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We compute masses of the two lightest glueballs from spectral reconstructions of timelike interaction
channels of the four-gluon vertex in Landau gauge Yang-Mills theory. The Euclidean spacelike dressings
of the vertex are calculated with the functional renormalization group. For the spectral reconstruction of
these Euclidean data, we employ Gaussian process regression. The glueball resonances can be identified
straightforwardly and we obtain msc ¼ 1870ð75Þ MeV as well as mps ¼ 2700ð120Þ MeV, in accordance
with functional bound state and lattice calculations.
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I. INTRODUCTION

The hadronic spectrum of Yang-Mills theory and QCD
includes purely gluonic bound state contributions, the
glueballs. The experimental verification of their existence
is an important test of QCD; however, it is not yet conclusive
[1–4] as these states are difficult to access due to their large
overlap with other hadronic resonances. Different possible
experimental candidates have been proposed, including the
various f0 states, some of which are expected to appear in
decay channels of J=ψ [5,6]. The overlap with other states
also complicates their theoretical determination when con-
sidering QCD; for corresponding lattice calculations see
Refs. [7–9]. In Yang-Mills theory, the situation is much
simpler and the first few lightest states are well known; for
lattice results see e.g. [8,10–14]. For computations with
functional approaches—in particular with a combination of
Dyson-Schwinger equations (DSE) and Bethe-Salpeter
equations (BSE)—see e.g. [15–20].
In this work, we put forward a self-consistent functional

ansatz for computing masses of bound states by exploiting
their overlap with resonant interaction channels of

gauge-fixed correlation functions. The approach is then
used to determine the masses of the scalar (JPC ¼ 0þþ)
and pseudoscalar (JPC ¼ 0−þ) Yang-Mills glueballs, utiliz-
ing the fact that these states have overlap with channels
of the four-gluon vertex that carry the respective sym-
metries, where they appear as peaks of the corresponding
spectral functions. We use Gaussian process regression
(GPR) to compute these spectral functions by reconstructing
Euclidean correlators obtained within the functional renorm-
alization group (fRG) framework in [21]. The inversion of
the spectral representation is an ill-conditioned problem; see
e.g. [22–24]. The applicability of GPR to such linear inverse
problems was discussed in [25] and the approach has since
been employed to compute ghost and gluon spectral func-
tions from 2þ 1 flavor lattice QCD results [26].
This paper is organized as follows. In Sec. II, we introduce

the spectral representation of Euclidean dressing functions
and discuss the projections onto the four-point vertices in
Yang-Mills theory. The reconstruction approach using GPR
is described in Sec. III. In Sec. IV, the resulting spectral
functions are presented and we report the masses of the
scalar and pseudoscalar glueballs. We conclude in Sec. V.

II. SPECTRAL REPRESENTATIONS OF YANG-
MILLS CORRELATION FUNCTIONS

Nonperturbative calculations of correlation functions in
Yang-Mills theory are generally only possible in Euclidean
space-time, either on the lattice or with functional
approaches. While the latter framework in principle also
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allows direct access to real-time properties—albeit with a
qualitatively increased effort—real-time lattice calculations
are often faced with intractable signal-to-noise problems.
Accordingly, computing timelike observables such as
transport coefficients, pole masses, and decay rates typi-
cally requires the reconstruction of timelike correlation
functions from their spacelike Euclidean counterparts via
the associated spectral representations.

A. Spectral representations

Correlation functions of physical states, and in particular
the two-point functions, admit a spectral representation. For
the propagator—the inverse 1PI two-point function—this is
the Källén-Lehmann (KL) representation,

GðpÞ ¼
Z

∞

0

dω
2π

2ωρðωÞ
p2 þ ω2

: ð1Þ

Here, GðpÞ denotes the Euclidean propagator and ρðωÞ the
spectral function, which is obtained by

ρðωÞ ¼ 2 lim
ϵ→0þ

ImGð−iðωþ iϵÞÞ: ð2Þ

The spectral functions of asymptotic states are positive
semidefinite and admit the interpretation of a probability
density. In gauge theories, however, the situation becomes
more complicated. To begin with, even the existence of a
KL representation is not settled for ghost and gluon
propagators, and (1) may feature additional structures in
the complex momentum plane; for a detailed discussion see
Ref. [21]. Moreover, in the Landau gauge, the gluon and
ghost spectral functions exhibit negative infrared (IR) and
ultraviolet (UV) tails; see Ref. [27]. These properties can be
inferred from the respective IR and UV asymptotic behav-
iour of the Euclidean correlation functions [21,27–29],
and these relations also hold true for the present analysis
involving four-gluon vertices. Note also that while gauge-
fixed correlation functions may not permit a KL repre-
sentation, the scattering matrix elements are directly
constructed in terms of these correlators and obey (1).
Hence, features which are in direct correspondence to
observables—such as bound states—can still be extracted
from such gauge-fixed correlation functions.

