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The Taiji program is a space mission aiming to detect gravitational waves in the low-frequency band.
Taiji-1 is the first technology demonstration satellite of the Taiji Program in Space, with the
gravitational reference sensor (GRS) serving as one of its key scientific payloads. For accurate
accelerometer measurements, the test-mass center of the GRS must be positioned precisely at the center
of gravity of the satellite to avoid measurement disturbances caused by angular acceleration and
gradients. Due to installation and measurement errors, fuel consumption during the in-flight phase, and
other factors, the offset between the test-mass center and the center of mass (c.m.) of the satellite can be
significant, degrading the measurement accuracy of the accelerometer. Therefore, the offset needs to
be estimated and controlled within the required range by the c.m. adjustment mechanism during the
satellite’s lifetime. In this paper, we present a novel method—the extended Kalman filter combined with
the Rauch-Tung-Striebel smoother—to estimate the offset while utilizing the chi-square test to
eliminate outliers. Additionally, the nonlinear least squares estimation algorithm is employed as a
cross-check to estimate the offset of the c.m. The two methods are shown to give consistent results, with
the offset estimated to be dx ≈ −0.19 mm, dy ≈ 0.64 mm, and dz ≈ −0.82 mm. The results indicate a
significant improvement on the noise level of GRS after the c.m. calibration, which will be of great help
for the future Taiji program.
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I. INTRODUCTION

In 2016, the LIGO Collaboration made a ground-
breaking discovery by detecting gravitational waves
(GWs) [1], thereby providing a direct verification of the
predictions made by Albert Einstein in his general theory of
relativity a century ago [2]. This discovery has had a
profound impact on basic scientific research worldwide.
Space-based GW detection represents an intriguing

frontier for future studies of the gravitational universe,
as it can extend the reach of GW astronomy beyond that
of the ground-based detectors, thereby allowing for a
wider range of gravitational radiation sources to be
observed [3], which will provide invaluable information
to deepen our understanding of the evolution of the
early Universe and the nature of gravity. Several space-
borne GW observatories have been proposed, such as
LISA [4–6], DECIGO [7], ASTROD [8], Taiji [3,9], and
TianQin [10].

The Taiji program, initiated by the Chinese Academy
of Sciences, is a space mission that aims to observe GWs in
the frequency band between 0.1 mHz and 1.0 Hz, which is
important in the fields of astronomy and cosmology
[9,11,12]. The Taiji program proposes to detect GW signals
using the Michelson laser interferometer principle, where
each end of the interferometer contains a test mass (TM)
serving as a reference body. This reference body is required
to be free from spurious accelerations relative to its local
inertial frame, and any spurious accelerations will affect the
detection of tidal deformations caused by GWs.
To facilitate the development of the technology for

the Taiji program, a three-step road map has been
proposed [13,14]. As the first step, a technology demon-
strator satellite, Taiji-1 [14,15], was launched on August
31, 2019. One of the key technologies validated by Taiji-1
is the gravity reference sensor (GRS), which serves as
an accelerometer and consists of sensors and electronic
components [16]. The sensor comprises an electrode
housing and a TM surrounded by the sensing electrode,
as shown in Fig. 1.
GRS has three axes, including one nonsensitive axis and

two sensitive axes; the directions of þX, þZ, and þY in
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Fig. 1 correspond to the nonsensitive axis (radial direction),
first sensitive axis (flight direction), and second sensitive
axis, respectively. The sensor utilizes capacitive sensing
technology to measure the disturbance acceleration of
Taiji-1. The resulting data is sent to the drag-free controller,
which instructs the thruster to apply force to compensate
for the disturbing force. As the reference body of the future
Taiji program interferometer, GRS needs to effectively
mitigate the impact of all nongravitational accelerations to
reach the desired sensitivity of Taiji. Moreover, the accu-
racy of GRS is crucial for the drag-free control system,
as the GRS readout results are used as inputs for issuing
commands to control the spacecraft. GRS is susceptible to a
range of noise sources, including Brownian noise arising
from the surrounding air near the TM, charge-induced
noise due to TM charge accumulation, readout noise from
voltage signals, temperature gradients, circuit noise, mag-
netic noise, and self-gravity noise.
The precise positioning of the test-mass of the accel-

