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The backreaction effect and plasma oscillation in pair production for rapidly oscillating electric fields
are investigated by solving the quantum Vlasov equation. It is found that the backreaction effect in the pair
production is insignificant for a weak rapidly oscillating electric field regardless of whether the field has a
frequency chirp or not. However, for a strong field, after the external field vanishes, there forms an
obvious plasma oscillation. The oscillation period in some cases can be described by a simple formula
constructed based on the Langmuir oscillation frequency, while in general, it depends directly on the
parameters of the external field as well as the particle number density. Moreover, after considering the
backreaction effect, the momentum spectrum presents irregular oscillations due to the development of a
stochastic process in the dynamics of pair production. These findings give us a safety range of the external
field parameters where the backreaction effect is negligible and deepen our understanding of the
backreaction effect in the pair production for a rapidly oscillating field with or without a frequency chirp.
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I. INTRODUCTION

Since Dirac proposed the relativistic wave equation and
predicted the existence of positrons [1], much research has
been done on how to produce electron-positron pairs from
the vacuum. Sauter [2] solved the Dirac equation in the
presence of a strong static electric field and found the level
crossing of the positive and negative energy continuum,
which indicates that electron-positron pairs can be produced
by tunneling mechanism in the Dirac sea picture. And then,
Schwinger [3] calculated the pair production rate in a
constant field by the proper-time method in the framework
of quantum electrodynamics and gave out the critical electric
field strength Ecr ¼ m2=e ≈ 1.3 × 1018 V=m (the natural
units ℏ ¼ c ¼ 1 are used). As a result of these pioneering
works, pair production from the vacuum in intense external
fields is also known as the Sauter-Schwinger effect [4,5].
The laser intensity corresponding to the critical electric field
strength is I ≈ 1029 W=cm2, which is much larger than what

current laser facilities can achieve [6–8], so it is not yet
possible to produce observable electron pairs in experiments.
However, with the rapid development of laser technology,
many laser facilities are planning to achieve subcritical
fields [9].
To reduce the threshold of pair production, several

approaches have been proposed to produce observable
electron pairs under subcritical electric field conditions.
One method that can effectively enhance the pair production
is the dynamically assisted Schwinger mechanism [10–14],
in which the electric field adopts a combination of a strong
slowly varying field and a weak rapidly oscillating one.
Another approach is to use frequency chirp to increase the
pair yield by increasing the effective frequency of the
electric field. In Refs. [15–19], authors studied the effect
of spatially homogeneous electric fields with frequency
chirp on the pair production by the quantum kinetic
equation and found that for some chirp parameters the pair
yield could be improved 3 to 4 orders of magnitude.
Moreover, the enhancement effect of pair production in a
spatially inhomogeneous electric field with the frequency
chirp was also studied [20,21].
It is known that electron-positron pairs produced from

vacuum in a strong electric field can achieve a charge
separation and form a new electric field; then this field in
turn will affect the pair production [22–30]. This process is
called the backreaction effect, and the new field is called the
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internal electric field. For a subcritical external electric field,
the number of produced particle pairs is relatively less, and
the backreaction is generally ignored. However, when the
subcritical electric field is modulated by a frequency chirp
such as a linear chirp, a large number of particle pairs can be
produced by absorbing some high-frequency photons and
then be separated by the slowly varying part of the external
field and form a strong internal electric field. Therefore, we
think that the backreaction effect in this case is significant
and cannot be neglected. In this paper, we will figure out the
field parameter scope where the backreaction effect can be
ignored for a rapidly oscillating electric fields and check
whether the backreaction effect is negligible for a frequency
chirped electric field.
In addition, when the backreaction effect is taken into

account, a plasma oscillation may occur. In Ref. [24], the
plasma oscillation in pair production for a sinusoidal
electric field is studied by the quantum Vlasov equation
(QVE), and an ultrarelativistic formula is given to estimate
the oscillation period of the plasma. The ultrarelativistic
formula shows that the oscillation period only depends on
the maxima of the particle number density and has no direct
relation to the field parameters. In this work, we will study
the plasma oscillation for a rapidly oscillating electric field
by QVE, explore the determining factors of the oscillation
period, and check whether this formula still holds.
The structure of this paper is as follows: Sec. II briefly

introduces the quantum kinetic theory including the
backreaction effect. Section III is our numerical results:
Sec. III A discusses the effect of the backreaction effect on
the final particle number density; Sec. III B gives the effect
of the backreaction effect on the momentum spectra;
Sec. III C studies the factors affecting the plasma oscil-
lation period; and Sec. III D checks the backreaction effect
in pair production for a frequency chirped electric field.
Section IV is a summary and discussion.

