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Top pairs produced at the Large Hadron Collider exhibit quantum entanglement of their spins near
threshold and for boosted, central tt̄ pairs. The entanglement is maintained between the decay products, in
particular, between the top quark and the W− boson from the antiquark (or vice versa, between t̄ and Wþ)
in certain kinematical regions. Therefore, tt̄ production provides a rare opportunity to verify the
spin entanglement between a fermion and a boson. The tW entanglement can be probed at the 7σ
level near threshold with run 2 data and at the 5σ level in the boosted region with the foreseen run 3
luminosity. In addition, the entanglement between the two W bosons can be probed at the 4σ level at the
LHC run 3.
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I. INTRODUCTION

Quantum mechanics is one of the fundamental pillars of
modern particle physics and, as such, testing it thoroughly
is of the utmost importance. Quantum entanglement can be
tested at the energy frontier in pp collisions at the Large
Hadron Collider (LHC). Proposals have been made for tt̄
production [1–7], and a preliminary measurement has been
performed by the ATLAS Collaboration [8]. Entanglement
can be also tested for vector bosons from Higgs decays
[9–11] and electroweak diboson production [12–14]. In all
these cases, and other proposals for future colliders [15] the
entanglement takes place between the spins of the produced
particles, which are either fermion pairs (tt̄, τþτ−) or boson
pairs (WW, ZZ, WZ). Top pair production also offers the
rare and exciting possibility to test the spin entanglement
between a fermion and a boson, namely, the top quark and
the W− from the t̄ decay (or their charge conjugate).
Previous tests of fermion-boson entanglement have been
provided in Ref. [16], where electron-photon entangled
pairs have been achieved by creating photons off an
electron beam. Moreover, it allows one to test the “post-
decay” entanglement: the coherence of the top pair is
propagated to its decay products and can be observed in
certain kinematical regions, and so it manifests that the
decay of a particle is not a measurement in the quantum-
mechanical sense.
In order to understand how the tW entanglement arises

let us, for example, consider tt̄ production from gluon

fusion near threshold. The spin state is approximately a
singlet
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1ffiffiffi
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; ð1Þ

where we take the ẑ spin quantization axis in the direction
of one proton, ẑ ¼ p̂p ≡ ð0; 0; 1Þ for definiteness. In
general, the coherence between the t and W− spins is lost
upon integration over the t̄ decay phase space and sum over
b̄ polarizations which are difficult, if not impossible, to
measure. However, let us assume that the W− three-
momentum direction p⃗W in the t̄ rest frame is close to
the ẑ axis (and therefore the b̄ three-momentum approx-
imately in the −ẑ direction). The left-handed tbW inter-
action mediating the top quark decay produces a left
chirality b̄; therefore, up to small mb=mt effects, the b̄
quark has positive helicity, i.e., it is in a Sz ¼ − 1

2
state. For a

Sz ¼ − 1
2
top antiquark, this implies Sz ¼ 0 for the W−

boson, because orbital angular momentum in the direction
of motion vanishes. Conversely, for a Sz ¼ 1

2
top antiquark,

it implies Sz ¼ þ1 for the W−. Thus, the spin state of the
tW pair is

ψ tW− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where a and b are not expected to be equal because of
polarization effects in the t̄ decay: the W− angular dis-
tribution in the t̄ rest frame is not isotropic. If, instead, we
consider p⃗W in the −ẑ direction, the spin state is

ψ 0
tW− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In practice, it is sufficient to consider some relatively
wide interval for the angle θW between p⃗W and either the
positive or negative ẑ axis to experimentally verify the
entanglement.

II. THEORETICAL SETUP

For a system composed of two subsystems A and B, a
mixed state is said to be separable if the density operator
describing this state can be written in the form

ρ ¼
X
n

pnρ
A
n ⊗ ρBn ; ð4Þ

where ρA;Bn are density operators for the two subsystems A,
B, respectively, and pn are classical probabilities, pn ≥ 0
with

P
n pn ¼ 1. If ρ cannot be written in this fashion, the

state is said to be entangled. A necessary condition for the
state to be separable is given by the Peres-Horodecki
criterion [17,18]: taking the transpose of the density
operator in one of the two subspaces, e.g., in the B space,
the resulting density operator ρT2 must still be valid, in
particular, with non-negative eigenvalues. This condition
can be understood since, if ρ is expressed as in (4), the
transpose of ðρBn ÞT is still a valid density operator for B,
therefore ρT2 is a valid density operator with non-negative
eigenvalues. The Peres-Horodecki criterion is also a suffi-
cient condition when the dimensions of the Hilbert spaces
are dimHA ¼ dimHB ¼ 2, or dimHA ¼ 2, dimHB ¼ 3.
We therefore use as an “entanglement indicator” the lowest
eigenvalue of ρT2 ,

