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The electromagnetic and gravitational form factors of Ω−, a spin-3=2 hyperon composed of three s
quarks, are calculated by using a covariant quark-diquark approach. The model parameters are determined
by fitting to the form factors of the lattice QCD calculations. Our obtained electromagnetic radii, magnetic
moment, and electric-quadrupole moment are in agreement with the experimental measurements and some
other model calculations. Furthermore, the mass and spin distributions of Ω− from the gravitational form
factors are also displayed. It is found that the mass radius is smaller than its electromagnetic ones. Finally,
the interpretations of the energy density and momentum current distribution are also discussed.
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I. INTRODUCTION

Form factors (FFs), such as electromagnetic form factors
(EMFFs) and gravitational form factors (GFFs), are the
very important physical quantities that describe the internal
structure of a hadron. They carry the fundamental and
essential information, such as the distributions of the
electric charge, magnetic moment, mass, and spin. There
have been many studies of EMFFs [1–6] and GFFs [7–11].
Much work has been devoted, in particular, to study the
properties of the various low-spin hadrons, such as spin-0
(π [8,12,13]), spin-1=2 (nucleon [14–17]), and spin-1 (ρ
[18] and deuteron [19–22]). Experimentally, EMFFs can be
detected from the processes driven by the electromagnetic
interactions. The corresponding processes, such as the
hadron production processes from eþe− annihilation
[23–25] and the inverse processes [26], are accessible.
However, the direct detection of GFFs is not realistic due to
the weak gravitational interaction. Fortunately, they can be
obtained via the generalized parton distributions (GPDs)
[27–31], and GPDs can be extracted from deeply virtual
Compton scattering (DVCS) by using sum rules, from
vector-meson electroproduction processes, and from gen-
eralized distribution amplitudes (GDAs) [8].
As the total spin of the system increases, there are

more FFs, such as electric-quadrupole, magnetic-octupole,

energy-quadrupole, and angular momentum-octupole form
factors for a spin-3=2 particle. Although some of the spin-
3=2 particles have been discussed and studied [32–38],
their detailed information is still lacking compared to those
of the low-spin particles. Δ resonance is the typical spin-
3=2 particle which has been usually considered [38–41].
Another typical spin-3=2 particle is Ω− [25,39,42].
However, most of the work, in the literature, only focus
on its EMFFs.
Comparing theΩ− hyperon with theΔ resonance, we see

that the former has a longer lifetime ðcτ ¼ 2.461 cmÞ and it
contains the weak decay channel. Therefore, we expect that
Ω− is more realistic to bemeasured. On the one hand, theΩ−

form factors in the time-like region have been measured by
the eþe− → Ω−Ω̄þ at CLEO [25]. Based on the eþe− → BB̄
process, the facilities, such as BABAR [43,44], BES III [45–
47], CLEO [48], and PANDA [49], all have the chance to
measure its structures by producing the secondaryΩ− beam.
In addition, the Ω− event can also be produced in the
inclusive reaction pþ Be → Ωþ X [50]. On the other
hand, the more promising and reliable method to describe
the FFs of Ω− is the lattice QCD (LQCD). Except for some
LQCD calculations [51–53], there are also some model
calculations of FFs, such as the chiral constituent quark
model [54–56], the chiral perturbation theory (χPT) [57,58],
the 1=Nc expansion [35,59], the SU(2) Skyme model [60],
the bagmodel [61], theQCDsum rule (QCDSR) [33,62], the
general QCD parametrization method (GPM) [63,64], the
relativistic quark model (RQM) [32,65], the nonrelativistic
quark model (NRQM) [66,67], and so on.
In this work, we give a study of the electromagnetic

properties of Ω− and its mechanical properties. Recall
that prior to this work, we have carried out the calcula-
tions and analyses for the FFs of the Δ resonance and
for its generalized parton distributions in a covariant
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quark-diquark approach [68–70]. Here, the same approach
is employed to study the FFs of the Ω− hyperon [5,68]. We
know that Ω− is composed of three s quarks and it is
convenient to consider the two s quarks as a whole, i.e., as
an axial-vector diquark. Thus, we may deal with an
effective two-body system without losing the main internal
structure information, and consequently, the final FFs can
be obtained by summing the contributions of the quark and
diquark. It should be addressed that the diquark structure
can be explicitly considered by replacing the quark electro-
magnetic and energy-momentum tensor (EMT) currents by
the corresponding ones of the diquark.
This paper is organized as follows. In Sec. II, FFs and the

quark-diquark approach are briefly discussed. Our numeri-
cal results of EMFFs in comparison with the results of
LQCD and our GFFs are given in Sec. III, where our
obtained energy and angular momentum distributions and
their representations in the coordinate space are also
displayed. In addition, the quantities related to the “D-
term,” pressures, and shear forces are discussed as well.
Finally, Sec. IV is devoted to a summary.