erometer at the c.m. of the Taiji-1 satellite is crucial to
suppress nongravitational and perturbed accelerations such
as angular-motion-related accelerations and accelerations
due to gravity gradients [18,19]. The c.m. of the accel-
erometer is adjusted to be at the c.m. of the satellite before
launching. However, during the satellite’s operation, the
consumption of propellant causes the c.m. of the satellite
to change relative to the satellite frame, leading to a shift
of the accelerometer c.m. relative to the satellite c.m. over
time. Therefore, it is crucial to regularly measure the
deviation of the c.m. position of the two during the entire
life cycle of the satellite, and use the c.m. adjustment
mechanism to perform in-orbit adjustments so that the
deviation is within a certain range [20–22].
In Sec. II, the principle of the c.m. calibration is

presented. The accelerometer measurement model is
described in Sec. III. We discuss the use of the extended
Kalman filter model and Rauch-Tung-Striebel Smoother
for c.m. calibration in Sec. IV, while the detection and
removal of outliers are explained in Sec. V. The perfor-
mance of the c.m. calibration is evaluated in Sec. VI, and
the results and conclusions are summarized in Sec. VII.

II. PRINCIPLE OF C.M. CALIBRATION IN ORBIT

As shown in Fig. 1, the primary components of the high-
precision electrostatic levitation accelerometer include a
free-fall TM, a set of capacitive electrode plates that
surround the TM (together forming a sensitive probe),
and a peripheral capacitive sensing and electrostatic feed-
back control circuit. This circuit enables the detection of
position and attitude changes between the TM and the
electrodes, as well as the measurement of acceleration
through its feedback voltage. There are six sensing, control,
and feedback circuits that use the same principle to measure
three translational accelerations and three angular accel-
erations of the TM concurrently.
An offset of the c.m. of the electrostatic accelerometer

from the c.m. of the satellite can cause measurement
disturbances, primarily attributed to the angular motion
of the satellite. Therefore, an estimate of the offset can be
achieved using appropriate algorithms based on the rela-
tionship between the angular motion and the measurement
disturbance.
The on-orbit center-of-mass calibration experiment is

conducted using the Taiji-1 attitude control system, which
consists of the attitude sensors and the actuators, as shown
in Fig. 2. The attitude sensors include star sensors, three-
axis magnetometers, and gyroscopes. The actuators include
cold-gas microthrusters, Hall-effect microthrusters, mag-
netic torquers, and a momentum wheel. The X-axis
magnetic torquer is mounted on the þZ side panel of
the satellite, the Y-axis magnetic torquer is mounted on the
bottom panel, and the Z-axis magnetic torquer is mounted
on the top panel. The direction of the positive magnetic
moment aligns with the satellite’s three axes, as shown in
the left panel of Fig. 2.
In the calibration experiment, periodic torques, gener-

ated by the magnetic torquers, are applied to the satellite,
inducing a cyclic oscillation by the Earth’s magnetic field,
which disturb the accelerometer measurements and ensure
that its magnitude is sufficiently large to disregard other
disturbance effects, such as solar pressure torque and
aerodynamic torque. Then, the offset can be modeled from
the readout of the accelerometer and star tracker. Moreover,
the accuracy of the GRS is crucial for the drag-free control
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FIG. 2. Layout of the Taiji-1 attitude control system (MTQ
stands for magnetic torquer).

FIG. 1. Geometric structure of the core mechanical assembly of
the GRS [17].
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system, as the GRS readout results are used as inputs for
issuing commands to control the spacecraft.
The TM is made of the titanium alloy TC4, with a

magnetic susceptibility of 3.2 × 10−6, and therefore the
effects of the coupling between the TM and the magnetic
torquers is much smaller than the present GRS accuracy
and can be neglected.