λ1 ≡minfλig: ð5Þ

When λ1 < 0, this is a sufficient condition for entanglement.
However, we point out that, even when all λi are positive,
statistical fluctuations may result in negative eigenvalues
when measuring ρT2 in data. The bias associated with this
effect is discussed and corrected for, in Sec. IV.
We parametrize the top quark and W boson density

matrices using irreducible tensor operators. For the top
quark we use

t11 ¼ −
1ffiffiffi
2

p ðσ1 þ iσ2Þ; t1−1 ¼
1ffiffiffi
2

p ðσ1 − iσ2Þ; t10 ¼ σ3;

ð6Þ
with σi the Pauli matrices. For the W boson we use an
analogous definition for the L ¼ 1 operators but with
different normalization,
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with Si the spin-1 operators in the Cartesian basis. The
L ¼ 2 operators are [19]
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The operators satisfy ðt1mÞ† ¼ ð−1Þmt1−m, ðTL
MÞ† ¼

ð−1ÞMTL
−M, and their normalizations are chosen so that

tr½t1m1
ðt1m2

Þ†� ¼ 2δm1m2
, tr½TL1

M1
ðTL2

M2
Þ†� ¼ 3δL1L2

δM1M2
. The

density operator of the tW pair can then be parametrized as

ρtW ¼ 1

6
½12 ⊗ 13 þ amt1m ⊗ 13 þ ALM12 ⊗ TL

M

þ CmLMt1m ⊗ TL
M�; ð9Þ

where a sum over repeated indices m, L, M is understood.
The constants am and ALM are the top and W boson
polarizations, respectively, and CmLM are their spin corre-
lations. These coefficients satisfy

a−m ¼ ð−1Þma�m; AL−M ¼ ð−1ÞMA�
LM;

C−mL−M ¼ ð−1ÞmþMC�
mLM: ð10Þ

Therefore, a0, AL0, and C0L0 are real and the remaining
coefficients are, in general, complex. We note that many
previous studies for top polarization use a parametrization
in terms of Pauli matrices and a real polarization vector
PCAR in Cartesian coordinates, with

PCAR
1 ¼ 1ffiffiffi

2
p ð−a1 þ a−1Þ; PCAR

2 ¼ −
iffiffiffi
2

p ða1 þ a−1Þ;

PCAR
3 ¼ a3: ð11Þ

We prefer to use a polar basis with a complex polarization
vector am, so that the treatment of the top quark and W
boson is more alike. The explicit expressions of ρtW and
ρT2

tW are given in the Appendix.
The different terms in the density operators are not

directly accessible, but can be measured via the angular
distributions of the top and W decay products, which are
used as “spin analyzers.” In our case, it is best to use the
charged leptons l ¼ e, μ from the t → Wþb → lþνb and
W− → l−ν decays, so for simplicity we particularize the
otherwise general framework to this specific case. Let us
label the three-momentum direction of lþ in the top quark
rest frame as p̂1 and the three-momentum direction of l− in
the W− rest frame as p̂�

2. (The asterisk highlights the fact
that the l− three-momentum is taken in the W rest frame.)
In polar coordinates,
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p̂1 ¼ ðsin θ1 cosφ1; sin θ1 sinφ1; cos θ1Þ;
p̂�
2 ¼ ðsin θ�2 cosφ�

2; sin θ
�
2 sinφ

�
2; cos θ

�
2Þ: ð12Þ

The ðx̂; ŷ; ẑÞ reference system, whose orientation is neces-
sary to define the angles Ω1 ¼ ðθ1;φ1Þ and Ω�

2 ¼ ðθ�2;φ�
2Þ,

is the same one used to write the density operator. The
charged lepton momenta in the t andW− frames have to be
obtained with a succession of boosts; see, for example,
Ref. [20] for a detailed discussion.