B. Four-gluon correlation function

In the present work, we consider single interaction
channels that have overlap with the bound states of interest.
The spectral representations of these channels follow
directly from the structure of the full, analytically continued
correlation functions; see e.g. [30]. Up to minor modifi-
cations, they are given by (1) for the relevant scalar
dressings of the four-gluon vertex, we use [31]

λA4ðp2Þ ¼ λA4;0 þ
Z

∞

0

dω
π

ωρA4ðωÞ
p2 þ ω2

: ð3Þ

The constant part λA4;0 accounts for the classical contribu-
tion. The Euclidean dressings of the interaction channels
are computed with the fRG; for a recent review see
Ref. [32]. The diagrammatic representation of the associ-
ated equation is shown in Fig. 1; more details on the fRG
approach and the specific computation for the vertex are
deferred to Appendix A.
We remark in this context that correlation functions in

Landau gauge Yang-Mills theory computed within sophis-
ticated truncations to the fRG pass all available lattice
benchmark tests; see Refs. [21,33]. This concerns in
particular the ghost and gluon propagators, whereas lattice
results for vertices still exhibit large uncertainties.
Nevertheless, since state-of-the-art functional results for
correlation functions fully agree with lattice calculations
within statistical errors, any reconstruction based on the
former approaches is consistent with the latter.
In order to access the masses of the scalar JPC ¼ 0þþ

and pseudoscalar JPC ¼ 0−þ glueball, we have to deter-
mine tensor structures and momentum channels that over-
lap with these states. In general, it is desirable that the
chosen channels have overlap only with the states of
interest, as any reconstruction method faces increasing
problems with multipeak structures due to the exponential
suppression of heavier states in the Euclidean data.
Accordingly, their resolution requires an exponentially
increasing accuracy, contributing to the ill-conditioned
nature of the reconstruction problem.
For the scalar glueball, the above requirement is par-

ticularly simple to satisfy, since it is the lightest excitation
and the classical tensor structure suffices, i.e.

FIG. 1. fRG equation for the s-channel four-gluon vertex dressing. Wiggly orange lines correspond to fully dressed gluon propagators;
black dots indicate fully dressed vertices. Permutations include the various possible configurations of external legs as well as
permutations of the regulator insertion (indicated by a crossed circle).
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τabcdcl;μνρσ ¼ fabefcdeðδμρδνσ − δμσδνρÞ
þ facefbdeðδμνδρσ − δμσδνρÞ
þ fadefbceðδμνδρσ − δμρδνσÞ: ð4Þ

Correspondingly, we use

τabcdps;μνρσðp1; p2Þ ¼
ϵμναβpα

1p
β
2ffiffiffiffiffiffiffiffiffiffi

p2
1p

2
2

p ϵρσγδp
γ
1p

δ
2ffiffiffiffiffiffiffiffiffiffi

p2
1p

2
2

p
× ðδabδcd þ δacδbd þ δadδbcÞ ð5Þ

for the pseudoscalar glueball, which has the correct trans-
formation properties (see e.g. [15,19]), and does not over-
lap with the scalar glueball. In (5), εμνρσ denotes the fully
antisymmetric tensor and the momenta are chosen to be
orthogonal, p1 · p2 ¼ 0.
Finally, we have to specify the momentum channels: we

restrict ourselves to a single exchange momentum and the
external (incoming and outgoing) momenta are chosen to
have the same magnitude, p2 ≡ p2

1 ¼ p2
2. This leaves us

with two invariants: p2 and x ¼ ðp1 · p2Þ=p2. For the
scalar glueball, the momenta are chosen to be parallel,
i.e. x ¼ 1; for the pseudoscalar one, they are chosen to be
orthogonal, i.e. x ¼ 0. Further details on the projection
operators are given in Appendix A 2.

