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This work elaborates on an algebraic approach to second-generation time-delay interferometry (TDI).
The proposed method is closely related to the algorithm first developed by Dhurandhar et al. and its recent
generalizations. While the relevant equation is derived from a geometric TDI perspective, the resulting TDI
solutions are primarily generated by a basis consisting of four-tuples. Unlike the original study, the present
scheme is not subject to any constraint equation and spans the underlying solution space much further.
Moreover, the algorithm does not rely on specific subscript permutations regarding the two elements of the
commutator that furnishes the TDI solution. Employing the proposed method, we explicitly show that all
the existing second-generation TDI combinations, most established via the geometric TDI approach, can be
derived. It is argued that the current approach provides an alternative perspective on the algebraic structure
of the second-generation TDI solutions.
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I. INTRODUCTION

To date, most space-based gravitational wave detection
projects, namely, LISA [1], TianQin [2], Taiji [3], and
DECIGO [4], are based on a layout of an approximately
equilateral triangle formed by three spacecraft. As the
gravitational waves pass through the detector, the data
streammight capture the encoded information on spacetime
distortion in terms of the Doppler frequency shifts. One of
the primary challenges of spaceborne detectors resides in
the variety of noises in the data stream, which consist of
laser frequency noise, test mass noise, optical bench motion
noise, and clock-jitter noise, among others. In particular,
laser frequency noise is overwhelmingly more significant
than others, as its strength is typically seven or eight orders
of magnitude above that of the inevitable ones [5].
Moreover, in the context of space-based detectors, the
laser frequency noise embedded in the beat notes cannot be
straightforwardly canceled out using the strategy of their
ground-based counterpart. This is because the detectors’

armlengths are essentially governed by the spacecraft’s
orbital motions, which are not only of different sizes but
also time-varying. In order to suppress the laser frequency
noise to the desired level, the time-delay interferometry
(TDI) technique was proposed and has become a crucial
method to be employed in the data postprocessing stage.
The main idea behind the TDI algorithm is to construct

an effective equal-arm interferometer by linearly combin-
ing the time-delayed data streams. Ever since it was first
proposed by Tinto et al. in 1999 [6], the algorithm has
been developed extensively over the next two decades.
Regarding the specific orders where the truncations are
taken in the optical paths expanded in terms of the rate of
change of the armlengths, the TDI combinations can be
classified as first-generation, modified first-generation,
second-generation, and modified second-generation
ones [7]. The first-generation TDI [8] treats the spacecraft
constellation as static. Modified first-generation TDI [9]
considers the Sagnac effect caused by the rigid rotation of
the entire constellation, and therefore, distinctions between
the clockwise and counterclockwise light propagations are
made. Algebraically, the difference between the first-
generation and modified first-generation TDI resides in
whether the number of distinct time-delay operations is
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three [10] or six [11]. The relevant solutions can be viewed
as the elements of the first module of syzygies of an ideal in
a (commutative) polynomial ring R [10]. The module’s
generators can be obtained using the Groebner basis [12].
In practice, as discussed above, the armlengths do not
remain constant in time due to the orbital dynamics, and the
rate of change of armlengths is estimated to be up to
∼10 m=s [13]. In this regard, the second-generation TDI
was proposed to take into consideration the contributions
that are first-order in time, L̇ [7,14]. Similar to the extension
to the modified first-generation TDI, it was also meaningful
to distinguish the different cyclic directions in the rate of
change of armlengths. Specifically, one may consider
explicitly six different rates of change of the armlengths
instead of three. Nonetheless, the resulting modified
second-generation TDI solutions, by definition, constitute
a subset of the second-generation TDI combinations [7].
Alternatively, one may view the second-generation TDI
combinations as solutions of algebraic equations furnished
by noncommutative time-delay operators. The latter cannot
be solved straightforwardly owing to the difficulties in the
underlying algebraic geometry. From somewhat different
perspectives, many efforts have been made, notably the
geometric TDI [15], matrix-based approaches [16–18], and
combinatorial algebraic methods [19–22]. The geometric
TDI method is a method of exhaustion that focuses on
constructing virtual equal-arm optical paths. It can be
essentially implemented by a ternary search algorithm to
enumerate the solution space [7]. The resulting TDI
solutions are typically presented for a given number of
links n, in the form of spacetime diagrams of the virtual
light propagation trajectory. On the other hand, the matrix-
based TDI methods are more concerned with data sampled
at discrete time instants. The specific configuration of the
spaceborne detector, consisting of laser setup and space-
craft orbits, gives rise to a design matrix typically of
significant rank. Subsequently, a feasible TDI solution is
furnished by the basis of the null space of the transpose of
the design matrix. This is because the TDI equation
corresponds to the vanishing condition when the design
matrix is multiplied by a row matrix from the left [16].
The combinatorial algebra method was first proposed by

Dhurandhar et al. [19]. The algorithm derives feasible
modified second-generation TDI solutions by essentially
enumerating commutators formed by the time-delay oper-
ators in a particular order. In the original study, the
approach was primarily applied to the particular scenario
with one arm dysfunctional. In other words, the derived
solutions are of the Michelson type. The approach was then
generalized [20] to construct other types of modified
second-generation TDI combinations by taking into
account different constraint equations while introducing
inverse operators. Besides, an iterative procedure was
proposed to “lift” first-generation TDI solutions into
modified second-generation ones [22], for which the

residual noise in the form of a commutator vanishes.
More recently, the approach was extended to consider
second-order commutators [21]. The present study involves
an attempt to generalize the combinatorial algebraic
approach further. While following a similar strategy, it
has two notable features relevant for a significant span in
the underlying solution space. First, the present scheme is
not subject to any constraint equation. Second, the algo-
rithm does not rely on some specific subscript permutation
associated with the two elements of the commutator that
furnishes the TDI solution in the original approach. As a
result, while the relevant equations are derived from a
geometric TDI perspective, the resulting TDI solutions are
primarily generated by a basis consisting of four tuples. By
employing the proposed method, we explicitly show that all
the existing second-generation TDI combinations, most
established via the geometric TDI approach, can be readily
derived. We argue that the present scheme provides an
alternative perspective on the algebraic structure of the
second-generation TDI solutions.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the notations and conventions used in
this paper. The definitions for different generations of TDI
solutions are briefly revisited. In Sec. III, the original
combinatorial algebraic algorithm is reviewed. We discuss
the basic assumptions and some of themain results relevant to
the present study. In Sec. IV, we derive a system of equations
in terms of the time-displacement operators from the original
TDI equation, which defines, on a more general ground, the
solution space from an algebraic viewpoint. We show
that the resulting TDI solutions can be generated mainly
by a basis consisting of four-tuples. Subsequently, we present
an enumeration algorithm to derive the second-generation
TDI solutions. In Sec. V, we illustrate how the proposed
scheme can be utilized to enumerate second-generation TDI
solutions systematically. In particular, it is shown that all
known second-generation geometric TDI combinations can
be derived using the approach. The last section is devoted to
further discussions and concluding remarks. Specific tech-
nical details are relegated to Appendix.

II. TDI EQUATIONS, NOTATIONS, AND
CONVENTIONS

For space-based gravitational wave detectors such as
LISA and TianQin, three spacecraft form an approximately
equilateral triangle. As shown in Fig. 1, the spacecraft are
indicated by SCi (i ¼ 1, 2, 3), and each spacecraft has two
optical benches labeled by i and i0. The armlengths facing
the spacecraft SCi are denoted as Li and Li0 (i0 ¼ 10; 20; 30)
for light propagation in counterclockwise and clockwise
directions. The schematic diagram of optical bench 1 on
SC1 is shown in Fig. 2. Three types of data streams are
primarily involved in the measurements, namely, the
science data stream, test mass data stream, and reference
data stream, namely,
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siðtÞ ¼ Di−1pðiþ1Þ0 ðtÞ − piðtÞ þ νðiþ1Þ0 ½n⃗i−1 ·Di−1
˙Δ⃗ðiþ1Þ0 ðtÞ þ n⃗ði−1Þ0 ·

˙Δ⃗iðtÞ� þHiðtÞ þ Nopt
i ðtÞ;

ϵiðtÞ ¼ pi0 ðtÞ − piðtÞ − 2νi0 ½n⃗ði−1Þ0 · ˙δ⃗iðtÞ − n⃗ði−1Þ0 ·
˙Δ⃗iðtÞ� þ μi0 ðtÞ;

τiðtÞ ¼ pi0 ðtÞ − piðtÞ þ μi0 ðtÞ; ð1Þ

and
si0 ðtÞ ¼ Dðiþ1Þ0pi−1ðtÞ − pi0 ðtÞ þ νi−1½n⃗iþ1 ·

˙Δ⃗i0 ðtÞ þ n⃗ðiþ1Þ0 ·Dðiþ1Þ0
˙Δ⃗i−1ðtÞ� þHi0 ðtÞ þ Nopt

i0 ðtÞ;
ϵi0 ðtÞ ¼ piðtÞ − pi0 ðtÞ − 2νi½n⃗iþ1 ·

˙
δ⃗i0 ðtÞ − n⃗iþ1 ·

˙Δ⃗i0 ðtÞ� þ μiðtÞ;
τi0 ðtÞ ¼ piðtÞ − pi0 ðtÞ þ μiðtÞ; ð2Þ

where si and si0 are science data streams obtained from the
interference between two lasers of the local and distant
spacecraft; ϵi and ϵi0 are the test mass data streams obtained
from the interference between the two lasers, bounced
off from the test masses. τi and τi0 are the reference data
streams obtained from the interference between the two
local lasers. Di and Di0 are the time-delay operators
along the armlengths Li and Li0 which, in the time domain,
satisfy

DifðtÞ ¼ fðt − LiðtÞÞ;
DjDifðtÞ ¼ fðt − LjðtÞ − Liðt − LjðtÞÞÞ; ð3Þ

where the speed of light in vacuum c is assumed to be unity.
νi and νi0 indicate the laser frequencies ≈3 × 1014 Hz. n⃗i
and n⃗i0 represent the unit vectors along the armlengths. The
information on the gravitational wave Hi is expected to be
embedded in the science data stream. The laser frequency
noise is represented by pi and pi0 , typically seven to eight
orders of magnitude larger than the gravitational wave

signals. ˙δ⃗iði0ÞðtÞ and Nopt
iði0ÞðtÞ denote the test mass noise and

optical path noise, respectively. ˙Δ⃗iði0ÞðtÞ is the noise due to
the vibrations of optical benches. μiði0ÞðtÞ denote the optical
fiber noise. The indices i ¼ 1, 2, 3 are understood to be the
remainder of the modulo operation by 3. More specific
details on the notations utilized by Eqs. (1) and (2) can be
found in [5,23], whereas we have ignored the shot noise in
ϵiði0Þ; τiði0Þ and the clock jitter noise in siði0Þ; ϵiði0Þ; τiði0Þ. The
measurement of ϵiði0Þ; τiði0Þ has high signal-to-noise ratios so
that the shot noise can be ignored [5] and the cancellation of
clock jitter noise can be made by introducing the sideband
modulation [23,24].
According to the standard procedure [23], the optical

bench noise and primed laser frequency noise can be
eliminated by using the nine equations regarding the test
mass and reference data streams. As a result, three
independent laser frequency noise remains, while the test
mass noise and optical path noise are considered inevitable.
This gives rise to six observables that read

FIG. 1. Schematic diagram of the three-spacecraft constellation
for the space-based gravitational wave detector.

