzero polarization
angles, the method leads to unbiased estimates of spectral
and hardware parameters, and provides competitive results
on r and an estimation of the birefringence angle βb limited
only by the prior precision.

2. Priors on all six channels

We now investigate the case with priors on all six
polarization angles. We proceed in a similar fashion as
in the previous case.

Generalized spectral likelihood results.—Figure 5 shows
the results of the MCMC sampling of the generalized
spectral likelihood. Comparing the priors (dashed purple)
and the samples (orange) we see that, contrary to the
previous case, the precision of the polarization angle
estimation is better than the prior precision, σαi ¼ 0.1°,

TABLE III. Summary of results for different input foreground models and instrumental parameters. All the priors used here have the
precision σαi ¼ 0.1°. ⋆ In the last column (“d0s0”), the input cosmological parameters are r ¼ 0.01 and βb ¼ 0.35°.

Foreground input “d0s0” “d1s1” “d7s3” “d0s0” ⋆

Number of priors 1 6 1 6 6 6

α27½°� 1.0� 0.2 1.00� 0.08 1.0� 0.2 1.01� 0.08 1.01� 0.08 1.00� 0.08

α39½°� 1.7� 0.1 1.67� 0.05 1.7� 0.1 1.67� 0.05 1.67� 0.05 1.67� 0.05

α93½°� 2.3� 0.1 2.33� 0.05 2.3� 0.1 2.33� 0.05 2.33� 0.05 2.33� 0.05

α145½°� 3.0� 0.1 3.00� 0.05 3.0� 0.1 3.00� 0.05 3.00� 0.05 3.00� 0.05

α225½°� 3.7� 0.1 3.67� 0.05 3.7� 0.1 3.66� 0.05 3.66� 0.05 3.66� 0.05

α280½°� 4.3� 0.1 4.33� 0.06 4.3� 0.1 4.33� 0.06 4.33� 0.06 4.33� 0.06

βd 1.540� 0.007 1.540� 0.007 1.575� 0.008 1.575� 0.007 1.377� 0.007 1.540� 0.007

βs −3.000� 0.009 −3.000� 0.009 −3.006� 0.009 −3.006� 0.009 −3.046� 0.009 −3.000� 0.009

r 0.000� 0.002 0.000� 0.002 0.002� 0.002 0.002� 0.002 0.002� 0.002 0.010� 0.002

βb½°� 0.0� 0.1 0.00� 0.07 0.0� 0.1 0.00� 0.07 0.00� 0.07 0.35� 0.07

FIG. 4. Cosmological likelihood sampling, Eq. (26), after
foreground cleaning and systematic effect correction with PySM
“d0s0” as input and only one prior on the 93 GHz polarization
angle (orange). Dashed dark-red contours correspond to the case
with priors on all polarization angles. The gray dashed lines
correspond to the input values. The central values and error bars
are in Table III.
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assumed for all frequency channel. This is consistent with
the fact that the likelihood itself sets tight constraints on the
relative angles for each frequency channel. So while the
priors concern different objects, polarization angles for
their respective frequency channel, each of them effectively
constrains the very same global polarization angle. We thus
expect that the actual constraint on this angle goes down
roughly as one over square root of the number of frequency
channels (however as the precision of priors gets better
other contributions to the error bar, such as noise, become
dominant as in this case, we explore this in more details in
paragraph IV D). As the global angle uncertainty consti-
tutes the biggest contribution to the uncertainty of polari-
zation angle for each channel, we expect that the errors on
these angles also decrease with the number of frequency

channels in roughly the same way. Here, and in other
figures using six priors, the correlation between polariza-
tion angles is modified with respect to the one prior case.
Indeed, in channels where the relative angles were less
determined and hence the correlation was less apparent, the
addition of priors reduced the correlation further.