III. GAUSSIAN PROCESS REGRESSION
WITH INDIRECT OBSERVATIONS

GPR is widely employed as a nonparametric interpola-
tion method for noisy observations. In essence, GPs can be
used to define probability distributions over families of
functions that fit a given set of data without explicitly
assuming a functional basis. For an in-depth introduction to
GP theory and applications, see e.g. [34].
Recently, GPR has also been applied to the probabilistic

inversion of the KL spectral representation [26] as well as
the extraction of parton distribution functions [35–37]. The
present work follows the same line of reasoning: making
use of the fact that GPs are closed under linear trans-
formations, it is possible to infer data from indirect
observations that are related to the quantity of interest
by a linear forward process [25]. In particular, we may
obtain predictions for the spectral function from measure-
ments of the associated correlator without inverting the KL
transformation directly.
To this end, we start by defining a GP prior distribution

over spectral functions that encodes our knowledge and
assumptions about ρðωÞ before making any observations,

ρðωÞ ∼ GPðμðωÞ; kðω;ωÞÞ: ð6Þ

Evaluating this GP for any set of points ωi results in a
multivariate normal distribution with mean μðωiÞ and
covariance kðωi;ωjÞ. Furthermore, the discrete propagator

data GðpiÞ are then also normally distributed, with mean
and covariance obtained by applying the linear forward
process (the KL integral) to μ and k, i.e.

GðpiÞ ∼N
�Z

dωKðpi;ωÞμðωÞ;
Z

dω dω0Kðpi;ωÞKðpi;ω0Þkðω;ω0Þ
�
: ð7Þ

As GPs can be specified completely by their second-order
statistics, μ is usually set to zero for simplicity since any
information contained therein may be fully absorbed into k.
However, a nonzero prior mean may still be useful in
practice, in which case it can simply be subtracted from the
data beforehand. Using bold symbols for vectors of discrete
data, e.g. p for a set of momenta pi, the joint distribution of
spectral function values ρ at any point ω and a set of
correlator data GðpÞ can be expressed as

�
ρðωÞ
GðpÞ

�
∼N

�
0;

�
kðω;ωÞ w⊤ðωÞ
wðωÞ W þ σ2n1

��
; ð8Þ

with

½w�iðωÞ ¼
Z

dω0Kðpi;ω0Þkðω0;ωÞ;

½W�ij ¼
Z

dω0dω00 Kðpi;ω0ÞKðpj;ω00Þkðω0;ω00Þ: ð9Þ

Since the joint distribution is normal, the posterior dis-
tribution of the spectral function conditioned on observa-
tions of the correlator can be derived in closed form,

ρðωÞjGðpÞ ∼ GP
�
w⊤ðωÞðW þ σ2n1Þ−1GðpÞ;

kðω;ωÞ − w⊤ðωÞðW þ σ2n1Þ−1wðωÞ
�
: ð10Þ

This is a standard result in multivariate statistics and is
essentially equivalent to GPRwith direct observations, only
with additional insertions of the linear transformation that
one seeks to invert. The GP posterior (10) encodes our
knowledge of the spectral function given the correlator data
and directly accounts for some additive Gaussian noise
with variance σ2n in the observations.
For computational applications of GPs, the covariance is

usually paramtrized by a kernel function kðω;ω0Þ, as
already implied by the notation used above. Since this
fully specifies the GP as mentioned previously, choosing
the right type of kernel is a pivotal part of finding a good
model for a given set of data. A natural choice in many
applications are so-called universal kernels that can
describe any continuous function [38] and hence provide
the required flexibility when little is known about other
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properties of the desired solution a priori. The radial basis
function (RBF) kernel,

kðω;ω0Þ ¼ σ2 exp

�
−
ðω − ω0Þ2

2l2

�
; ð11Þ

is a popular choice due to its universality and every
function in the associated prior being infinitely differ-
entiable, and is also employed in the present work. The
parameters l and σ control the length scale and overall
magnitude of the correlation between data and are subject
to optimization; see Appendix B.
Predictions obtained with GPR can also be understood