FIG. 2. Schematic diagram of one-way measurement on optical
bench 1.
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ηiðtÞ ¼ HiðtÞ þDi−1piþ1ðtÞ − piðtÞ
þ νðiþ1Þ0 n⃗i−1½Di−1

˙
δ⃗ðiþ1Þ0 ðtÞ − ˙

δ⃗iðtÞ� þ Nopt
i ðtÞ;

ηi0 ðtÞ ¼ Hi0 ðtÞ þDðiþ1Þ0pi−1ðtÞ − piðtÞ
þ νi−1n⃗iþ1 · ½˙δ⃗i0 ðtÞ −Dðiþ1Þ0

˙
δ⃗i−1ðtÞ� þ Nopt

i0 ðtÞ; ð4Þ

where we assume the fiber can be reciprocal, the fiber noise
terms have been canceled.
By the linear combination of time-delayed observables ηi

and ηi0 , one aims to construct a TDI solution that eliminates
the laser frequency noise [5]. A TDI solution is generally
written as

TDI ¼
X

i¼1;2;3

ðqiηi þ qi0ηi0 Þ; ð5Þ

where the unknown coefficients qi and qi0 are the poly-
nomials in Di and Di0 . The coefficients before individual
laser frequency noise pi must vanish for a valid solution,
which implies

q1 þ q10 − q20D30 − q3D2 ¼ 0; ð6aÞ

q2 þ q20 − q30D10 − q1D3 ¼ 0; ð6bÞ

q3 þ q30 − q10D20 − q2D1 ¼ 0: ð6cÞ

The system of equations Eq. (6) can be viewed as the
starting point for most TDI algorithms in the literature. If
one ignores the armlength’s time dependence, the operators
Di and Di0 are commutative. As a result, the solution of
Eq. (6) can be significantly simplified [10] and give rise to
the first-generation TDI solution. In practice, owing to
Eq. (3), the commutators of the time-delay operators do not
vanish identically. Subsequently, one has to resort to the
expansions of optical paths in the rate of change of the
armlengths. The condition for the cancellation up to
velocity terms leads to the second-generation TDI solu-
tions. For the latter, the residual laser frequency noise,
whose specific form is related to the fact that Eq. (6) are
solved under an appropriate approximation, is understood
to be suppressed below the noise floor consisting of the
inevitable ones.

III. COMBINATORIAL ALGEBRAIC
APPROACHES FOR SECOND-GENERATION TDI

A. Expansion of armlengths and TDI’s generations

As time-dependent functions, the armlengths LiðtÞ can
be expanded as

LiðtÞ ¼ Li þ tL̇i þ
1

2
t2L̈i þ � � � ; ð7Þ

where L̇i and L̈i are first-order and second-order time
derivatives.
Formally, a TDI solution can be derived by substituting

Eq. (7) into the arguments on the right-hand side of Eq. (3)
and requiring Eq. (5), or equivalently Eq. (6), to vanish
when truncating the relevant equations up to a given order.
Different generations of TDI explored in the literature are
distinct regarding specific truncations and assumptions
utilized in solving Eq. (6).
As discussed above, to start with, one ignores the con-

tributions of L̇ and other higher-order terms. To be specific,
for the first-generation TDI combinations, one assumes:

LiðtÞ ¼ Li0 ðtÞ ¼ Li: ð8Þ
In other words, Di and Di0 are treated as the same operator,
and different operators commute.
For modified first-generation TDI, one takes into

account the Sagnac effect in rigid rotation and assumes:

LiðtÞ ¼ Li; Li0 ðtÞ ¼ Li0 ; Li ≠ Li0 : ð9Þ

Therefore, Di ≠ Di0 , but the time-delay operators are still
commutative. Subsequently, the residuals of laser fre-
quency noise of the first- and modified first-generation
TDI combinations are primarily governed by the rate of
change of armlengths terms L̇.
The second and modified second-generation TDI com-

binations further consider the cancelation of first-order
derivative terms. Specifically, for second-generation TDI,
we have

LiðtÞ ¼ Li þ tL̇i;

Li0 ðtÞ ¼ Li0 þ tL̇i0 ;

Li ≠ Li0 ;

L̇i ¼ L̇i0 ; ð10Þ
where the rates of change of armlengths in different cyclic
directions, namely, L̇i and L̇i0 , are not distinguished.
On the other hand, the modified second-generation TDI

assumes:

LiðtÞ ¼ Li þ tL̇i;

Li0 ðtÞ ¼ Li0 þ tL̇i0 ;

Li ≠ Li0 ;

L̇i ≠ L̇i0 : ð11Þ
For second- and modified second-generation TDI combi-
nations, the residuals of laser frequency noise are largely
determined by the second contributions, such as L̇2 and L̈.
The fact that the time-delay operators are not commutative
in the context of second-generation TDI leads to the
complexity of solving the underlying TDI equations.
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B. Existing combinatorial algebraic algorithms

In this subsection, we briefly revisit the original com-
binatorial algebraic approaches and their generalizations
developed in the literature. These algorithms aim to
systematically construct second-generation TDI
solutions by employing an enumeration scheme. It is worth
mentioning that they typically make use of a specific
constraint equation, and therefore the derived solutions
pertain to the corresponding TDI class. As a result, the
obtained solutions are, by and large, not exhaustive. We
will focus on some of the relevant results, which will also
be utilized by the generalized approach elaborated below
in Sec. IV.
A central piece of the algorithm proposed by Dhurandhar

et al. [19] resides in the following equality, which was
shown to be valid up to first-order contributions

½Du1u2…un ; Dv1v2…vn �fðtÞ

¼
�Xn

k¼1

δukLuk

Xn
k0¼1

δvk0 L̇vk0 −
Xn
k0¼1

δvk0Lvk0

Xn
k¼1

δuk L̇uk

�

× ḟ

�
t −

Xn
k¼1

δukLuk −
Xn
k0¼1

δvk0Lvk0

�
; ð12Þ

for an arbitrary function fðtÞ, where δuk and δvk0 are
defined as

δuk ¼
�−1 if uk ¼ λm for any m ¼ 1;…; r

þ1 otherwise
;

δvk0 ¼
�−1 if vk0 ¼ γj for any j ¼ 1;…; s

þ1 otherwise
: ð13Þ

On the left-hand side of Eq. (12), one considers a
commutator composed of two monomials ½Du1u2���un ;
Dv1v2���vn �. We assume that there are r instances of inverse
operators in the first monomialDu1u2���un , which are denoted
as Dλm , where m ¼ 1;…; r and λm (¼ ī or i0) are r distinct
elements chosen from the subscripts uk with k ¼ 1;…; n.
Similarly, one assumes that the second monimial Dv1v2���vn
contains s inverse operators, denoted by Dγj with
j ¼ 1;…; s. In the remainder of the paper, we will refer
to ½Du1u2…un ; Dv1v2…vn � as “the commutator”, Du1u2…un as
the first monomial of the commutator, and Dv1v2…vn as the
second monomial of the commutator. The relation was first
introduced in Ref. [19] for time-delay operators and then
generalized to include inverse time-delay operators [20].
In what follows, we briefly outline an informal but

intuitive derivation while referring the interested reader to
the appendix of [20]. For simplicity, we will use the
shorthand notation

DjDifðtÞ≡DjifðtÞ: ð14Þ

By substituting the expansion Eq. (7) into Eq. (3) and
ignoring second and higher order terms, we have

DifðtÞ ≃ fðt − LiÞ − ḟðt − LiÞtL̇i;

DjifðtÞ ≃ fðt − LjðtÞ − LiðtÞ þ L̇iLjðtÞÞ
≃ fðt − Li − LjÞ þ ḟðt − Li − LjÞL̇iLj

− ḟðt − Li − LjÞðL̇i þ L̇jÞt: ð15Þ

Observing Eq. (15), the latter can be generalized to read

Dun…Du1fðtÞ ¼ f
�
t −

Xn
i¼1

Lui

�
þ ḟ

�
t −

Xn
i¼1

Lui

�

×

�Xn−1
j¼1

L̇uj

Xn
k¼jþ1

Luk

�

− ḟ

�
t −

Xn
i¼1

Lui

��Xn
i¼1

L̇ui

�
t; ð16Þ

where Dui is limited to the time-delay operators. It is noted
that the inverse operators Dī

DīfðtÞ ¼ fðtþ Liðtþ LiÞÞ ð17Þ

can be introduced to formalism as the inverse of its time-
delay counterpart. The latter can be shown straightfor-
wardly by noticing, up to the order L̇,

DīfðtÞ ≃ fðtþ LiÞ þ ḟðtþ LiÞðtþ LiÞL̇i

¼ fðtþ LiÞ þ ḟðtþ LiÞtL̇i þ ḟðtþ LiÞLiL̇i: ð18Þ

By further generalizing Eq. (16) to include inverse oper-
ators and evaluating the commutator on the left-hand side
(lhs) of Eq. (12), the equality can be readily established.
Now, the algorithm claims that the second-generation

TDI solutions can be obtained for specific commutators of
the form Eq. (12). In particular, the lhs of Eq. (12) is related
to the solution in terms of the coefficients given in Eq. (5),
while the rhs of Eq. (12) gives rise to the residual laser
frequency noise.
For the rhs of Eq. (12) to vanish, a rather straightforward

but intriguing example is when u1u2 � � � un is a permutation
of v1v2 � � � vn, namely,

vi ¼ uπðiÞ; ð19Þ

where π∈Sn is an arbitrary element of the permutation
group of degree n. This is precisely the case explored in
Refs. [19,20,22].
To establish the lhs of Eq. (12) to feasible TDI coef-

ficients qiði0Þ defined in Eq. (5), a few different strategies
have been employed. In Refs. [19–21], two constraint
equations are introduced so that one falls to the solution
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space of a specific TDI class, such as the one-arm dysfunc-
tional Michelson combinations. In Ref. [19], the constraint
equations read

q2 ¼ q30 ¼ 0; ð20Þ

which corresponds to the scenario when the communica-
tions through the armlength connecting SC2 and SC3 are
interrupted. By substituting Eq. (20) into Eq. (6), one finds

q1ð1 − aÞ þ q10 ð1 − bÞ ¼ 0; ð21Þ

where a ¼ D330 and b ¼ D202.
To accomplish our goal, on the one hand, one needs to

write down a tentative TDI solution, for which the sub-
scripts of the two elements on the lhs of Eq. (12) is an
arbitrary permutation. On the other hand, one needs to
extract the coefficients q1 and q10 in Eq. (21). As a matter of
fact, it was shown that it could be achieved when the
subscripts are exclusively expressed in terms of a and b.
More detailed and comprehensive discussions can be found
in Refs. [19,20], which will be further generalized in the
next section. Here, we will merely illustrate the algorithm
with a simple example.
Let us consider the commutator

½ab; ba� ¼ ½D330202; D202330 �: ð22Þ

On the one hand, due to Eq. (12), it vanishes when applied
to the laser noise of an arbitrary form. On the other, we have

abba¼−abbð1−aÞ−abð1−bÞ−að1−bÞ−ð1−aÞþ1;

baab¼−baað1−bÞ−bað1−aÞ−bð1−aÞ−ð1−bÞþ1;

ð23Þ

and therefore

½ab; ba� ¼ ð−1þ bþ ba − abbÞð1 − aÞ
þ ð1 − a − abþ baaÞð1 − bÞ: ð24Þ

When compared against Eq. (21), one readily finds

q1 ¼ −1þ bþ ba − ab2;

q10 ¼ 1 − a − abþ ba2; ð25Þ

Before closing this section, we comment on the recent
developments of the original algorithm. In Ref. [20],
various constraint equations corresponding to different
TDI classes were considered. This was feasible, thanks
to the introduction of the inverse operators Eq. (12).
Ref. [21] explores the rhs of Eq. (12), instead of consid-
ering commutators whose constituent monomials’ sub-
scripts are related by permutation, one generalizes the
context to the second-order commutators and polynomials.