III. ACCELEROMETER MEASUREMENT MODEL

The accelerometer measurement output model of the
relative acceleration of the TM and the electrode cage for
Taiji-1 is presented as follows [15,18,19]:

aout ¼ d̈þ ω̇ × dþ 2ω × ḋþ ω × ðω × dÞ þ ag þ ang;

ð1Þ

where aout represents the theoretical measurements of the
accelerometer, d represents the c.m. offset between the
accelerometer and the satellite, and ḋ and d̈ denote the first
and second partial derivatives of d relative to time. ω and ω̇
are the angular velocity and the angular acceleration,
respectively. ag is the acceleration due to the gravitational
gradient; the accelerometer measurement model ignores
the perturbations due to the solid Earth tides, ocean tides,
rotational deformations, the planets including the Sun and
Moon, and general relativity which can be neglected as the
calibration span is short enough. Furthermore, ang repre-
sents the nongravitational acceleration on the satellite, such
as atmospheric drag, solar radiation pressure, and the
Earth’s radiation pressure.
During the offset calibration period, the deviation of the

c.m. of the TM from the c.m. of the satellite can be
approximated as a constant offset, given the short meas-
urement time. Therefore, aout can be expressed as

aout ¼ ω̇ × dþ ω × ðω × dÞ þ ag þ ang: ð2Þ

Considering the relatively smooth change of acceleration
caused by nonconservative forces and the gravity gradient,
it can be approximated as a linear change within a limited
time span. Therefore, the calibration interval is designed to
be several minutes.
The attitude control system of the Taiji-1 satellite is

equipped with a star tracker and a gyroscope to, respec-
tively, measure the attitude angle of the satellite relative to
the inertial coordinate system and the angular velocity ω.
Additionally, the angular accelerations ω̇ are obtained by a
second-order polynomial fitting method.
Assuming negligible scale factors and misalignment

errors, after substituting ω and ω̇, the accelerometer
measurement model can be expressed as follows:

Aout ¼ Ãdþ αtþ β þ An; ð3Þ

where Ã can be expressed as

Ã ¼

2
664

−ω2
y − ω2

z ωxωy − ω̇z ωxωz þ ω̇y

ωxωy þ ω̇z −ω2
x − ω2

z ωzωy − ω̇x

ωxωz − ω̇y ωzωy þ ω̇x −ω2
y − ω2

x

3
775: ð4Þ

Here ωi and ω̇i (i ¼ x; y; z) represent the angular velocity
and angular acceleration of the spacecraft, respectively. The
linear slope is represented by α and the constant bias by β.
In this study, we removed the linear effect by detrending
Aout. Therefore, the model of Aout utilized in this study is

Aout ¼ Ãdþ An; ð5Þ

where An is the measurement noise.

IV. EXTENDED KALMAN FILTER MODEL
AND RAUCH-TUNG-STRIEBEL SMOOTHER

FOR C.M. CALIBRATION

A Kalman filter is a high-efficiency recursive filter [23].
The filtering theory proposed by Kalman is only applicable
to linear systems. An extended Kalman filter was proposed
in Refs. [24,25] and can be applied to a nonlinear field.
The accelerometer measurement model used in this

study is given by Eq. (5) and one can define the state
variable as the c.m. offset and use the Kalman filter to
estimate the offset. Here, the state vector is denoted as
X ¼ ½dx; dy; dz�, with ḋi ¼ 0 for i ¼ x; y; z. The state
equation, as derived in Ref. [21], is

X̂k ¼ Φk;k−1Xk−1: ð6Þ

Here, k signifies the step of the filter and Φk;k−1 represents
the state transition matrix from step k − 1 to step k. As no
manipulation is performed on the state vector, the state
transition matrix can be written as Φk;k−1 ¼ I, where I is
the identity matrix.
The output of the accelerometer can be defined as the

observation equation,

Zout;k ¼ HkXk þ Vk; ð7Þ

where Hk ¼ Ãk and Vk is the discrete measurement noise
that satisfies

EfVkg ¼ 0; CovfVkg ¼ Rk: ð8Þ

Here, Rk denotes the variance matrix of the measurement
noise, assuming that all Vk are independent, unbiased,
and possess finite variance which implies that Rk is a
diagonal matrix.
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The predicted observation equation is given by

