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We construct SUð3ÞL ⊗ SUð3ÞR invariant parity doublet models within the linear realization of the
chiral symmetry. Describing baryons as the superposition of linear representations should be useful
description for transitions toward the chiral restoration. The major problem in the construction is that
there are much more chiral representations for baryons than in the two-flavor cases. To reduce the number
of possible baryon fields, we introduce a hierarchy between representations with good or bad diquarks
(called soft and hard baryon representations, respectively). We use ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ as
soft to construct a chiral invariant Lagrangian, while the ð3; 6Þ þ ð6; 3Þ representations are assumed to be
integrated out, leaving some effective interactions. The mass splitting associated with the strange quark
mass is analyzed in the first and second order in the meson fieldsM in ð3; 3̄Þ þ ð3̄; 3Þ representations. We
found that the chiral SUð3ÞL ⊗ SUð3ÞR constraints are far more restrictive than the SUð3ÞV constraints
used in conventional models for baryons. After extensive analyses within ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ
ð1; 8Þmodels, we found that models in the first order ofM do not reproduce the mass hierarchy correctly,
although the Gell-Mann–Okubo mass relation is satisfied. In the second order, the masses of the positive
parity channels are reproduced well up to the first radial excitations, while some problem in the mass
ordering remains in a negative parity channel. Apparently the baryon dynamics is not well-saturated
by just ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þ representations, as indicated by the necessity of terms higher
order in M.
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I. INTRODUCTION

Chiral symmetry in quantum chromodynamics (QCD) is
the key symmetry to describe the low-energy hadron
dynamics. Although the chiral symmetry is spontaneously
broken by the formation of chiral condensates [1–3], the
chiral symmetry in the underlying theory leaves a number
of constraints on the low energy dynamics [4–7]. Effective
Lagrangians for hadrons are constructed by grouping a set
of fields in a chiral invariant way, modulo small explicit
breaking associated with the current quark masses.

The most general construction of chiral Lagrangian is
based on the nonlinear realization of the chiral symmetry
[8,9] in which fields transform nonlinearly under chiral
transformations. The great advantage of this construction is
that pions accompany space-time derivatives appearing in
powers of ∼∂=Λχ , where Λχ is the typical chiral symmetry
breaking scale related to the pion decay constant fπ as Λχ ∼
4πfπ [10], which leads to the low-energy constants of the
chiral perturbation theory to be ∼Oð10−3Þ [11,12]. This
power counting greatly systematizes the construction of
effective Lagrangians.
While the nonlinear realization has an advantage in

generality and systematics, it also has a disadvantage when
we try to address the physics at energies near or greater than
∼Λχ . One simple way of improving the description is to
manifestly include massive degrees of freedom. The
problem also occurs when we consider the chiral restora-
tion in extreme environments; there, the denominators of
the derivatives, ∼Λχ , become small, invalidating the
derivative expansion with only pions.
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A model of linear realization is less general but more
suitable when we describe QCD in extreme environments
(e.g., neutron stars [13]) with partial restoration of chiral
symmetry. Near the chiral restored region the hadron spectra
should recover chiral multiplets, e.g., ðσ; π⃗Þ. Implementing
candidates of chiral multiplets from the beginning should
simplify our descriptions; we do not have to dynamically
generate relevant degrees of freedom.
In this work we consider a model of baryons in the linear

realization of chiral symmetry, aiming at its application to
dense QCD. We include the parity doublet structure which
allows us to introduce the chiral invariant mass [14–20]. For
increasing baryon densities, the existence of such mass has
large impacts on the density dependence of baryon masses
as well as baryon-meson couplings. Previously we analyzed
models of two-flavors [21–24], but in this work we extend
the model to the three-flavor case. This is necessary to
analyze the dense baryonic matter with hyperons.
The extension from two-flavors to three-flavors, however,

drastically complicates the construction of the chiral
Lagrangian for baryons since there are so many possible
representations. Combining three quarks in linear chiral
representations, one can create several representations for
baryons. For two-flavors, we start with quarks in ð2L; 1RÞ
and ð1L; 2RÞ, then the three products yield ð2L; 1RÞ,
ð4L; 1RÞ, ð3L; 2RÞ, and L ↔ R. When we include only
nucleons, we may focus on ð2L; 1RÞ and ð1L; 2RÞ, and the
number of fields is managable. For three flavors, we start
with quarks in ð3L; 1RÞ and ð1L; 3RÞ, and find much more
representations for their products. Although there are
several studies of baryons based on the models including
possible chiral representations of baryons [25–33], to the

best of our knowledge, for three-flavors, the construction of
a linearly realized chiral Lagrangian for baryons has not
been established.
In order to keep the number of representations tractable,

in this work we introduce dynamical assumptions based on
the quark dynamics. We assume that baryons in repre-
sentations including good diquarks, the representations
ð3̄L; 1RÞ or ð1L; 3̄RÞ, are lighter than those including bad
diquarks, the representations ð6L; 1RÞ or ð1L; 6RÞ [34–37].
In this paper we call baryon representations including good
diquarks “soft baryons” and those with bad diquarks “hard
baryons.” In this paper the hard baryons are integrated out
and do not manifestly appear, but the consequence of such
integration can be traced in effective vertices including
high powers of M (Fig. 1).
Based on this idea we build the chiral Lagrangian for soft

baryon fields in ð3L; 3̄RÞ, ð8L; 1RÞ with L ↔ R. We include
mesonic fields and the parity doublet structure in a chirally
invariant way. Both the spectra of positive and negative
baryons, as well as the first radial excitations, are studied.
As usual in the linear realization, we do not have good
rationals to restrict the power of mesonic fields, so we
examine how important higher-order terms are.
The remarkable and unexpected finding in our construc-

tion is that the chiral symmetry and the above dynamic
assumption give a very strong impact on baryon masses,
especially the SU(3) flavor breaking due to the strange
quark mass. For example, for models including only
ð3L; 3̄RÞ and ð3̄L; 3RÞ, the usual baryon mass ordering
based on the number of strange quarks does not hold, at
least at the order of meson fields we have worked on. We
then add ð8L; 1RÞ and ð1L; 8RÞ representations, finding

FIG. 1. Higher-order quark exchange diagrams. (1) is just combination of the first-order interaction without the bad diquarks. (2) has
three quark exchanges (three meson fields) through the bad diquarks, while (3) has two quark exchanges (two meson fields). In (3), there
is a mixing between naive and mirror representations.
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them to be insufficient. To improve the description of
spectra, we are forced to increase the powers of mesonic
fields up to the second order of Yukawa interactions.
We try to reproduce the ground and first radially excited

states for positive and negative baryon octets. Our model-
ing works for positive parity baryons, but for negative
baryons some of mass ordering related to the strange quark
appears to be inconsistent with the picture based on the
constituent quark models [38]. This situation persists even
after our extensive survey for parameter space.
Some comments are in order for comparison with the

previous studies. The textbook example of the octet mass
formula [39] is based on the SU(3) symmetry with the
explicit breaking as perturbation, but the underlying
Hamiltonian does not have the chiral symmetry. There
are some previous studies for the parity doublet model
including hyperons [25–33]. For example, in Ref. [30],
current quark masses are incorporated into a parity doublet
model based on the SUð3ÞL × SUð3ÞR chiral symmetry, and
the pion-nucleon ΣπN and kaon-nucleon ΣKN terms are
studied. In Ref. [31], explicit breaking is effectively
introduced into the masses without explicit forms of the
Lagrangian terms to study the difference of behavior in hot
matter. However, to the best of our knowledge, there is no
analysis of mass spectra of baryons including hyperons in a
chiral invariant model.
This paper is structured as follows. In Sec. II, the chiral

representations of ð3L; 3̄RÞ þ ð3̄L; 3RÞ and ð8L; 1RÞ þ
ð1L; 8RÞ for octet baryons are defined. In Sec. III, we
study a Lagrangian up to the first order of Yukawa
interactions, and found that the mass hierarchy of the
baryon octet cannot be reproduced. In Sec. IV, we classify
hadronic effective interactions based on quark diagrams.
Then, in Sec. V, we construct the second-order Yukawa-
type interactions which should be induced by integrating
out hard baryons. In Sec. VI, we perform numerical fit of
baryon spectra. Section VII is devoted to the summary.