Reference [22], on the other hand, revises the construction
of the TDI solution on the lhs of Eq. (12). In particular,
second-generation solutions are manifestly derived by
lifting up the first-generation ones.

IV. A GENERALIZED COMBINATORIAL
ALGEBRAIC APPROACH

In this section, we propose a generalized version of the
combinatorial algorithm discussed in [19,20]. It has two
pertinent features. First, the present scheme is not subject to
any constraint equation. Second, similar to Eq. [21], the
algorithm does not rely on some specific subscript permu-
tation associated with the two elements of the commutator
in question. It will become clear that these two features give
rise to a significant span in the underlying solution space.
The novelty of the approach can be intuitively explained
regarding Eq. (12). For the rhs of Eq. (12), a system of
relevant equations is derived from a more general perspec-
tive instead of extracting TDI solutions by enumerating
different permutations. For the lhs of Eq. (12), as the
constraints are entirely lifted, the solutions are no longer
restricted to any specific TDI class and, in principle,
generically distinct from the existing ones. As shown
below, the resulting TDI solutions are generated mainly
by a basis consisting of four-tuples. It is apparent that the
procedure is rather different from other approaches in the
literature.
In Sec. IVA, we rewrite the TDI equation Eq. (6)

regarding the algebraic approach but do not introduce
any constraint equation. In Sec. IV B, from the viewpoint
of the rhs of Eq. (12), we derive a system of equations that
guarantees the laser frequency noise residual vanishes up to
first-order terms. Subsequently, in Sec. IV C, from the
perspective of the lhs of Eq. (12), we elaborate on the
scheme to derive the coefficients of the TDI combinations.
The proposed extended version of combinatorial algebraic
approach is summarized in Sec. IV D.

A. The TDI equation without constraint

To proceed, we first substitute the forms of q2 and q3
from Eqs. (6b) and (6c), namely,

q2 ¼ q30D10 þ q1D3 − q20 ;

q3 ¼ q10D20 þ q2D1 − q30 ; ð26Þ

into Eq. (6a), to find

q1ð1 −D312Þ þ q10 ð1 −D202Þ þ q20 ðD12 −D30 Þ
þ q30 ðD2 −D1012Þ ¼ 0; ð27Þ

which is an equation in four variables q1; q10 ; q20 , and q30
When compared against Eq. (21), the number of indepen-
dent variables increases because we have not utilized
any constraint equation. Also, regarding the four given
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variables, we note that Eq. (27) is not unique. For instance,
if one substitutes the forms of q2 and q3 derived from
Eqs. (6a) and (6c) into Eq. (6b), we have

q1ðD2̄ 1̄ −D3Þ þ q10 ðD2̄ 1̄ −D201̄Þ
þ q20 ð1 −D302̄ 1̄Þ þ q30 ðD1̄ −D10 Þ ¼ 0: ð28Þ

However, Eq. (28) can be obtained by right-multiplying
D2̄ 1̄ on both sides of Eq. (27). Similarly, by substituting q2
and q3 from Eqs. (6a)–(6b), one encounters an equation
that can be obtained by right-multiplying D2 on
both sides of Eq. (27). As a result, a TDI solution of
Eq. (27) naturally gives rise to a solution of Eq. (28), and
the residual of the two solutions are not identical but are of
the same order. Therefore, it suffices to only focus
on Eq. (27).
By defining R20 ¼ q20D12 and R30 ¼ q30D2, Eq. (27) can

be rewritten in a form reminiscent of Eq. (21)

q1ð1 − aÞ þ q10 ð1 − bÞ þ R20 ð1 − cÞ þ R30 ð1 − dÞ ¼ 0;

ð29Þ

where a ¼ D312, b ¼ D202, c ¼ D2̄ 1̄ 30 , and d ¼ D2̄1012. A
TDI solution is characterized by the values of the four
variables q1; q10 ; R20 , and R30 . Regarding the coefficients
defined in Eq. (5), q20 ¼ R20D2̄ 1̄, q30 ¼ R30D2̄, and q2 and
q3 can be obtained using Eq. (26).

B. The conditon for vanishing laser-noise residual

By observing the process illustrated in the last section, it
is attempting to solve Eq. (29) by considering commutators
of monomials whose subscripts are related by some
permutations as given by Eq. (19). Although such a
procedure is viable, unfortunately, it leads to somewhat
restrictive solution space. In this regard, we will directly
resort to Eq. (12). Similar to the strategy employed in
Refs. [19,20], we also assume that a TDI solution is given
in the form of a commutator. The latter consists of two
monomials solely formed by a, b, c, d and ā, b̄, c̄, d̄, where
ā ¼ D2̄ 1̄ 3̄ is the inverse of a, and similarly, b̄ ¼ D2̄2̄0 ,
c̄ ¼ D3̄012, and d̄ ¼ D2̄ 1̄ 1̄02.
We introduce two tuples with six and four components to

facilitate the following discussions. The six-tuple
ðl; m; n; l0; m0; n0Þ is defined for any given monomial such
as a, b, c, or d. Each component of the tuple is determined
by the number of instances for a given time-displacement
operator that appears in the monomial. The order of the
tuple’s components follows the sequence 1, 2, 3, 10; 20,
and 30. Like the conventions given by Eq. (13), each time-
delay operator will count “þ1” for the corresponding
component, while the inverse operator contributes a count
of “−1”.
As an example, for D3120, the corresponding six-tuple

reads (1,0,1,0,1,0). Similaly, the six-tuple of D2̄ 1̄ 102 is

C ¼ ð−1; 0; 0; 1; 0; 0Þ. Following these examples, the
tuples for the four monomials a, b, c, d, and the inverses
are found to be

a ¼ D312; A ¼ ð1; 1; 1; 0; 0; 0Þ;
b ¼ D202; B ¼ ð0; 1; 0; 0; 1; 0Þ;
c ¼ D2̄ 1̄ 30 ; C ¼ ð−1;−1; 0; 0; 0; 1Þ;
d ¼ D2̄1012; D ¼ ð1; 0; 0; 1; 0; 0Þ;
ā ¼ D2̄ 1̄ 3̄; Ā ¼ ð−1;−1;−1; 0; 0; 0Þ ¼ −A;

b̄ ¼ D
2̄ 20 ; B̄ ¼ ð0;−1; 0; 0;−1; 0Þ ¼ −B;

c̄ ¼ D3̄012; C̄ ¼ ð1; 1; 0; 0; 0;−1Þ ¼ −C;

d̄ ¼ D2̄ 1̄ 1̄02; D̄ ¼ ð−1; 0; 0;−1; 0; 0Þ ¼ −D: ð30Þ

It is straightforward to observe that the tuple of a monomial
consisting of products of a, b, c, d and their inverses is
nothing but a “component-wise” summation of the corre-
sponding tuples of individual factors, given by Eq. (30). For
example, the six-tuple of abd̄cb̄ is Aþ B −Dþ C − B ¼
ð−1; 0; 1;−1; 0; 1Þ.
As discussed above, the monomials we utilize to con-

struct the TDI solutions involve only a, b, c, and d and their
inverses. Moreover, as it turns out, the corresponding
counts are directly associated with valid TDI solutions,
where the contribution of ā will be counted as “−1”. In
particular, the integer numbers na, nb, nc, and nd will be
used to constitute the components of a four-tuple. Unless
specified, the four-tuple defined above will be used
exclusively to indicate the first monomial of the commu-
tator on the lhs of Eq. (12).
For a given monomial, the components of the four-

tuple ðna; nb; nc; ndÞ and six-tuple ðl; m; n; l0; m0; n0Þ are
related by

naAþ nbBþ ncCþ ndD ¼ ðl; m; n; l0; m0; n0Þ; ð31Þ

which implies that

na−ncþnd¼ l;

naþnb−nc¼m;

na¼n;nd¼ l0; nb¼m0; nc¼n0: ð32Þ

Since there are only four free variables in
ðl; m; n; l0; m0; n0Þ, l, m can be determined in terms of
n; l0; m0; n0. It is noting that even though for a given
four-tuple ðna; nb; nc; ndÞ the six-tuple ðl; m; n; l0; m0; n0Þ
is well defined, the underlying monomial cannot be
uniquely determined. This is because we can always
insert additional factors of a and ā in pairs into
the monomial at arbitrary positions. This will modify the
monomial and, subsequently, the TDI solution but the tuple
ðl; m; n; l0; m0; n0Þ remains unchanged. Nonetheless, the
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lack of uniqueness gives rise to more distinct solutions of
Eq. (29). In other words, for those who are still wondering,
the main reason to introduce the notion of tuples defined by
counting resides in the fact that, for the present context, the
validity of a TDI solution only depends on the composition
of the monomials but not the specific order of its factors.
Explicit examples will be given below, but it does not come
as a surprise when compared against the combinatorial
algorithms proposed in Refs. [19,20].
To proceed, one writes down a system of equations

that ensures that the rhs of Eq. (12) vanishes. We denote
the tuple of the first monomial of the commutator
½Du1u2…un ; Dv1v2…vn � as ðx1; x2; x3; x10 ; x20 ; x30 Þ and that of
the second monomial as ðy1; y2; y3; y10 ; y20 ; y30 Þ. All the
coefficients governed by the first factor of the rhs of
Eq. (12) correspond to first-order contributions to the
residual laser noise. For the rhs of Eq. (12) to vanish, all
independent contributions must vanish identically.
Without loss of generality, let us pick out the terms

associated with the coefficients governed by the first factor
of the rhs of Eq. (12) that involve L̇1, which read

ðx1L1 þ x2L2 þ x3L3 þ x10L10 þ x20L20 þ x30L30 Þy1L̇1

− ðy1L1 þ y2L2 þ y3L3 þ y10L10 þ y20L20 þ y30L30 Þx1L̇1:

ð33Þ

As we consider second-generation TDI solutions, accord-
ing to the last line of Eq. (10), the above coefficients should

be dealt together with the terms involving L̇10 , which is
found to be

ðx1L1þx2L2þx3L3þx10L10 þx20L20 þx30L30 Þy10L̇10

−ðy1L1þy2L2þy3L3þy10L10 þy20L20 þy30L30 Þx10L̇10 :