The decay distributions can be obtained by convoluting
the density operator with the appropriate decay angular
density matrices [21]. For the top quark, the decay density
matrix is

Γ1 ¼
1

2

�
1þ α cos θ1 α sin θ1eiφ1

α sin θ1e−iφ1 1 − α cos θ1

�
; ð13Þ

with α ¼ 1 for the positive charged lepton. The W-decay
density matrix is

Γ2 ¼
1

4

0
BB@

1þ cos2θ�2 − 2ηl cos θ�2
1ffiffi
2

p ðsin 2θ�2 − 2ηl sin θ�2Þeiφ
�
2 ð1 − cos2θ�2Þei2φ

�
2

1ffiffi
2

p ðsin 2θ�2 − 2ηl sin θ�2Þe−iφ
�
2 2sin2θ�2 − 1ffiffi

2
p ðsin 2θ�2 þ 2ηl sin θ�2Þeiφ

�
2

ð1 − cos2θ�2Þe−i2φ
�
2 − 1ffiffi

2
p ðsin 2θ�2 þ 2ηl sin θ�2Þe−iφ

�
2 1þ cos2θ�2 − 2ηl cos θ�2

1
CCA; ð14Þ

with ηl ¼ 1. The quadruple differential distribution can be
obtained as

1

σ

dσ
dΩ1dΩ�

2

¼ 6

ð4πÞ2
X
i;j;r;s

ðρtWÞir;jsðΓ1ÞijðΓ2Þrs; ð15Þ

with the indices i; j ¼ 1; 2 corresponding to the top spin
space and r; s ¼ 1; 2; 3 to the W spin space. The algebra
yields

1

σ

dσ
dΩ1dΩ�

2

¼ 1

ð4πÞ2 ½1þ amb1Ym
1 ðΩ1Þ þ ALMBLYM

L ðΩ�
2Þ

þ CmLMb1BLYm
1 ðΩ1ÞYM

L ðΩ�
2Þ�; ð16Þ

with YM
L the spherical harmonics and

b1 ¼ α

ffiffiffiffiffiffi
4π

3

r
; B1 ¼ −

ffiffiffiffiffiffi
2π

p
ηl; B2 ¼

ffiffiffiffiffiffi
2π

5

r
: ð17Þ

For t̄Wþ entanglement, the same equations can be used,
with α ¼ −1 for the negative charged lepton from the t̄
decay and ηl ¼ −1 for the positive lepton from Wþ decay.
The density operator for a vector boson pair using the

parametrization of irreducible operators has been written
before [10]. In our case,

ρWW ¼ 1

9
½13 ⊗ 13 þ A1

LMT
L
M ⊗ 13 þ A2

LM13 ⊗ TL
M

þ CL1M1L2M2
TL1

M1
⊗ TL2

M2
�; ð18Þ

where the superscripts 1,2 refer to the Wþ and W− boson,
respectively. The corresponding angular distribution is

1

σ

dσ
dΩ�

1dΩ�
2

¼ 1

ð4πÞ2 ½1þ A1
LMB

1
LY

M
L ðΩ�

1Þ þ A2
LMB

2
LY

M
L ðΩ�

2Þ

þ CL1M1L2M2
B1
L1
B2
L2
YM1

L1
ðΩ�

1ÞYM2

L2
ðΩ�

2Þ�; ð19Þ

where in this case the lþ three-momentum

p̂�
1 ¼ ðsin θ�1 cosφ�

1; sin θ
�
1 sinφ

�
1; cos θ

�
1Þ ð20Þ

is taken in the Wþ rest frame.

III. CALCULATIONAL SETUP

The tt̄ → lþνbl−νb̄ Monte Carlo samples required for
our study are generated with MadGraph [22] at the leading
order, using NNPDF 3.1 [23] parton density functions
and setting as factorization and renormalization scale
the average transverse mass, Q ¼ 1=2½ðm2

t þ p2
TtÞ1=2 þ

ðm2
t þ p2

Tt̄Þ1=2�, with pT the transverse momentum in the
usual notation. This is sufficient for our purpose, since
next-to-leading order (NLO) corrections to the tt̄ spin
correlation coefficients are small [24]; the effect of includ-
ing NLO corrections in entanglement studies has been
explicitly tested in Ref. [3] and found to be small compared
to the statistical uncertainty. NLO corrections to the top
quark decay have a negligible effect in the charged lepton
distributions, changing the value of α at the per-mille level
[25]. The total cross section is normalized to the next-to-
next-to-leading order prediction [26].
Two samples are generated, using a center-of-mass

(c.m.) energy of 13 TeV. A first sample with tt̄ invariant
mass mtt̄ ≤ 400 GeV, containing 2.5 × 107 events, is used
to test tW and WW entanglement near threshold. A second
sample with 5 × 106 events is used to study tW entangle-
ment in the boosted central region. This sample is generated
with mtt̄ ≥ 750 GeV and also with a cut on the scattering

POSTDECAY QUANTUM ENTANGLEMENT IN TOP PAIR … PHYS. REV. D 108, 076025 (2023)