within the well-known Backus-Gilbert framework [39],
one of themost popular approaches to spectral reconstruction
in the lattice community. In fact, both methods produce
numerically equivalent estimates under certain conditions
[25], despite following different philosophies. Nevertheless,
the GPR picture is much more flexible, since essentially
any available prior information can be systematically

incorporated into the regression by extending the covariance
matrix in (8), following the same reasoning as in the
construction of the joint distribution of G and ρ. Such prior
information may simply consist of known values of the
spectral function at certain points, in which case they are
treated as direct observations. More generally, it can be any
indirect data related to ρ through a linear operator—such as a
derivative [40]—and even inequality constraints such as
bounds and monotonicity conditions [41].
In summary, GPR is a powerful approach to tackle ill-

conditioned linear inverse problems probabilistically,
which makes it an attractive candidate algorithm for
spectral reconstruction in quantum field theory.

IV. RESULTS

We calculate the vertex dressings with the fRG as
outlined in Sec. II B; for details on the truncation and
computation, see Appendix A. The resulting Euclidean
dressing functions for the scalar and pseudoscalar projec-
tions are shown in Figs. 2(a) and 3(a), respectively.

(a) (b)

FIG. 2. (a) Euclidean dressing of the four-gluon vertex λA4;sc with the projection to obtain the scalar glueball mass, see Sec. II B, from
the fRG (black crosses). This is compared to the reconstruction from the GP (green line). The corresponding spectral function ρA4;sc over
frequency ω obtained with GPR is shown in (b). The light green band represents the 1σ region.

(a) (b)

FIG. 3. (a) Euclidean dressing of the four-gluon vertex λA4;ps with the projection to obtain the pseudoscalar glueball mass, see Sec. II B,
from the fRG (black crosses). This is compared to the reconstruction from the GP (green line). The corresponding spectral function ρA4;ps

over frequency ω obtained with GPR is shown in (b). The light green band represents the 1σ region.

JAN M. PAWLOWSKI et al. PHYS. REV. D 108, 076018 (2023)

076018-4



In the channels considered here, the ghost loops drop
out; see Appendix A 2. Hence, these channels are free of
the IR divergences that are in general present in the four-
gluon vertex and we can utilize the constraint ρA4ð0Þ ¼ 0 in
the GP reconstruction. Furthermore, an additional bias is
introduced in order to suppress unphysical oscillations at
the tails of the spectral function. Similar to the procedure
applied in [26], this is achieved by rescaling the frequency
with a soft step function,

ω → ω̃ ¼ 1

expð−2ðω − ω0Þ=l0Þ þ 1
; ð12Þ

where the parameter l0 controls the steepness and ω0 the
position of the midpoint. This rescaling can be understood
as the introduction of a frequency-dependent length scale in
the RBF kernel, with smaller values around ω0 and larger
values at the tails of the spectral function. We note that
the resonances of interest are already observed without
introducing this additional bias. However, the peaks are
enhanced by this procedure while the reconstruction of the
correlator remains in good agreement with the input data.
While this parametrization suppresses additional structures
(such as excited glueball states at higher energies; see
e.g. [19]), even without the rescaling (12) no additional

features beyond the dominant peak corresponding to the
bound state are observed, apart from the usual oscillatory
behavior at the tail of the spectral function. This implies
that higher excited states exhibit at most subleading
contributions to these vertex projections. Resolving these
structures therefore requires either more sophisticated
projections of the tensor structures or a significantly higher
precision in the calculation of the vertex itself.
The parameters of the RBF kernel and frequency

rescaling are optimized by minimizing an objective func-
tion, conventionally taken to be the negative log-likelihood
(NLL). Unsurprisingly, the NLL shows a flat direction
where some parameters are unconstrained; see Fig. 4. This
can be interpreted as a manifestation of the ill-conditioned
nature of the inverse problem, and may be treated by
imposing a hyperprior. We observe that changing the
parameters in this direction has negligible impact on
the resonant peak position; see Figs. 5 and 6. Hence, the
seemingly heuristic use of a generic hyperprior is well
justified in this context as it does not introduce a bias for
the quantity of interest. Details about this procedure as well
as the optimized parameter values are provided in
Appendix B. The intrinsic error estimate of the GP
posterior is fixed to σn ¼ 10−2, corresponding to an upper
bound on the uncertainty of the fRG calculation. σn is not