ð34Þ

Now, one can argue that terms of the form L̇iΔLpðtÞ,
where ΔL is the difference between two arm-
lengths, is numerically negligible. Taking typical para-
meters for the LISA mission, the rate of change of
armlengths L̇ ∼ 10 m=s, the mismatch of armlengths
ΔL∼1%×L∼2.5×104 km, and the laser frequency
noise pi∼10−13=

ffiffiffiffiffiffi
Hz

p
[13]. Therefore, L̇iΔLpi ∼ 1.5×

10−24=
ffiffiffiffiffiffi
Hz

p
@3 mHz, which is insignificant when com-

pared with the typical gravitational wave signal HðtÞ ≃
10−20=

ffiffiffiffiffiffi
Hz

p
. This implies that one can safely make the

replacement

L̇1Li → L̇1L; ð35Þ

where L refers to any of the armlengths. The approximation
Eq. (35) is a common practice in geometric TDI
implementations.
By adding Eq. (33) to Eq. (34) while taking into account

of Eq. (35), one finds the coefficient relevant to L̇1

L̇1½ðy10x1 − x10y1Þ þ ðy1x10 − x1y10 Þ þ x2ðy1 þ y10 Þ − y2ðx1 þ x10 Þ þ x20 ðy10 þ y1Þ − y20 ðx10 þ x1Þ
þx3ðy1 þ y10 Þ − y3ðx1 þ x10 Þ þ x30 ðy10 þ y1Þ − y30 ðx10 þ x1Þ�L

¼ L̇1½ðx2 þ x20 þ x3 þ x30 Þðy1 þ y10 Þ − ðy2 þ y20 þ y3 þ y30 Þðx1 þ x10 Þ�L: ð36Þ

The terms associated with L̇2 or L̇3 can be obtained by cycling the indices, and the vanishing condition gives rise to the
following equations,

ðx2 þ x20 þ x3 þ x30 Þðy1 þ y10 Þ − ðy2 þ y20 þ y3 þ y30 Þðx1 þ x10 Þ ¼ 0

ðx1 þ x10 þ x3 þ x30 Þðy2 þ y20 Þ − ðy1 þ y10 þ y3 þ y30 Þðx2 þ x20 Þ ¼ 0

ðx2 þ x20 þ x1 þ x10 Þðy3 þ y30 Þ − ðy2 þ y20 þ y1 þ y10 Þðx3 þ x30 Þ ¼ 0 ð37Þ

The above equations can be rewritten as

Y1ðX2 þ X3Þ ¼ ðY2 þ Y3ÞX1; ð38aÞ

Y2ðX3 þ X1Þ ¼ ðY3 þ Y1ÞX2; ð38bÞ

Y3ðX1 þ X2Þ ¼ ðY1 þ Y2ÞX3; ð38cÞ

where

Xi ¼ xi þ xi0 ; ð39aÞ

Yi ¼ yi þ yi0 : ð39bÞ

It is observed that only two of the above three equations are
independent, as any two of the equations can be used to
derive the remaining one. Making use of the relations
Eq. (32), one finds the first two equations give
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ðY2 þ Y3 − 2Y1Þna − 2Y1nb − ðY2 þ Y3Þnc þ 2ðY2 þ Y3Þnd ¼ 0; ð40aÞ

ðY3 þ Y1 − 2Y2Þna þ 2ðY1 þ Y3Þnb − ðY3 þ Y1Þnc − 2Y2nd ¼ 0: ð40bÞ
A possible way to view Eq. (38) is to consider that the form of the second monomial of Eq. (12) is already given in terms

of the variables Y’s and try to solve for the first monomial in terms of the variables X’s. Since the TDI solutions are assumed
to be expressed in terms of products of the monomials a, b, c, d and their inverses, it is thus meaningful to replace X’s by the
components of the four-tuple. Therefore, for given Y’s, we proceed to solve Eq. (40) for all possible four-tuples
ðna; nb; nc; ndÞ. As derived in appendix, the solution reads

ðna;nb;nc;ndÞ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

k1

�
−2Y3

GCDð2Y3;Y3−Y1;Y3−Y2Þ ;
Y3−Y2

GCDð2Y3;Y3−Y1;Y3−Y2Þ ;0;
Y3−Y1

GCDð2Y3;Y3−Y1;Y3−Y2Þ

�

þk2ð−1;1;1;1Þ Y1þY2þY3 ≠ 0;Y1 ≠ 0

k1

�
Y2þY3

GCDðY2;Y2þY3Þ ;0;
Y3−Y2

GCDðY2;Y2þY3Þ ;−
Y2

GCDðY2;Y2þY3Þ

�
þk2ð−1;1;1;1Þ Y1þY2þY3 ≠ 0;Y1¼ 0

k1ð1;0;3;0Þþk2ð0;1;2;0Þþk3ð0;0;2;1Þ Y1þY2þY3¼ 0

and Y2
1þY2

2þY2
3 ≠ 0

ðk1;k2;k3;k4Þ arbitrary four-tuple Y1¼Y2¼Y3¼ 0

; ð41Þ

where k1, k2 and k3 are arbitrary integers, GCDðY2; Y2 þ
Y3Þ is the greatest common divisor of Y2 and Y2 þ Y3.
To summarize thus far, for a given second monomial of

the commutator, we have derived the general form of the
four-tuple ðna; nb; nc; ndÞ associated with the first mono-
mial of the commutator, which leads to a vanishing laser-
noise residual. As discussed above, a given four-tuple
ðna; nb; nc; ndÞ dictates the value of the six-tuple
ðl; m; n; l0; m0; n0Þ. However, the degree of the monomial
is not uniquely defined, and neither do the specific elements
nor their order. Such freedom implies a broader solution
space than those furnished merely by index permutations as
explored in preceding studies [19,20]. In particular, it is
worth pointing out that TDI solutions generated by index
permutation between the first and second monomials
correspond to nothing but the following trivial solution
of Eq. (38),

Y1 ¼ X1;

Y2 ¼ X2;

Y3 ¼ X3: ð42Þ

For the scheme to derive the TDI coefficients to be
discussed in the following subsection, we make use of the
relation between the variables Y’s and the four-tuple
ðn0a; n0b; n0c; n0dÞ associated with the second monomial

Y1 ¼ n0a − n0c þ 2n0d;

Y2 ¼ n0a þ 2n0b − n0c;

Y3 ¼ n0a þ n0c; ð43Þ

to give

ðn0a; n0b;n0c; n0dÞ

¼
�
−2k5 þ Y1 þ Y3

2
;
2k5 − Y1 þ Y2

2
;
2k5 − Y1 þ Y3

2
; k5

�
;

ð44Þ

where k5 is an arbitrary integer.
Until now, the discussions have primarily focused on

TDI solutions associated with the commutators. Similar to
the strategy in Ref. [20], the solution space can be further
expanded by attaching arbitrary monomials to both sides of
a valid commutator ½sl; sr� as follows

ml½sl; sr�mr ¼ mlslsrmr −mlsrslmr; ð45Þ

where ml and mr are arbitrary monomials. When consid-
ering the procedure discussed in the following subsection,
they consist of a, b, c, d and their inverses. The proof can
be carried out straightforwardly by showing that the
residual remains of the same order.
In the following subsection, we elaborate on how to

encounter the corresponding TDI coefficients defined in
Eq. (5) for a commutator. However, before proceeding
further, let us explicitly show that Eq. (41) implies novel
solutions not included in the existing combinatorial alge-
braic algorithms [19,20]. Consider the particular example
that the second monomial of the commutator is trivially
given by (0,0,0,0,0,0), and the laser residual will vanish
regardless of the form of the first monomial. Moreover, as
will be shown later, this leads to nontrivial TDI solutions.
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C. Derivation of TDI coefficients

The laser frequency noise is guaranteed to be adequately
suppressed for those four-tuples acquired according to
Eq. (41). In this subsection, we elaborate a scheme to
derive the corresponding coefficients in Eq. (29) and thus
establish the TDI solution. The process is a generalization
of what has been utilized in Refs. [19–21]. The main
difference is that now we are dealing with four monomials
a, b, c, d and their inverse rather than two, as discussed
in Eq. (21).
Before presenting the detailed algorithm, we illustrate

the main strategy with two simple examples. Reminiscent
of Eq. (23), we have

abcd¼−abcð1−dÞ−abð1−cÞ−að1−bÞ−ð1−aÞþ1;

ð46Þ

and

b̄cdā¼ b̄cdāð1−aÞ− b̄cð1−dÞ− b̄ð1−cÞþ b̄ð1−bÞþ1:

ð47Þ

The above two examples demonstrate that given any
monomial h exclusively consisting of a, b, c, d and their
inverses, h − 1 can be decomposed into summations of
terms proportional to either of ð1 − aÞ; ð1 − bÞ; ð1 − cÞ,
(1 − d). In what follows, we elaborate a scheme to rewrite
an arbitrary monomial hn of degree n into the form

hn ¼ hað1 − aÞ þ hbð1 − bÞ þ hcð1 − cÞ þ hdð1 − dÞ þ 1

ð48Þ

Subsequently, the difference between two monomials
is an element of the left ideal I ¼ hð1 − aÞ; ð1 − bÞ;
ð1 − cÞ; ð1 − dÞi, which is readily applied to any commu-
tator given by the lhs of Eq. (29).

The general procedure to decompose an arbitrary mono-
mial hn of degree n into Eq. (48) is as follows:
(1) Initiate ha ¼ 0, hb ¼ 0, hc ¼ 0, and hd ¼ 0.
(2) It is noted that hn ends in either a; b; c; d; ā; b̄; c̄, or

d̄, namely, hn ¼ hn−1a, hn ¼ hn−1b, hn ¼ hn−1c,
hn ¼ hn−1d, hn ¼ hn−1ā, hn ¼ hn−1b̄, hn ¼ hn−1c̄
or hn ¼ hn−1d̄.
(a) If hn ¼ hn−1a, let ha ¼ ha − hn−1;
(b) If hn ¼ hn−1b, let hb ¼ hb − hn−1;
(c) If hn ¼ hn−1c, let hc ¼ hc − hn−1;
(d) If hn ¼ hn−1d, let hd ¼ hd − hn−1;
(e) If hn ¼ hn−1ā, let ha ¼ ha þ hn−1ā;
(f) If hn ¼ hn−1b̄, let hb ¼ hb þ hn−1b̄;
(g) If hn ¼ hn−1c̄, let hc ¼ hc þ hn−1c̄;
(h) If hn ¼ hn−1d̄, let hd ¼ hd þ hn−1d̄.

(3) Repeat step 2 for hn−1 until the degree of the
monomial vanishes, namely, one encounters h0 ¼ 1.

(4) Finally, we will have hn − h0 ¼ hað1 − aÞ þ
hbð1 − bÞ þ hcð1 − cÞ þ hdð1 − dÞ.

The corresponding flow chart of the algorithm is given in
Fig. 3. As an example, for the case of Eq. (47), we have
h4 ¼ b̄cdā. Subsequently, we have h3 ¼ b̄cd, h2 ¼ b̄c,
h1 ¼ b̄ and h0 ¼ 1, so that ha ¼ b̄cdā, hb ¼ b̄, hc ¼ −b̄
and hd ¼ −b̄c, consistent with Eq. (47).

D. Outline of the proposed approach

We summarize the proposed combinatorial algebraic
scheme as follows.

(i) Choose a three-integer-tuple ðY1; Y2; Y3Þ and deter-
mine the composition of the second monomial on
the lhs of Eq. (12) using Eq. (44) while including all
possible variations. The latter essentially brings in
another four arbitrary integers that account for the
numbers of aā type pairs.

(ii) Find the composition of the first monomial on the
lhs of Eq. (12) based on the four-tuple obtained
using Eq. (41) while including all possible

FIG. 3. The algorithm’s flow chart for the decomposition of hn.
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variations. The latter essentially brings in another
four arbitrary integers that account for the numbers
of aā type pairs.

(iii) Consider all possible permutations of the time-shift
operators, as explored in Refs. [19,20].

(iv) Multiply some arbitrary monomial to the commu-
tator’s left and/or right sides.