II. FORM FACTORS AND THE QUARK-DIQUARK
APPROACH

A. Form factors of the spin-3=2 system

In this work, the same approach as Ref. [68] is employed
to study the FFs of theΩ− hyperon. For a spin-3=2 particle,
the matrix element of the electromagnetic current can be
written in terms of the form factors FV;a

i;j as [71]

hp0;λ0jĴμað0Þjp;λi

¼−ūα0 ðp0;λ0Þ
�
Pμ

M

�
gα

0αFV;a
1;0 ðtÞ−

qα
0
qα

2M2
FV;a
1;1 ðtÞ

�

þ iσμνqν
2M

�
gα

0αFV;a
2;0 ðtÞ−

qα
0
qα

2M2
FV;a
2;1 ðtÞ

��
uαðp;λÞ; ð1Þ

where uαðp; λÞ is the Rarita-Schwinger spinor and the
normalization is taken to be ūσ0 ðpÞuσðpÞ ¼ −2Mδσ0σ with
M being the Ω− mass. In Eq. (1) the kinematical variables
Pμ ¼ ðpμ þ p0μÞ=2, qμ ¼ p0μ − pμ, and t ¼ q2 are
employed and pðp0Þ is the momentum of the initial (final)
state. Moreover, the form factors FV;a

i;j are defined flavor by
flavor and include the contribution of the gluon in general.
The total form factors FV

i;j ¼
P

a F
V;a
i;j are obtained as the

index a runs from the quark to gluon. Here, since we only
consider the constituent quark, the gluon contribution is
simply and effectively included.

In our numerical calculation, the average of the initial
and final momenta is defined as Pμ ¼ ðE; 0Þ and the
momentum transfer is qμ ¼ ð0; qÞ by using the Breit frame.
Thus, t ¼ q2 ¼ −q2 ¼ 4ðM2 − E2Þ. The EMFFs of the
spin-3=2 particle can be further expressed in terms of
the electromagnetic covariant vertex function coefficients
FV
i;j, where i ¼ 1, 2 and j ¼ 0, 1, as [72]

GE0ðtÞ¼
�
1þ2

3
τ

�
½FV

2;0ðtÞþð1þ τÞðFV
1;0ðtÞ−FV

2;0ðtÞÞ�

þ2

3
τð1þ τÞ½FV

2;1ðtÞþð1þ τÞðFV
1;1ðtÞ−FV

2;1ðtÞÞ�;
ð2aÞ

GE2ðtÞ ¼ ½FV
2;0ðtÞ þ ð1þ τÞðFV

1;0ðtÞ − FV
2;0ðtÞÞ�

þ ð1þ τÞ½FV
2;1ðtÞ þ ð1þ τÞðFV

1;1ðtÞ − FV
2;1ðtÞÞ�;

ð2bÞ

GM1ðtÞ ¼
�
1þ 4

5
τ

�
FV
2;0ðtÞ þ

4

5
τðτ þ 1ÞFV

2;1ðtÞ; ð2cÞ

GM3ðtÞ ¼ FV
2;0ðtÞ þ ðτ þ 1ÞFV

2;1ðtÞ; ð2dÞ

where τ ¼ −t=ð4M2Þ and GE0, GE2, GM1, and GM3

represent the electric-monopole, electric-quadrupole, mag-
netic-dipole, and magnetic-octupole form factors, respec-
tively. The electromagnetic properties, including the
electric charge, magnetic moment, electric-quadrupole
moment, and magnetic-octupole moment, are obtained in
the forward limit, t ¼ 0. Note that the moments in this
paper are spectroscopic moments measured in the labo-
ratory rather than intrinsic moments, and the shape in this
paper is of course the spectroscopic shape rather than the
geometric shape which requires the so-called intrinsic
quadrupole and octupole moments [73,74]. The electric-
monopole and magnetic-dipole form factors give the
corresponding electric charge and magnetic radii of the
particle as [51]

hr2iE0 ¼
6

GE0ð0Þ
d
dt

GE0ðtÞjt¼0;

hr2iM1 ¼
6

GM1ð0Þ
d
dt

GM1ðtÞjt¼0: ð3Þ

Similarly to EMFFs, the matrix element of the EMT
current can be written as [38]
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hp0; λ0jT̂μν
a ð0Þjp; λi ¼ −ūα0 ðp0; λ0Þ