Cosmological likelihood results.—The distribution of cos-
mological parameters after the generalized component
separation with six priors is presented as dashed dark-
red curves in Fig. 4. Again, the estimations of both r and βb
are unbiased and with a precision of σðrÞ ≈ 2 × 10−3 and
σðβbÞ ≈ 0.07° as mentioned in Table III. The estimation of r
is therefore unchanged with respect to the previous case but
the estimation of βb has improved as a consequence of the

FIG. 5. Results of the generalized spectral likelihood with “d0s0” as input foregrounds model. The priors are on all six polarization
angles, with a precision of σαi ¼ 0.1°. The dashed purple lines correspond to the Gaussian priors. The orange contours correspond to the
sampling of the generalized spectral likelihood. The gray dotted lines correspond to the input values.
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improvement of the polarization angle estimation in the
first step. Having polarization angle calibration on multiple
frequency bands would therefore improve σðβbÞ without
necessarily requiring a large improvement of the calibration
precision itself which can be very challenging.

B. Complex foregrounds, r= 0, βb = 0°

1. Spatially varying foreground SEDs: “d1s1”

This foreground model used in the simulated data
implements spatially varying spectral indices. However,
the model we use to describe the data still assumes constant
spectral indices. This may potentially lead to bias on
cosmological parameters induced by the mismatch between

foreground model and data. For conciseness, we focus on
the case with priors on all polarization angles. The results
obtained with one prior on the 93 GHz channel are detailed
in Table III.

Generalized spectral likelihood results.—Figure 6 shows
the results of the generalized spectral likelihood sampling.
The estimation of polarization angles are not significantly
affected by the more complex foregrounds and results are
similar to the previous, 6-priors case. The spectral like-
lihood still manages to estimate effective values of spectral
indices, even if in the simulated data they vary from pixel
to pixel.

Cosmological likelihood results.—Results are shown in
Fig. 7. The estimation of the birefringence angle βb is not

FIG. 6. Results of the generalized spectral likelihood with d1s1 as input foregrounds model with the calibration priors on all six
polarization angles, with a precision of σαi ¼ 0.1°. The dashed purple lines show these Gaussian priors, while the orange contours
correspond to the sampling of the generalized spectral likelihood. The gray dotted lines mark the input values.

CHARACTERIZING COSMIC BIREFRINGENCE IN THE … PHYS. REV. D 108, 082005 (2023)

082005-15



significantly affected by the complex foregrounds and by
the mismatch between data and model. This seems con-
sistent with the unbiased estimate of polarization angles in
the previous step, and the foreground leakage to the
recovered CMB EB correlation seems under-control. For
r the estimation is slightly biased with r ∼ 0.0016, but it is
still 1σ compatible with the input, r ¼ 0 value. The
relatively small effects of foreground SEDs mismatch is
mostly thanks to the small sky fraction observed by SO
SATs (fsky ¼ 0.1), their limited frequency coverage, and
their large angular scale, lmin ¼ 30. Spatially varying
spectral indices on, e.g., a larger sky patch or with a larger
frequency coverage would certainly bias more significantly
both parameters.

2. Nonparametric dust model and curved
synchrotron: “d7s3”

As described in Sec. III B 1, the “d7” dust model is
nonparametric and should therefore pose particular prob-
lems to our generalized parametric component separation
based on the simplest, pixel-independent scaling relations.
The “s3” synchrotron model adds complexity as well with a
global curvature term not taken into account in our data
model. Nevertheless, we find that polarization angles do
not seem to be affected by nonparametric input foregrounds
as can be seen in Table III. For the cosmological likelihood,
once again the limited sky fraction used by SO SATs
helps to alleviate the impact of spatial variations and the

generalized spectral likelihood sampling gives similar
results as in the “d1s1” case. The impact on the cosmo-
logical likelihood is therefore limited as well, as shown in
Fig. 7 as dashed dark-red contours. The error bars are
slightly different as described in Table III with a ∼5%
increase in the upper error bar on r with respect to the
“d1s1” case, and a ∼1.4% decrease on σðβbÞ, and with no
detectable biases.
To mitigate the effects of these complex foregrounds

many approaches are possible. For instance, Errard and
Stompor [52] proposed to mitigate foreground residuals,
including the foreground power spectra retrieved after
component separation in the cosmological likelihood
covariance matrix. This method has been used in Wolz
et al. [53] on realistic SO simulations and showed robust-
ness against complex foregrounds. For bigger surveys,
spatial variation of spectral indices can be handled using a
multipatch approach that divides the sky in patches in
which the spectral parameters are independently estimated
from one patch to the other [52,54,55]. In power-spectra
space, a moment method can be used to address the same
issues [56]. Implementing those methods are not treated in
this work and are left for future work.