(v) Derive the corresponding TDI coefficients using the
algorithm discussed in Sec. IV C.

V. APPLICATIONS OF THE PROPOSED
APPROACH

A. Illustration of the algorithm by a few examples

In Secs. IVA, Sec. IV B, and Sec. IV C, we derive a
generalized version of the combinatorial algebraic method
for the second-generation TDI combinations. In order to
illustrate the use of the proposed algorithm, we give a few
particular examples regarding some restrictive choices in
the solution space. The first four examples below corre-
spond to the four rows in Eq. (41). We then elaborate on a
more sophisticated example to illustrate how the approach
can be employed to exhaust possible (restrictive) parameter
space. The last example concerns the scenarios where the
laser noise residual is not a commutator.
For the first example, let us derive the first monomial by

considering the second monomial in the form of a six-tuple
(0,0,0,1,1,1). According to Eq. (32), the latter is governed
by its last four components (0,1,1,1). We have, Y1 ¼ 1,
Y2 ¼ 1, Y3 ¼ 1, k5 ¼ 1, and Y3 þ Y2 þ Y1 ≠ 0. Using the
first row of Eq. (41), one has the freedom to choose
different values for the integers k1 and k2. To enumerate
distinct TDI solutions, we can choose different degrees of
the monomial and consider different permutations. For
instance, for k1 ¼ −1 and k2 ¼ 0, the four-tuple associated
with the first monomial reads

ðna; nb; nc; ndÞ ¼ ð1; 0; 0; 0Þ: ð49Þ

As discussed above, for the four-tuple given by Eq. (49),
monomials such as “a”, “cac̄”, “b̄ab” are all valid options.
Specifically, let us choose the left monomial as “a” and the
right monomial as “bdc”. The resultant TDI combination
reads

½a; bdc�; ð50Þ

which, by employing the algorithm discussed in Sec. IV C,
can be decomposed as

½a; bdc� ¼ ð−1þ bdcÞð1 − aÞ þ ð1 − aÞð1 − bÞ
þ ðbd − abdÞð1 − cÞ þ ðb − abÞð1 − dÞ: ð51Þ

Therefore, the coefficients qi and qi0 are

q1 ¼ −1þD201030 ;

q2 ¼ −D3 þD2010303;

q3 ¼ −D31 þD20103031;

q10 ¼ 1 −D312;

q20 ¼ D2010 −D3122010 ;

q30 ¼ D20 −D31220 : ð52Þ

Eq. (52) is readily recognized as a twelve-link second-
generation Sagnac combination ½α�121 [7].
As for the second example, we choose the

second monomial’s six-tuple to be (0,0,1,0,0,1). We have,
Y1 ¼ Y2 ¼ 0, Y3 ≠ 0, k5 ¼ 0 and subsequently, Y1þ
Y2 þ Y3 ≠ 0. Due to the second row of Eq. (41), there
are two integers k1 and k2 to be determined. By taking
k1 ¼ 1, k2 ¼ 1, the four-tuple associated with the first
monomial reads

ðna; nb; nc; ndÞ ¼ ð0; 1; 2; 1Þ: ð53Þ

As in the first example, let us specifically choose the left
monomial as “ac” and the right monomial as “bdcc”. The
resulting commutator reads

½ac; bdcc� ð54Þ

can be decomposed as

½ac; bdcc� ¼ ðbdcc − 1Þð1 − aÞ þ ð1 − acÞð1 − bÞ
þ ðbdccaþ bdcþ bd − acbdc − acbd − aÞ
× ð1 − cÞ þ ðb − acbÞð1 − dÞ ð55Þ

Subsequently, the coefficients qi and qi0 are

q1 ¼ D2010302̄ 1̄ 30 − 1;

q2 ¼ D3302010302̄ 1̄ −D2010302̄ 1̄;

q3 ¼ D3302010302̄ −D2010302̄;

q10 ¼ 1 −D330 ;

q20 ¼ D2010302̄ 1̄ 303 þD2010302̄ 1̄ þD2010 −D3302010302̄ 1̄

−D3302010 −D3;

q30 ¼ D20 −D33020 : ð56Þ

For the third example, we choose the second monomial’s
six-tuple to be ð0; 1;−1; 0; 1;−1Þ. We have, Y1 ¼ 0, Y2 ¼
−Y3 ¼ 2; k5 ¼ 0 and subsequently, Y1 þ Y2 þ Y3 ¼ 0.
Due to the third row of Eq. (41), there are three integers
k1, k2 and k3 to be determined. By taking k1 ¼ 0, k2 ¼ 1
and k3 ¼ −1, the four-tuple associated with the first
monomial reads
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ðna; nb; nc; ndÞ ¼ ð0; 1; 0;−1Þ: ð57Þ

As in the first example, let us specifically choose the left monomial to be “bd̄” and the right monomial as “ābc̄”, the
resulting commutator

½bd̄; ābc̄� ð58Þ

can be decomposed as

½bd̄; ābc̄� ¼ ðbd̄ ā−āÞð1 − aÞ þ ðāþ ābc̄ − 1 − bd̄ āÞð1 − bÞ þ ðbd̄ ā bc̄ − ābc̄Þð1 − cÞ þ ðbd̄ − ābc̄bd̄Þð1 − dÞ ð59Þ

Subsequently, the coefficients qi and qi0 are

q1 ¼ D201̄1̄01̄ 3̄ −D2̄ 1̄ 3̄;

q2 ¼ D201̄ −D2̄ 1̄ 3̄ 2023̄012201̄ þD201̄1̄01̄ −D2̄ 1̄ −D201̄1̄01̄ 3̄ 2023̄0 þD2̄ 1̄ 3̄ 2023̄0 ;

q3 ¼ D2̄ 1̄ 3̄ 20 −D201̄1̄01̄ 3̄ 20 −D2̄ −D201̄1̄01̄ 3̄ 2023̄01 þD2̄ 1̄ 3̄ 2023̄01 þD2̄ 1̄ 3̄ 2023̄012201̄1̄0 ;

q10 ¼ −1þD2̄ 1̄ 3̄ þD2̄ 1̄ 3̄ 2023̄012 −D201̄1̄01̄ 3̄;

q20 ¼ D201̄1̄01̄ 3̄ 2023̄0 −D2̄ 1̄ 3̄ 2023̄0 ;

q30 ¼ D201̄1̄0 −D2̄ 1̄ 3̄ 2023̄012201̄1̄0 : ð60Þ

For the fourth example, we choose the second
monomial’s six-tuple to be ð−1;−1;−1; 1; 1; 1Þ, which
is, again, governed by the last four components. We have,
Y1 ¼ 0, Y2 ¼ 0, Y3 ¼ 0, k5 ¼ 1 and subsequently,
Y1 þ Y2 þ Y3 ¼ 0. According to the last row of Eq. (41),
the first monomial’s four-tuple comprises arbitrary integers.
Specifically, we choose

ðna; nb; nc; ndÞ ¼ ð0; 0; 0; 1Þ: ð61Þ

We consider the following specific commutator ½d; ābdc�

½d; ābdc� ð62Þ

that meets the above conditions. It can be decomposed as

½d; ābdc� ¼ ðdā − āÞð1 − aÞ þ ðā − dāÞð1 − bÞ
þ ðābd − dābdÞð1 − cÞ
þ ðābþ ābdc − dāb − 1Þð1 − dÞ: ð63Þ

The above commutator will furnish a valid second-
generation TDI combination where the coefficients qi
and qi0 are

q1 ¼ D2̄103̄ −D2̄ 1̄ 3̄;

q2 ¼ D2̄ 1̄ 3̄ 2010302̄10 −D2̄ 1̄;

q3 ¼ D2̄ 1̄ 3̄ 2010302̄101 −D2̄ 1̄ 3̄ 2010302̄;

q10 ¼ D2̄ 1̄ 3̄ −D2̄103̄;

q20 ¼ D2̄ 1̄ 3̄ 2010 −D2̄103̄2010 ;

q30 ¼ −D2̄ þD2̄ 1̄ 3̄ 20 −D2̄103̄20 þD2̄ 1̄ 3̄ 2010302̄: ð64Þ

Now, we illustrate how one enumerates all possible
commutators using the strategy outlined in Sec. IV D. For
the sake of simplicity, we will content ourselves by dealing
with a somewhat restrictive solution space. In particular, we
choose

Y1 ¼ 1; Y2 ¼ 1; Y3 ¼ 1; k1 ¼ −1;

k2 ¼ 1; k5 ¼ 0: ð65Þ

As a result, the first monomial’s four-tuple reads

ðna; nb; nc; ndÞ ¼ ð0; 1; 1; 1Þ; ð66Þ

and that of the second monomial is

ðn0a; n0b; n0c; n0dÞ ¼ ð1; 0; 0; 0Þ: ð67Þ

Under the above conditions, in Table I, we show all
possible monomials by exclusively inserting b and b̄ up
to a given length and the corresponding commutators. It is
straightforward to show that we have 24 × 3 ¼ 72 different
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commutators consisting of the monomials enumerated in
Table I. They are one-to-one mapped to valid second-
generation TDI combinations.
Lastly, as pointed out, the solution space can be further

expanded by attaching monomials to a valid commutator.
For example, b½a; bdc�, ½a; bdc�cd, and d̄b½a; bdc�cd are
all feasible solutions. Subsequently, the TDI coefficients
qiði0Þ can be derived using the algorithm mentioned above.
It is not difficult to show that the commutator

a½cbdā; āb�b̄; ð68Þ

gives rise to the following TDI coefficients

q1 ¼ D33020103̄ 2̄ 1̄ 3̄ þD33020103̄ −D201̄3020103̄ − 1;

q2 ¼ D33020103̄ 2̄ 1̄ −D201̄;

q3 ¼ D33020103̄ 2̄ −D201̄3020103̄ 2̄;

q10 ¼ 1þD201̄30 −D330 −D201̄3020103̄ 2̄ 20 ;

q20 ¼ D201̄ −D3;

q30 ¼ D201̄3020 −D33020 ; ð69Þ

which is a fourteen-link geometric TDI combination
½T�1611 [7].

B. Comparison with Tinto et al.’s algebraic method

Recently, Tinto et al. proposed an algebraic method to
“lift” the first-generation TDI combinations to form the
modified second-generation solutions by canceling the
laser noise up to the velocity terms [22]. Four first-
generation TDI solutions, namely, α, β, γ, and X, constitute
the bases. The lifting is achieved by an iterative process to
combine the lower-order synthesized beam. The resultant
TDI solutions belong to the scenario where the subscripts
of the two monomials are related by a permutation Eq. (19).
It is important to note that the proposed lifting procedure
does not change the sensitivity functions. In this subsec-
tion, we explore the connection between such an algorithm
and the method proposed in the present study by deriving
the resultant combinations in [22] using the present
approach. We consider the following two examples [25].
For the Michelson-type combinations X2 (c.f. Eq. (4.5)

of [22]), we choose the following four-tuple for the second
monomial

ðna; nb; nc; ndÞ ¼ ð1; 1; 1; 0Þ: ð70Þ

The corresponding six-tuple is (0,1,1,0,1,1). We therefore
have Y1 ¼ 0, Y2 ¼ 2, Y3 ¼ 2 and Y1 þ Y2 þ Y3 ≠ 0. By
taking k1 ¼ 1, k2 ¼ 1 on the last row of Eq. (41), one
obtains the commutator ½acb; bac�, which can be decom-
posed as

TABLE I. Possible choices of the monomials and the corresponding commutators for the four-tuples given by Eqs. (67)–(66).