�
PμPν

M

�
gα

0αFT;a
1;0 ðtÞ −

qα
0
qα

2M2
FT;a
1;1 ðtÞ

�
þ ðqμqν − gμνq2Þ

4M

�
gα

0αFT;a
2;0 ðtÞ −

qα
0
qα

2M2
FT;a
2;1 ðtÞ

�

þMgμν
�
gα

0αFT;a
3;0 ðtÞ −

qα
0
qα

2M2
FT;a
3;1 ðtÞ

�
þ iPfμσνgρqρ

2M

�
gα

0αFT;a
4;0 ðtÞ −

qα
0
qα

2M2
FT;a
4;1 ðtÞ

�

−
1

M
ðqfμgνgfα0qαg − 2qα

0
qαgμν − gα

0fμgνgαq2ÞFT;a
5;0 ðtÞ þMgα

0fμgνgαFT;a
6;0 ðtÞ

�
uαðp; λÞ; ð4Þ

where FT
i;j ¼

P
a F

T;a
i;j stands for the GFFs of the spin-3=2 hadron and the conventions afμbνg ¼ aμbν þ aνbμ and a½μbν� ¼

aμbν − aνbμ are adopted. In the Breit frame, the gravitational multipole form factors (GMFFs) of the spin-3=2 particle can
be expressed in terms of its GFFs FT

i;j as [38]

ε0ðtÞ ¼ FT
1;0ðtÞ þ

t
6M2

�
−
5

2
FT
1;0ðtÞ − FT

1;1ðtÞ −
3

2
FT
2;0ðtÞ þ 4FT

5;0ðtÞ þ 3FT
4;0

�

þ t2

12M4

�
1

2
FT
1;0ðtÞ þ FT

1;1ðtÞ þ
1

2
FT
2;0ðtÞ þ

1

2
FT
2;1ðtÞ − 4FT

5;0ðtÞ − FT
4;0ðtÞ − FT

4;1ðtÞ
�

þ t3

48M6

�
−
1

2
FT
1;1ðtÞ −

1

2
FT
2;1ðtÞ þ FT

4;1ðtÞ
�
; ð5aÞ

ε2ðtÞ ¼ −
1

6
½FT

1;0ðtÞ þ FT
1;1ðtÞ − 4FT

5;0ðtÞ�

þ t
12M2

�
1

2
FT
1;0ðtÞ þ FT

1;1ðtÞ þ
1

2
FT
2;0ðtÞ þ

1

2
FT
2;1ðtÞ − 4FT

5;0ðtÞ − FT
4;0 − FT

4;1ðtÞ
�

þ t2

48M4

�
−
1

2
FT
1;1ðtÞ −

1

2
FT
2;1ðtÞ þ FT

4;1ðtÞ
�
; ð5bÞ

J 1ðtÞ ¼ FT
4;0ðtÞ −

t
5M2

½FT
4;0ðtÞ þ FT

4;1ðtÞ þ 5FT
5;0ðtÞ� þ

t2

20M4
FT
4;1ðtÞ; ð5cÞ

J 3ðtÞ ¼ −
1

6
½FT

4;0ðtÞ þ FT
4;1ðtÞ� þ

t
24M2

FT
4;1ðtÞ; ð5dÞ

D0ðtÞ ¼ FT
2;0ðtÞ −

16

3
FT
5;0ðtÞ −

t
6M2

½FT
2;0ðtÞ þ FT

2;1ðtÞ − 4FT
5;0ðtÞ� þ

t2

24M4
FT
2;1ðtÞ; ð5eÞ

D2ðtÞ ¼
4

3
FT
5;0ðtÞ; ð5fÞ

D3ðtÞ ¼
1

6
½−FT

2;0ðtÞ − FT
2;1ðtÞ þ 4FT

5;0ðtÞ� þ
t

24M2
FT
2;1ðtÞ; ð5gÞ

where the nonconserving terms FT
3;0ð1Þ and F

T
6;0 are simply

ignored because they should vanish if we add the gluon
contributions explicitly. In Eq. (5), ε0ð2Þ and J 1ð3Þ stand
for the energy-monopole (-quadrupole) and angular mo-
mentum-dipole (-octupole) form factors, respectively.
D0ð2;3Þ are regarded as the form factors associated with
the internal pressures and shear forces [11]. Like the
electromagnetic radii defined in Eq. (3), there is a
corresponding mass radius

