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We present in this work an analysis of Lorentz- and CPT-violating signals at linear boost order in
Penning-trap experiments. The theory of quantum electrodynamics with Penning traps is revisited and the
dominant shifts in the cyclotron and anomaly frequencies of confined particles and antiparticles are
reproduced. To study time variations of the experimental signals at linear boost order, we provide a general
discussion on transformations of coefficients for Lorentz violation between different frames, and derive the
expressions of the cyclotron and anomaly frequency shifts in the Sun-centered frame. Relating these
frequency shifts to the charge-to-mass ratios, the g factors, and their comparisons between particles and
antiparticles, we extract numerous new or improved bounds on coefficients for Lorentz violation from
existing Penning-trap measurements.
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I. INTRODUCTION

Invariance under Lorentz transformations stands as a
foundational symmetry of both general relativity and the
Standard Model of particle physics. However, tiny deviation
of Lorentz symmetry could naturally emerge in a more
fundamental theory that unifies gravity with quantum
physics, such as string theory [1]. Since CPT violation in
effective field theory is accompanied by Lorentz violation
[2,3], it follows that testing Lorentz symmetry includes CPT
tests as well. Motivated by this, numerous high-precision
experiments spanning over various subfields of physics have
been performed to search for possible Lorentz- and CPT-
violating signals [4]. Among these experiments, the Penning
trap is of particular interest, as it provides impressive
sensitivities to measurements of the fundamental properties
of particles and antiparticles [5–11], permitting searches for
any tiny deviation from Lorentz and CPT symmetry.
Awell-known signal for Lorentz andCPT violation is an

observable that depends on the orientation and velocity of
the experimental system relative to a fixed inertial reference
frame. The standard reference frame used in the literature,
known as the canonical Sun-centered frame [12], has the

property that the speed of the experimental system, typically
located on the surface of the Earth, is small compared to the
speed of light. This property is frequently exploited by
expanding the observable as a power series of the small boost
parameter obtained from the system’s velocity and truncating
the expansion to some order in the boost parameter to
simplify the analysis. The most popular choice is to study
the dominant effects by truncating the expansion at the zeroth
boost order. This approach produces signals known as
sidereal variations and investigations of the sidereal varia-
tions have resulted in many high-precision tests of Lorentz
and CPT symmetry. For example, Refs. [13–18] have
studied the sidereal variations of Lorentz- andCPT-violating
signals arising fromPenning-trap experimentsmeasuring the
charge-to-mass ratios, the g factors, and their comparisons
between particles and antiparticles.
Besides the success of this approximation, the limitation

on effects at only the zeroth order in boost excludes the
possibility of identifying new types of Lorentz- and CPT-
violating signals linked to a change in the linear motion of
the system. A prime example of a signal that becomes
discernible at least at first boost order but not at the zeroth
order is the annual variation of the observable, arising from
the Earth’s orbit around the Sun in the presence of Lorentz
violation [12,19]. Publications considering contributions to
the boost-dependent variation of an observable up to first
[20–25] or second boost order [26,27] exist in the literature.
In particular, Ref. [27] reported an apparent variation of the
observable at the second harmonic of the annual frequency
which is one of the signals for Lorentz violation predicted
at the second boost order. However, no study of the effects
at linear boost order in Penning-trap experiments has been
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performed to date. Extending the Penning-trap analysis to
include the effects at linear order in boost is of significance
as it can reveal additional types of measurable observables
that cannot be studied by a sidereal variation analysis.
In the absence of compelling experimental evidence for