076025-3



angle θt between the top quark momentum in the c.m.
frame and p̂p ¼ ð0; 0; 1Þ, j cos θtj ≤ 0.7.
We work at the parton level and do not include back-

grounds, which are small for the tt̄ dilepton decay channel,
especially when the two leptons have different flavors. It is
known that for the dilepton decay channel the final state can
be reconstructed and the detector effects can be properly
accounted for by an unfolding to parton level, as it has
already been done by the ATLAS and CMS Collaborations
for the measurement of tt̄ spin correlation coefficients
[27,28], using various methods for the reconstruction of
the neutrino momenta via kinematic fitting [29,30]. Having
this in mind, we use the true top quark and W boson
momenta for the computations. We include an efficiency
factor of 0.12 to take into account the detection and
reconstruction efficiencies, i.e., that the final state objects
are well identified and the reconstructed momenta have
good agreement with the expected tt̄ kinematics. This value
is the average efficiency found in Ref. [3] with a fast
detector simulation, which is smaller than the efficiency of
0.17 obtained in Ref. [31], also with fast simulation.
The reconstruction and unfolding also introduces a

systematic uncertainty in the extracted quantities. The
measurement performed by the ATLAS Collaboration
[8] shows a significant modeling uncertainty when con-
verting the particle-level measurement to the parton level
near the threshold region, in particular, for the tt̄ invariant
mass bin used 340 ≤ mtt̄ ≤ 380 GeV. As pointed out in
Ref. [5], the suppression of the qq̄ component with a
kinematical cut on the tt̄ velocity in the laboratory frame1

allows us to loosen the upper cut onmtt̄ while keeping the tt̄
entanglement, and this might constitute an experimental
advantage (at the tree level, raising the upper cut to mtt̄ ≤
390 GeV increases the cross section by a factor 1.4). In our
sensitivity estimations we include a bulk 10% systematic
uncertainty in our entanglement indicator, namely, the lowest
eigenvalue of ρT2 , to illustrate the effect of systematic
uncertainties arising from reconstruction and unfolding.
This figure may be too optimistic for a near-threshold
measurement and, in any case, a detector-level study is
necessary to precisely quantify the systematic uncertainty.
We use two different bases to measure polarizations and

spin correlation coefficients. The beamline basis is defined
with fixed vectors

x̂ ¼ ð1; 0; 0Þ; ŷ ¼ ð0; 1; 0Þ; ẑ ¼ ð0; 0; 1Þ: ð21Þ

The helicity basis is defined with ẑ ¼ k̂, x̂ ¼ r̂, ŷ ¼ n̂, the
K, R, and N axes being defined as follows:

(i) K axis (helicity): k̂ is a normalized vector in the
direction of the top quark three-momentum in the tt̄
rest frame.

(ii) R axis: r̂ is in the production plane and defined
as r̂ ¼ ðp̂p − cos θtk̂Þ= sin θt.

(iii) N axis: n̂ ¼ k̂ × r̂ is orthogonal to the production
plane.

An alternative definition of the helicity basis can be imple-
mented by introducing sign-flipping factors sign cos θt in
the definition of the R and N axes [33]. With this sign flip,
small values appear for a1 and A11, at the percent level,
which have little effect on the value of the entanglement
indicator λ1.
Using either of these bases, the angles entering Eqs. (16)

and (19) can be defined, and the coefficients can be
measured by integration using an appropriate kernel,
e.g., for the tW density operator,

Z
1

σ

dσ
dΩ1dΩ�

2

Ym
1 ðΩ1ÞdΩ1dΩ�

2 ¼
b1
4π

am;

Z
1

σ

dσ
dΩ1dΩ�

2

YM
L ðΩ�

2ÞdΩ1dΩ�
2 ¼

BL

4π
ALM;

Z
1

σ

dσ
dΩ1dΩ�

2

Ym
1 ðΩ1ÞYM

L ðΩ�
2ÞdΩ1dΩ�

2 ¼
b1BL

ð4πÞ2 CmLM:

ð22Þ

We remark that these equations are valid even if a
kinematical selection is placed on the angle θW between
p⃗W and the ẑ direction, as discussed in the Introduction.2

We can illustrate those arguments numerically, considering
gg → tt̄ with mtt ≤ 370 GeV and using the beamline basis.
In the basis of HA ⊗ HB,

n��� 12 1
2

E
;

��� 12 − 1
2

E
;

���− 1
2

1
2

E
;

���− 1
2

− 1
2

Eo
;

ð23Þ

the tt̄ density matrix is, setting to zero entries at the 10−3

level or below,

ρtt̄ ¼

0
BBB@

0.061 0 0 0

0 0.438 −0.402 0

0 −0.402 0.438 0

0 0 0 0.062

1
CCCA: ð24Þ

This matrix has an eigenvector

ψ tt̄ ¼
1ffiffiffi
2

p
h��� 12 − 1

2

E
−
���− 1

2
1
2

Ei
; ð25Þ

with eigenvalue 0.84. That is, the tt̄ pair is nearly produced
in a spin-zero singlet, as it is expected close to threshold.