II. THEORETICAL FORMALISM

Since we focus on the backreaction effect in pair
production for a rapidly oscillating electric field with or
without a frequency chirp, the external field is simplified
as a spatially homogeneous and time-dependent electric
field. Of course, the spatial dependence of the external
field including the magnetic field component should also
be considered in practice [31–33]. Based on the study in
Refs. [29,31–33] and the suppression effect of the spatial
inhomogeneity on the pair production, we can speculate
that in general the effect of the spatial inhomogeneity of
the external field including the magnetic field component
may play a role in weakening the backreaction effect.
However, this study is beyond the scope of this paper and
will be detailedly explored in future work. By using the
temporal gauge, A0 ¼ 0, the spatially homogeneous and
time-dependent four-vector potential can be written as
Aμ ¼ ð0; 0; 0; AextðtÞÞ, and the external electric field is

Eext ¼ −dAextðtÞ=dt. The form of the external electric field
we used is

EextðtÞ ¼ E0e
− t2

2τ2 cos ðωtþ bt2Þ; ð1Þ

where E0 is the amplitude of the electric field, ω is the
unmodulated field frequency, τ is the pulse duration, and b
denotes the chirp parameter.
The key quantity to study the electron-positron pair

production with the QVE is to obtain the momentum
distribution function fðk; tÞ. For spatially homogeneous
and time-dependent electric fields, ignoring collisions
between particles, the distribution function is determined
by dfðk; tÞ=dt ¼ Sðk; tÞ, where Sðk; tÞ denotes the source
term of pair production. When the strength of the external
electric field is relatively large, the induced internal electric
field will become significant. So the electric field appear-
ing in the QVE should be the sum of the external and
internal electric fields, i.e., EtotðtÞ ¼ EextðtÞ þ EintðtÞ.
After considering the influence of the backreaction, we
can get the coupled equations of the distribution function
and the internal electric field

ḟðk; tÞ ¼ eEtotðtÞε⊥
2Ω2ðk; tÞ

Z
t

−∞
dt0

eEtotðt0Þε⊥
Ω2ðk; t0Þ ½1 − 2fðk; t0Þ�

× cos

�
2

Z
t

t0
dt00Ωðk; t00Þ

�
; ð2Þ

ĖintðtÞ ¼ −4e
Z

d3k
ð2πÞ3

�
kkðtÞ
Ωðk; tÞ fðk; tÞ

þ Ωðk; tÞ
eEtotðtÞ

ḟðk; tÞ − eĖtotðtÞε2⊥
8Ω5ðk; tÞ

�
; ð3Þ

where the dot on the letter represents the first-order time
derivative, e is the renormalized charge of the electron
[23], k ¼ ðk⊥; kkÞ is the canonical momentum, kkðtÞ ¼
kk − eAtotðtÞ is defined as the kinetic momentum along the

external electric field, ε⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2⊥

p
is the transverse

energy, m is the mass of the electron, and Ωðk; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2⊥ þ k2kðtÞ

q
is the total energy. The quantum statistics

effect and the non-Markov effect on the pair production
can be seen from ½1 − 2fðk; t0Þ� in Eq. (2). The first term
on the right-hand side of Eq. (3) represents the conduction
current, the second term is the polarization current, and the
third term is the charge renormalization part added to
eliminate the divergence of the polarization current.
For the convenience of numerical calculation, two

auxiliary variables uðk; tÞ and vðk; tÞ are introduced
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uðk; tÞ ¼
Z

t

−∞
dt0Wðk; t0Þ½1 − 2fðk; t0Þ�

× cos

�
2

Z
t

t0
dt00Ωðk; t00Þ

�
;

vðk; tÞ ¼
Z

t

−∞
dt0Wðk; t0Þ½1 − 2fðk; t0Þ�

× sin

�
2

Z
t

t0
dt00Ωðk; t00Þ

�
; ð4Þ

and then Eq. (2) can be equivalently transformed into the
following first-order differential equations

ḟðk; tÞ ¼ 1

2
Wðk; tÞuðk; tÞ;

u̇ðk; tÞ ¼ Wðk; tÞ½1 − 2fðk; tÞ� − 2Ωðk; tÞvðk; tÞ;
v̇ðk; tÞ ¼ 2Ωðk; tÞuðk; tÞ; ð5Þ

where Wðk; tÞ ¼ eEtotðtÞε⊥=Ω2ðk; tÞ.
It can be seen from Eq. (3) that to obtain the internal

electric field at time t, the momentum distribution function
at the same time must be integrated, but the internal electric
field at the same time must be known to calculate the
momentum distribution function at time t. To solve this
contradiction, we calculate the internal electric field by
iteration. First, we use the internal electric field at the
previous time ðt − ΔtÞ to calculate the total electric field at
time t by