Lorentz violation so far, instead of constructing a specific
model for Lorentz violation, we take a more realistic
approach by adopting a general theoretical framework
for Lorentz violation to conduct a comprehensive study
of possible effects. This framework is known as the
Standard Model extension (SME) [2,28], which is devel-
oped in the context of effective field theory by adding all
possible Lorentz-violating terms into the action of general
relativity and the Standard Model. Each of these terms is
constructed from a coordinate-independent contraction
between a Lorentz-violating operator and a corresponding
controlling coefficient, typically referred to the SME
coefficient or coefficient for Lorentz violation. The subset
of the SME that restricts us to power-counting renormaliz-
able operators of mass dimensions d ≤ 4 is called the
minimal SME, while the nonminimal SME contains oper-
ators of mass dimensions d > 4 and is assumed to produce
suppressed effects to conventional physics.
In this work, within the SME framework, we extend the

previous studies of Lorentz- and CPT-violating effects in
Penning-trap experiments by considering additional contri-
butions at linear boost order. Both the minimal and non-
minimal SME produces various measurable Lorentz- and
CPT-violating effects in Penning-trap experiments. These
effects include shifts in the cyclotron and anomaly frequen-
cies that can depend on time and also differ between particles
and antiparticles. To keep a reasonable scope of this work,
we restrict our attention to the effects due to the minimal
SME. The treatment of nonminimal SME effects at linear
boost order would be an excellent subject of future work. To
investigate the boost effects in Penning traps, results on the
cyclotron and anomaly frequency shifts due to Lorentz and
CPT violation obtained in Refs. [14,17] provides a solid
foundation. Applying the general Lorentz transformation at
linear boost order, we express the frequency shifts in terms
of the SME coefficients in the Sun-centered frame and
study their time-dependence structure. Relating these
expressions to the charge-to-mass ratios, the g factors,
and their comparisons between particles and antiparticles
in Penning-trap experiments, we extract constraints of the
SME coefficients from available experimental results.
The results derived from this work are complementary
to the existing ones from sidereal variation studies of
Penning-trap effects [14,17,18], the investigations of the
anomalous magnetic moment of muons in a storage ring
[22,29], the spectroscopic studies of hydrogen, antihy-
drogen, and other related systems [24], and experiments
involving clock comparisons [23].
This work is organized as follows. In Sec. II, we revisit

the theory of quantum electrodynamics with Lorentz- and

CPT-violating operators of mass dimensions up to six and
its application to confined particles and antiparticles in
Penning-trap experiments. The perturbative Hamiltonian at
leading order in Lorentz and CPT violation is presented in
Sec. II A. The result is then applied in Sec. II B to discuss
the dominant Lorentz- andCPT-violating energy shifts of a
confined particle or antiparticle in a Penning trap. The
shifts in the cyclotron and anomaly frequencies are repro-
duced in Sec. II C. We next address in Sec. III the general
transformation of SME coefficients from the apparatus
frame to the Sun-centered frame. Restricting our attention
to the minimal SME, we derive the expressions of the
cyclotron and anomaly frequency shifts in terms of the
Sun-centered frame SME coefficients at linear boost order.
We next turn in Sec. IV to applications to Penning-trap
experiments involving confined protons and antiprotons.
We begin in Sec. IVA with a general discussion of the
relationship of the charge-to-mass ratio comparisons with
the difference of cyclotron frequency shifts between pro-
tons and antiprotons. The result is then applied to the
ATRAP and BASE Penning-trap experiments to obtain
limits on the cyclotron frequency shifts. Next, we consider
in Sec. IV B the applications to Penning-trap experiments
that measure and compare the g factors between protons
and antiprotons. We first relate the g factor comparisons
between protons and antiprotons to their anomaly fre-
quency shifts, and then apply it to the BASE experiments
to derive relevant limits on the anomaly frequency shifts. To
illustrate the process of extracting limits on the SME
coefficients, we provide in Sec. IV C an explicit example
using the BASE experiment comparing the charge-to-mass
ratios between protons and antiprotons. Finally, using
published results from Penning-trap measurements, we
obtain first-time constraints on 18 SME coefficients and
improve limits on two additional SME coefficients as well.
Some comments on the prospects of improving the current
SME limits or imposing more first-time SME limits are
offered in Sec. V. A summary of this work is provided in
Sec. VI. For completeness, Appendix presents the contri-
butions to the cyclotron and anomaly frequency shifts
including effects at the zeroth order in the boost.
Throughout the paper, we follow the same notation used
in Refs. [14,17], unless otherwise specified. Natural units
with ℏ ¼ c ¼ 1 and mass units in GeV are adopted
throughout the paper.