hr2iM ¼ 6

ε0ð0Þ
d
dt

ε0ðtÞj
t¼0

: ð6Þ

Moreover, to get the densities in the coordinate space,
one may calculate the Fourier transformations of GMFFs.
The corresponding 00 and ij components of the static EMT
are [38]
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T00ðr; λ0; λÞ ¼ E0ðrÞδλ0λ þ E2ðrÞQ̂lm
λ0λY

lm
2 ðΩrÞ; ð7Þ

Tijðr; λ0; λÞ ¼ p0ðrÞδijδλ0λ þ s0ðrÞYij
2 δλ0λ; ð8Þ

where Q̂lm and Ylm
2 ðΩrÞ are the quadrupole spin operator

and two-rank irreducible tensor as defined in Ref. [38],
respectively. Here we neglect the high-order terms p2;3 and
s2;3 in Tij for simplicity. The energy-monopole and energy-
quadrupole densities can be further expressed as [38]

E0ðrÞ ¼ Mε̃0ðrÞ; E2ðrÞ ¼ −
1

M
r
d
dr

1

r
d
dr

ε̃2ðrÞ; ð9Þ

with

ε̃0;2ðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·rε0;2ðtÞ ð10Þ

being the densities in coordinate r space. Reference [11]
argued that the static TijðrÞ may involve the pressure and
shear force information in contrast to the classical mechan-
ics for the continuous media. Then

pnðrÞ ¼
1

6M
1

r2
d
dr

r2
d
dr

D̃nðrÞ;

snðrÞ ¼ −
1

4M
r
d
dr

1

r
d
dr

D̃nðrÞ; ð11Þ

where

D̃0ðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·rD0ðtÞ;

D̃2ðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·rD2ðtÞ

þ 1

M2

�
d
dr

d
dr

−
2

r
d
dr

�Z
d3q
ð2πÞ3 e

−iq·rD3ðtÞ;

D̃3ðrÞ ¼ −
2

M2

�
d
dr

d
dr

−
3

r
d
dr

�Z
d3q
ð2πÞ3 e

−iq·rD3ðtÞ: ð12Þ

Moreover, there is an equilibrium relation between the
pressure and shear force densities

2

3

dsnðrÞ
dr

þ2
snðrÞ
r

þdpnðrÞ
dr

¼ 0; with n¼ 0;2;3: ð13Þ

Another interest is the angular momentum density,
which is obtained from the 0k components of the static
EMT as [38]

ρJðrÞ ¼ −
1

3
r
d
dr

Z
d3q
ð2πÞ3 e

−iq·rJ 1ðtÞ; ð14Þ

which describes the angular momentum distribution in
coordinate space and gives the total spin by the integral in
the 3D space.

B. Quark-diquark approach

We know that the Ω− hyperon, which has the quantum
number of IðJPÞ ¼ 0ð3=2þÞ, is composed of three s
quarks. It is convenient to consider Ω− as a bound state
with one s quark and one diquark. The latter consists of two
s quarks and has JP ¼ 1þ. We explicitly consider the
internal structure of the axial-vector diquark in order to give
a more precise description. This approach is consistent with
other relativistic and covariant quark-diquark approaches
[75,76] and was employed in our previous work [68].
Here we briefly show our calculation of the EMFFs

for Ω− in the quark-diquark approach. EMFFs can be
obtained from the matrix element of the electromagnetic
current attached toΩ−. This process is displayed in Figs. 1(a)
and 1(b). Thus, thematrix element is expressed as the sumof
the quark and diquark contributions as

hp0;λ0jĴμð0Þjp;λi¼ hp0;λ0jĴμqð0Þjp;λiþhp0;λ0jĴμDð0Þjp;λi:
ð15Þ

One can get the quark contribution from the Feynman
diagram in Fig. 1(a) as

FIG. 1. Feynman diagrams for the electromagnetic current of Ω−, (a) and (b), and of the diquark (c). The left and middle panels stand
for the contributions of quark (single line) and diquark (double line) to Ω−, respectively.
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hp0; λ0jĴμqð0Þjp; λi ¼ −Qe
qeūα0 ðp0; λ0Þð−ic2Þ

Z
d4l
ð2πÞ4

1

D
Γα0β0

�
=lþ =q

2
þmq

�
gβ0βγμ

�
=l −

=q
2
þmq

�
Γαβuαðp; λÞ; ð16Þ

where Qe
q is the electric charge number carried by the quark participating in the interaction and