C. Nonzero cosmological parameters:
r= 0.01, βb = 0.35°

For completeness, we now focus on a case where the two
cosmological parameters considered here are nonzero. We
also use the input foreground model “d0s0” and priors on
all channels. We do not show the results of the generalized
spectral likelihood as they are essentially identical to the
ones presented in Fig. 5.
Figure 8 displays the cosmological constraints and

indicates the possibility of detecting r ¼ 0.01 with a ∼5σ
precision, consistent with previous forecast [9]. A ∼ 5σ
detection of the value of βb ¼ 0.35° as derived recently
from the Planck data [23,24] seems achievable as well.
The results obtained for the other foreground models,

“d1s1”, “d7s3”, or with only a single prior are analogous to
the corresponding cases with r ¼ 0 and βb ¼ 0°, and we do
not show the likelihood plots here again. In particular, we
find that the results on r are becoming progressively more
biased, but the biases never exceed 1σ error bars. The results
on βb are consistently unbiased with error bars going from
0.1° to 0.07° for the one and six priors cases, respectively.

D. Cosmological parameters estimation
as a function of prior precision

To better understand the dependence of the results on the
prior precision and on the number of priors, we perform the
previous analyses with several values for the calibration
precision. Conversely, this also provides specification for
the calibration campaigns given predefined science goals.
We limit ourselves to the case where r ¼ 0, βb ¼ 0°

and use the simple “d0s0” foregrounds in the input data.

FIG. 7. Cosmological likelihood sampling after foreground
cleaning and systematic effect correction with priors on all
polarization angles. Results obtained for d1s1 (respectively,
d7s3) are shown as orange contours (respectively dashed dark
red). The gray dashed lines correspond to the input values.
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We allow the prior precision to change in the range
0.001° ≤ σαi ≤ 5° and consider cases with a single prior
on the 93 GHz channel and with priors on all polarization
angles for all channels. The dependence of σðβbÞ on σαi is
displayed in Fig. 9. The blue points correspond to the single
prior case: it is clear that for large values of σðαiÞ ≳ 0.05°
the obtained precision on βb is determined by the prior
precision. For smaller values of σαi ≲ 0.05°, the precision
on βb saturates and reaches a plateau at σðβbÞ ≈ 0.045°.

This plateau is due to the cosmic and noise variances,
which dominate the error budget over the prior precision.
A similar behavior is observed in the six priors case.
However, for large σαi , the obtained values if σðβbÞ are now
roughly a factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
#prior

p
lower than in the single prior

case. As discussed already earlier in Sec. IVA 2, this is
because for large calibration uncertainties the relative errors
are fixed internally and the dominant uncertainty is due to
the global polarization angle. Each prior corresponds
effectively to an independent measurement of the global
polarization angle, and the effective error on it therefore
decreases with the number of channels. As the error is
smaller for large prior uncertainties compared to the one
prior case, the dependence starts reaching the plateau
somewhat earlier (i.e., for larger values of the prior
precision) as its level remains the same whatever is the
number of priors.
This result can help us with future calibration require-

ments and suggests that as long as we are in the prior
dominated regime, to achieve a given σðβbÞ, one must
either improve the precision of the calibration method, or
up to a certain limit depending on the number of channels,
calibrate several frequency channels to get the same results.
As improving the absolute precision of calibration is quite
challenging; multiplying calibration campaigns to other
frequency channels seems to be a reasonable option.
Furthermore, to see how both noise and cosmic variance

account for the level of the plateau, we performed a
noiseless analysis with six priors represented by the orange
dots in the figure. The cosmic-variance limit reaches
σðβbÞ ≈ 0.026°. This seems to indicate that for the sky
coverage and noise levels of SO SATs the noise accounts
for ∼40% of the plateau’s amplitude. To improve on the
level of the plateau one then needs either to lower the noise,
to increase fsky or to perform delensing. However, with a
larger sky survey the spatial variability of foreground SEDs
will potentially become a bigger issue for the component
separation and might bias the estimation of cosmological
parameters.