II. CHIRAL REPRESENTATION FOR HADRON

In three-flavor chiral symmetry SUð3ÞL × SUð3ÞR,
quark fields are defined as the fundamental representa-
tions, namely left-handed ðqLÞl ∼ ð3; 1Þ and right-handed

ðqRÞr ∼ ð1; 3Þ, with upper indices l; r ¼ 1; 2; 3 ¼ u, d, s.
The antiquark fields are defined as the dual representa-
tions ðq̄LÞl ∼ ð3̄; 1Þ and ðq̄RÞr ∼ ð1; 3̄Þ with lower indices l,
r. The scalar meson field is defined as ðMÞlr ∼ ðqLÞl ⊗
ðq̄RÞr ∼ ð3; 3̄Þ in this paper.
Since baryons consist of three valence quarks, the

baryon fields are related with the tensor products of three
quark fields. We define the left-handed baryon field as a
product of a spectator left-handed quark and left- or right-
handed diquark, while the right-handed baryon has a right-
handed spectator quark. Taking irreducible decomposition,
the left-handed baryon can be expressed as the following
representations

qL ⊗ ðqL ⊗ qL þ qR ⊗ qRÞ
∼ ð1; 1Þ þ ð8; 1Þ þ ð8; 1Þ þ ð10; 1Þ þ ð3; 3̄Þ þ ð3; 6Þ: ð1Þ

The octet baryons are included in ð3; 3̄Þ, (8, 1), and (3, 6),
which can be illustrated as in Fig. 2. The representations
ð3; 3̄Þ and (8, 1) contain flavor-antisymmetric diquarks ∼3̄
which are called “good” diquarks, while (3, 6) contains
flavor-symmetric diquarks ∼6 called “bad” diquarks. We
call baryon representations including good diquarks soft
baryons, and those with bad diquark hard baryons. In this
paper the hard baryons are integrated out and do not
manifestly appear, but the consequence of such integration
can be traced in effective vertices including high powers of
M. The detailed discussions are given in Sec. V.
The baryon fields denoted as ψ and χ are related with the

quark fields as follows: For example, the left-handed
baryons have the relations,

ðψLÞl½r1r2� ∼ ðqLÞl ⊗ ðqRÞ½r1 ⊗ ðqRÞr2�; ð2Þ

ðχLÞl1½l2l3� ∼ ðqLÞl1 ⊗ ðqLÞ½l2 ⊗ ðqLÞl3�; ð3Þ

where ½·� implies that two indices in the bracket are
antisymmetrized. The relations can be rewritten as

ðψLÞlr ∼ εrr1r2ðqLÞl ⊗ ðqRÞr1 ⊗ ðqRÞr2 ; ð4Þ

ðχLÞll0 ∼ εl0l1l2ðqLÞl ⊗ ðqLÞl1 ⊗ ðqLÞl2 ; ð5Þ

(a) (b) (c)

FIG. 2. Quark contents for each baryon representations: (a) ð3; 3̄Þ þ ð3̄; 3Þ, (b) ð8; 1Þ þ ð1; 8Þ, and (c) ð3; 6Þ þ ð6; 3Þ. The gray shaded
diquark indicates flavor antisymmetric representation, while the yellow indicates symmetric one.
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where εijk is the totally asymmetric tensor. For these baryon
fields, upper indices are interpreted as the ones of quarks,
and lower indices are as the ones of good diquarks. For
example, ðψLÞl½r1r2� consists of a left-handed quark with
upper index l and two antisymmetrized right-handed quarks
with upper indices r1 and r2, while ðψLÞlr consists of a left-
handed quark with upper index l and a scalar right-handed
diquark (3̄ representation) with lower index r. The baryon
fields with three indices and the ones with two indices are
equivalent through the following relations:

ðψLÞlr ¼
1

2
εrr1r2ðψLÞl½r1r2�; ð6Þ

ðψLÞl½r1r2� ¼ εrr1r2ðψLÞlr; ð7Þ

and there are also the same relations for χ. We call the
baryon fields with three indices “three-index notation”
[Eqs. (2) and (3)], and the ones with two indices “two-
index notation” [Eqs. (4) and (5)] in this paper.
The two-index notation is often used to calculate as

usual, because it is directly related with the adjoint
representation matrices as

ðχÞij ∼

2
6664

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

3
7775; ð8Þ

ðψÞij ∼
1ffiffiffi
3

p Λ0

þ

2
6664

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

3
7775; ð9Þ

for left-handed and right-handed, respectively. To distin-
guish ψ and χ explicitly, we treat a flavor of a baryon as an
index of ψ or χ fields, e.g., ψ1

3 ¼ ψp, χ13 ¼ χp, ψ3
2 ¼ ψΞ0 ,

ψ3
3 ¼ ψΛ0

=
ffiffiffi
3

p
− 2ψΛ=

ffiffiffi
6

p
, and so on. For simplicity, we

define the isospin vectors as

ψN ≡ ðψp;ψnÞ; ð10Þ

ψΣ ≡ ðψΣ− ;ψΣ0 ;ψΣþÞ; ð11Þ

ψΞ ≡ ðψΞ− ;ψΞ0Þ: ð12Þ

We also define the same notations for χ.
In the three-index notation, it is easy to distinguish the

antiquark (3̄) and the diquark (also 3̄), because it has a one-
to-one correspondence between the indices of the baryon
field and the ones of the quark fields, as in Eqs. (2) and (3).

In addition, we can easily see the charge of Uð1ÞA
symmetry in the three-index notation. For example, if
one wants to make a contraction of the baryon field ψR ∼
ð3̄; 3Þ and the meson field M ∼ ð3; 3̄Þ as

ðψRÞrl ðMÞlr ¼ trðψRMÞ; ð13Þ

which is invariant under SUð3ÞL × SUð3ÞR but not invari-
ant under Uð1ÞA, because there are three left-handed quarks
but there are no left-handed antiquarks. The transformation
property is the same as

ðψRÞrl ðMÞlr ∼ ðqRÞrεll1l2ðqLÞl1ðqLÞl2ðqLÞlðq̄RÞr; ð14Þ

where the left and right components are SU(3) singlet but
the left handed one has a finite Uð1ÞA charge.We emphasize
that such term actually appears in the form of a specific
combination with other terms [Eq. (44) in Sec. V D]. This
property also leads to a correspondence between the quark
diagrams and the hadronic effective interactions, as will be
explained in Sec. IV.
Next, let us define the parity doubling partners ψmir and

χmir for ψ and χ respectively as the opposite assigns for the
chiral representations (“mirror” assignment) as