1Such variable has already been used by the ATLAS Col-
laboration in the tt̄ charge asymmetry measurement [32].

2On the other hand, the negative lepton cannot be used as spin
analyzer for t̄ precisely due to this angular cut.

J. A. AGUILAR-SAAVEDRA PHYS. REV. D 108, 076025 (2023)

076025-4



Placing a cut cos θW ≥ 0.9, the tW− density matrix is (see
the Appendix for notation)

ρtW− ¼

0
BBBBBBBB@

0.055 0 0 0 0 0

0 0.543 0 −0.358 0 0

0 0 0.040 0 0 0

0 −0.358 0 0.284 0 0

0 0 0 0 0.070 0

0 0 0 0 0 0.008

1
CCCCCCCCA
:

ð26Þ

This matrix has an eigenvector

ψ tW− ¼ 0.818
��� 12 0

E
− 0.574

���− 1
2

1
E
; ð27Þ

with eigenvalue 0.79, in full agreement with Eq. (2).

IV. SENSITIVITY ESTIMATES

We do not attempt a multidimensional optimization of
the sensitivity to tW− and WþW− entanglement. Instead,
we select either of the regions previously used in Ref. [5] to
study the tt̄ entanglement,

Threshold∶ mtt̄ ≤ 390 GeV; β ≤ 0.9;

Boosted∶ mtt̄ ≥ 800 GeV; j cos θtj ≤ 0.6; ð28Þ

with

β ¼
����p

z
t þ pz

t̄

Et þ Et̄

���� ð29Þ

being the velocity of the tt̄ pair in the laboratory frame, in
obvious notation. We add to these constraints a cut on
cos θW , specified below. Each of these regions, defined by a
selection on mtt̄, β or cos θt, and cos θW , in which the tW−

andWþW− entanglement is measured, will be referred to as
the “measurement region.”
The selection of the smallest eigenvalue of ρT2 as

entanglement indicator entails a bias, because when recon-
structing ρT2 from a finite sample, a negative eigenvalue
may arise even for a positive-definite ρT2 , due to statistical
fluctuations that cause mismeasurements of the coefficients
in the angular distribution. Therefore, the sensitivity to
experimentally establish the entanglement is assessed by
comparing (i) pseudodata corresponding to the standard
model (SM) prediction, in a measurement region where
there is entanglement, and (ii) the separability hypothesis.
Pseudoexperiments are performed to obtain numerically
the probability density function (PDF) of two quantities:

(i) the smallest eigenvalue of ρT2 in the measurement
region, which we label as λe1;

(ii) the smallest eigenvalue λs1 of the positive-definite
operator ρ in a suitable “calibration region,” where
the smallest eigenvalue of ρ is nearly zero.

The former, when λe1 < 0, corresponds to the entanglement
scenario. The latter is a proxy for the separability hypothesis.
The reader may wonder why we do not use for the
separability hypothesis the smallest eigenvalue of ρT2 in a
quite different kinematical region such that the state is
separable. We believe it is preferable from the experimental
point of view to use a calibration region that is as kinemat-
ically as close as possible, in mtt̄, β, and cos θt, to the
measurement region. On the other hand, dropping the
constraint on cos θW does not always result in a sepa-
rable state.
From a large pool of tt̄ → lþνbl−νb̄ events in the

measurement region, we select a random sample of N
events corresponding to the cross section times the assumed
luminosity, including the 0.12 efficiency factor previously
mentioned. For each sample we calculate the values of the
coefficients in the angular distribution, cf. (16) or (19), and
subsequently we obtain the matrix expression of ρT2 . This
matrix is diagonalized numerically and the lowest eigen-
value λe1 is obtained. Repeating this procedure n times, we
obtain a PDF for λe1, which is Gaussian to an excellent
approximation.
Subsequently, we identify a calibration region with p⃗W