EtotðtÞ ¼ EextðtÞ þ El
intðtÞ; ð6Þ

where l ¼ 1; 2;… is the number of iterations. Note that for
the first iteration (l ¼ 1), the internal electric field
E1
intðtÞ ¼ Eintðt − ΔtÞ. Using Eq. (6), the momentum dis-

tribution function at time t can be obtained by solving
Eq. (5). Then the internal electric field at time t can be
solved by Eq. (3). This is the first iteration. Replacing the
internal electric field in Eq. (6) with the new one, the second
iteration begins. When the internal electric field satisfies our
preset control condition jElþ1

int ðtÞ − El
intðtÞj < ε, where ε is a

very small number, it can be considered that the real internal
electric field at time t has been obtained. Plugging it into the
total electric field and solving Eq. (5), the momentum
distribution function at time t can be solved as well.
The initial state of the system is a vacuum state without

particles, so the single particle distribution function and
auxiliary functions satisfy the initial condition fðk;−∞Þ ¼
uðk;−∞Þ ¼ vðk;−∞Þ ¼ 0. The initial condition of the
internal electric field is Eintð−∞Þ ¼ 0. After obtaining the
single-particle distribution function, integrating it in the full
momentum space can obtain the particle number density

nðtÞ ¼ 2

Z
d3k
ð2πÞ3 fðk; tÞ: ð7Þ

The coefficient 2 comes from the spin degeneracy of the
fermions.
Note that all our numerical calculations are carried out in

the full momentum space. Moreover, before a specific
calculation, we demonstrate the reliability of our numerical
calculation by comparing our result with that in Ref. [23]
and checking the energy conservation of the system when
the external electric field is turned off, more details see the
Supplemental Material [34].

III. NUMERICAL RESULTS AND ANALYSIS

In this section, we will first study the backreaction effect
in the pair production for a rapidly oscillating electric field
without frequency chirp (i.e., b ¼ 0) in Secs. III A–III C,
and then consider it in the pair production for a frequency
chirped electric field (i.e., b ≠ 0) in Sec. III D.

A. Particle number density

In Fig. 1, we show the number density of created particles
with (solid black lines) and without (dashed red lines) the
backreaction effect for two supercritical electric fields. The
field frequencies in Figs. 1(a) and 1(b) are 0.15m and
0.35m, respectively. Other field parameters are E0 ¼ 4.0Ecr
and τ ¼ 12.0=m. It can be seen that the particle number
density is invariable when the backreaction is not consid-
ered, but the situation is different when the backreaction is
considered. For such a supercritical external electric field,

(a)

(b)

FIG. 1. The particle number density as a function of time with
(solid black lines) and without the backreaction (dashed red lines).
The external electric field parameters in (a) are E0 ¼ 4.0Ecr,
ω ¼ 0.15m, and τ ¼ 12.0=m, and in (b) are E0 ¼ 4.0Ecr,
ω ¼ 0.35m, and τ ¼ 12.0=m.
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when the field frequency is relatively small, such as
ω ¼ 0.15m in Fig. 1(a), the number density gradually
increases with time, which indicates that the internal electric
field induces the production of considerable particle pairs.
However, when the frequency increases to a certain value,
such as ω ¼ 0.35m in Fig. 1(b), the particle number density
remains nearly constant because the internal electric field is
not strong enough to stimulate sufficient particle pairs. The
reason for the above results is that the electron-positron
pairs created in a rapidly oscillating electric field cannot be
separated sufficiently by the field to form a strong internal
electric field.
In addition, from the inset in Fig. 1(b), one can see that

due to the existence of the internal electric field, the particle
number density still oscillates with time after the external
field vanishes. So it is not easy to obtain a definite particle
number density. Fortunately, a recent work [35] shows that
the ordinary adiabatic particle number density defined in
Eq. (7) can be explained as the number density of physical
pairs if the field is switched off immediately at time t.
Furthermore, in a wide range of the external field param-
eters, the oscillation of the number density induced by the
internal electric field is very small, for example, see the inset
in Fig. 1(b), and the variation range of the number density
does not exceed 2.0 × 10−4m−3. Therefore, in this case, it is
reasonable to choose the number density at any time after
the external field entirely disappears as the final number
density of created particles. All of our following calcula-
tions of the number density are based on the above
discussion. Of course, strictly speaking, the number density
we calculated is the common adiabatic particle number
density or quasiparticle number density.
The particle number density varying with the field

frequency for different external electric field amplitudes
is shown in Fig. 2. It can be seen that for the subcritical
field with E0 ¼ 0.1Ecr, see Fig. 2(a), the number density
with and without the backreaction effect is almost the
same, and the multiphoton absorption is obvious [36]. At
the frequency ω ¼ 2m=N0 with the number of absorbed
photons N0, the particle number density increases greatly.
In the figure, 1−; 2−; 3−; 4−, and 5 − photon absorption
are marked by vertical lines.
However, when E0 ¼ 2.0Ecr, 3.0Ecr, and 4.0Ecr, see