Length Possible variations Count

First monomial 3 dbc, dcb, bdc, bcd, cbd, cdb 6
5 dbbcb̄, db̄cbb, bdbcb̄, bdb̄cb, bcbdb̄, bcb̄db 18

bbdcb̄, bbdb̄c, bbcdb̄, bbcb̄d, cbbdb̄, cb̄dbb
b̄dbcb, b̄dbbc, b̄dcbb, b̄cdbb, b̄cbdb, b̄cbbd

Second monomial 1 a 1
3 b̄ab, bab̄ 2

Lengths of the monomials Commutator

3þ 1 ½dbc; a�, ½dcb; a�, ½bdc; a�, ½bcd; a�, ½cbd; a�, ½cdb; a�
3þ 3 ½dbc; b̄ab�, ½dcb; b̄ab�, ½bdc; b̄ab�, ½bcd; b̄ab�, ½cbd; b̄ab�, ½cdb; b̄ab�

½dbc; bab̄�, ½dcb; bab̄�, ½bdc; bab̄�, ½bcd; bab̄�, ½cbd; bab̄�, ½cdb; bab̄�
5þ 1 ½dbbcb̄; a�, ½db̄cbb; a�, ½bdbcb̄; a�, ½bdb̄cb; a�, ½bcbdb̄; a�, ½bcb̄db; a�

½bbdcb̄; a�, ½bbdb̄c; a�, ½bbcdb̄; a�, ½bbcb̄d; a�, ½cbbdb̄; a�, ½cb̄dbb; a�
½b̄dbcb; a�, ½b̄dbbc; a�, ½b̄dcbb; a�, ½b̄cdbb; a�, ½b̄cbdb; a�, ½b̄cbbd; a�

5þ 3 ½dbbcb̄; b̄ab�, ½db̄cbb; b̄ab�, ½bdbcb̄; b̄ab�, ½bdb̄cb; b̄ab�, ½bcbdb̄; b̄ab�, ½bcb̄db; b̄ab�
½bbdcb̄; b̄ab�, ½bbdb̄c; b̄ab�, ½bbcdb̄; b̄ab�, ½bbcb̄d; b̄ab�, ½cbbdb̄; b̄ab�, ½cb̄dbb; b̄ab�
½b̄dbcb; b̄ab�, ½b̄dbbc; b̄ab�, ½b̄dcbb; b̄ab�, ½b̄cdbb; b̄ab�, ½b̄cbdb; b̄ab�, ½b̄cbbd; b̄ab�
½dbbcb̄; bab̄�, ½db̄cbb; bab̄�, ½bdbcb̄; bab̄�, ½bdb̄cb; bab̄�, ½bcbdb̄; bab̄�, ½bcb̄db; bab̄�
½bbdcb̄; bab̄�, ½bbdb̄c; bab̄�, ½bbcdb̄; bab̄�, ½bbcb̄d; bab̄�, ½cbbdb̄; bab̄�, ½cb̄dbb; bab̄�
½b̄dbcb; bab̄�, ½b̄dbbc; bab̄�, ½b̄dcbb; bab̄�, ½b̄cdbb; bab̄�, ½b̄cbdb; bab̄�, ½b̄cbbd; bab̄�
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½acb; bac� ¼ ðbacþ b − acbb − 1Þð1 − aÞ
þ ð1þ bacac − acb − acÞð1 − bÞ
þ ðbaþ baca − acbba − aÞð1 − cÞ: ð71Þ

Therefore, the coefficients qi and qi0 are

q1 ¼ −1þD202 þD202330 −D330202202;

q2 ¼ 0;

q3 ¼ D20 −D33020 −D33020220 þD20233033020 ;

q10 ¼ 1 −D330 −D330202 þD202330330 ;

q20 ¼ −D3 þD2023 þD2023303 −D3302022023;

q30 ¼ 0: ð72Þ

For the Sagnac-type combinations α2, β2, γ2, it suffices
to consider α2 (cf. Eq. (4.11) of [22]) as the other two
solutions can be derived by permuting the indices. It is
noted that the solution is different from Eq. (52), as it is
obtained by lifting twice. We choose the second mono-
mial’s four-tuple to be

ðna; nb; nc; ndÞ ¼ ð1; 1; 1; 1Þ: ð73Þ

One takes k1 ¼ −2, k2 ¼ 1, according to the first row of
Eq. (41). The relevant commutator is chosen to be
½bdca; abdc�, which gives

¼ ð1 − bdc − bdcaþ abdcbdcÞð1 − aÞ
þ ðaþ abdc − bdcaa − 1Þð1 − bÞ
þ ðabdþ abdcbd − bdcaabd − bdÞð1 − cÞ
þ ðabþ abdcb − b − bdcaabÞð1 − dÞ: ð74Þ

The corresponding TDI coefficients qi and qi0 read

q1 ¼ 1 −D201030 −D201030312 þD312201030201030 ;

q2 ¼ D3 −D2010303 −D2010303123 þD3122010302010303;

q3 ¼ D31 −D20103031 −D20103031231 þD31220103020103031;

q10 ¼ −1þD312 þD312201030 −D201030312312;

q20 ¼ −D2010 þD3122010 þD3122010302010 −D2010303123122010 ;

q30 ¼ −D20 þD31220 þD31220103020 −D20103031231220 : ð75Þ

C. Comparison with geometric TDI method

The geometric TDI is a method of exhaustion that has
been employed extensively for studying TDI solutions. In
the literature, the approach has been utilized to derive most
second-generation TDI solutions. In a recent study [7], up
to sixteen links, thirty-eight distinct second-generation TDI
combinations were reported. The derived solutions include

a specific class that does not belong to the conventional
TDI types, namely, Michelson, relay, beacon, and monitor.
Based on the discussions in Ref. [20], a given TDI class

is essentially governed by the related constraint equations,
such as Eq. (20). The current approach, however, does not
depend on such specific constraints. As a result, the
algorithm is expected to reproduce all the geometric TDI
solutions, inclusively the ones that do not belong to any
specific class. In this subsection, we explicitly show that it
is indeed the case.
In Table II, we list all the second-generation TDI

combinations encountered using the geometric method in
the literature, which consists of three twelve-link, four
fourteen-link, and thirty-one sixteen-link combinations.
The corresponding laser trajectories and the residual laser
noise in commutators are also presented. The latter man-
ifestly shows that all these geometric TDI solutions can be
obtained using the algorithm proposed in the present study.
A few comments are in order regarding the decompo-

sitions of the geometric TDI solutions shown in Table II.
One first writes down the residual of laser frequency noise
expressions for a geometric TDI combination. The geo-
metric approach dictates that the laser-noise residual can
always be expressed as the difference between two mono-
mials. It is noted that the two monomials are of the same
degree but might be composed of different armlengths, as
shown in Table II. In order to transform the laser-noise
residual into a linear summation of commutators, one might
have to introduce a few intermediate monomials by
inserting and removing some particular links. The choice
of the replacement links follows the principle that (1) it
must lead to some valid commutators, and (2) some links
will be “annihilated” so that all the monomials will
maintain their original degree. Repeating such a procedure
allows the laser-noise residual to be rewritten into the
desired form. As discussed in Sec. IV B, the residual’s
validity associated with a commutator that satisfies Eq. (38)
remains unchanged by multiplying some monomials on
both sides. These monomials may take arbitrary forms
composed of a, b, c, d and their inverses, such as b and
bdc. Two exceptions are that one may also right-multiply
D2̄ and D2̄ 1̄. This is because the TDI coefficients of the
latter two options can be derived by considering the two
variations of the TDI equation discussed above near
Eq. (28) and their relation with Eq. (27). As mentioned
earlier, the difference in the monomials’ compositions can
be handled by adequately multiplying specific monomials
to a valid commutator. As a result, we show that all
geometric TDI combinations can be rewritten as a sum-
mation of such algebraic solutions.

D. Specific solution with distinct sensitivity

In this subsection, we address possible implications of
the present method. To this end, we present a combination
obtained using the algorithm whose sensitivity curve and
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TABLE II. Enumeration of the second-generation TDI combinations encountered using the geometric TDI approach. We show the
solutions’ laser link trajectories and the laser-noise residual regarding commutators. The TDI combinations are labeled using the
convention in Ref. [7], where the superscript indicates the number of links. For laser link trajectory, 1 → 2 indicates that the laser beam
emitted from SC1 propagates to SC2.

TDI
combination Laser link trajectory and residual noise

½α�121 1 ← 2 ← 3 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 → 1
D312201030 −D201030312 ¼ ½a; bdc�

½α�122 1 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 1 ← 3 ← 1 → 2 → 3 → 1

D3110302̄ 1̄ −D2010302̄2̄03 ¼ b½b̄a; dc�D2̄ 1̄

½α�123 1 ← 2 ← 1 → 3 ← 2 → 1 ← 3 → 2 → 3 ← 1 → 2 ← 3 → 1
D3302̄103̄20 −D20 1̄30 2̄101 ¼ a½cd; āb�D2̄

½U�141 1 ← 2 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1
D3302010302̄ 1̄ −D2010302̄ 1̄ 303 ¼ ½ac; bdcc�c̄D2̄ 1̄

½U�142 1 ← 2 ← 3 ← 1 ← 3 → 2 → 1 ← 3 ← 2 ← 1 → 3 → 1 → 2 → 3 → 1

D312201̄ 3̄ 20 −D2010302023̄01̄0 ¼ ð½a; bdc�c̄ d̄ āþbdca½c̄ d̄; āb�b̄ÞbD2̄

½EP�141 1 ← 2 ← 3 ← 2 → 1 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 → 2 → 3 → 1
D3110 3̄201030 −D2010302̄1012 ¼ a½d; ābdc�

½EP�142 1 ← 2 ← 1 ← 3 → 2 ← 1 → 3 ← 2 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1
D33020 1̄30 2̄10 −D201̄302̄10303 ¼ ½ac; bcdā�aD2̄ 1̄

½U�164 1 ← 2 ← 1 ← 3 ← 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 → 1 → 2 → 3 → 1
D330201012330 −D201030330312 ¼ að½ābdc; aca� þ ½a; cbd�cÞ

½U�165 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 → 1
D33020103̄3̄012 −D2010303123̄03̄ ¼ ½a; bdc�c̄ ā−a½c̄; cbdā�

½U�166 1 ← 2 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 ← 2 → 1 → 2 → 3 → 1

D3302023302̄ 1̄ −D20103031̄01̄303 ¼ ð½ac; bdcc�c̄ c̄ d̄ acþ bdcð½cac̄; a�ā d̄ acþ að½cac̄ ā; d̄ac� þ d̄½ac; cac̄ ā�ÞÞÞD2̄ 1̄

½PE�161 1 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 → 2 ← 3 ← 2 → 1 ← 3 → 2 → 3 → 1

D311030 2̄ 1̄ 1̄02 −D201012̄031̄01̄30 ¼ að½dcd̄; c̄� þ āb½b̄ac̄; d�cd̄Þc
½PE�162 1 ← 2 ← 3 ← 2 → 1 → 2 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 ← 3 → 2 → 3 → 1

D31103̄3̄011030 −D201012̄02̄1012 ¼ ½d; bdb̄� þ dbcac̄½b̄ c̄; cā c̄ d�cþ ½a; dbc�c̄ b̄ ā c̄ dc
½PE�163 1 ← 2 ← 3 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 3 ← 1 → 2 → 1 ← 3 → 2 → 3 → 1