E. Biased priors

Up to now we have only considered cases where the
priors, when averaged over an ensemble of calibration
procedures, are centered on the true values of miscalibra-
tion angles. In this section, we explore how the framework
performs with biased priors. These could for instance arise
due to a systematic effect that would not vanish even after
the averaging over an ensemble of the calibration proce-
dures as assumed previously. In particular, we would like to
get some insight on how different biases at different
frequency channels would typically impact our conclu-
sions. For this exploratory work, we use a simple fore-
ground “d0s0” with cosmological parameters set at r ¼ 0
and βb ¼ 0°. All the priors used in this section have a
precision of σαi ¼ 1°. We then draw a random set of biases

FIG. 8. Cosmological likelihood sampling after foreground
cleaning and systematic effect correction with “d0s0” as fore-
ground input and priors on all polarization angles. Input
cosmological parameters are r ¼ 0.01 and βb ¼ 0.35°. The gray
dashed lines correspond to the input values. This figure is
analogous to Fig. 4 but assumes a nonzero birefringence angle.

FIG. 9. Dependence of σðβbÞ on prior precision for different
calibration and noise scenarios as discussed in Sec. IV D.
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for each frequency channel. They are drawn from a
Gaussian distribution centered at 0° with a standard
deviation of 1° following the prior precision. Hereafter,
we explore three cases: first, with only one prior on the
93 GHz channel, which is biased by 0.13°; a second case
with priors on all channels, where they are all biased by
0.13°; and the third case with priors on all channels, and all
biased by different random amounts. Table IV summarizes
all these cases.
The results of the generalized ensemble averaged spec-

tral likelihood sampling for the three cases are displayed in
Table V, which shows the recovered biases significance
(expressed as a ratio of the bias over the corresponding
sigma) for the estimated parameters.
In the case of the single prior, the recovered miscalibra-

tion angles for all the channels have the same overall bias of
Δα ¼ 0.13°. As we are in a case with 1° prior precision the
final precision on polarization angles is lower than in
previous case and here σðαiÞ ≈ 1°. The bias is in the end of
∼0.1σ (see Table V). In the end, this bias was directly
imposed by the calibration on the 93 GHz channel. This is
because all these angles are calibrated relative to the
channel with a prior. We also find that the spectral indices
are estimated correctly as their estimates do not depend on

the coordinate choice given that the scaling laws assumed
for the Q and U Stokes parameters are the same. In the
cosmological likelihood, this bias affects the estimation of
βb leading to a bias of −0.13° (corresponding to a ∼ − 0.1σ
bias). Estimation of r is however not significantly impacted
by the bias compared to previous cases. Indeed, its bias was
of the order ∼10−4 while its precision was of ∼10−3. This is
because we estimate r and βb jointly and assume no EB
correlations in the CMB covariance. This allows us to
separate the B-mode signal due to the birefringence or
miscalibration from the primordial signal at minimal loss of
precision. We note that the method is similar to self-
calibration, which however is performed on a foreground-
cleaned and hopefully, miscalibration-corrected signal and
includes the extra uncertainty due to the marginalization
over the birefringence angle. As we discussed above the
method is robust for r even in the case where miscalibration
is not well corrected for—as it is the case here.
In the second case with six priors and a 0.13° bias on

each of them, the estimation of the miscalibration angles
are biased by the same value (Δα ¼ 0.13°). The bias on βb
is −0.13° as well. But with the addition of priors, the overall
precision on αi and βb improves to σðαÞ ≈ 0.41° as well as
for βb. This results in an increase in biases significance for
both polarization and birefringence angle (Table IV). r is
not affected here. Finally, in the case where all biases are
different, we see that all miscalibration angles estimations
are biased with the same value of ∼0.25°, which corre-
sponds to the average of all bias values from the right most
column of Table IV. Here, the error bars remain constant
with respect to the previous case, but the biases increases,
resulting in a ∼0.6σ bias on αi. Consequently, the bias on
miscalibration angles is carried to βb leading to a ∼ − 0.25°
bias or ∼ − 0.6σ (see Table V) and r is again not affected.
We note that as a single prior is sufficient for us to solve