D ¼ ½ðl − PÞ2 −m2
R þ iϵ�2½ðl − PÞ2 −m2

D þ iϵ�
��

l −
q
2

�
2

−m2
R þ iϵ

���
lþ q

2

�
2

−m2
R þ iϵ

�

×

��
lþ q

2

�
2

−m2
q þ iϵ

���
l −

q
2

�
2

−m2
q þ iϵ

�
: ð17Þ

In Eq. (16), the effective vertex is employed as

Γαβ ¼ gαβ þ c2γβΛα þ c3ΛβΛα; ð18Þ

where Λ is the relative momentum between the quark and
diquark, and the superscript α (β) represents the index of
the Ω− (diquark). mq and mD are the masses of the quark
and the diquark, respectively. The couplings, c2 and c3 can
be determined by fitting to the LQCD results of EMFFs. To
avoid the loop integral divergence, we employ one simple
regularization at each vertex; i.e., we add a scalar function

Ξðp1; p2Þ ¼
c

½p2
1 −m2

R þ iϵ�½p2
2 −m2

R þ iϵ� ; ð19Þ

where mR is a cutoff mass parameter. In Eq. (19) the
parameter c is fixed in order to give the electric charge
number of Ω− at t ¼ 0. It should be mentioned that this
simplification may break the gauge invariant slightly;
however, it is simpler than other sophisticated methods,
such as the Pauli-Villars regularization [77].
According to Fig. 1(b), the diquark contribution can be

expressed as

hp0; λ0jĴμDð0Þjp; λi ¼ −Qe
Deūα0 ðp0; λ0Þic2

Z
d4l
ð2πÞ4

1

D0 Γ
α0
β0 ð=P − =lþmqÞjμ;β

0β
D Γα

βuαðp; λÞ; ð20Þ

where Qe
D is the electric charge number carried by the

diquark. The diquark electromagnetic current then can be
calculated explicitly from Fig. 1(c) asX

q

hp0
D; λ

0
DjĴμqð0ÞjpD; λDi

¼ −ϵ�β0 ðp0
D; λ

0
DÞjμ;β

0β
D ϵβðpD; λDÞ; ð21Þ

where ϵβðpD; λDÞ is the spin-1 diquark field and we simply
assume that the axial-vector diquark is on shell. The
calculation details of Eq. (21) are referred to in Ref. [68].
Finally, the calculation of the GFFs of the Ω− hyperon is

similar to that of EMFFs replacing the electromagnetic
current jμ by the EMT current Tμν [68].

III. NUMERICAL RESULTS

A. Determination of parameters

We know that the formal FFs should be extracted
from the integral in Eqs. (16) and (20) by using
the on-shell identities of the Rarita-Schwinger
fields [68,71]. Moreover, we also need to input the Ω−

mass M, s quark mass mq, and diquark mass mD as the
model parameters. To ensure that Ω− and the diquark are
bound states, M, mq, and mD need to satisfy the relation,
M < mq þmD < 3mq. Here, we choose M ¼ 1.672 GeV

[78], mq ¼ 0.6 GeV, and mD ¼ 1.15 GeV. In addition,
other model parameters, the cutoff mass mR and
the couplings c2ð3Þ in Eqs. (17)–(19), can be
modulated to obtain more reasonable form factors com-
paring to those of the LQCD calculations. Thus, we
finally choose mR ¼ 2.2 GeV≳M, c2 ¼ 0.306 GeV−1,
and c3 ¼ 0.056 GeV−2. These three parameters and the
input masses are listed in Table I.
Figure 2 gives the comparison of our electric form factor

GE0 to the results of LQCD [52] with different mR. We
conclude that the results are not sensitive to the parameter
mR. Furthermore, we find that the parameters c2ð3Þ make a
significant impact on the high-order multipoles form
factors, such as the electric-quadrupole, magnetic-octupole,
energy-quadrupole, and angular momentum-octupole form
factors as discussed in Ref. [68], especially on even higher-
order multipole magnetic and angular momentum-octupole
form factors.

TABLE I. The parameters used in this work.