Ẑout;k ¼ HkX̂k: ð9Þ

The estimated covariance matrix is given by

P̂k ¼ Φk;k−1Pk−1ΦT
k;k−1 þQk−1; ð10Þ

whereQ denotes the system noise variance matrix, which is
assumed to be zero in this study.
The Kalman gain is

Kk ¼ P̂kHT
k

�
HkP̂kHT

k þ Rk

�
−1 ð11Þ

and the state update value after Kalman filter is

Xk ¼ X̂k þ KkðZout;k − Ẑout;kÞ: ð12Þ

Here, X̂k represents the prior estimate value and Xk is the
posterior estimate.
The update of the error covariance matrix is

Pk ¼ ðI − KkHkÞP̂kðI − KkHkÞTþ KkRkKT
k: ð13Þ

After the Kalman filter is applied, the difference between
the predicted and observed measurements is known as
the filtered residual. The filtered residual can be used to
evaluate the accuracy of the filter. The covariance matrix of
the filtered residual provides information on the uncertainty
of the estimation. Therefore, it is important to analyze both
the filtered residuals rk and the covariance matrix of the
filtered residuals RK

k as follows:

rk ¼ Zout;k −HkXk; ð14Þ

RK
k ¼ Rk −HkPkHT

k: ð15Þ

The characteristic property of the Kalman filter is that the
filtered residual vectors are uncorrelated, and even inde-
pendent in the case of a Gaussian distribution.
After applying the aforementioned Kalman filter,

the state estimator of the dynamic system can be further
refined using the Rauch-Tung-Striebel (RTS) smoother, as
described in Ref. [26]. The smoothing equations are given
by the following formulas:

X̂kþ1 ¼ Φkþ1;kXk; ð16Þ

P̂kþ1 ¼ Φkþ1;kPkΦT
kþ1;k þQk; ð17Þ

Gk ¼ PkΦT
kþ1;kP̂

−1
kþ1; ð18Þ

XS
k ¼ Xk þ GkðXS

kþ1 − X̂kþ1Þ; ð19Þ

PS
k ¼ Pk þGkðPS

kþ1 − P̂kþ1ÞGT
k; ð20Þ

rSk ¼ Zout;k −HkXS
k; ð21Þ

RS
k ¼ Rk −HkPS

kH
T
k: ð22Þ

The RTS smoother provides smoothed estimates of the
state mean and state covariance at time step k, denoted as
XS
k and PS

k, respectively. The smoother gain on time step k,
denoted as Gk, corrects the RTS smoother estimate. The
recursion is initialized at the last time step T of the Kalman
filter with XS

T ¼ XT and PS
T ¼ PT. The smoothed residuals

are denoted as rSk and the covariance matrix of smoothed
residuals is denoted as RS

k.
To obtain a more accurate result, a combined method

based on a Kalman filter and the RTS smoother (KF-RTS)
and outlier removal is proposed. The data is filtered with the
Kalman filter and smoothed by the RTS smoother, which
takes into account all of the available valid data points. A chi-
square confidence test is performed during the smoothing
process to assess the data quality and remove outliers. This
KF-RTS process is iterated until there are no outliers.
A possible drawback of the filter algorithm is the fact that

one needs an initial value of the state vector together with its
covariance matrix. This can be obtained by fitting a small
number of measurements at the start of the track by a
conventional least-squares fit, but this is not an elegant
solution. The other possibility is to start with an arbitrary
state vector and an infinite covariance matrix, i.e., a large
multiple of the identity matrix. This is completely in the
spirit of the filtering approach, but may lead to numerical
instabilities in the computation of the gain matrix, since the
infinities have to cancel in order to give a finite gain matrix.
This may be difficult on a computer with a short CPU
word size.
In this article the initial value of the state vector is set to

zero and its covariance is chosen to be 0.001, which is large
enough. The measurement noise is calculated by selecting a
segment of stationary data from the corresponding data.
Here we use the nonlinear least-squares (NLLS)

method [27] for parameter estimation, as a cross-check
of the KF-RTS method. As is well known, the key
challenge for the NLLS method is to find the value of θ̂
that minimizes the function FðθÞ,