Fig. 2(b), the multiphoton pair production is not obvious,
and simply increasing the frequency of the external field
does not enhance the pair production but suppresses it.
According to the Keldysh adiabatic parameter [37],
γ ¼ mω=eE0, we can know that in our calculation
γ ∼Oð1Þ. In this range, the tunneling pair production
coexists with the multiphoton pair production, and their
competitive relation is unfavorable for the pair production.
Here it is necessary to give a brief explanation, because, in
general, we may think that the pair production should be
enhanced by the dynamically assisted mechanism sug-
gested in [10]. However, our study is not belong to this

case. First, the dynamically assisted mechanism is
achieved by superposing a weak rapidly oscillating field
on a strong slowly oscillating field, while we only have a
rapidly oscillating electric field here. On a deeper level,
when the external field strength exceeds the Schwinger
critical field strength, a large number of particles will be
created by the tunneling mechanism. Nevertheless, with
the increase of the field frequency, more and more particle
pairs can be created by absorbing high-frequency photons.
This will suppress the pair production dominated by the
tunneling mechanism, because the average energy density
of the external electric field (∝ E2

0) is fixed for a given field
amplitude, and multiphoton pair production spends a part
of the electric field energy, but cannot produce a compa-
rable particle number to the tunneling pair production.
That is why there is a competitive relation between the
tunneling pair production and the multiphoton absorption
mechanism, rather than a dynamically assisted mechanism.
When E0 ¼ 2.0Ecr; 3.0Ecr, the backreaction effect is still
insignificant, but when E0 ¼ 4.0Ecr, the backreaction
effect of the internal electric field begins to affect the
particle number density; see ω ≤ 0.85m.
To further investigate the region where the backreaction

effect cannot be ignored, we define the difference degree of
pair number density (DDOPND) as δ ¼ jnb − n0j=n0 ×
100% and study its changes with the external field
parameters E0 and ω; see Fig. 3. Although the supercritical
field strength is used in the calculation, which is far away
from the current experimental conditions, some interesting
results can still be obtained. In our results, for E0 ≤ 2.0Ecr,

(a)

(b)

FIG. 2. Particle number density changing with the field
frequency for different field amplitudes. In (a), E0 ¼ 0.1Ecr,
and in (b), E0 ¼ 2.0Ecr, 3.0Ecr, 4.0Ecr; the value of τ in both
figures is 12.0=m.
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the maximum value of δ is about 1.93% at E0 ¼
2.0Ecr;ω ¼ 0.5m, and the backreaction effect can be
ignored. For 2.0Ecr < E0 ≤ 3.0Ecr, the value of δ is
generally within 5%, and in the region where ω is small,
the DDOPND value may exceed 5%. When the electric
field amplitude E0 is large and the frequency ω is small,
i.e., the Keldysh parameter γ is small, the DDOPND is
large, and the backreaction effect is more obvious. In other
words, the backreaction effect can generally be neglected in
the study of pair production for a weak high-frequency
electric field. The reason for this is that the rapid oscillation
of the external field is unfavorable for separating the
created particle pairs and forming a strong internal electric
field. In fact, the change of DDOPND with E0 and ω is
complex. For example, when E0 ¼ 7.0Ecr and ω ¼ 0.8m,
the particle number densities with and without backreaction
are about 0.970m−3 and 0.929m−3, and δ ≈ 4.37%. The
influence of the backreaction effect is almost unnecessary.
Whereas, when E0 ¼ 7.0Ecr and ω ¼ 0.9m, the number
densities with and without backreaction are about
0.956m−3 and 0.773m−3, and δ ≈ 23.67%. The backreac-
tion effect is very obvious.