the problem, having multiple priors allows for a number of
consistency tests, which in actual data analysis practice
could shed some light on underlying (albeit unknown)
biases. In particular, having priors from different calibration
methods (wire grids, drone, observations of Tau-A) would
allow for systematic checks and correction between priors.

V. CONCLUSIONS

We propose and demonstrate on simulations a extension
of the component separation method allowing to remove
the contributions due to Galactic foregrounds and simulta-
neously accounting on polarization-angle misalignment
and allowing for an inclusion of calibration priors. The
method generalizes the pixel-based parametric component
separation method introduced in [32,40]. The instrumental
effects are represented via an instrumental response matrix
X incorporated directly in the data model. The calibration
priors are included as multiplicative terms to the general-
ized spectral likelihood and the method propagates stat-
istical and systematic errors due to the data, assumed

TABLE IV. The three different cases of input biased prior
centers used for each frequency channel. The numbers in
parentheses correspond to the value of the bias in degrees.

Input angle [°]
Input one
prior [°]

Input six priors,
equal biases [°]

Input six priors,
different biases [°]

α27 ¼ 1.00 1.13 (0.13) 1.28 (0.28)
α39 ¼ 1.67 1.80 (0.13) 0.88 ð−0.78Þ
α93 ¼ 2.33 2.46 (0.13) 2.46 (0.13) 2.46 (0.13)
α145 ¼ 3.00 3.13 (0.13) 3.30 (0.30)
α225 ¼ 3.67 3.80 (0.13) 5.12 (1.46)
α280 ¼ 4.33 4.46 (0.13) 4.43 (0.09)

TABLE V. Resulting bias over standard deviation (bias sig-
nificance) of each studied parameters in the three biased cases
explored here.

Δ=σ
One biased

prior
Six equally
biased priors

Six differently
biased priors

α27 0.10 0.29 0.55
α39 0.10 0.30 0.58
α93 0.10 0.30 0.60
α145 0.10 0.30 0.60
α225 0.10 0.30 0.60
α280 0.10 0.30 0.59
βd −0.01 0.01 0.01
βs −0.01 0.04 −0.02

r 0.14 0.14 0.14
βb −0.10 −0.30 −0.60
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models, and the priors all the way to cosmological
parameters. We focus specifically on the tensor-to-scalar
ratio, r, and birefringence angle, βb, and we fit simulta-
neously for these two parameters to the CMB signal as
recovered from the data on the initial, component separa-
tion step.
We specialize this method to forecast performance of a

typical future ground based multifrequency CMB experi-
ments. For this, we employ likelihoods semianalytically
averaged over CMB and noise realizations, which permits
obtaining statistically meaningful predictions and their
uncertainties averaged over the same ensemble.
We use the Simons Observatory small aperture telescopes

characteristics as our fiducial experimental setup and
assume a single, pixel-independent, miscalibration error
for each single frequency map. These angles are parameters
of the instrumental response matrix,X, and are fitted for on
the component separation step together with the parameters
describing the foregrounds. We consider different fore-
ground models, including those where the assumed fore-
ground model matches the actual foreground signal as used
in the simulations, and models where we allow for the
mismatch between the two. We then investigate the perfor-
mance of the method from the perspective of the biases and
statistical errors on the cosmological parameters.
We show that the data on its own set strong constraints

on relative polarization angles between different single
frequency maps. Consequently, a single prior on a polari-
zation angle of one of the single frequency maps is
sufficient to allow setting meaningful constraints first on
polarization angles for all frequency channels and fore-
ground spectral indices, and later the cosmological param-
eters. Using multiple calibration priors on different single
frequency maps is beneficial in terms of the resulting
statistical uncertainties of the recovered polarization angles
but also allows for robustness tests of the derived results. In
our fiducial study cases, we find that for a single prior with
precision σα93 ¼ 0.1° on the polarization angle of the sky
map at 93 GHz, the polarization angles for all maps can be
derived without any biases and with the precision equal to,
for the 93 GHz channel, and only slightly worse than, for
all other channels, than the assumed prior precision. We
find that there is little impact of the more involved data
model employed in this work on the estimation of the
foreground indices, and our results for r, r ¼ 0.0002þ0.0015