very close to the ẑ axis, in which the density operator ρ has
the lowest eigenvalue λs1 quite close to zero, typically at the
level of few per mille. The rest of eigenvalues happen to be
similar to those of ρT2 . We perform n pseudoexperiments,
selecting a random sample of N events in this calibration
region, calculating the values of the coefficients in the
angular distribution, obtaining the matrix expression of ρ
and calculating its lowest eigenvalue λs1. With this second
set of pseudoexperiments we obtain the PDF of λs1 for the
positive definite operator ρ, which has a bias toward
negative values due to statistical fluctuations. This PDF
is very well approximated by a skew-normal distribution.
We remark that it is essential that the same number N of
events per sample is used to calculate the PDFs of λe1 and λ

s
1

so that the latter gives an estimation of the bias toward
negative values in the former. Clearly, the bias is smaller the
larger the statistics, and in some of the examples below it
turns out to be unimportant.

A. tW − entanglement near threshold

For this analysis we select the beamline basis for
simplicity, as the helicity basis gives quite the same results.
The reason for these bases being equivalent is that the spin-
singlet state is rotationally invariant, so the tt̄ spin con-
figuration is the same in either basis. The measurement
region is defined as

mtt̄ ≤ 390 GeV; β ≤ 0.9; cos θW ≥ 0.3: ð30Þ
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The cross section with these cuts is 1.8 pb. We assume a
luminosity of 139 fb−1, as collected in run 2 of the LHC.
With this luminosity, the number of expected events is
N ¼ 30140, with the assumed reconstruction efficiency.
The calibration region is defined with cos θW ≥ 0.98.
The PDFs of λe1 and λs1 obtained for N ¼ 30140 events

with n ¼ 104 pseudoexperiments are presented in the left
panel of Fig. 1. In order to better understand the bias issue,
we show in the right panel the same for cos θW ≥ 0.8, in
which case N ¼ 8870. The comparison of the two exam-
ples shows a couple illuminating features:
(1) A tighter cut on cos θW lowers the mean of the

distribution μλe
1
—which we identify with the

“measured” value λe1 to simplify the notation—but
increases the standard deviation σλe

1
, which we iden-

tify with the statistical uncertainty on λe1. Namely,
for cos θW ≥ 0.3 we obtain λe1 ¼ −0.092� 0.009,
whereas for cos θW ≥ 0.8 we obtain λe1 ¼
−0.125� 0.016.

(2) A larger sample shifts the mean of the λs1 distribution
closer to zero: the bias induced by the finite sample
statistics is smaller, as expected.

The optimal cut on cos θW is a compromise between having
a smaller λe1 or having a smaller uncertainty and smaller
bias. We estimate the significance of a potential measure-
ment with the figure of merit

E ¼ jλe1 − λs1j
σ1

; σ1 ¼ ½σ2λe
1
þ ð0.1λe1Þ2�

1
2; ð31Þ

where in the estimation of the uncertainty σ1 we have added
in quadrature the statistical one and a 10% systematic
uncertainty. The numerator jλe1 − λs1j corrects for the bias
toward negative values. This simple prescription is suffi-
cient because jλs1j is small compared to jλe1j and σλe

1
, and

also the width of the λs1 distribution is smaller than σλe
1
. The

denominator of E takes into account a 10% systematic

uncertainty in λe1. For the selected region in (30) we find
E ¼ 7.0, namely, a significance of 7 standard deviations.

B. tW − entanglement in the boosted region

For the boosted region, we use the helicity basis. The
measurement region is

mtt̄ ≥ 800 GeV; j cos θtj ≤ 0.6; cos θW ≤ −0.3: ð32Þ

Here we take p⃗W and the top quark momentum k̂ in
opposite hemispheres, so that the W− boson is more
energetic in the laboratory frame. (This may be an
advantage from the experimental point of view.) A com-
pletely equivalent analysis can be done with cos θW ≥ 0.3.
The cross section with these cuts is 197 fb. We assume a
luminosity of 139 fb−1 with run 2 data and a projection of
250 fb−1 at 13.6 TeV in run 3. With these luminosities, the

FIG. 1. Probability density functions of (i) λe1 in the threshold measurement region (blue), used to determine tW− entanglement in the
SM; and (ii) λs1 in its calibration region (yellow), used as a proxy of the lowest eigenvalue for a separable state.

FIG. 2. Probability density functions of (i) λe1 in the boosted
measurement region (blue), used to determine tW− entanglement
in the SM; and (ii) λs1 in its calibration region (yellow), used as a
proxy of the lowest eigenvalue for a separable state.
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number of expected events is N ¼ 9800. The calibration
region is cos θW ≤ −0.9. The PDFs of λe1 and λs1 with
n ¼ 104 pseudoexperiments are shown in Fig. 2. The
expected sensitivity in the measurement of the lowest
eigenvalue of ρT2

tW is λe1 ¼ −0.108� 0.016. The figure of
merit (31) gives a significance of 5.0σ.