D311011030 2̄ 1̄ −D201012̄03302̄10 ¼ bð½b̄a; dc�c̄dcþ dð½cd; b̄a� þ c½b̄ac̄; d�cÞÞD2̄ 1̄

½PE�164 1 ← 2 ← 1 ← 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 3 → 2 → 1 → 2 ← 3 → 1

D3302023302̄10 −D20 1̄303110303 ¼ ð½ac; bcdc�c̄ d̄ c̄ acdþ bc½dcad̄ c̄; a�cdÞD2̄ 1̄

½PE�165 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 → 2 → 3 → 1
D33020103̄3̄03̄3̄0 −D2010123̄0 3̄ 2̄ 1̄ ¼ ð½ac; bdcc�c̄ c̄ ā c̄ āþbd½cca; c̄ ā c̄�āÞc̄D2̄ 1̄

½PE�166 1 ← 2 ← 1 ← 3 ← 2 → 1 → 2 → 3 ← 1 ← 2 ← 1 → 3 → 2 → 1 → 2 ← 3 → 1

D33020103̄3̄01̄02 −D20 1̄303123̄03̄ ¼ acbdā c̄ d̄−bcac̄ ā ¼ að½cbdā; c̄�d̄þ āð½a; bdc�c̄ ā d̄þb½d; cac̄ ā�d̄ÞÞ
½PE�167 1 ← 2 ← 1 ← 3 → 2 → 1 → 2 ← 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 3 → 1

D33020 1̄ 3̄ 3̄012 −D20103031̄023̄0 3̄ ¼ ½ac; bdcc�c̄ c̄ d̄ ā c̄þbdca½ācad; d̄ c̄�d̄ ā c̄
½PE�168 1 ← 2 ← 1 ← 3 → 2 → 3 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 → 2 ← 3 → 1

D33020 1̄1̄02330 −D20 1̄3033031̄02 ¼ ½ac; bcdc�c̄ d̄ c̄ d̄ acþ bcdc½ad̄; c̄ d̄ ac�
½PE�169 1 ← 2 ← 1 ← 2 ← 1 → 3 → 2 → 3 ← 1 ← 3 ← 2 → 1 → 2 → 1 → 2 ← 3 → 1

D3303302̄ 1̄ 1̄02 −D201̄3033031̄02 ¼ ð½ac; bcdc�c̄ d̄ c̄ b̄ acd̄bþ bcdcð½ad̄; c̄ d̄ ac� þ ad̄ c̄½b̄ac; d̄b�ÞÞb̄
½PE�1610 1 ← 2 ← 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 → 2 ← 3 ← 1 ← 3 → 2 → 3 → 1

D330330 2̄10 3̄3̄0 −D201012̄02̄ 1̄303¼ðð½ac;bcdc�c̄ d̄ c̄ b̄acd̄bþbcdcð½ad̄;c̄d̄ac�þad̄c̄½b̄ac;d̄b�ÞÞb̄d−bd½b̄d; d̄cacad̄�Þdāc̄D2̄ 1̄

½T�161 1 ← 2 ← 1 ← 3 → 2 → 1 ← 3 ← 2 ← 1 → 3 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1
D33020 1̄ 3̄ 201030 −D201030 2̄ 1̄ 30202 ¼ acbābdc − bdccb ¼ a½cb; ābdc�

½T�162 1 ← 2 ← 1 ← 2 ← 1 → 3 → 2 → 1 ← 3 ← 2 → 1 → 2 ← 3 ← 1 → 2 → 3 → 1

D3303302̄ 1̄ 3̄ 20 −D201030 2̄ 1̄ 3031̄0 ¼ bdc½c̄ d̄ b̄ a; cac�ābD2̄

½T�163 1 ← 2 ← 3 ← 2 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 2 → 3 ← 1 → 2 → 3 → 1
D3110302010302̄ −D201030 2̄103031 ¼ ðadcbdc − bdcdcaÞD2̄ ¼ a½dca; ābdc�D2̄

½T�164 1 ← 2 ← 3 ← 2 ← 1 → 3 ← 2 → 1 → 2 → 1 ← 3 ← 1 ← 2 → 3 → 2 → 3 → 1

D3110302̄103̄3̄0 −D2010110 3̄ 2̄ 2̄03 ¼ bð½b̄a; dc�dāþ dc½b̄ac; c̄dā�Þc̄D2̄ 1̄

½T�165 1 ← 2 ← 3 ← 2 ← 3 ← 2 ← 1 → 3 → 2 → 1 ← 3 → 2 → 3 ← 1 → 2 → 3 → 1

D3110110302̄ 1̄ −D2010302̄1012̄03 ¼ að½d; ābdc� þ d½dc; āb�Þb̄aD2̄ 1̄

(Table continued)
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response function are distinct from those derived in the
literature. In particular, we choose the second monomial’s
six-tuple to be (1,1,0,1,1,0). Therefore, we have Y1 ¼ 2,
Y2 ¼ 2, Y3 ¼ 0 and Y1 þ Y2 þ Y3 ≠ 0. By taking k1 ¼
−1; k2 ¼ 0 on the first row of Eq. (41), one derive the
commutator as ½abdā; bd� which can be decomposed as

½abdā; bd� ¼ ðbd − bdabdā − 1þ abdāÞð1 − aÞ
þ ðbdaþ 1 − a − abdāÞð1 − bÞ
þ ðbdabþ b − abdāb − abÞð1 − dÞ: ð76Þ

Thus, the coefficients qi and qi0 read

q1 ¼ D201012 −D20101231220103̄ − 1þD31220103̄;

q2 ¼ D2010 −D31220103̄2010 þD2010123 −D3;

q3 ¼ ðD201 −D31220103̄2010 þD2010123 −D3ÞD1;

q10 ¼ D201012312 þ 1 −D312 −D31220103̄;

q20 ¼ 0;

q30 ¼ ðD201012312 þ 1 −D31220103̄ÞD20 : ð77Þ

To evaluate its response function and sensitivity curve,
we adopt typical parameters in the LISA mission and
the general results of the sensitivity functions derived
in [26,27]. Specifically, one assumes that armlength
L ¼ 2.5 × 106 km and the corresponding amplitude spec-
tral densities of the test mass and shot noise: sLISAa ¼ 3×
10−15 ms−2=

ffiffiffiffiffiffi
Hz

p
and sLISAx ¼ 15 × 10−12 m=

ffiffiffiffiffiffi
Hz

p
[28].

The resultant sensitivity curve and response function can be
evaluated numerically, and they are shown in Figs. 4 and 5.
The obtained sensitivity of the solution Eq. (77) is
distinct from those of the combinations derived using
the geometric TDI approach [7,29]. This is manifestly
shown by Fig. 6.
As pointed out in [29], the sensitivity possesses a

degree of degeneracy, so algebraically different solutions
may still have identical sensitivity. Therefore, the obtained
distinct sensitivity curve implies that the combination
Eq. (77) is likely independent of those already explored
in the literature. In practice, different sensitivities
can be exploited to furnish an overall better performance
for the detector, which is an interesting subject in its
own right.

TABLE II. (Continued)

TDI
combination Laser link trajectory and residual noise

½T�166 1 ← 2 ← 3 ← 1 ← 3 ← 2 → 1 ← 3 ← 2 ← 1 → 3 → 2 → 3 → 1 → 2 → 3 → 1
D3122010 3̄2010 −D2010302010123̄0 ¼ ð½abdā; bd�cþ bda½bd; āc�Þc̄D2̄ 1̄

½T�167 1 ← 2 ← 3 ← 1 ← 3 ← 1 ← 3 ← 2 ← 1 → 3 → 2 → 1 → 3 → 1 → 2 → 3 → 1
D312202201030 −D201030202312 ¼ að½b; ābdc� þ b½bdc; ā�Þa

½T�168 1 ← 2 ← 3 ← 1 ← 3 → 2 ← 1 → 3 → 2 → 1 ← 3 ← 2 ← 3 → 1 → 2 → 3 → 1

D312201̄302̄ 1̄ −D201030201̄1̄02̄03 ¼ bdð½d̄ b̄ ac̄; cbc� þ cb½cd̄ b̄ a; c̄�ÞD2̄ 1̄

½T�169 1 ← 2 ← 1 ← 2 → 3 → 2 → 1 ← 3 ← 2 → 1 ← 3 ← 1 → 2 ← 3 → 1 → 3 → 1

D33031̄0 1̄ 3̄ 2010 −D202201̄302̄2̄03 ¼ aðābb½b̄ad̄; c� þ ½cad̄; ābc̄�cÞdD2̄ 1̄

½T�1610 1 ← 2 ← 3 ← 2 → 1 → 2 → 1 ← 3 ← 1 ← 3 → 2 ← 1 → 3 → 1 ← 2 → 3 → 1

D31103̄3̄03̄202 −D20103̄2023̄012̄0 ¼ aðāb½c̄; dāb� þ ābc̄½cb̄a; dā c̄�ābbÞb̄
½T�1611 1 ← 2 ← 1 ← 3 ← 2 → 1 → 3 → 2 → 1 ← 3 ← 1 ← 2 → 3 → 1 → 2 ← 3 → 1

D33020103̄ 2̄ 1̄ 3̄ −D201̄302010 3̄ 2̄ 2̄0 ¼ acbdā ā−bcbdā b̄ ¼ a½cbdā; āb�b̄
½T�1612 1 ← 2 ← 1 ← 3 ← 2 → 1 ← 3 → 2 ← 1 → 3 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1

D33020103̄201̄30 −D20 1̄30 2̄1030202 ¼ að½cbd; ā�bcþ ābcð½c̄ b̄ cb; d� þ d½c̄ b̄; cb�ÞbcÞ
½T�1613 1 ← 2 ← 1 ← 3 → 2 → 1 → 3 ← 2 → 1 ← 3 ← 1 ← 2 ← 3 → 1 → 2 → 3 → 1

D33020 1̄ 3̄ 2̄ 10 3̄ −D20103020 1̄ 3̄ 2̄ 2̄0 ¼ bð½b̄a; dcbā� þ b̄a½cbā; d�Þā
½T�1614 1 ← 2 ← 1 ← 3 → 2 → 1 ← 3 → 2 → 3 ← 1 → 2 ← 3 ← 2 ← 3 → 1 → 3 → 1

D33020 1̄ 3̄ 20 1̄1̄0 −D202201̄1̄01̄302̄ ¼ að½cb; ād�d̄bd̄þ āð½dcbd̄; bc�c̄ d̄þb½cdc; bd̄ c̄ d̄ c̄�cÞÞD2̄

½T�1615 1 ← 2 ← 1 ← 2 ← 1 → 3 ← 2 → 1 ← 3 → 2 → 1 → 2 → 3 ← 1 → 2 ← 3 → 1

D3303302̄103̄20 −D20 1̄30 2̄103031 ¼ ð½a; bcd�ācab̄þ a½cab̄; bcdā�ÞbD2̄

½T�1616 1 ← 2 ← 1 ← 2 ← 3 → 1 → 2 → 1 → 3 ← 2 → 1 ← 3 ← 1 ← 3 → 2 → 3 → 1
D330312̄0 3̄03̄ 2̄ −D201012̄0 2̄2̄031̄0 ¼

ððð½ac; bcdc�c̄ d̄ c̄ b̄ acd̄bþ bcdcð½ad̄; c̄ d̄ ac� þ ad̄ c̄½b̄ac; d̄b�ÞÞb̄d − bd½b̄d; d̄cacad̄�Þc̄ b̄ c̄ āþbdb̄½cacb; b̄ad̄ c̄�b̄ c̄ āÞD2̄

½T�1617 1 ← 2 ← 1 ← 2 → 3 → 2 → 1 ← 3 ← 1 ← 3 ← 2 → 1 → 3 → 1 → 2 ← 3 → 1

D33031̄0 1̄ 3̄ 202 −D20 1̄3020231̄0 2̄0 ¼ aðāb½ad̄; cb� þ c½ad̄c; c̄ ā b�bÞb̄
½T�1618 1 ← 2 ← 1 → 3 ← 2 → 1 → 2 ← 3 ← 2 → 1 ← 3 → 2 → 3 ← 1 ← 2 → 3 → 1

D330 2̄10 3̄3̄0110 −D2010 3̄ 2̄ 1012̄03 ¼ acð½dā; c̄ b̄�bdābþ c̄½b̄d; ābdāb�Þb̄aD2̄ 1̄
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VI. FURTHER DISCUSSIONS AND
CONCLUDING REMARKS

This work presented an extended version of the combi-
natorial algebraic method for modified second-generation
TDI. When compared against existing combinatorial algo-
rithms, the following generalizations have been made:

(i) The constraint equations are lifted. The TDI combi-
nations derived using the original algorithm that
employs some constraints can be considered special
solutions in the present context.