ðψLÞlr ∼ ð3; 3̄Þ; ðψmir
L Þrl ∼ ð3̄; 3Þ; ð15Þ

ðχLÞl1l2 ∼ ð8; 1Þ; ðχmir
L Þr1r2 ∼ ð1; 8Þ; ð16Þ

and these fields have opposite parity respectively as

ψ ⟶
parity þ γ0ψ ; ψmir ⟶

parity
x − γ0ψmir; ð17Þ

χ ⟶
parity þ γ0χ; χmir ⟶

parity
− γ0χmir: ð18Þ

The right-handed ones are also defined in the similar way.
Note that, the mirror assigned fields can be interpreted as

spatially excited states in the following sense. One choice of
the interpolating fields for ψL is qLðqTRCqRÞ ¼ PLqdR,
where C ¼ iγ2γ0 is the charge conjugate matrix, PL ¼
ð1 − γ5Þ=2 is the chiral projection matrix, and dR ¼ qTRCqR
is the scalar diquark field. One possible choice of inter-
polating field for its excited state is ðγμ∂μqRÞðqTLCqLÞ ¼
PLðγμ∂μqÞdL, which has the same chirality but the opposite
chiral representation.
Introducing the mirror fields ψmir and χmir, there are

mixing terms between the naive and the mirror fields as

LCIM ¼ −mψ
0 ðψ̄Lγ5ψ

mir
R þ ψ̄Rγ5ψ

mir
L Þ þ H:c:

−mχ
0ðχ̄Lγ5χmir

R þ χ̄Rγ5χ
mir
L Þ þ H:c:; ð19Þ

where the transformation properties, e.g., ψL → ULψL and
ψmir
R → ULψ

mir
R , with UL;R ∈SUð3ÞL;R, make the above
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mass terms chiral invariant. This parameters mψ ;χ
0 corre-

sponds to he chiral invariant mass, since this mixing terms
are chiral symmetric.

III. MODELS WITH FIRST-ORDER YUKAWA
INTERACTIONS

In this section, we study the mass hierarchy of octet
baryons in models with first-order Yukawa interactions.
First, in Sec. III A, we review the Gell-Mann–Okubo mass
relation for octet baryons, which is derived from the flavor
symmetry. Next, in Secs. III B and III C, we deal with
models based on the chiral Uð3ÞL × Uð3ÞR symmetry which
include ψs and χs given in the previous section with first-
order Yukawa interactions, and see that these models have
some problems to satisfy the Gell-Mann–Okubo mass
relation. Consequently, we will see that the minimal chiral
model for octet baryons must include second-order Yukawa
interactions.

A. Review of Gell-Mann–Okubo mass relation

A basic model with flavor SU(3) symmetry is

LV ¼ −a tr B̄B − b tr B̄MB − c tr B̄BM; ð20Þ

where B is a 3 × 3 matrix of the octet baryon fields, and a,
b, c are real parameters. We emphasize that this Lagrangian,
commonly appearing in textbooks of group theories, has the
SU(3) flavor symmetry but does not possess the SUð3ÞL ×
SUð3ÞR symmetry.
Assuming that the meson field M has a vacuum expect-

ation value (VEV) hMi ¼ diagðα; β; γÞ and isospin sym-
metry α ¼ β, the masses of octet baryons are obtained as

mN ¼ aþ bαþ cγ; ð21Þ

mΣ ¼ aþ bαþ cα; ð22Þ

mΞ ¼ aþ bγ þ cα; ð23Þ

mΛ ¼ aþ b
αþ 2γ

3
þ c

αþ 2γ

3
: ð24Þ

Erasing the parameters a, b and c, we have the following
relation:

mN þmΞ

2
¼ 3mΛ þmΣ

4
; ð25Þ

which is called the Gell-Mann–Okubo mass relation for
octet baryons.
In a naive quark mass counting, the Gell-Mann–Okubo

mass relation is satisfied by assumingMu ≃Md,mN ∼ 3Mu,
mΞ ∼Mu þ 2Ms, mΛ ∼ 2Mu þMs, and mΣ ∼ 2Mu þMs,
where Mq (q ¼ u, d, s) are the constituent quark masses.
These estimates hold for typical constituent quark models.
On the other hand, these quark counting is sufficient but not
necessary conditions; the Gell-Mann–Okubo mass relation
is a weaker condition than that deduced from the quark
counting.

B. Model 1: Only ð3; 3̄Þ+ ð3̄; 3Þ
First we consider a model including only the ð3; 3̄Þ þ

ð3̄; 3Þ representations for octet baryons, ψ , and the ð3; 3̄Þ
representation of mesons, M, which generates the chiral
variant mass of baryons through the spontaneous chiral
symmetry breaking. The chiral invariant term for Yukawa
interactions at the first order in M is

Lmodelð1Þ ¼ −g½εl1l2l3εr1r2r3ðψ̄LÞr1l1 ðM†Þr2l2 ðψRÞr3l3
þ εl1l2l3ε

r1r2r3ðψ̄RÞl1r1ðMÞl2r2ðψLÞl3r3 �; ð26Þ

where εijk is the totally asymmetric tensor.
Equation (26) can be represented graphically in Fig. 3. In

this model, σs (∝ ðMÞ33, or ∝ hs̄si) contributes only to the Σ
baryons. This implies that the Ξ baryons must be degen-
erated with the nucleons in this model, and therefore, this
model cannot reproduce the octet baryon masses correctly.
It should be instructive to mention the difference from

the two-flavor case where we have only nucleons for which
we use ð2L; 1RÞ and ð1L; 2RÞ representations. The ð2L; 1RÞ
representations may be constructed as qLðqLÞ2 or qLðqRÞ2.
Here good diquarks are the SU(2) singlet, but in the context
of three-flavor, these diquarks are 3̄ representation in
SU(3). To construct baryon octet analogous to nucleons
in two-flavor models, we need to add more representations
in SU(3).

(a) (b) (c)

FIG. 3. Yukawa couplings between ð3; 3̄Þ and ð3̄; 3Þ baryon fields.
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C. Model 2: ð3; 3̄Þ + ð3̄; 3Þ and ð8; 1Þ+ ð1; 8Þ
Next we add the representation ð8; 1Þ þ ð1; 8Þ, χ, to

models of ð3; 3̄Þ þ ð3̄; 3Þ. We emphasize that, at the first
(and second) orders inM, there are no Yukawa interactions
that couple χL and χR fields. This is because the χ contains
three valence quarks with all left-handed or right-handed so
that Yukawa interactions with χ should include three quark
exchanges that flip the chirality of all three quarks. In other
words, since Uð1ÞA-charges for χL, χR,M are −3, 3, and −2
respectively, a Uð1ÞA symmetric term cannot be con-
structed unless we consider the cubic orders, M3 or ðM†Þ3.
There are, however, the first order Yukawa interactions

between ψ and χ. The simplest Lagrangian, at the leading
order in M, is

Lmodelð2Þ ¼ Lmodelð1Þ − g0tr½χ̄LMψR þ χ̄RM†ψL þ H:c:�:
ð27Þ

This additional interaction trðχ̄RM†ψLÞ can be interpreted
as in Fig. 4. The strange quark contributes to Ξ baryons
through this interaction yields splitting between Σ and Ξ.
This model still contains problems in reproducing the

spectra of octet baryons. To see this, let us calculate
the mass eigenvalues for the ground-state octet baryons in
this model by taking the VEV as hMi ¼ diagðα; β; γÞ with
α ¼ β as before. We note that α, β, and γ correspond to
the contribution from hūui, hd̄di, and hs̄si, and α ¼ β
is assured by the isospin symmetry. According to the
linear sigma model, when the pion and kaon decay
constants are fπ ≈ 93 MeV and fK ≈ 110 MeV, its value
is hMi ∝ diagðfπ; fπ; 2fK − fπÞ ≈ diagð93; 93; 127Þ MeV.
Using the VEVofM, the Lagrangian can be decomposed as

Lmodelð2Þ ¼ −ð ψ̄N χ̄N ÞM̂N

�
ψN

χN

�
− ð ψ̄Σ χ̄Σ ÞM̂Σ

�
ψΣ

χΣ

�

− ð ψ̄Ξ χ̄Ξ ÞM̂Ξ

�
ψΞ

χΞ

�
þ ðterms forΛbaryonsÞ;

ð28Þ

where M̂N , M̂Σ and M̂Ξ are 2 × 2 mass matrices given by

M̂N ¼
�−gα hα

hα 0

�
;

M̂Σ ¼
�−gγ hα

hα 0

�
;

M̂Ξ ¼
�−gα hγ

hγ 0

�
: ð29Þ

The strange quark contributions for Σ baryons, which enters
the diagonal components in the mass matrix, corresponds to
Fig. 3(b). The one for Ξ baryons, which enters the off-
diagonal components, corresponds to Fig. 4(c). The mass
eigenvalues for the ground-state octet members can be
written as

m½N� ¼ mðjgαj; jhαjÞ; ð30Þ

m½Σ� ¼ mðjgγj; jhαjÞ; ð31Þ

m½Ξ� ¼ mðjgαj; jhγjÞ; ð32Þ

where mðx; yÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=2Þ2 þ y2

p
− x=2 is an eigenvalue of

the matrix
�
x
y
y
0

�
.