B. Momentum spectrum

In Fig. 4, we compare the longitudinal momentum
distribution functions of created particles with and without
backreaction at t ¼ 220.0=m, denoted by fb and f0,
respectively. The transverse momentum k⊥ is chosen as
zero. Note that the time evolution of the momentum
distribution is calculated in the full momentum space.
In Fig. 4(a), the momentum distribution f0 is smooth

because the particles are mainly generated by the main
peak of the electric field, but the situation is different for
slightly larger values of ω. As shown in Fig. 4(b), although
the submaximal peak of the electric field cannot produce
sufficient particle pairs, the momentum distribution func-
tion f0 shows obvious oscillations because of the infield
interference.
Moreover, without the backreaction, the momentum

distribution functions f0 is symmetric about a central
longitudinal momentum kc in both cases. This is because
the external electric field is an even function of time, and
then the total energy satisfies the equationΩðkk þ kc;−tÞ ¼
Ωð−kk þ kc; tÞ. Finally, according to Eq. (2), it can be found
that the distribution function satisfies the equation
f0ðkk þ kc;∞Þ ¼ f0ð−kk þ kc;∞Þ. However, with the
backreaction, the symmetry of the momentum distribution
function is broken, because the electric field is no longer an
even function of time due to the presence of the internal
electric field. From the figure, one can also see that there are
some irregular oscillations on the momentum spectrum. This
embodies a common phenomenon of the backreaction effect
rather than numerical errors [22,25,27]. The reason for the
presence of the irregular oscillations is that a stochastic
process will be developed in the dynamics of vacuum
particle production after considering the backreaction effect.
For a detailed discussion, see Ref. [25].

FIG. 3. The difference degree of pair number density
(DDOPND) δ as a function of the external field amplitude and
frequency. The value of τ in this figure is 12.0=m. In the
calculation, the interval of E0 is 0.1Ecr, and the interval of ω
is 0.025m.

(a)

(b)

FIG. 4. Comparison of the longitudinal momentum distribu-
tion functions between with and without backreaction at
t ¼ 220.0=m. The transverse momentum k⊥ is chosen as
zero. The parameters of the external electric field in (a) are
E0 ¼ 2.0Ecr, ω ¼ 0.1m, τ ¼ 12.0=m, and in (b) are E0 ¼ 2.0Ecr,
ω ¼ 0.15m, τ ¼ 12.0=m.
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In addition, the backreaction effect is observed in the left
side of the momentum spectrum, while on the right side,
the momentum spectrum is approximately identical to that
without the backreaction effect. Actually, the change of the
momentum spectrum with a backreaction effect depends on
the time. The position of the backreaction effect on the
momentum spectrum oscillates around the central longi-
tudinal momentum with time, because the sign of the
induced internal electric field changes with time. A similar
phenomenon can be seen in Fig. 4 of Ref. [27].

C. Plasma oscillation period in pair production

We show the time evolution of the internal electric field
for different external field amplitudes in Fig. 5. One can see
when the external electric field exists (t < 40=m), the
amplitude of the internal electric field increases with E0,
and its frequency is the same as that of the external electric
field. For instance, when E0 ¼ 7Ecr, the peak value of the
internal electric field is about 0.2Ecr. The motion of particles
is mainly dominated by the external electric field. However,
when the external electric field is turned off, the relation
between the internal electric field and the external field
parameters becomes complicated. For example, the ampli-
tude of the internal electric field does not increase mono-
tonically with E0. And although the external electric field
strength is several times the critical electric field strength,
when the external electric field vanishes, the induced
internal electric field strength is less than 0.1Ecr. This is
because the rapid oscillation of the external field makes it
difficult to separate the created particle pairs and form a
strong internal field.
Moreover, we already know that when the external

electric field is strong enough, a large number of elec-
tron-positron pairs will be generated, and then when the
external electric field vanishes. these particle pairs will
maintain a dynamic balance under the action of the internal

electric field. Therefore, the motion of the created electron-
positron pairs forms plasma oscillation. It is worth noting
that the period of plasma oscillation will have some relation
with the number density of created particles and the
parameters of the external electric field. Previous studies
have shown that the frequency of plasma oscillation
decreases gradually with time and tends to a stable value
at the end [38]. For the external electric field with high
intensity and frequency, the frequency of plasma oscillation
can reach a stable state quickly.
Assuming that the external electric field disappears at t0,

then the internal electric field at t > t0 can be approx-
imately expressed as

EintðtÞ ¼ Eint0 cos

�
2π

T
tþ φ

�
; ð8Þ

where Eint0 is the amplitude of the internal electric field,
T is the period of oscillation, and φ is the phase. In this
subsection, we mainly study the relationship between
the oscillation period T of the internal electric field and
the number density of created particles n by changing the
parameters of the external electric field E0, ω, and τ,
respectively.
First, we keep ω and τ unchanged, and E0 ranges from

5.0Ecr to 14.0Ecr with an interval of 1.0Ecr. The oscillation
period changing with the particle number density is shown
in Fig. 6. The black dots represent the numerical results
where the oscillation period of internal electric field T is
estimated by Eq. (8). From the results, we can see that the
particle number density always increases with the external
field amplitude E0, but the oscillation period T decreases

FIG. 5. The internal electric field changes with time for
E0 ¼ 6.0Ecr, 7.0Ecr, and 8.0Ecr, respectively. Other field param-
eters are ω ¼ 0.9m and τ ¼ 12.0=m.