(ii) The vanishing condition of the commutator was
promoted to a system of equations whose general
solution can be expressed as a linear combination of
a few bases in the form of four-tuples. The original

version of the algorithm where the subscripts of the
monomials are related by permutation is a particu-
lar case.

(iii) To encounter the TDI coefficients, an extended
scheme is elaborated. It involves four independent
variables instead of two, as in the original algorithm.

The proposed scheme aims at the second-generation TDI
solutions defined by Eq. (10). This differs from the modi-
fied second-generation ones defined by Eq. (11), which has
been extensively explored in the literature [7,15,19–22].
Nonetheless, by definition, a modified second-generation
TDI combination is a second-generation one. Also, it is not
difficult to generalize the present scheme to explicitly deal
with modified-second generation TDI solutions, which can
be achieved by considering six different rates of change in
armlengths when deriving Eq. (37).
Compared to the prevailing geometric TDI approach,

which utilizes an algorithm to exhaust possible parameter
space, the present scheme is an interesting alternative. It
employs an intrinsically different strategy which derives the
TDI coefficients from a valid form for the laser-noise
residual. As an algebraic approach, it also possesses an
advantage in terms of computational efficiency. The com-
putational time increases geometrically with the number of
links for a method of exhaustion, while the algebraic
approach enumerates possible solutions and generates
the results almost instantly.
Although all known geometric TDI solutions up to

sixteen links have been manifestly recuperated using the
present scheme, it is not a proof of exhaustion. We have
assumed that the laser-noise residual is in the form of the
commutator. Moreover, the monomials that furnish the
commutator are exclusively formed by a, b, c, d and their
inverses. Apparently, these are only sufficient conditions
for a valid TDI solution. In other words, the obtained

FIG. 6. Sensitivity curve of the combination Eq. (77) compared
against those obtained by geometric TDI approach [7,29].

FIG. 5. The averaged gravitational waves response functions of
the combination Eq. (77).

FIG. 4. Sensitivity curve of the combination Eq. (77).
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solutions do not necessarily cover the entire solution space.
For instance, as discussed in [21], novel solutions might be
encountered as one proceeds to consider higher-order
commutators. Another intriguing challenge is, from the
perspective of geometric TDI, that the solution obtained by
the current approach is apparently not “irreducible.”
Besides, recent studies also explored how TDI solutions
can be classified in terms of their sensitivity functions
[22,29], a feature not to be analyzed straightforwardly in
the present framework. Nonetheless, a systematic algebraic
approach for second-generation TDI is still missing. Also,
as we showed in the main text, the proposed algorithm
spans much further in the solution space when compared
with its predecessors. We plan to address some of the
relevant issues in further studies.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D
Program of China under Grants No. 2022YFC2204602,
No. 2022YFC2204603, the Natural Science Foundation
of China (Grants No. 12247154, No. 11925503), the
Postdoctoral Science Foundation of China (Grant
No. 2022M711259), Guangdong Major project of Basic
and Applied Basic Research (Grant No. 2019B03
0302001). We also gratefully acknowledge the financial
support from Fundação de Amparo à Pesquisa do Estado de
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APPENDIX: A DERIVATION OF EQ. (41)

This appendix gives a detailed account of the solution
Eqs. (41) of (40) presented in the main text.
We first assume that Y1 ≠ 0. By substituting the form of

nb derived from Eqs. (40a) into (40b), we have

ððY3 − Y1Þna − ðY1 þ Y3Þnc þ 2Y3ndÞðY1 þ Y2 þ Y3Þ ¼ 0:

ðA1Þ

This case can be further divided into two possibilities.
When Y1 þ Y2 þ Y3 ≠ 0, one need to solve

ðY3 − Y1Þna − ðY1 þ Y3Þnc þ 2Y3nd ¼ 0; ðA2Þ

which can be written as

ðY3 − Y1Þðna þ ncÞ þ 2Y3ðnd − ncÞ ¼ 0; ðA3Þ

and it gives

na þ nc
nd − nc

¼ −2Y3

Y3 − Y1

; ðA4Þ

for Y3 ≠ Y1.
Since the rhs of Eq. (A4) is a given constant, it is

convenient to express the numerator and denominator in
terms of their greatest common divisor GCDð2Y3; Y3 − Y1Þ.
We therefore have

na þ nc ¼ −
2Y3

GCDð2Y3; Y3 − Y1Þ
k1;

nd − nc ¼
Y3 − Y1

GCDð2Y3; Y3 − Y1Þ
k1: ðA5Þ

where k1 is an arbitrary proportional constant. Thus, nb can
be expressed as

nb ¼ nc þ
Y3 − Y2

GCDð2Y3; Y3 − Y1Þ
k1: ðA6Þ

In particular, even if Y3 − Y1 ¼ 0, Eq. (A6) still holds
since GCDð2Y3; 0Þ ¼ j2Y3j. Besides, nb and nc
are integers, implying that the second term on the rhs of
Eq. (A6) must also be an integer. It can be adapted to the
above equations by replacing GCDð2Y3; Y3 − Y1Þ with
GCDð2Y3; Y3 − Y1; Y3 − Y2Þ in Eqs. (A5)–(A6). In other
words, by choosing two arbitrary integers k1 and k2 ≡ nc,
we have

na ¼ −k2 −
2Y3

GCDð2Y3; Y3 − Y1; Y3 − Y2Þ
k1;

nb ¼ k2 þ
Y3 − Y2

GCDð2Y3; Y3 − Y1; Y3 − Y2Þ
k1:

nc ¼ k2

nd ¼ k2 þ
Y3 − Y1

GCDð2Y3; Y3 − Y1; Y3 − Y2Þ
k1: ðA7Þ

Equation (A7) is essentially the first row of Eq. (41) given in
the main text when expressed as the four-tuple.
When Y1 þ Y2 þ Y3 ¼ 0, one substitutes the above

relation into Eqs. (40) to have

−3Y1na − 2Y1nb þ Y1nc − 2Y1nd ¼ 0;

−3Y2na − 2Y2nb þ Y2nc − 2Y2nd ¼ 0: ðA8Þ

Since Y1 ≠ 0, the first line of Eq. (A8) gives

−3na − 2nb þ nc − 2nd ¼ 0; ðA9Þ
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which implies that the second line of Eq. (A8) will always
be satisfied. This gives rise to a solution with three free
integers, for which we choose k1 ≡ na, k2 ≡ nb, and
k3 ≡ nd, and

na ¼ k1;

nb ¼ k2;

nc ¼ 3k1 þ 2k2 þ 2k3;

nd ¼ k3: ðA10Þ

Equation (A10) is essentially the third row of Eq. (41) when
given in the form of a four-tuple.
Second, for Y1 ¼ 0, Eqs. (40) gives

ðY2 þ Y3Þðna − nc þ 2ndÞ ¼ 0; ðA11aÞ

2Y2ðna þ ndÞ ¼ Y3ðna − nc þ 2nbÞ: ðA11bÞ

This case can be further divided into the following three
possibilities. When Y2 þ Y3 ¼ 0 and Y2 ≠ 0, Eq. (A11)
gives

nc ¼ 2nb þ 2nd þ 3na;

which is nothing but Eq. (A9) which implies the solution
Eq. (A10). By joining the two conditions, the solution
is given by the third row of Eq. (41) as long as
Y1 þ Y2 þ Y3 ¼ 0, and the three quantities do not vanish
identically.
When Y2 þ Y3 ≠ 0, one substitutes the form of nc

derived from Eq. (A11a) into Eq. (A11b) to have

Y2ðna þ nbÞ þ ðY2 þ Y3Þðnd − nbÞ ¼ 0: ðA12Þ

By employing a similar prescription for Eq. (A3), one finds

na þ nb ¼
Y2 þ Y3

GCDðY2; Y2 þ Y3Þ
k1;

nd − nb ¼ −
Y2

GCDðY2; Y2 þ Y3Þ
k1;

nc ¼ na þ 2nd: ðA13Þ

By choosing two independent integers k1 and k2 ≡ nb, we
have

na ¼ −k2 þ
Y2 þ Y3

GCDðY2; Y2 þ Y3Þ
k1;

nb ¼ k2;

nc ¼ k2 þ
Y3 − Y2

GCDðY2; Y2 þ Y3Þ
k1;

nd ¼ k2 −
Y2

GCDðY2; Y2 þ Y3Þ
k1: ðA14Þ

This is essentially the second row of Eq. (41) given in the
main text.
When Y1 ¼ Y2 ¼ Y3 ¼ 0, Eq. (A11) no longer poses

any constraint. This implies that its solution is an arbitrary
four-tuple, as given by the last row of Eq. (41). This
concludes the derivation of Eq. (41) given in the main text.
Nonetheless, we note that the classification in Eq. (41) is

not unique. For instance, as long as Y2 þ Y3 ≠ 0, it is not
difficult to show that the following expression is a solution
of Eq. (40)

na ¼ k1
Y2 þ Y3

GCDðY1 − Y2; Y2 − Y3; Y2 þ Y3Þ
;

nb ¼ k2
Y2 þ Y3

GCDðY1 þ Y3; 2Y3; Y2 þ Y3Þ
;

nc ¼ k1
Y3 − Y2

GCDðY1 − Y2; Y2 − Y3; Y2 þ Y3Þ
þ k2

2Y3

GCDðY1 þ Y3; 2Y3; Y2 þ Y3Þ
;

nd ¼ k1
Y1 − Y2

GCDðY1 − Y2; Y2 − Y3; Y2 þ Y3Þ
þ k2

Y1 þ Y3

GCDðY1 þ Y3; 2Y3; Y2 þ Y3Þ
; ðA15Þ

where k1 and k2 are two arbitrary integers. In particular, Eq. (A15) generalizes to the third row of Eq. (41) when
Y1 þ Y2 þ Y3 ¼ 0. Subsequently, one may proceed further by assuming Y2 þ Y3 ¼ 0.
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