C. W +W − entanglement near threshold

For completeness, we also study WþW− entanglement.
We point out that the entanglement between WþW− pairs
from Higgs boson decays is measurable already with run 2
data [11]. In tt̄ decays the distinct feature is the presence of
two additional b quarks, which make necessary the use
of special kinematical configurations in which the trace
over unmeasured b polarizations does not wash out the
entanglement.
Because of the limited statistics we only consider a

measurement region near threshold,

mtt̄ ≤ 390 GeV; β ≤ 0.9;

cos θWþ ≥ 0.3; cos θW− ≤ −0.3; ð33Þ
and use the helicity basis. The ranges of cos θW� are chosen
to have the W� boson momenta roughly aligned with the
parent top (anti)quark momenta in the c.m. frame, so
that the W� momenta in the laboratory frame are larger.
(There are three additional configurations that give exactly
the same significance.) The cross section with the kinemati-
cal selection (33) is 600 fb. We assume a luminosity of
139 fb−1 with run 2 data, plus 250 fb−1 in run 3. With these
luminosities, the number of expected events is N ¼ 29900.
The calibration region is cosθWþ ≥0.7, cos θW− ≤ −0.7.
The PDFs of λe1 and λs1 obtained with n ¼ 104 pseu-

doexperiments are presented in Fig. 3. Even if the statistics

are comparable to the example in Sec. IVA, the signifi-
cance is smaller because the central value of the λe1
distribution is larger and closer to zero—which is expected
because the coherence is partially lost when considering the
Wþ boson instead of the top quark. From the pseudoexperi-
ments, we find λe1 ¼ −0.0059� 0.004. The expected sig-
nificance for the entanglement measurement is 4.0σ.

V. DISCUSSION

In this work we have addressed the quantum entangle-
ment involving decay products of tt̄ pairs produced at the
LHC, namely, between the top quark and the W− boson
from the t̄ decay (or, equivalently, between t̄ and Wþ) and
between the two W bosons. The key to measure entangle-
ment involving top (anti)quark decay products is to restrict
the angle between the W momentum in the parent top rest
frame, thereby avoiding the decoherence caused by the sum
over the unmeasured b quark polarizations.
We have investigated, with an analysis at the parton

level, the feasibility of several measurements. The esti-
mated sensitivities are collected in Table I. For these
figures, we have included a bulk reconstruction efficiency
of 0.12 and assumed a 10% systematic uncertainty in the
entanglement indicator. The sensitivities assuming only
statistical uncertainties are also given for reference. We
note that several other kinematical regions are possible,
which are equivalent from the theoretical point of view and
might be more or less favorable experimentally. For WW
entanglement, it is also possible that more sensitive tests
exist, since the Peres-Horodecki condition is sufficient but
not necessary for dimHA ¼ dimHB ¼ 3.
A further possibility that could be pursued by experi-

ments to increase the significance is to combine disjoint
regions into an entanglement measurement. For example,
for tW− entanglement one could perform two measure-
ments, with cos θW ≥ 0.3 and cos θW ≤ −0.3, and combine
them in order to gain statistics. This type of combination
with a proper accounting of systematic uncertainties and
correlations can only be performed by an experiment.
In conclusion, tt̄ production offers a rare possibility of

measuring spin entanglement between a boson and a
fermion, which would also constitute the first measurement
at the energy frontier, and this would be possible with the
data already collected at the LHC run 2.

FIG. 3. Probability density functions of (i) λe1 in the boosted
measurement region (blue), used to determine WþW− entangle-
ment in the SM; and (ii) λs1 in its calibration region (yellow), used
as a proxy of the lowest eigenvalue for a separable state.

TABLE I. Summary of expected significance for entanglement
measurements.