−0.0018 ,
are in agreement with the SO SAT forecasts with
FGBuster [9], which neglect the polarization angle
misalignment. Allowing for the foreground model mis-
match does not affect significantly statistical errors but may
lead to a bias in the estimated values of r. However, in the
cases studied here, the biases were never larger than 1σ
statistical uncertainties with the most significant bias on r
found in the case of the spatially varying foreground model
“d1s1”, r ¼ 0.0016þ0.0016

−0.0018 . We find that the estimates of r
are largely independent of the assumed priors and that we

can set meaningful constraints on r even in their absence.
The proposed method can therefore be considered as a self-
calibration approach.
Priors are necessary however in order to constrain the

birefringence parameter. The foreground model mismatch
does not bias the estimates of βb, and for the case of a single
prior with the precision of σα ¼ 0.1°, we get the uncertainty
on βb to be ≃0.1°. For six priors with the same precision,
this improves to ≃0.07°. In general, the better the priors, the
better the final uncertainty on βb; however, the latter
saturates once the calibration precision gets sufficiently
low and the uncertainty on βb starts being dominated by the
signal and noise variance. For the studied instrumental
setup, this happens for calibration precision of ∼0.07° for a
single and ∼0.1° for six calibration priors. Overall, we
conclude that the next generation of the CMB polarization
experiments, aiming at the precision of their angle cali-
bration of ∼0.1°, should be capable of rejecting or con-
firming the value of 0.35° suggested by some recent
analyses of the Planck data [23,24] with ∼3–5σ signifi-
cance depending on the number of the priors.
We also find the biases on the birefringence angle arise in

the cases when the calibration priors themselves are biased.
We find however that this does not affect the estimates of r.
The instrumental model assumed here is clearly ideal-

ized. Most importantly, it neglects bandpasses, beams, and
gains. These would affect both the actual sky signal but also
polarization angle calibration in the way which will depend
on their effective spectral dependence. To first order, this
will lead to biases on the priors, and therefore, including
such effects is a key to any claim about the detection of
birefringence. This could also affect the r constraints but
mostly via their impact on the foreground residuals. Other
effects which could affect the polarization angle, such as
smoothly rotating half wave plate or sinuous antennas, are
also relevant and should be taken into account. We leave
such extensions to future work.
Similarly, unrealistic is the assumption of a single pixel-

independent polarization angle per a single frequency map.
Indeed, the miscalibration angle should be more of a
property of a detector or of a focal plane wafer; this will
generally lead to a pixel-domain effective polarization
angle on the map level due to the fact that different
wafers/detectors typically observe the sky differently.
This formalism is easily adaptable to using as an input
maps produced for every wafer or detector, each with a
specific polarization angle. This may however lead to
proliferation of the instrumental degrees of freedom in
the spectral likelihood problem with potential effects on the
precision of derived constraints. More studies are needed to
assess whether this can be successfully controlled.
Complex foregrounds do not seem to significantly affect

the estimation of polarization angles; however, the small
sky and frequency coverage of the SATs limits the impact
of complex foregrounds with respect to simpler ones.
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This forecasting method could be adapted to an analysis
pipeline applied to existing and future datasets including
SO, Planck, LiteBIRD etc. Planck offers more modes,
potentially increasing precision on βb, but it lacks sensi-
tivity. This will be addressed by LiteBIRD, but its reso-
lution will be limited. Robust calibration of polarization
angles remains challenging for space missions. However,
leveraging Planck’s ground-based calibration [57–59] and
LiteBIRD’s requirements [11] as priors can improve βb
constraints. Future work will explore these applications.
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