FðθÞ≡ 1

2

Xm
i¼1

ðfiðθÞÞ2; ð23Þ

where fiðθÞ≡ yi −Modelðθ; inputÞ. The Levenberg-
Marquardt (LM) algorithm [28,29], which is an efficient
method to minimize FðθÞ, is used to find the optimal
parameters in this article.
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V. DETECTION AND REMOVAL OF OUTLIERS

During the Kalman filtering and RTS smoothing, each
data point is utilized to obtain an optimal estimate of the
state value, and this process also allows for an assessment
of the quality of each data point.
The chi-square value [30] is commonly used to assess the

quality of data and detect outliers, which can be caused
by spacecraft maneuvering, non-Gaussian noise, electronic
noise, or other coupled noise, and deviate significantly
from the normal sequence of measurements.
The residuals of the global fit can be utilized to identify

measurements with large residuals as potential outliers.
Kalman filters and the smoother enable the exploitation of
complete information locally, to determine the validity of a
measurement with high probability. The smoothed residual
chi-square value can serve as a useful decision criterion for
the data quality of the measurement,

χ2 ¼ ðrSkÞTðRS
kÞ−1rSk: ð24Þ

It has been demonstrated that the test on a smoothed
residual chi-square value consistently outperforms the test
on a filtered residual chi-square value [31]. Thus, searching
for possible outliers should be carried out during smooth-
ing, as it allows the utilization of complete parameter
information.
During the smoothing process, the measurement point

Zout;k can be removed from the smoothed estimate XS
k to

obtain XS
k
�, which represents the optimal estimate of the

system state at step k using all data information except Zout;k.
This optimal estimate can be utilized for the detection and
removal of outliers. To remove Zout;k from the estimate XS

k,
an inverse Kalman filter can be applied with the covariance
matrix of Zout;k taken as negative. This step of the filter was
described in Ref. [31], and the smoothed estimate of Xk

without using Zout;k, XS
k
�, can be calculated as

XS
k
� ¼ XS

k þ KS
k
�ðAout;k −HkXS

kÞ; ð25Þ

in which

KS
k
� ¼ PS

kHk
TðHkPS

kHk
T− RkÞ−1 ð26Þ

and

PS
k
� ¼ ðI − KS

k
�HkÞPS

k: ð27Þ

If Zout;k is a valid measurement and the covariance matrix
of its Gaussian readout error is known, the quantity χ2

follows a chi-square distribution with Nz degrees of free-
dom, where Nz is the dimension of Zout;k.
The measurement can be identified as an outlier if the

value of χ2 exceeds a certain threshold c. This threshold is
chosen as the (1 − γ) quantile of the corresponding χ2

distribution, where γ represents the probability of rejecting
a valid measurement and is chosen to be γ ¼ 0.001 in
this paper. Other γ values (0.005, 0.01, 0.05, and 0.1) have
been tried and the effects on the estimated c.m. offset were
found to be negligible.
ThemeasurementZout;k can be removed permanently from

the list as an outlier, and the RTS smoother can continuewith
XS
k
�andPS

k
� instead ofXS

k andP
S
k for updating the estimatesXS

j

when j > k. To remove all outliers, this Kalman filter and
RTS smoother must be recomputed without the outliers and
iterated until convergence is achieved.

VI. RESULTS OF C.M. CALIBRATION

The c.m. bias estimation in this paper is performed using
the two algorithms discussed earlier. Figure 3 presents a
comparison between the linear acceleration results obtained
from the NLLS estimation and the original data, while
Fig. 4 illustrates the comparison between the linear accel-
eration results obtained from the extended Kalman filter
algorithm and the original data. Both methods exhibit
excellent agreement with the original data. The results of
c.m. calibration using the KF-RTS algorithm before remov-
ing outliers are shown in Fig. 5, with the shaded area
indicating the range of one standard deviation.
Figure 6 illustrates the comparison between the fit results

obtained using the NLLS algorithm and the experimental
data with outliers removed. The final-round results of the
offset obtained using the KF-RTS algorithm are presented
in Fig. 7, with the shaded area indicating the range of
one standard deviation. Figure 8 displays the comparison
between the final-round results obtained using the KF-RTS
algorithm and the experimental data.
Table I presents the estimation results for the c.m. offset

obtained using the two methods. Despite the use of different
estimation algorithms, the results obtained from both meth-
ods are highly consistent, thus increasing the confidence in
the accuracy of the results. It is worth mentioning that the