Here we note jgαj < jgγj and ∂xmðx; yÞ < 0; this means
that this model leads tom½N� > m½Σ�. Therefore, somewhat
counterintuitively, this model cannot reproduce the octet
baryon masses correctly.
Note that, when we neglect the mixing with the singlet Λ

baryon, the mass term is expressed as

−ð ψ̄Λ χ̄Λ ÞM̂Λ

�
ψΛ

χΛ

�
; ð33Þ

with

M̂Λ ¼
 
− g

3
ð4α − γÞ h

3
ðαþ 2γÞ

h
3
ðαþ 2γÞ 0

!
: ð34Þ

From this, the mass of the octet Λ baryon can be
calculated as

m½Λ� ¼ mðjgð4α − γÞj=3; jhðαþ 2γÞj=3Þ: ð35Þ

(a) (b) (c)

FIG. 4. Yukawa couplings between ð3; 3̄Þ and (1, 8) baryon fields.

MINAMIKAWA, GAO, KOJO, and HARADA PHYS. REV. D 108, 076017 (2023)

076017-6



We stress that the mass matrices of octet baryons satisfy
the Gell-Mann–Okubo mass relation as

1

2
½M̂N þ M̂Ξ� ¼

1

4
½3M̂Λ þ M̂Σ�: ð36Þ

(See Sec. VI B for details.) However, the mass eigenvalues
can satisfy the Gell-Mann–Okubo mass relation only up to
first order of strange quark breaking Oðγ − αÞ.
To summarize this section, we found that simple models

based on the baryon octet with good diquarks do not
reproduce the baryon octet masses correctly, unless we go
beyond the lowest order in M. We need to add more
representations including bad diquarks or go to higher
orders in M.

IV. QUARK DIAGRAM AND CHIRAL YUKAWA
INTERACTION

In the previous section we have found that the simplest
version of the ð3; 3̄Þ þ ð3̄; 3Þ and ð8; 1Þ þ ð1; 8Þmodel does
not work well. We have to go beyond the leading order, in
other word, we need to include two or more M fields in
Yukawa interaction terms. Since there are many possible
terms for Yukawa interactions at higher order, we need to
set up some rules for systematic treatments.
In this paper, we propose to use quark diagrams to

classify Yukawa interactions. Quark fields in baryon and
meson fields are connected to manifestly conserve the
quantum numbers. At the first order of M (the first order
Yukawa interactions), there are only two types of chiral
Yukawa interaction. Here, although the first order Yukawa
terms were treated in the last section, we repeat the analysis
of the graph in terms of meson-diquark and meson-
spectator couplings. The coupling constants are expressed
as ga1;2 and gs1;2, respectively. Here, the subscript 1, 2 refers
to two baryon fields in the parity doublet model for a given
representation, ψ1;2 and χ1;2. In the next section (Sec. V),
we will deal with “second-order” Yukawa interactions,
which include two quark exchanges (two meson fields).

A. Correspondence between quark diagrams
and hadronic effective interactions

We explain how to find the hadronic effective inter-
action corresponding to a given quark diagram. To find the
correspondence, the three-index notation [Eqs. (2) and (3)]
for baryons is more convenient than the two-index nota-
tion. The two-index notation is useful for notational
simplicity, though.
As shown in Fig. 5, one draws a quark diagram in which

each pair of q̄i and qi (i ¼ L;R) is connected though a
quark line. Along quark lines, charges in the Uð3ÞL ×
Uð3ÞR symmetry are conserved. Baryonic fields with
different chirality are connected by inserting mesonic
fields.

According to our dynamical assumption based on
diquarks, the chirality flipping processes involving bad
diquarks are assumed to be suppressed. Integrating such
intermediate states involves at least the second order in M.
The second-order contribution to the baryon mass is about
∼hMi2=ðMhard −MsoftÞ where hMi is the VEV of the
meson field and Mhard and Msoft are the masses for hard-
and soft-baryons, respectively. The mass scale Mhard −
Msoft is the order of MΔ −MN ∼ 300 MeV. The major
assumption in this paper is that, the approximation
hMi=ðMhard −MsoftÞ ≪ 1, which should become increas-
ing valid toward the chiral restoration with hMi → 0, also
sheds light on baryons in the vacuum. Under this
assumption the second-order contributions in hMi are
suppressed compared with the first-order contributions.
Meanwhile, the direct coupling between soft baryons

(baryons with good diquarks) yields soft intermediate states
which cannot be treated perturbatively; the Hamiltonian for
soft baryonic fields must be fully diagonalized. The full
diagonalization involves iterations of soft baryon graphs; to
avoid the double counting, from the list of higher-order
terms in M we must pick up terms in which only hard
baryons (baryons with bad-diquarks) appear in the inter-
mediate states. In the following we dictate how to organize
interactions between ψ and χ fields.

B. “First-order” Yukawa interaction

We begin with the first order Yukawa interactions. For
soft baryon fields there are only two possible processes:

(i) Coupling to diquarks—The Yukawa interaction
couples to a quark qR in ð3L; 3̄RÞ representation,
ψL ∼ qL½qRqR�. In other words, the matrix M cou-
ples to one of quarks forming a good diquark. After
the chiral flipping, the ð3̄L; 3RÞ representation, ψR ∼
½qLqL�qR is formed. This case was discussed in
Sec. III B. The same is true after exchanges of
L and R.

(ii) Coupling to a spectator quark—A spectator quark
qL in ð3L; 3̄RÞ representation, ψL ∼ qL½qRqR�, cou-
ples to M and flips the chirality. The resulting
representation is ð1L; 8RÞ, ψR ∼ qR½qRqR�. This case
was discussed in Sec. III C. The same is true after
exchanges of L and R.

FIG. 5. Correspondence between a quark diagram and a
hadronic effective interaction.
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The same arguments are applied to the mirror representa-
tions. Below we write down the effective Lagrangian for
these couplings.

1. Diquark interaction (ga1;2)

The first-order chiral Yukawa interaction corresponding
to a diagram in Fig. 6 is written as

ðψ̄RÞr1½l1l2�ðMÞl2r2ðψLÞl1½r1r2�: ð37Þ

In the two-index notation, this is equivalent to

εl1l2l3ε
r1r2r3ðψ̄RÞl3r1ðMÞl2r2ðψLÞl1r3 ; ð38Þ

which was treated in Sec. III B. This expression is also
equivalent to the following contribution:

trðψ̄MψÞ − tr½ψ̄ψðtrðMÞ −MÞ� þ trðψ̄ÞtrðMÞtrðψÞ
− trðψ̄ÞtrðMψÞ − trðψ̄MÞtrðψÞ: ð39Þ

The traced baryonic fields tr ψ or tr ψ̄ represent the Λ0

(flavor-singlet Λ baryon). Terms without Λ0 are summa-
rized in the first line of Eq. (39) which takes the same form
as Eq. (20), so that the flavor-octet baryons satisfy the Gell-
Mann–Okubo mass relation.
In the following sections, the coupling constants of the

Yukawa interaction of the form given in Eq. (38) for naive
representation is denoted as ga1 and that for mirror repre-
sentation is as ga2.