Expected significance

Measurement
Luminosity

(fb−1)
10%

systematics
Statistical

only

tW− threshold 139 7.0σ 9.8σ
tW− boosted 139þ 250 5.0σ 6.1σ
WþW− threshold 139þ 250 4.0σ 4.5σ
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APPENDIX EXPLICIT EXPRESSIONS FOR tW
DENSITY OPERATORS

In the basis of the product space HA ⊗ HB,

n���12 1
E
;
���12 0

E
;
���12 −1

E
;
���−1

2
1
E
;
���−1

2
0
E
;
���−1

2
−1

Eo
;

ðA1Þ

the matrix elements of the density operator ρtW are

ðρtWÞ11¼
1

6
½1þa0�þ

1

2
ffiffiffi
6

p ½A10þC010�þ
1

6
ffiffiffi
2

p ½A20þC020�;

ðρtWÞ12¼−
1

2
ffiffiffi
6

p ½A11þA21þC011þC021�;

ðρtWÞ13¼
1

2
ffiffiffi
3

p ½A22þC022�;

ðρtWÞ14¼−
1

3
ffiffiffi
2

p a1−
1

2
ffiffiffi
3

p C110−
1

6
C120;

ðρtWÞ15¼
1

2
ffiffiffi
3

p ½C111þC121�;

ðρtWÞ16¼−
1ffiffiffi
6

p C122;

ðρtWÞ22¼
1

6
½1þa0�−

1

3
ffiffiffi
2

p ½A20þC020�;

ðρtWÞ23¼
1

2
ffiffiffi
6

p ½−A11þA21−C011þC021�;

ðρtWÞ24¼−
1

2
ffiffiffi
3

p ½C11−1þC12−1�;

ðρtWÞ25¼−
1

3
ffiffiffi
2

p a1þ
1

3
C120;

ðρtWÞ26¼
1

2
ffiffiffi
3

p ½C111−C121�;

ðρtWÞ33¼
1

6
½1þa0�−

1

2
ffiffiffi
6

p ½A10þC010�

þ 1

6
ffiffiffi
2

p ½A20þC020�;

ðρtWÞ34¼−
1ffiffiffi
6

p C12−2;

ðρtWÞ35¼
1

2
ffiffiffi
3

p ½C12−1−C11−1�;

ðρtWÞ36 ¼ −
1

3
ffiffiffi
2

p a1 þ
1

2
ffiffiffi
3

p C110 −
1

6
C120;

ðρtWÞ44 ¼
1

6
½1 − a0� þ

1

2
ffiffiffi
6

p ½A10 − C010�

þ 1

6
ffiffiffi
2

p ½A20 − C020�;

ðρtWÞ45 ¼
1

2
ffiffiffi
6

p ½−A11 − A21 þ C011 þ C021�;

ðρtWÞ46 ¼
1

2
ffiffiffi
3

p ½A22 − C022�;

ðρtWÞ55 ¼
1

6
½1 − a0� −

1

3
ffiffiffi
2

p ½A20 − C020�;

ðρtWÞ56 ¼
1

2
ffiffiffi
6

p ½−A11 þ A21 þ C011 − C021�;

ðρtWÞ66 ¼
1

6
½1 − a0� −

1

2
ffiffiffi
6

p ½A10 − C010�

þ 1

6
ffiffiffi
2

p ½A20 − C020�: ðA2Þ

The operator ρT2

tW has matrix elements ðρT2

tWÞii ¼ ðρtWÞii,
ðρT2

tWÞjjþ3 ¼ ðρtWÞjjþ3, for i ¼ 1;…; 6, j ¼ 1; 2; 3, and

ðρT2

tWÞ12 ¼
1

2
ffiffiffi
6

p ½A1−1 þ A2−1 þ C01−1 þ C02−1�;

ðρT2

tWÞ13 ¼
1

2
ffiffiffi
3

p ½A2−2 þ C02−2�;

ðρT2

tWÞ15 ¼ −
1

2
ffiffiffi
3

p ½C11−1 þ C12−1�;

ðρT2

tWÞ16 ¼ −
1ffiffiffi
6

p C12−2;

ðρT2

tWÞ23 ¼
1

2
ffiffiffi
6

p ½A1−1 − A2−1 þ C01−1 − C02−1�;

ðρT2

tWÞ24 ¼
1

2
ffiffiffi
3

p ½C111 þ C121�;

ðρT2

tWÞ26 ¼
1

2
ffiffiffi
3

p ½C12−1 − C11−1�;

ðρT2

tWÞ34 ¼ −
1ffiffiffi
6

p C122;

ðρT2

tWÞ35 ¼
1

2
ffiffiffi
3

p ½C111 − C121�;

ðρT2

tWÞ45 ¼
1

2
ffiffiffi
6

p ½þA1−1 þ A2−1 − C01−1 − C02−1�;

ðρT2

tWÞ46 ¼
1

2
ffiffiffi
3

p ½A2−2 − C02−−2�;

ðρT2

tWÞ56 ¼
1

2
ffiffiffi
6

p ½A1−1 − A2−1 − C01−1 þ C02−1�: ðA3Þ
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