1×10–7

1×10–8

1×10–8

FIG. 3. Calibration experiment data and the NLLS fit results
(with outliers).
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value of χ2=d:o:f: as the goodness of a fit is 2.33 for the first
round and 0.88 for the final round.
Figures 9 and 10 depict the comparison of the amplitude

spectral density (ASD) between the calibration experimen-
tal data and flight data before and after the c.m. calibration.
Figure 9 shows that the peak observed in the experimental
data is caused by a modulation signal, and its influence is
highly suppressed after the c.m. calibration, which is
consistent with our expectations. Figure 10 demonstrates
a significant reduction in the acceleration noise level of

1×10–3

FIG. 5. First KF-RTS smoother result of dx dy dz.

1×10–8

1×10–8

1×10–8

FIG. 6. Calibration experiment data and the NLLS fit results
obtained after removing outliers.

1×10–8

1×10–8

1×10–8

FIG. 8. Final-round outliers detected through the χ2 test and
KF-RTS smoother result and calibration experiment data.

1×10–3

FIG. 7. Final KF-RTS smoother results of dx dy dz.

1×10–7

1×10–7

1×10–8

FIG. 4. Calibration experiment data, together with the first
round of outliers detected through the χ2 test and KF-RTS
smoother results obtained before removing the outliers.

TABLE I. Results of the c.m. offset estimation.

Axis X (μm) Y (μm) Z (μm)

NLLS with outliers −175� 41 610� 101 −777� 31
First KF-RTS −173� 27 606� 66 −777� 20
NLLS without outliers −191� 27 643� 66 −818� 20
Final KF-RTS −189� 27 638� 68 −818� 20
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GRS readings in the frequency range of 0.001–0.1 Hz after
the c.m. calibration.

VII. DISCUSSION AND CONCLUSIONS

Detecting and reducing the deviation between the c.m. of
the inspection load and the c.m. of the satellite is crucial for

high-precision accelerometers, as it can improve their
accuracy. It is also a significant step in the development
of space-based GWobservatories to achieve their scientific
objectives. Furthermore, the calibration can help obtain a
high-precision gravity field, which is valuable for con-
ducting geoscience research with greater accuracy.
In this study, the offset of the c.m. between the inspection

load and the satellite was estimated using the KF-RTS
smoother. Outliers were detected using the chi-square test,
and the inverse Kalman filter was applied to remove them.
The LM algorithm, as a cross-check, was used to find the
optimal offset parameters for the NLLSmethod. The results
obtained with both methods are in very good agreement,
and the offset of the c.m. between the inspection load and
the satellite was estimated with an accuracy of Oð10 μmÞ.
After obtaining the c.m. offset, one can reduce it using the
c.m. adjustment mechanism, and the effects of the c.m.
offset can also be suppressed in the data processing. The
c.m. calibration is crucial for improving the accuracy of the
accelerometer which will directly impact the detection
sensitivity of the final space-based GW observatory.
For the spaceborne GW observatories, such as Taiji-3,

there are three satellites and each satellite is equipped
with two TMs, which means that the c.m. of TMs do not
coincide with that of the satellite. However, as a reference
body for the satellite, it would cause residual acceleration
if the TMs are away from their nominal positions.
Therefore, it is necessary to periodically estimate or
monitor the deviation of the c.m. of the TM from a fixed
point and make adjustments when necessary. The same
calibration principle and methods as discussed in this
paper can be used. The Taiji-3 satellite will be equipped
with higher-precision star-sensitive instruments, which
will enable more accurate results.
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