FIG. 4. Grid scans of the NLL (B1) of the reconstructions for both channels. Note that the optimizations are performed subsequently,
starting with the RBF and followed by the bias parameters. The red lines indicate the trajectories in parameter space used for comparing
the variance in the spectral functions; see Figs. 5 and 6. The red cross indicates the NLL optimized parameters; see Table II (a) RBF
parameters, scalar channel. (b) Bias parameters, scalar channel. (c) RBF parameters, pseudo-scalar channel. (d) Bias parameters,
pseudo-scalar channel.
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optimized as this diminishes the significance of the like-
lihood for the other parameters [42].
The reconstructed dressings are compared to the fRG

input data in Figs. 2(a) and 3(a), with the associated spectral
functions shown in Figs. 2(b) and 3(b), respectively. From a
Hubbard–Stratonovich transformation it can be inferred
that the vertex dressing corresponds to the negative
dressing function of the bound state under consideration.
Hence, the spectral functions ρsc=ps are computed from the
negative vertex dressing. Consequently, the positive peak
indicates an asymptotic state that is interpreted as the
respective glueball resonance. We also observe negative
structures in the spectral function since the four-gluon
vertex itself is not a gauge-invariant object. The
reconstruction of the vertex dressing largely reproduces
the fRG data within errors. For high momenta, the result
deviates more strongly, in particular for the scalar glueball.
This is due to the additional bias introduced to the kernel

that specifically suppresses any dynamics in the UV
regime.
The glueball masses are extracted from the dominant

peak positions of the spectral functions. We obtain ω̂sc ¼
0.93 GeV for the scalar and ω̂ps ¼ 1.35 GeV for the
pseudoscalar channel. Since we work within the s-channel
approximation and have two incoming momenta each with
the magnitude p, the peak position corresponds to half
of the glueball mass, i.e.msc=ps ¼ 2ω̂sc=ps. Hence, we obtain
the masses msc ¼ 1870ð75Þ MeV for the scalar and
mps ¼ 2700ð120Þ MeV for the pseudoscalar glueball.
The reported errors are a combination of the standard
deviations computed from the GP posterior and an addi-
tional 3% error from the scale setting procedure of the input
data. A more in-depth discussion of the systematic error of
the reconstruction can be found in Appendix B. We
compare our results with masses obtained from indepen-
dent lattice and DSE/BSE studies of the glueball spectrum

FIG. 5. Spectral function of the scalar channel. The bands show the variance with respect to the flat directions of the parameter space;
see Figs. 4(a) and 4(b). The peak position is observed to be robust, even under large parameter changes. The overall magnitude on the
other hand shows considerable variation for both sets of parameters. (a) Scan of the flat direction in the RBF parameters. (b) Scan around
optimal bias parameters.

FIG. 6. Spectral function of the pseudoscalar channel. The bands show the variance with respect to the flat directions of the parameter
space; see Figs. 4(c) and 4(d). The peak position is observed to be robust under variations of the RBF parameters, but shows significantly
stronger deviations compared to the scalar channel for different values of the bias parameters. (a) Scan of the flat direction in the RBF
parameters. (b) Scan around optimal bias parameters.
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in Table I and find them to be in reasonable agreement, in
particular for the pseudoscalar channel where they match
well within the provided uncertainties.

V. CONCLUSION

We put forward a self-consistent approach for the
extraction of bound state information from gauge-fixed
correlation functions. Key to this framework is the spectral
reconstruction of interaction channels in Euclidean space-
time that have overlap with the corresponding gauge-
invariant bound state. The method is applied to low-lying
glueball states in Yang-Mills theory, extracted from the
dressing functions of the Euclidean four-gluon vertex. With
appropriate projection operators of the four-gluon vertex,
we obtain access to the masses of the scalar and pseudo-
scalar glueballs.
The Euclidean dressings are obtained with the functional

renormalization group, also utilizing earlier results for
correlation functions from [21]. The respective spectral
functions are then computed via Gaussian process regres-
sion and their resonance peaks are identified with the
glueball masses: for the scalar and pseudoscalar glueballs,
we arrive at 1870(75) MeV and 2700(120) MeV, respec-
tively. The results agree well with independent studies of
the glueball spectrum, lending further credibility to our
proposed method of computing bound state properties from
vertex dressing functions via spectral reconstruction. The
present approach can also be directly applied to higher
glueball states in Yang-Mills theory, as well as glueball and
other hadronic states in QCD.
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APPENDIX A: DETAILS OF THE fRG SETUP