2. Spectator interaction (gs1;2)

Figure 7 shows that one of three quarks qL included in
the ð8L; 1RÞ representation flips its chirality to qR. The
corresponding effective interaction is written as

ðχ̄RÞr½r1r2�ðM†Þrl ðψLÞl½r1r2�: ð40Þ

In the two-index notation, this can be written as

trðχ̄RM†ψLÞ: ð41Þ

We note that this term generates the contributions to the
masses of octet baryons which satisfy the Gell-Mann–
Okubo mass relation as shown in Eq. (36). Wewould like to

stress that, even if any pair of quarks in χ forms a diquark,
as seen in Fig. 7, the corresponding effective interaction is
expressed by the term given in Eq. (40). This property is
because of the traceless property of χ, or equivalently,

ðχÞi½jk� þ ðχÞj½ki� þ ðχÞk½ij� ¼ 0: ð42Þ

In the following sections, the coupling constants of
the Yukawa interaction connecting χ and ψ are denoted
as gs1 and gs2.

V. INTEGRATING OUT BARYONS INCLUDING
A BAD DIQUARK: SECOND-ORDER YUKAWA

INTERACTION

In this section, we construct a minimal set of the second-
order Yukawa interactions based on the quark diagram
introduced in the previous section.
We omit the flavor singlet Λ baryons for simplicity,

which may be heavier than the octet baryons due to the
Uð1ÞA anomaly. (See Sec. V E for the singlet baryons.)
As mentioned in Sec. IVA, it is important to omit terms

which generate soft intermediate states. In this section we
carefully pick out terms yielding only hard intermediate
states.

A. Classification of the processes: Overview

We consider two sets of representations ψ1;2 and χ1;2 for
the parity doublet and examine how to combine them to

FIG. 6. First-order chiral Yukawa interaction between ð3̄; 3Þ
and ð3; 3̄Þ.

FIG. 7. First-order chiral Yukawa interactions connecting from
ð8L; 1RÞ to ð3̄L; 3RÞ representations. Although there are three
patterns, all of them correspond to the same effective interaction,
due to the traceless of χ.
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generate the second order inM. Single insertion of a meson
line flips the chirality and change the chiral representation
of baryon fields. As we have mentioned, we have to remove
graphs which are simply iterations of the first order graph.
For this purpose, the representations generated by the
chirality flipping process must belong to hard baryons
which include a bad diquark. As we stated in the previous
section, the transition from soft to hard baryon intermediate
states effectively introduce a factor hMi=ðMhard −MsoftÞ as
an expansion parameter.
In this paper we focus on the Yukawa interactions

concerning the scalar and pseudoscalar mesons only.
Then, from the structure of the Dirac spinor, the chirality
of the baryon must flip at the interaction point. As we will
show below, this is impossible without mirror representa-
tions. Thanks to the availability of the mirror representations
in our framework, Yukawa interaction terms can be made
SU(3) chiral invariant by using the mirror representation for
one of baryon fields.

B. Transition ψ1;2 → ψ2;1

Let us consider the transition between the same chiral
representations. First we examine ψ1;2 → ψ2;1. There are
three possible processes.

1. Double spectator-meson interactions (ψ-ψ)

A spectator quark qR of ψR ∼ qR½qLqL� flips the chirality
twice (Fig. 8). In this process hard baryons do not appear in
the intermediate states, we must omit them to avoid the
double counting.

2. Spectator-meson and diquark-meson interactions
(h1, ψ-ψ)

Both a spectator quark and a quark forming a diquark flip
the chirality once. The chirality flipping in a diquark
destroys a good diquark in the initial state and generates
a hard baryon in the intermediate states (Fig. 9). This
interaction can be written as

ðψ̄RÞr1½l1l0�ðMÞl1r2ðM†Þr1l2 ðψmir
L Þr2½l2l0�: ð43Þ

In terms of the two-index notation, this is written as

trðψ̄RM†Mψmir
L Þ − trðψ̄RM†ÞtrðMψmir

L Þ: ð44Þ

The first term trðψ̄RM†Mψmir
L Þ satisfies the Gell-

Mann–Okubo mass relation, while the second term
trðψ̄RM†ÞtrðMψmir

L Þ breaks it, because it is not the form
of Eq. (20). However, when the flavor singlet Λ is omitted,
this term contributes only to the octet member of Λ baryon
and the breaking contribution is proportional to ðγ − αÞ2.
Therefore, this interaction satisfies the Gell-Mann–Okubo
mass relation up to first-order of strange quark mass
perturbation. We should stress that this term is possible
only when there exists a mirror representation ψmir

L .

3. Double meson insertions into a single quark
in a diquark (h2, ψ-ψ)

Figure 10 shows the diagram with double chirality
flipping in a quark belonging to a diquark. The intermediate
states are hard. This interaction can be written as

ðψ̄RÞr½l1l�ðMM†Þl1l2ðψmir
L Þr½l2l�; ð45Þ

or in the index contracted notation,

tr½ψ̄Rψ
mir
L ðtrðMM†Þ −MM†Þ�; ð46Þ

which satisfies the Gell-Mann–Okubo mass relation.

C. Transition χ 1;2 → χ 2;1
Next, we examine χ1;2 → χ2;1. There are three possible

processes. The processes are similar to the ψ1;2 → ψ2;1

transitions but the microphysics is not quite identical.

FIG. 8. Yukawa coupling between ð3̄; 3Þ and ð3̄; 3Þ where a
spectator quark flips the chirality.

FIG. 9. Yukawa coupling between ð3̄; 3Þ and ð3̄; 3Þ where a
spectator quark and a quark in the good-diquark flip the chirality.

FIG. 10. Yukawa coupling between ð3̄; 3Þ and ð3̄; 3Þ where a
spectator quark in the good-diquark flips the chirality.
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1. Double spectator-meson interactions (χ -χ )

As in the ψ cases, double meson insertions into a
spectator quark qR of χR ∼ qR½qRqR� (Fig. 11) does not
contain any hard baryons and we must omit them to avoid
the double counting.

2. Double meson insertions into a single quark
in a diquark (χ -χ )

Figure 12 shows the diagram with double chirality
flipping in a quark belonging to a diquark. The intermediate
states are hard. The difference between the upper and lower
panels are the constituents forming the diquark. In the
former this interaction can be written as

ðχ̄RÞr1½r2r3�ðM†MÞr3r4ðχmir
L Þr1½r2r4�; ð47Þ

or in the index contracted notation,

tr½χ̄Rχmir
L ðtrðM†MÞ −M†MÞ�: ð48Þ

In the latter, there is reformation of a diquark. The
corresponding interaction term can be written as

ðχ̄RÞr1½r2r3�ðM†MÞr3r4ðχmir
L Þr2½r1r4�; ð49Þ

or in the index contracted notation,

trðχ̄RM†Mχmir
L Þ − tr½χ̄Rχmir

L ðtrðM†MÞ −M†MÞ�: ð50Þ

Both terms separately satisfy the Gell-Mann–Okubo mass
relation.