M=GeV mq=GeV mD=GeV mR=GeV c2=GeV−1 c3=GeV−2

1.672 0.6 1.15 2.2 0.306 0.056
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B. Results of EMFFs of the Ω− hyperon

Once the parameters are determined, the EMFFs of Ω−,
including the electric-monopole, magnetic-dipole,
electric-quadrupole, and magnetic-octupole form factors,
can be calculated. Our results are compared with the
LQCD calculations [52] in Fig. 3. In Fig. 3, the con-
tributions from the quark and diquark are explicitly
displayed. We find that both our calculation and the
LQCD result are consistent with each other. In particular,
our electric-monopole and magnetic-dipole form factors
match the LQCD results better. Since the electric charge
carried by the diquark is twice that of the quark, the ratio
between the diquark and quark contributions is about 2, as
−t tends to 0. In the forward limit, Fig. 3 gives the
magnetic moment μΩ− ¼ GM1

MN
M μN , electric-quadrupole

moment QΩ− ¼ GE2ð0Þ jej
M2, and magnetic-octupole

moment OΩ− ¼ GM3ð0Þ
�
MN
M

�
3
ON (ON ¼ jej

2M3
N
). The

physical quantities of μN and ON with the subscript N
stand for the corresponding nuclear properties and MN is
the proton mass. A comparison of our results with those of
the different models is also shown in Table II. From
Table II, we see that our magnetic moment μΩ− ¼ −1.8μN
is slightly less than the experiment value −2.02ð5ÞμN and
is close to the LQCD and χQSM results. Moreover, our
electric-quadrupole moment is of the same order as others.
We know that the electric-quadrupole form factors show
the spectroscopic 3D electric charge distribution shape of
the system, and QΩ− > 0 implies that the electric charge
distribution of Ω− is a prolate ellipsoid. In addition, the
electromagnetic radii from (3) are important quantities for
us to apprehend the electromagnetic properties of the
system, and they are

hr2iE0 ¼ 0.352 fm2 and hr2iM1 ¼ 0.322 fm2; ð22Þ

for the Ω− hyperon. Our results are comparable with other
model calculations as shown in Table II. One can conclude
that the magnetic radius is smaller than the electric charge
radius and this relation is also in agreement with other
model predictions except for the RQM calculation [65].

C. Results of GMFFs of the Ω− baryon

Analogously, the matrix element of the energy-
momentum tensor gives GMFFs, which are expressed in

FIG. 3. Our EMFFs in comparison with the results of LQCD [52]. The dashed, dotted-dashed and solid lines represent the quark,
diquark, and total contributions, respectively.

FIG. 2. The comparison of GE0 with LQCD to different mR

when c2 ¼ 0.306 GeV−1 and c3 ¼ 0.056 GeV−2.
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terms of GFFs using the linear components in the Breit
frame. By employing the same parameters and the same
normalization, the GMFFs, including the energy-monopole
ε0, angular momentum-dipole J 1, energy-quadrupole ε2,
angular momentum-octupole J 3 form factors, and some
other form factors such as D0, D2, and D3, which may
relate to the pressures and shear forces, can be obtained and

their low-order multipole terms are shown in Fig. 4. In the
forward limit t ¼ 0, the intrinsic mechanical properties of
the Ω− hyperon, like its mass, ε0ð0Þ ¼ 0.988 ∼ 1, and spin,
J 1ð0Þ ¼ 1.483 ∼ 3=2, can be obtained in this approach. It
is clearly seen that our obtained mass and spin are not the
same as the exactly global physical quantities because the
momentum-dependence regularization in Eq. (19) violates

FIG. 4. The low-order terms of the gravitational form factors of Ω− as the functions of the squared momentum transfer t.

TABLE II. The magnetic moment, electric-quadrupole moment, magnetic-octupole moment, electric charge radius, and magnetic
radius in comparison with those from PDG [78], LQCD [51–53], χPT [57,58], 1=Nc expansion [59,79], general QCD parameterization
method [63,64], relativistic quark model [65], nonrelativistic quark model [67], QCD sum rules [33,80], χ quark model [54], and chiral
quark-soliton model [37,81].