1. fRG equation for the four-gluon vertex

The master equation of the fRG is the flow equation of
the scale-dependent 1PI effective action. It is obtained by
introducing an IR cutoff with a cutoff scale k via a
momentum-dependent mass function Rkðp2Þ that is added
to the inverse propagator. The respective flow equation is
derived via taking a derivative of the generating functions
with respect to the cutoff scale k,

∂tΓk½Φ� ¼ 1

2
Tr

1

Γð2Þ
k ½Φ�þRk

∂tRk; t¼ log

�
k
Λ

�
; ðA1Þ

where t is the RG time, and the trace in (A1) sums over
species of fields, space-time (momentum), Lorentz indices,
and group indices. The regulator functions carry the
classical dispersion of the ghost and gluon fields as well
as a dimensionless shape function. The present results are
computed with the usual exponential shape function,

rðp2=k2Þ ¼ e−p
2=k2

1 − e−p
2=k2

; ðA2Þ

and an additional wave function renormalization ZA;k or
Zc;k; for more details see Ref. [21]. For a recent review of
the fRG see e.g. [32] and references therein.
Our general setup in Landau gauge Yang-Mills theory

follows [21,33]. The flow of the four-point vertex is
obtained by taking the fourth derivative of (A1) with
respect to the gluon field. In this work, we are only
interested in certain channels of the four-gluon vertex.
Hence, we do not solve the full system self-consistently, but
take all other correlation functions such as the gluon
propagators from [21] as input.

TABLE I. Comparison of scalar (JPC ¼ 0þþ) and pseudoscalar
(JPC ¼ 0−þ) glueball masses from different methods. The results
of [10,12] are rescaled tomatch [13,14]with r0 ¼ 1=418ð5Þ MeV.
The errors of [10,12] are a combination of statistical as well as
systematic uncertainties stemming from the lattice anisotropy and
the scale r0. The errors for [13] are statistical only. For [14], the
quoted values are the statistical as well as systematic uncertainties
for the continuum extrapolation, respectively. For [19], the error
comes from the extrapolation method.

JPC Lattice DSE-BSE This work

0þþ
1760(70) [10] 1850(130) [19] 1870(75)
1740(70) [12] 1640 [16]
1651(23) [13]
1618(26)(25) [14]

0−þ
2650(60) [10] 2580(180) [19] 2700(120)
2610(70) [12] 4530 [16]
2600(40) [13]
2483(61)(55) [14]
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The fRG equation for the four-gluon vertex solved in the
present work is depicted in Fig. 1. This flow is integrated on
the solution of the correlation functions obtained in [21].
There, different IR closures of correlation functions in the
Landau gauge have been computed, and the present work
utilizes the scaling solution. The independence of this
choice has recently been shown in [19], where both

solutions—decoupling and scaling—were considered in
the context of glueballs. The approximation used in [21]
only includes the primitively divergent (classical) tensor
structures, which leads to semiquantitative results. Further
details can be found in [21].
We use the k-dependent dressing functions from [21] as

input. Their parametrizations are given by

Γð2Þ;ab
AA;μνðpÞ ¼ δabΠ⊥

μνðpÞZAðpÞðp2 þm2
TÞ;

Γð3Þ;abc
A3;μνρ

ðp1; p2Þ ¼ ifabcλA3ðp̄Þ
h
ðp1 − p2Þρδμν þ perm

i
;

Γð4Þ;abcd
A4;μνρσ ðp1; p2; p3Þ ¼ λA4ðp̄Þ½fabnfcdnδμρδνσ þ perm�; ðA3Þ

where we approximate the full momentum dependence of the vertices with the symmetric point configuration p̄, see
e.g. [33], defined by

p̄2 ¼ 1

n

Xn
i¼1

p2
i ; ðA4Þ

with n ¼ 3, 4.