D. Transition ψ1;2 → χ 1;2 or χ 2;1
Finally we examine the off-diagonal transitions between

different chiral representations, the ψ1;2 → χ2;1 processes.
It turns out that the only nonzero processes are two meson
insertions to quarks belonging to good diquarks. Figure 13
shows two diagrams, but they can be expressed by a single
term in the Lagrangian,

ðψ̄RÞr½l1l2�ðMÞl1r1ðMÞl2r2ðχmir
L Þr½r1r2�; ð51Þ

or

ðψ̄RÞr½l1l2�ðMÞl1r1ðMÞl2r2ðχmir
L Þr1½rr2�: ð52Þ

Equations (51) and (52) are equivalent due to the traceless
of χ given in Eq. (42). This can be also written as

trðψ̄Rχ
mir
L ÔÞ; ð53Þ

where

Ôr3
l3
≡ εl1l2l3ε

r1r2r3ðMÞl1r1ðMÞl2r2 : ð54Þ

From the expression in Eq. (53), one can easily see that this
term satisfies the Gell-Mann–Okubo mass relation.

E. Singlet Λ baryon

In this paper, we omit the contribution from the flavor
singlet Λ baryons, Λ0. In the quark model, wave functions
of three quarks in a flavor-singlet baryon are totally
antisymmetric in the flavor space as well as in the color

FIG. 11. Yukawa coupling between (1, 8) and (1, 8) where a
spectator quark flips the chirality.

FIG. 12. Yukawa coupling between (1, 8) and (8, 1) with
double chirality flipping.

FIG. 13. Although there are two patterns, they correspond to
the same effective interaction.
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space. Since the spin wave functions cannot be totally
antisymmetric, the space part of the wave functions should
be in the excited level. This implies that Λ0 cannot be a
ground state.
In the present model a pair ofΛ0s is included in the ð3; 3̄Þ

and ð3̄; 3Þ representations, which may mix with some Λ
baryons of the octet members when the flavor symmetry
breaking is included. However, we note that Λ0 baryon
appears from chiral singlet Λ baryons of (1, 1) representa-
tion, for which there exists a chiral symmetic mass term
given by

−mΛðΛ̄ð1;1Þ
L Λð1;1Þ

R þ Λ̄ð1;1Þ
R Λð1;1Þ

L Þ; ð55Þ

corresponding to the quark diagram including Uð1ÞA
anomaly as in Fig. 14. TheΛ baryon of (1, 1) representation
can be made heavy even before the spontaneous chiral
symmetry breaking. When the chiral symmetry is sponta-
neously broken, this mixes with the flavor singlet Λ baryon
belonging to ð3; 3̄Þ and ð3̄; 3Þ representations. Thus, we
naturally expect that the flavor singlet Λ baryons are
heavier than the flavor-octet Λ baryons.

VI. NUMERICAL FIT TO MASS SPECTRA

A. Model

The entire Lagrangian which we use in this work consists
of the following sectors:

Ltotal ¼ Lkin þ LCIM þ LYukawa þ L2nd: ð56Þ

The kinetic term is just the ordinal one for ψ, ψmir, χ, and
χmir. The chiral invariant mass terms are expressed as

LCIM ¼ −m0ðψ̄γ5ψmirÞ −m0ðχ̄γ5χmirÞ þ H:c:; ð57Þ

where we suppose the chiral invariant masses for ψ and χ
are the same for simplicity.
The first-order Yukawa interactions are given by

LYukawa ¼ −ga1½−εr1r2r3εl1l2l3ðψ̄LÞr1l1 ðM†Þr2l2 ðψRÞr3l3 þH:c:�
− ga2½−εl1l2l3εr1r2r3ðψ̄mir

L Þl1r1ðMÞl2r2ðψmir
R Þl3r3 þH:c:�

− gs1½trðψ̄LMχR þ ψ̄RM†χL þH:c:Þ�
− gs2½trðψ̄mir

L M†χmir
R þ ψ̄mir

R Mχmir
L þH:c:Þ�: ð58Þ

The second-order terms introduced in the previous section
are summarized as

L2nd ¼ −
gd1
fπ

½trðψ̄Lχ
mir
R Ô†Þ − trðψ̄Rχ

mir
L ÔÞ þ H:c:� − gd2

fπ
½trðχ̄Lψmir

R ÔÞ − trðχ̄Rψmir
L Ô†Þ þ H:c:�

−
h1
fπ

ftrðψ̄LMM†ψmir
R Þ − trðψ̄LMÞtrðM†ψmir

R Þ − trðψ̄RM†Mψmir
L Þ þ trðψ̄RM†ÞtrðMψmir

L Þ þ H:c:g

−
h2
fπ

ftr½ψ̄Lψ
mir
R ðtrðMM†Þ −M†MÞ� − tr½ψ̄Rψ

mir
L ðtrðMM†Þ −MM†Þ� þ H:c:g

−
h3
fπ

ftr½χ̄Lχmir
R ðtrðM†MÞ −MM†Þ� − tr½χ̄Rχmir

L ðtrðM†MÞ −M†MÞ� þ H:c:g

−
h4
fπ

f−trðχ̄LMM†χmir
R Þ þ tr½χ̄Lχmir

R ðtrðMM†Þ −MM†Þ� þ trðχ̄RM†Mχmir
L Þ

− tr½χ̄Rχmir
L ðtrðM†MÞ −M†MÞ� þ H:c:g; ð59Þ

with Ô defined in Eq. (54). We take the mean field approximation for the scalar meson hMi ¼ diagðα; β; γÞ, assuming the
isospin symmetry α ¼ β. It is convenient to introduce a unified notation for the chiral representations of baryons as
Ψi ¼ ðψ i; χi; γ5ψmir

i ; γ5χmir
i ÞT (i ¼ N;Λ;Σ;Ξ). By using this, mass terms of baryons are written as

L̃ ¼ −
X

i¼N;Λ;Σ;Ξ
Ψ̄iM̂iΨi; ð60Þ

where the mass matrices M̂i (i ¼ N;Λ;Σ;Ξ) is defined as

FIG. 14. Anomalous interaction between the chiral singlet
baryons Λ ∼ ð1; 1Þ.
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M̂ðxa;xs;xd;xh1;xh23;xh4Þ

≡

0
BBBBBB@

ga1x
a gs1x

s m0þ h1
fπ
xh1þ h2

fπ
xh23 gd

1

fπ
xd

0
gd
2

fπ
xd m0þ h3

fπ
xh23þ h4

fπ
xh4

ga2x
a gs2x

s

0

1
CCCCCCA

ð61Þ

with xa; � � � ; xh4 defined in Table I. We note that the matrix
M̂ is symmetric, so we omitted some components
in Eq. (61).
Diagonalizing the 4 × 4matrix M̂i in Eq. (61), we obtain

four mass eigenvalues, mg:s:
i , mð1Þ

i , −mð2Þ
i , and −mð3Þ

i , and

the corresponding mass eigenstates, Bg:s:
i , Bð1Þ

i , γ5B
ð2Þ
i and

γ5B
ð3Þ
i , where Bð2Þ

i and Bð3Þ
i are negative parity baryons. As

a result, the mass term is rewritten as

L̃ ¼ −
X
i

½mg:s:
i B̄g:s:

i Bg:s:
i þmð1Þ

i B̄ð1Þ
i Bð1Þ

i

þmð2Þ
i B̄ð2Þ

i Bð2Þ
i þmð3Þ

i B̄ð3Þ
i Bð3Þ

i �: ð62Þ

B. Gell-Mann–Okubo mass relation for mass matrices

As seen in Sec. VA, all interactions except the h1 term
satisfy the Gell-Mann–Okubo mass relation. The breaking
term is proportional to ϵ2, where ϵ is defined in the VEVof
the meson field as hMi ¼ diagðα; α; αþ ϵÞ. Therefore,
assuming ϵ ≪ α, the Gell-Mann–Okubo mass relations
among the mass matrices for N, Λ, Σ, and Ξ are approx-
imately satisfied as

M̂N þ M̂Ξ

2
−
3M̂Λ þ M̂Σ

4
¼ Oððϵ=αÞ2Þ: ð63Þ

Let D̂i be the diagonalized matrices of M̂i, and let ÛN be
the unitary matrix which diagonalizes M̂N . Then the
perturbations for ϵ of the mass eigenvalues are

D̂f ¼ D̂N þ diag

�
Û†

N

dM̂f

dϵ

����
ϵ¼0

ÛN

	
ϵþOðϵ2Þ; ð64Þ

where f ¼ Λ;Σ;Ξ, and diag½X̂� is the diagonal part of X̂.
Therefore, Eq. (63) implies that the mass eigenvalues in this
model can satisfy the Gell-Mann–Okubo mass relation for
small ϵ as

D̂N þ D̂Ξ

2
−
3D̂Λ þ D̂Σ

4
¼ Oððϵ=αÞ2Þ: ð65Þ

This argument implies that the Gell-Mann–Okubo mass
relation is satisfied for small ϵ=α in this model. However, as
seen in the previous sections, it is rather difficult to
reproduce the mass ordering for hyperons.