μΩ−=μN QΩ−=fm2 OΩ−=ON hr2iE0=fm2 hr2iM1=fm
2

This work −1.8 0.024 −0.008 0.352 0.322

PDG [78] −2.02ð5Þ � � � � � � � � � � � �
LQCD [51] −1.73ð22Þ 0.0042(56) −9.989� 2.65 0.226(16) 0.226(16)
LQCD [52] −1.835ð94Þ 0.0133(57) � � � 0.355(14) 0.286(31)
LQCD [53] −1.697ð65Þ 0.0086(12) 0.2(1.2) 0.307(15) � � �
χPT [57] −1.94ð22Þ 0.009(5) � � � � � � � � �
χPT [58] −2.02ð5Þ � � � � � � 0.70(12) � � �
1=Nc [59,79] −1.94 0.018 � � � � � � � � �
GPM [63,64] � � � 0.024=0.041 0.65 � � � � � �
RQM [65] −2.02ð5Þ � � � � � � 0.22 0.27
QCDSR [33] −1.49ð45Þ � � � � � � � � � � � �
QCDSR [80] � � � 0.12(4) 1.73(43) � � � � � �
NRQM [67] � � � 0.028 � � � � � � � � �
χQM [54] −2.13 0.026 � � � 0.61 0.53
χQSM [37,81] −1.82 0.054 � � � 0.832 0.582
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the gauge invariance slightly. Similar to EMFFs, we find
that the ratios between the diquark and quark contributions
to the energy-monopole and to the angular momentum-
dipole form factors are close to 2, especially for the small
−t. This is intuitive because the mass and spin of the quark
are practically about half of the diquark. It should be
stressed that the shape of the energy distribution is another
important property, thereupon we can conclude that the Ω−

is a prolate ellipsoid because of the positive ε2ð0Þ. Finally,
we get the mass radius of the Ω− hyperon as

hr2iM ¼ 0.297 fm2 ð23Þ

from Eq. (6). It is found that this mass radius is slightly
smaller than the electromagnetic radii, hr2iE0 and hr2iM1,
like our calculation for the Δ resonance [68].
Finally, the D-term is also an essential mechanical

quantity, which is defined as D ¼ D0ð0Þ and is argued
to be negative and closely related to the stability of the
system [82]. Here, we get D ∼ 1.01. It is positive and
similar to the value for the Δ resonance in our previous
calculation [68]. The possible interpretation of the positive
D-term will be discussed in the following subsection.

D. GMFFs in r-space

The local density distributions, including the energy
densities (9), angular momentum density (14), and the
internal forces (11), can be obtained from the Fourier
transformed form factors. To consider local particles, we
simply employ a wave packet to describe the Ω− hyperon.
It should be addressed that Ref. [83] concludes that the
local density distributions must depend on the wave packet.
Here, we simply employ an additional Gaussian-like wave

packet e
t
λ2 to describe the system [84] as an approximation

in Eqs. (10), (12), and (14). In addition, this description can
also guarantee the good convergence in the Fourier trans-
formations. This additional wave packet may affect the
radius definition [83,85]; however, this issue is not a
priority in this work.

It should be mentioned that the parameter 1=λ here
characterizes the size of Ω− and λ has the mass dimension.
Thus, one can conclude that the large λ represents the
small radius (the small λ is opposite) according to the
uncertainty principle. Thereupon the large λ concentrates
the densities close to the center (small r region) and the
small λ to the contrary as shown in Fig. 5, where we
choose the reasonable λ range 0.6 GeV < λ < 1.2 GeV.
Furthermore, there are certainly some invariants in the
energy and angular momentum densities in Fig. 5. For
example, the integrated result of ρJðrÞ in the 3D coor-
dinate space corresponds to the total spin and is inde-
pendent of λ, and the integrated result of ε0ðrÞ gives the
mass term. Note that λ ¼ 0.9 GeV is employed in the
following discussion.
The energy density in 3D space, from Eq. (7) taking the

polarization average, is shown in Fig. 6. One sees that the
energy distribution has a prolate shape due to the positive
energy-quadrupole form factor mentioned above.

FIG. 5. The calculated energy-monopole (left panel) and angular momentum (right) densities of Ω− as the functions of r with
different λ.

FIG. 6. The energy density using the polarization average.
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The next relevant part is the ij component of the static
EMT, which describes the so-called pressures pnðrÞ and
shear forces snðrÞ argued in Refs. [11,82] and is related to
the GFFs. According to Eq. (11), the pressure and shear
force are shown in Fig. 7 and they satisfy the equilibrium
relation (13). In the left panel of Fig. 7, there is a crossing at
about r ∼ 0.6 fm, which is slightly larger than the mass
radius and depends on λ. We conclude that that r ∼ 0.6 fm
represents that there is a change in the pressure direction at
the particle boundary.
Reference [82] stressed that the D-term is a fundamental

and unknown quantity. It represents the stability of the
system. The D-term is negativity since the corresponding
inner force must be outward [82], i.e.,

p0ðrÞ þ
2

3
s0ðrÞ > 0: ð24Þ

Thus, the positive D-term in our approach may imply that
Ω− is not stable according to the above point of view of
Ref. [82]. We claim that we have demonstrated that the
positive D-term for the Δ resonance in our quark-diquark
approach [68]. Note that the similar positive D-term is also
obtained in the calculation of hydrogen atom in Ref. [86].
Although our result does not satisfy the inequality of (24),
the von Laue condition is indeed satisfied