2. Glueball projection operators

The full projection operator for obtaining the scalar glueball mass is simply a contraction with the transverse part of the
classical tensor structure, given by

Pabcd
s;μνρσðp; p;−p;−pÞ ¼

½Π⊥ðpÞΠ⊥ðpÞΠ⊥ð−pÞΠ⊥ð−pÞτA4;clðp; p;−pÞ�abcdμνρσ

Π⊥ðpÞΠ⊥ðpÞΠ⊥ð−pÞΠ⊥ð−pÞτA4;clðp; p;−pÞτA4;clðp; p;−pÞ
: ðA5Þ

Indices are suppressed for simplicity and the external momenta are already matched to the momentum parametrization of
the four-gluon vertex,

p1 ¼ p2 ¼ −p3 ¼ −p4 ≡ p: ðA6Þ

The classical four-gluon tensor structure τA4;cl is given in (4) and the transverse projection operator is

Π⊥
μνðpÞ ¼ δμν −

pμpν

p2
: ðA7Þ

The pseudoscalar projection operator is defined by the tensor structure (5) and given by

Pabcd
ps;μνρσðp1; p2;−p1;−p2Þ ¼

½Π⊥ðp1ÞΠ⊥ðp2ÞΠ⊥ð−p1ÞΠ⊥ð−p2ÞτA4;psðp1; p2Þ�abcdμνρσ

Π⊥ðp1ÞΠ⊥ðp2ÞΠ⊥ð−p1ÞΠ⊥ð−p2ÞτA4;psðp1; p2ÞτA4;psðp1; p2Þ
; ðA8Þ

where the ingoing and outgoing external momenta are chosen to be orthogonal,

p1 ¼ −p3; p2 ¼ −p4;

p1 · p2 ¼ 0; p2
1 ¼ p2

2 ¼ p2: ðA9Þ

We note that the projection onto the ghost loop part of the flow analytically vanishes for both projections on the momentum
configurations under consideration. This was observed for a similar momentum configuration in [44].
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APPENDIX B: OPTIMIZATION
OF GP KERNEL PARAMETERS

As stated in Sec. IV, the kernel hyperparameters of the
GP (8) are optimized by minimizing the associated NLL,

− logpðGðpÞjσÞ ¼ 1

2
GðpÞ⊤ðWσ þ σ2n1Þ−1GðpÞ

þ 1

2
log detðWσ þ σ2n1Þ

þ N
2
log 2π; ðB1Þ

where the dependence on the parameters σ is emphasized
by an index. When optimizing the parameters of the RBF
kernel (11) and the frequency rescaling bias (12) simulta-
neously, the parameters favor values that tend to nullify the
bias, such as l0 becoming large. Hence, the parameters are
first optimized only considering the bare RBF kernel in
order to obtain baseline values. Subsequently, the bias is
introduced and its parameters are optimized given the RBF
kernel calculated beforehand. This way, the position and
size of the dynamical part of the spectral function are also
subject to optimization.
The parameters are optimized by performing a high-

resolution grid scan; see Fig. 4. Their optimal values are
provided in Table II. In the direction of the magnitude
parameter σ, the NLL does not change significantly for
larger values. Similarly, in [26] this parameter was
observed to exhibit an open direction towards infinity
and a hyperprior had to be introduced, which is a
manifestation of the ill-conditioning of the inversion.
The dependence of the spectral function on σ is plotted
in Figs. 5 and 6, showing that while it does impact the
magnitude of the dominating peak, its position and other
general features of the spectral function remain stable.

Accordingly, the overall magnitude of the computed
spectral functions should be taken with a grain of salt,
but predictions of other features such as the peak position,
width, and overall shape are robust as the NLL diverges
quickly when considering nonoptimal parameters.
Scanning the spectral functions in the plane of the bias
parameters on the other hand reveals a more drastic change
in the peak position. However, these parameters are
restricted to a much smaller region by the likelihood and
the stability of the peak position is retained. For a more
quantitative statement about the systematic error of the
reconstruction, an empirical comparison of different bias
parametrizations is required. This can potentially be
achieved by mapping out the posterior probability land-
scape with Monte Carlo methods.

APPENDIX C: IMPLEMENTATION DETAILS

The fRG equations are derived using QMeS [45], a
Mathematica package for the derivation of symbolic func-
tional equations. After projecting onto the respective glue-
ball channels, the equations are traced with FormTracer [46].
The resulting momentum-dependent integral-differential
equations are solved in Mathematica 12.0. The GPR is
implemented in Python 3 employing the NumPy [47] and
SciPy libraries [48]. Integrals are approximated using a
discrete Riemann sum.
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