(a) (b)

(c) (d)

FIG. 6. The oscillation period of electron-positron plasma
varying with the particle number density. The ω and τ are fixed
and the value of E0 ranges from 5.0Ecr to 14.0Ecr with an
interval of 1.0Ecr . Other external electric field parameters are
(a) ω ¼ 1.5m, τ ¼ 18.0=m; (b) ω ¼ 1.5m, τ ¼ 30.0=m;
(c) ω ¼ 1.7m, τ ¼ 12.0=m; (d) ω ¼ 2.0m, τ ¼ 12.0=m.

R. Z. JIANG, C. GONG, Z. L. LI, and Y. J. LI PHYS. REV. D 108, 076015 (2023)

076015-6



with the increase of the number density. The red lines are
the fitting curves corresponding to the fitting formula

TðnÞ ¼ αffiffiffi
n

p þ β; ð9Þ

where n is the particle number density, and α and β are
fitting parameters. Note that this formula is constructed
based on the frequency of Langmuir oscillation [39] in
plasma physics. Although it is a little different from the
ultrarelativistic formula given in Ref. [24], both of them
have the same varying tendency. In Figs. 6(a)–6(d), the
goodness of fit R2 is about 0.998, 0.999, 0.998, and 0.999,
respectively. The 95.0% confidence intervals for fitting
parameters α and β are shown in Table I. This shows that
the formula above can fit the numerical results very well.

Furthermore, since the fitting parameters α and β are almost
independent of E0, the oscillation period T is not directly
related to E0. Finally, we emphasize that the external
electric field we considered here is a high-frequency strong
field. For other cases, the fitting formula (9) may fail.
When E0 and τ are kept unchanged while ω is changing,

or when E0 and ω are kept constant and τ is changing, the
above fitting formula will be invalid; see Fig. 7. The
relation between the oscillation period and the number
density of created pairs is very complex and not mono-
tonically decreasing. In Fig. 7(a), we change the value of
ω and mark each data point with the frequency of the
external electric field. It can be seen that the particle
number density generally decreases with the increase of
the frequency ω. In the high-frequency region, such as
ω ≥ 1.6m for E0 ¼ 6.5Ecr, ω ≥ 1.5m for E0 ¼ 7.5Ecr, and
ω ≥ 1.6m for E0 ¼ 8.5Ecr, the oscillation period decreases
with the increase of particle number density. This behavior
is somewhat similar to that in Fig. 6. But when the
frequency takes other values, the relation between them
exhibits very complex oscillations. In particular, we find
that in the low frequency region (such as ω ¼ 0.6m), the
fitting formula (9) still fails even if the field frequency and
the pulse duration are fixed, and only the field amplitude
changes, because the number density does not decrease
monotonically with the field amplitude. In Fig. 7(b), we
change the value of τ and mark each data point with the
value of τ. It can be seen that the relation between the
particle number density and the pulse duration τ is not
monotonic. As the pulse duration increases, the number
density of created pairs may not increase. Thus, the fitting
formula (9) also does not work here. In addition, from
Fig. 7(a), we can see that for E0 ¼ 6.5Ecr, the number
density of created particles at ω ¼ 1.1m almost equals that
at ω ¼ 1.0m, but their oscillation periods have a big
difference. That is to say, the particle number density
for different field frequencies can be equal, see Fig. 2, but
the same number density corresponds to different oscil-
lation periods. This shows that the oscillation periods
directly depend on not only the particle number density
but also the field frequency. Similarly, from Fig. 7(b), we
can find that the oscillation periods also directly depend
on the pulse duration, because the different number
density corresponding to different pulse durations gives
the same oscillation period; see the data points marked
with the pulse duration of 12 and 13.
We further explore the relation between the oscillation

period and the particle number density for fixing E0 ¼
7.0Ecr and keeping ωτ ¼ 20.0, which ensures that the
number of cycles in the external electric field is constant;
see Fig. 8. To separate the number density, the value of ω
ranges from 0.4m to 1.65m with a variable interval. In the
figure, each data point is marked with the corresponding
frequency value. From the figure, we find that with the
frequency increasing (the pulse duration decreasing

TABLE I. The 95% confidence intervals for fitting parameters
α and β in Fig. 6. The square brackets indicate the lower and
upper limits of the interval.