C. Traces of mass matrices

In this section, we would like to note that there are
nontrivial relations among traces of the mass matrices. The
explicit forms of traces are shown as follows1:

trðM̂NÞ ¼ ðga1 þ ga2Þα; ð67Þ

trðM̂ΣÞ ¼ ðga1 þ ga2Þγ ¼ trðM̂NÞ
γ

α
; ð68Þ

trðM̂ΞÞ ¼ ðga1 þ ga2Þα ¼ trðM̂NÞ; ð69Þ

trðM̂ΛÞ ¼ ðga1 þ ga2Þ
4α − γ

3
¼ trðM̂NÞ

ð4α − γÞ=3
α

: ð70Þ

We determine the VEVs of the meson field M from the
decay constants of pion and kaon as

α ¼ fπ; γ ¼ 2fK − fπ: ð71Þ

In Table II, the input values of fπ and fK are shown
together with the determined values of α and γ. As for the
baryon masses, we use the values listed in Table III picked
up from the PDG table [40]. The value of the tr½M̂N � is
determined as

TABLE II. Physical inputs of the decay constants for pion and
kaon [40], and the VEV of the meson field hMi ¼ diagðα; β; γÞ
with assuming isospin symmetry α ¼ β.

fπ 93 MeV
fK 110 MeV
α fπð¼ 93 MeVÞ
γ 2fK − fπð¼ 127 MeVÞ

TABLE I. Mass matrices for the nucleons, the Σ baryons, the Ξ
baryons, and the Λ baryons. See Table II for α and γ.

ga1;2 gs1;2 gd1;2 h1 h2, h3 h4

MN ¼ Mð α, α, 2α2, α2, 2α2, α2Þ
MΣ ¼ Mð γ, α, 2αγ, α2, α2 þ γ2, γ2Þ
MΞ ¼ Mð α, γ, 2αγ, γ2, α2 þ γ2, α2Þ
MΛ ¼ Mð 4α−γ

3
, αþ2γ

3
, 2 αγþ2α2

3
, 4αγ−α2

3
, 5α2þγ2

3
, 4α2−γ2

3
Þ

1We note that these matrices satisfy the Gell-Mann–Okubo
mass relation as

trðM̂NÞ þ trðM̂ΞÞ
2

¼ 3trðM̂ΛÞ þ trðM̂ΣÞ
4

: ð66Þ
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trðM̂NÞ ¼ ð939þ 1440 − 1530 − 1650Þ MeV

¼ −801 MeV: ð72Þ

Then, the trace values for the other flavors are also
determined as the following:

trðM̂ΣÞ ¼ trðM̂NÞ
γ

α
¼ 1094 MeV; ð73Þ

trðM̂ΞÞ ¼ −801 MeV; ð74Þ

trðM̂ΛÞ ¼ trðM̂NÞ
ð4α − γÞ=3

α
¼ −703 MeV: ð75Þ

We note that not all of four masses in a given baryon
flavor, except N and Λ, are well-established as can be seen
from Table III. The trace trðM̂ΛÞ with the experimental
values

ð1116þ 1600 − 1674 − 1800Þ MeV ¼ −758 MeV: ð76Þ

This value is close to the value of −703 MeV in Eq. (75),
with trðM̂NÞ and hMi as inputs. The agreement seems
reasonably good. Actually the octet Λmass has ambiguities
related to the mixing with the singlet, so the saturation of
the equality including only the octet Λ implies the mixing
between the singlet and octet is not very large.
On the other hand, the trace of Σ and Ξ masses is not

established experimentally. Hence, we need extra discus-
sions about the usage of the trace formula. This is presented
in the next section.

D. Numerical results

In this subsection, we numerically fit the model param-
eters to known mass spectra of light baryons, and also give
some predictions.
Using twelve mass values in Table III, we fit the ten

Yukawa couplings ga1, g
a
2, g

s
1, g

s
2, g

d
1, g

d
2, h1, h2, h3, and h4 by

minimizing the following function:

fmin ¼
X12
i¼1

 
mtheory

i −minput
i

δmi

!
2

; ð77Þ

where errors δmi are taken as δmi ¼ 10 MeV for the
ground-state baryons and δmi ¼ 100 MeV for the excited
baryons. The difference in δmi is used since the masses for
excited states generally contain more errors.
We select certain sets of parameters which provide

reasonably good fit satisfying fmin < 1. Since there still
remain many sets of parameters, we further restrict param-
eters by requiring

X
i

jΔGO;ij < 100 MeV; ð78Þ

where

ΔGO;i ≡mi½N� þmi½Ξ�
2

−
3mi½Λ� þmi½Σ�

4
; ð79Þ

with i indicating the octet members. We summarize the
results of fitting in Fig. 15 by showing masses of baryons
together with the ΔGO;i. In this figure, black lines with error
bars show the inputs listed in Table III, and blue points
show the best fitted values of masses and ΔGO;i.
Figure 15 shows that positive baryons with the ground

and first excited states are reproduced well. Meanwhile, in
the negative parity channel, the mass hierarchy between Σ
and Ξ states look at odd with the counting based on the
strange quark mass. Although this hierarchy is not rejected
by the experiments, we regard it as a problem from the view
of naturalness.2

We study the mixing structure of the ground-state
nucleon, Nð939Þ. In the present analysis, the mass eigen-
state for Nð939Þ is expressed as

Bg:s:
N ¼ cψψ þ cχχ þ cmir

ψ ψmir þ cmir
χ χmir; ð80Þ

where cψ , cχ , cmir
ψ , and cmir

χ show the ratio of each wave
function included in the ground-state nucleon with the
normalization of jcψ j2 þ jcχ j þ jcmir

ψ j2 þ jcmir
χ j2 ¼ 1. For

TABLE III. Physical inputs for the four octet masses.