Z
∞

0

drr2p0ðrÞ ¼ 0; ð25Þ

which can be elucidated by Fig. 8, where the equality
between the areas of the upper and lower shaded parts
is shown.
To explore the Ω− stability in more detail, we plot the

momentum current distribution on the x-y plane with z ¼ 0
in Fig. 9 according to Eq. (8), where the arrows and shades
represent its direction and strength, respectively. It is
clearly seen that the absolute value of the momentum
current at the boundary is close to zero. Thus, Fig. 9 implies
that this is a stable system. If we add a minus sign to D0ðtÞ
by hand, the negativeD-term is obtained and only the arrow
of each point in Fig. 9 points to the opposite direction
according to Eq. (11), but one can find that the system is
also stable. Therefore, we argue that the stability is
independent of the sign of the D-term, i.e., there is no
direct relation between the stability of a hadron and the sign
of the D-term as also have been discussed in Ref. [86].

FIG. 8. The physical quantity 4πr2p0ðrÞ as a function of r.
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FIG. 9. The momentum current with the unit GeV fm−3 on the
x–y plane with z ¼ 0.

FIG. 7. The pressure (left panel) and shear force (right panel) of Ω− as functions of r when λ ¼ 0.9 GeV.
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IV. SUMMARY AND DISCUSSION

In this work, the electromagnetic and gravitational form
factors of the Ω− hyperon have been calculated simulta-
neously using the quark-diquark approach. The diquark
with two s quarks is considered as an axial-vector particle
and its specific inner structure is also considered when we
discuss the Ω− form factors. In our calculation, we use the
effective vertex between the hadron and two effective
partons, quark, and diquark, and the simple regularization
is also employed to make the integral convergence. The
model parameters are determined by fitting our EMFFs to
the LQCD results.
Our obtained electromagnetic properties of the Ω−

hyperon, such as its magnetic moment, electric-quadru-
pole moment, electromagnetic radii, and so on, are in a
reasonable agreement with those of the experiments,
LQCD calculations, and other models. In addition, we
find that the mass radius is smaller than the electromag-
netic radii. Compared to the results of the Δ resonance, we
conclude that Ω− has the smaller electromagnetic and
mass radii due to the stronger boundary. Because of the
similar quark components, the behaviors of Ω− and Δþþ
form factors are similar for the low-order ones and the
energy distribution takes the same prolate shape which
can also be illustrated by the positive ε2ð0Þ.
The energy density, angular momentum density, and

internal forces, including pressures and shear forces, are
also given in the coordinate space by the Fourier trans-
formed form factors. An important and fundamental
property of the system is its stability, and Ref. [11] argued
that the stable system must have the negative D-term.
However, this explanation is still controversial [11,22,86].
According to our calculations and analyses of GFFs, we
believe that there are three important issues that need to be
stressed and studied further.
(1) There should be mechanical stability and decay

stability. The former is due to the resultant force
being zero at any point and represents the existence
of the particle, and the latter is because of the
forbiddance of its strong decay and represents, at
least to some extend, the lifetime of the particle. We
believe that it is important to distinguish between
these two types of the stability. The stability,
discussed in Ref. [11] and the related work
including this work, should be mechanical stability.

We argue that all the existent particles, including
the unstable particles, even with strong decay
modes such as Δ resonance, need to be mechan-
ically stable during their existence.

(2) In this work, the FFs are calculated under the
premise that Ω− is a three quark bound state. We
argue that there might be no classical pressure and
shear force in this few-body and hadronic system as
well as in the hydrogen atom system [86], because
the pressure and shear force result from the stat-
istical mean in the multibody systems. In our
opinion, it is more reasonable to use the momentum
current TijðrÞ as a criterion to judge the mechanical
stability, because the momentum current does exist
in any kind of system.

(3) Moreover, the FFs describe the static properties of
the particle in general, and they must give a
mechanically stable result if the particle exists.
As mentioned above and explicitly addressed
in Ref. [68] and this work, we obtain the positive
D-term for the spin-3=2 particles of Δ resonance
and Ω− hyperon in the covariant quark-diquark
approach. What is most important is that the
obtained momentum flux on any small volume is
zero whether the D-term is positive or negative
according to our analyses. Therefore, we conclude
that the mechanical stability does not relate to the
sign of the D-term.

Finally, a systematical study of the electromagnetic and
gravitational form factors of all the decuplet baryons using
this approach is in progress.
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