α β

(a) [20.50, 22.00] [11.52, 13.07]
(b) [21.13, 21.94] [10.99, 11.81]
(c) [20.59, 22.11] [11.53, 13.25]
(d) [23.68, 24.82] [8.21, 9.65]

(a)

(b)

FIG. 7. The oscillation period of electron-positron plasma
varying with the particle number density. In (a), E0 ¼ 6.5Ecr,
7.5Ecr, 8.5Ecr, and τ ¼ 12.0=m are fixed, and ω ranges from
0.5m to 2.0m. The particle number density changes with ω. In (b),
E0 ¼ 8.0Ecr and ω ¼ 1.5m are constant, and the particle number
density changes with τ.
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correspondingly), the particle number density always
decreases. When the value of ω is relatively small, the
particle number density changes rapidly with ω. For
example, when ω changes from 0.41m to 0.4m, the
particle number density changes by 0.1817m−3, while
when ω changes from 1.5m to 1.4m, the number density
only changes by 0.0725m−3. This result is also reflected in
Fig. 4(a). Besides this, the oscillation period tends to
decrease with the increase of the number density.
Therefore, we can try to fit it with Eq. (9). The fitted
curve is represented by the solid red line in Fig. 8, and the
goodness of fit R2 is about 0.89. The 95.0% confidence
intervals for α and β are [6.99, 9.49] and [27.76, 29.96],
respectively. This suggests that considering the product of
ω and τ as a whole may be more helpful to explore the
relation between the oscillation period and the number
density of produced pairs.
It is noted that the approximate expression of the internal

electric field Eq. (8) is obtained under the premise that the
external field is zero, but the plasma oscillation period is
still directly related to the external field parameters E0, ω,
and τ, which also embodies the non-Markov effect in the
electron-positron pair production.

D. Backreaction effect in pair production
for a frequency chirped electric field

From Eq. (1), it can be seen that the external electric field
will be modulated by a linear frequency chirp when the
chirp parameter b is nonzero. Furthermore, the oscillation
frequency of the external field is smaller thanω at−2ω=b <
t < 0 for b > 0 and 0 < t < −2ω=b for b < 0, while it is
greater than or equal to ωwhen t is beyond the above range.
So the slowly oscillating part of the external field appears at
t < 0 for a positive chirp parameter, and at t > 0 for a

negative chirp parameter. Below we will explore the beak-
reaction effect in pair production for different frequency
chirped electric fields.
In our previous work [18], it was found that the particle

number density would be significantly increased by intro-
ducing the frequency chirp. For instance, the number
density can be enhanced by 4 orders of magnitude for a
linearly polarized electric field with the field parameters
E0 ¼ 0.1

ffiffiffi
2

p
Ecr, ω ¼ 0.6m, τ ¼ 10.0=m, and b ¼ 0.06m2.

To check whether the backreaction effect should be con-
sidered, we calculate the time evolution of the particle
number density with and without the backreaction and the
induced internal electric fields for the chirp parameter b ¼ 0

(red lines), 0.06m2 (black lines), −0.06m2 (blue lines); see
Fig. 9. First, it can be seen that although the intermediate
values of the number density for the positive and the
negative chirp are different in the absence of the back-
reaction effect, their final number density is the same; see
Figs. 9(a), 9(c), and 9(e). This result reproduces our findings
in Ref. [40]; i.e., the pair production triggered by a spatially
homogeneous and frequency chirped electric field is
remarkably immune to the temporal phase information
contained in the field because of the time reversal symmetry
between the positive and the negative chirped fields.
However, this immunity is destroyed after considering
the backreaction effect, because the induced internal fields
break the time reversal symmetry between these two chirped
fields; see Figs. 9(b), 9(d), and 9(f).
In addition, from Fig. 9(a), we find that for a subcritical

electric field, although the number density is enhanced by
4 orders of magnitude after introducing a linear frequency
chirp, the backreaction effect can still be neglected.
Furthermore, the backreaction is still insignificant even
for a supercritical field whose field amplitude has reached
2.0Ecr; see Fig. 9(c). This result indicates that regardless of
whether the rapidly oscillating subcritical electric field has
a frequency chirp or not, the backreaction effect in this
case is negligible.
In order to understand the above result, we turn to

analyzing the induced internal electric fields changing with
time for different chirp parameters. In previous sections, we
have found that the faster the oscillation of the external
field, the more difficult it is to achieve charge separation
and form a strong internal electric field. However, the
situation is more complicated for a frequency-chirped
electric field, because the field consists of two rapidly
oscillating parts and a slowly varying part, and the latter
one is between the former two. Moreover, particle pairs are
easily produced at the rapidly oscillating part while they are
easy to form a charge separation at the slowly varying part.
So we previously speculated that a stronger internal electric
field may be induced in pair production for a frequency-
chirped electric field. This speculation is well demonstrated
in Figs. 9(b), 9(d), and 9(f). From these figures, one can see
that the internal electric field for a chirped field is much