Mass inputs for octet members [MeV]

JP N Λ Σ Ξ

m1∶ 1=2þðG:S:Þ Nð939Þ∶ 939 Λð1116Þ∶ 1116 Σð1193Þ∶ 1193 Ξð1318Þ∶ 1318
m2∶ 1=2þ Nð1440Þ∶ 1440 Λð1600Þ∶ 1600 Σð1660Þ∶ 1660 Ξð?Þ:
m3∶ 1=2− Nð1535Þ∶ 1530 Λð1670Þ∶ 1674 Σð?Þ: Ξð?Þ:
m4∶ 1=2− Nð1650Þ∶ 1650 Λð1800Þ∶ 1800 Σð1750Þ∶ 1750 Ξð?Þ:

2We note that there is a two-fold ambiguity in identifying Ξ
baryons with negative parity, which we call Ξð−Þ below. For
some parameter choice, we found two solutions in which one of
Ξð−Þ is identified as an octet-member with Nð1535Þ and another
with Nð1650Þ. In Fig. 15, we show one solution which provides
smaller value of jΔGO;ij.
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clarifying the mixing structure, we define the “naive-mirror
ratio” as

jcψ j2 þ jcχ j2ð¼ 1 − jcmir
ψ j2 − jcmir

χ j2Þ; ð81Þ

and “ψ − χ ratio” as

jcψ j2 þ jcmir
ψ j2ð¼ 1 − jcχ j2 − jcmir

χ j2Þ: ð82Þ

The results of mixing structure are summarized in Fig. 16
and the couplings used are summarized in Table. IV. It is
remarkable that, in most cases, the “ψ-χ ratio” is around
50%, which implies that the ground-state nucleon is
provided by the maximally mixed state of ð3L; 3̄RÞ þ
ð3̄L; 3RÞ and ð1L; 8RÞ þ ð8L; 1RÞ representations. We still
note that, for m0 ¼ 100 MeV, there are some solutions for
which ð1L; 8RÞ þ ð8L; 1RÞ representation is dominated.

FIG. 15. Numerical results of the four octet masses for the chiral invariant mass m0 ¼ 800 MeV. They almost satisfy the Gell-Mann–
Okubo mass relation (ΔGO < 100 MeV) and well reproduce the physical inputs. For other values ofm0, there are solutions which satisfy
the same conditions. In this model, the Σ baryon in the octet member of Nð1535Þ becomes heavier than the others.

FIG. 16. The some solutions for (1) m0 ¼ 100 MeV, (2) m0 ¼ 800 MeV, and (3) m0 ¼ 1400 MeV. The horizontal axis is naive-
mirror ratio ofNð939Þ. 0 indicates that all are mirror (ψmir or χmir), and 1 indicates that all are naive (ψ or χ). The vertical axis is ψ -χ ratio
of Nð939Þ. 0 indicates that all are χ or χmir, and 1 indicates that all are ψ or ψmir. There are seven samples: 100-A and 100-B in panel (1),
800-A, 800-B, and 800-C in panel (2), and 1400-A and 1400-B in panel (3), which are shown in Table IV.
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VII. SUMMARY AND DISCUSSION

We proposed a systematic way to construct models of
baryons based on the chiral Uð3ÞL × Uð3ÞR symmetry. The
symmetry constraints are far stronger than in models
assuming only the SU(3) flavor symmetry, and the chiral
Yukawa interactions appear in very specific ways. We
assume that chiral representations ð3L; 6RÞ and ð6L; 3RÞ
with a bad diquark are heavier than ð3L; ; 3̄RÞ, ð3̄L; 3RÞ,
ð1L; 8RÞ, and ð8L; 1RÞ. We showed that the inclusion of the
first-order Yukawa interactions for the four representations
satisfies the Gell-Mann–Okubo mass relation, but cannot
reproduce the mass ordering of octet members of the ground
states; the quark graphs convincingly explain why, at the
first order, the strange quark mass does not appear to
reproduce the correct mass ordering. Then, we expanded
our systematic analyses to the second-order Yukawa inter-
actions, and showed that the mass ordering problem is cured
for the ground state of positive parity baryons. The state is
found to be a maximally mixed state of ð3L; 3̄RÞ þ ð3̄L; 3RÞ
and ð1L; 8RÞ þ ð8L; 1RÞ representations. The results imply
that the quark diagrams are very useful to constrain the
possible types of Yukawa interactions.
In the present analyses up to the second order, while the

mass ordering in the positive parity ground state is repro-
duced correctly, in the negative parity we found the
unnatural mass ordering of the ground state; the mass of
Σ including a single strange quark is heavier than Ξ with
two strange quarks. Although such ordering is not fully
excluded because these two negative parity states have not
been confirmed experimentally, we feel unlikely that Σ is
heavier than Ξ. After extensive parameter searches, we have
reached somewhat unexpected conclusion that the second
order Yukawa interactions are not sufficient. This sort of

difficulties has not been manifest within the analyses for
two-flavor models. Further studies are mandatory.
This work is partially motivated from the hope to saturate

the Uð3ÞL ×Uð3ÞR dynamics of baryons within a few
chiral representations, as done for mesons ðπ; σ; ρ; a1Þ by
Weinberg. We introduced a hierarchy based on good and
bad diquarks to pick up chiral representations which are
supposed to be important, but our analyses indicate the
necessity to include at least the second order of Yukawa
interactions; the descriptions based on Uð3ÞL ×Uð3ÞR
chiral representations are much more involved than those
requiring only the SUð3Þ-flavor symmetry. Clearly our
analyses need improvement. One possibility is the SUð3Þ
breaking introduced in the present analysis might be too
large. However, changing it is not enough to reproduce the
mass hierarchy in the first order as shown in Sec. III. Here,
we list several possibilities:

(i) It is possible that the classification of chiral repre-
sentations based on good and bad diquarks is not
very effective. If this is the case, we need to
explicitly include several additional chiral represen-
tations, such as ð3L; 6RÞ and ð6L; 3RÞ. The necessity
to include baryons with bad diquarks raises ques-
tions whether we should manifestly include the
decuplet baryons such as Δ and the interactions
with the octet baryons. This would greatly increase
the number of couplings at the tree level. On the
other hand, it is possible that including massive
resonances at the leading order reduces the impor-
tance of Yukawa interactions at higher orders.

(ii) Another possibility is that the linear realization, even
after superposing many chiral representations, is not
sufficient to explain baryons in vacuum. If we are
indeed required to include infinite number of the

TABLE IV. Some sample solutions, which correspond to the indicated points in Fig. 16. gs1;2 or g
d
1;2 have values of

around 5–10, which is not small. This implies the mixing between ψ ðmirÞ and χðmirÞ is not small.

100-A 100-B 800-A 800-B 800-C 1400-A 1400-B

m0 [MeV] 100 100 800 800 800 1400 1400

ga1 (ψ -ψ) −12.63 −8.77 −3.98 −8.7 3.69 −1.86 −3.59
ga2 (ψmir-ψmir) 3.35 −0.04 −5.26 −0.75 −12.46 −7.13 −5.5
gs1 (ψ -χ) 7.57 9.56 2.12 7.95 7.44 5.79 0.57
gs2 (ψmir-χmir) −10.97 −12.44 3.78 11.19 −8.95 6.88 0.82
gd1 (ψ -χmir) −3.83 0.01 7.09 −1.04 −4.78 −6.14 −6.58
gd2 (χ-ψmir) −5.1 0.66 −6.17 −1.47 −4.15 6.19 6.89
h1 (ψ-ψmir) 5.88 −3.38 7.35 1.33 1.17 2.35 4.25
h2 (ψ-ψmir) −3.73 5.61 −5.64 −9.51 −4.01 −7.24 −7.39
h3 (χ-χmir) −1.6 3.56 −1.65 1.51 0.78 −2.42 −2.36
h4 (χ-χmir) −2.85 1.4 0.33 −0.18 −0.53 −3.7 −2.71

Naive ratio of Nð939Þ 0.62 0.79 0.57 0.74 0.98 0.72 0.54
ψ ratio of Nð939Þ 0.19 0.51 0.45 0.52 0.65 0.61 0.64
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Nambu-Goldstone (NG) bosons around baryons, the
nonlinear realization is a more natural choice for
baryons in vacuum, although the description near the
chiral restoration should become more complicated.

(iii) The extreme limit of infinite number of NG bosons
around a baryon leads to the description of a baryon
in the chiral soliton models. Here a coherent pion
cloud represents the baryon charge at the core in the
same way as electric fields around an electron allow
us to infer the existence of the electric charge. If
including many NG bosons is indeed essential, the
physical baryons would be hardly saturated by a few
chiral representations.
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