FIG. 8. The oscillation period of electron-positron plasma
changing with the particle number density. Here E0 ¼ 7.0Ecr,
ωτ ¼ 20.0 is kept to ensure that the number of cycles in the
external electric field is constant. The value of ω ranges from
0.4m to 1.65m and τ changes accordingly.
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stronger than that for an unchirped field. Also, the internal
electric field for a negative chirp is much stronger than that
for a positive chirp. That is because in the case of a negative
chirp, more particles are produced at t < 0 and then achieve
a better charge separation at 0 < t < −2ω=b, while for
the positive chirp, the charge separation has finished at
−2ω=b < t < 0 before more particles are produced at

t > 0. Even so, from Figs. 9(b) and 9(d), we can see that
the induced internal electric field for a chirped field is still
much weaker than the external electric field. Therefore, the
effect of the internal electric field on the particle number
density is insignificant for a weak rapidly oscillating
electric field with or without a frequency chirp. Of course,
when the external field becomes sufficiently strong, the

FIG. 9. The time evolution of the particle number density with and without backreaction (see (a), (c), and (e)) and the induced internal
electric fields (see (b), (d), and (f)) for the chirp parameter b ¼ 0; 0.06m2;−0.06m2. The amplitudes of external electric fields are
0.1

ffiffiffi
2

p
Ecr (see (a) and (b)), 2.0Ecr (see (c) and (d)), 4.0Ecr (see (e) and (f)), respectively. Other external electric field parameters are

ω ¼ 0.6m and τ ¼ 10.0=m.
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induced internal electric field may have a non-negligible
impact on the external field, and the backreaction effect can
no longer be ignored. Particularly, when the induced
internal electric field is stronger than the critical field after
the external field disappeared, a large number of particle
pairs are still being produced in the internal field, and the
backreaction effect will become increasingly evident; see
the case of b ¼ −0.06m2 in Figs. 9(e) and 9(f). Note that
the effect of the induced internal electric field on the
external one is also related to the relative phase between
them. For instance, in Figs. 9(e) and 9(f), the backreaction
effect for b ¼ 0 is more obvious than that for b ¼ 0.06m2

because the internal field oscillates roughly in phase with
the external field for the former one.

IV. SUMMARY AND DISCUSSION

In summary, the backreaction effect and plasma oscil-
lation in the pair production for a rapidly oscillating electric
field are investigated by the QVE approach.
First, the parameter region of the external electric field

where the backreaction effect cannot be ignored is explored
by calculating and analyzing the difference degree of pair
number density with and without the backreaction. It is
found that the backreaction effect can be neglected in the
pair production for a weak rapidly oscillating electric field
with or without a frequency chirp. In particular, the back-
reaction effect can be ignored in the pair production for a
subcritical external field with frequency chirp. This result is
beyond what we previously thought, because the great
improvement of particle number density by absorbing some
high-frequency photons is expected to obtain a good charge
separation by the slowly varying part of the external field,
and form a strong internal electric field, which makes the
backreaction effect become obvious. The reason for this is
that although in some regions, the particle number density
can be greatly improved by increasing the field frequency,
the rapid oscillation generally is unfavorable for separating
the created particle pairs and form a strong internal electric
field. Thus, to study the backreaction effect, the external
electric field strength should be larger than the critical one.
However, for a strong high-frequency electric field, the pair

production is dominated by tunneling pair production and
the multiphoton absorption mechanism at the same time,
which will suppress the pair production because of the
competitive relation between these two mechanisms.
The influence of the backreaction effect on the momen-

tum spectrum is also considered. It is found that after
considering the backreaction effect, the symmetry of the
momentum spectrum is broken, and some irregular oscil-
lations are observed on the momentum spectrum.
Finally, the relationship between the plasma oscillation

period and the number density of produced particle pairs is
studied. When the frequency and duration of the external
electric field are kept constant and only the field strength is
changed, the relation between the oscillation period and the
particle number density is obvious and can be fitted by a
simple formula constructed based on the Langmuir oscil-
lation frequency. However, when the field frequency or the
pulse duration changes, the relationship between the
oscillation period and the particle number density is very
complex. One way to ensure that the oscillation period is
regular is to keep the number of cycles in the external
electric field unchanged when changing the field frequency.
Furthermore, we find that the plasma oscillation period not
only directly depends on the final number density of
created particles, but also directly depends on the external
field parameters, such as the field strength, the field
frequency, and the pulse duration, which is different from
the common result in plasma physics. The reason for this is
that the external electric field has left an imprint on the
internal field by the non-Markov effect in pair production.
Our results clarify the question whether it is reasonable

to study the pair production for a subcritical electric field
with frequency chirp and deepen the understanding of the
factors influencing the plasma oscillation period.
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