II. THEORY

In this section, we revisit the theory of Lorentz-violating
spinor electrodynamics with operators of mass dimensions
up to six, which was developed in Ref. [14]. By applying
the theory to the Penning trap, we reproduce the leading-
order contributions to the cyclotron and anomaly frequen-
cies of confined particles and antiparticles due to Lorentz
and CPT violation.
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A. The SME Lagrangian and Hamiltonian

The SME Lagrangian can be written as the conventional
Standard Model Lagrangian plus all possible terms that
break Lorentz symmetry. For a single Dirac fermion field ψ
with charge q and mass mψ , the Lagrangian density Lψ can
be obtained by adding a general Lorentz-violating operator
Q̂ to the conventional Lagrangian density,

Lψ ¼ 1

2
ψ̄ðγμiDμ −mψ þ Q̂Þψ þ H:c:; ð1Þ

where Dμ ¼ ð∂μ þ iqAμÞ represents the covariant deriva-
tive involving the electromagnetic four-potential Aμ by the
minimal coupling, and H.c. stands for Hermitian conjugate.
The general Lorentz-violating operator Q̂ in the Lagrangian
density (1) contains terms formed by the contraction of
coefficients for Lorentz violation, the covariant derivative
iDμ, the antisymmetric electromagnetic field tensor
Fαβ ≡ ∂αAβ − ∂βAα, and one of the 16 Dirac basis matrices.
For example, one of the dimension-five operators involving
the F-type coefficients for Lorentz violation takes the form

bð5ÞμαβF Fαβγ5γμ. A comprehensive list of the relevant coef-
ficients for Lorentz violation and their properties, up to
mass dimensions d ≤ 6, can be found in Table I of
Ref. [14]. It is worth noting that the Hermiticity of the
Lagrangian density (1) requires that the operator Q̂ satisfies
the condition Q̂ ¼ γ0Q̂

†γ0. In the case of free fermions
with Aα ¼ 0, the explicit expression of the Lagrangian
density (1) at arbitrary mass dimension has been studied in
Ref. [30]. For the interaction case with Aα ≠ 0, Ref. [14]
developed a theory for operators with mass dimensions up
to six. An extension of this theory to include operators of
arbitrary mass dimension was recently presented in
Ref. [31]. Similar analyses have also been performed for
other SME sectors, including photon [32], neutrino [33],
and gravity [34].
The presence of the general operator Q̂ in the Lagrange

density (1) modifies the conventional Dirac equation for a
fermion in electromagnetic fields to

ðp · γ −mψ þ Q̂Þψ ¼ 0; ð2Þ

where pα ¼ iDα. As no Lorentz-violating signals have
been observed thus far, any such signal is expected to be
extremely small compared to the energy scale of the system
of interest. Consequently, we can treat the corrections
due to Lorentz and CPT violation to the conventional
Hamiltonian as perturbative and apply perturbation theory
to calculate the dominant shifts in the energy levels of the
confined particles and antiparticles. Based on the modified
Dirac equation (2), the exact Hamiltonian H is defined as

Hψ ≡ p0ψ ¼ γ0ðp · γ þmψ − Q̂Þψ ¼ ðH0 þ δHÞψ ; ð3Þ

where p0 represents the exact energy of the system,
encompassing all contributions from Lorentz and CPT
violation, p and γ are the canonical momentum and gamma
matrix vectors, respectively, H0 denotes the conventional
Hamiltonian for a fermion in an electromagnetic field, and
δH ¼ −γ0Q̂ represents the exact perturbative Hamiltonian.
To derive the perturbative Hamiltonian δH, we note that

the operator Q̂ generally contains terms that involve powers
of p0, corresponding to the exact Hamiltonian H itself. In
certain simple cases, it is possible to perform an appropriate
field redefinition to eliminate the additional time deriva-
tives and then adopt the standard procedure involving time
translation on wave functions to obtain the exact perturba-
tive Hamiltonian H [35]. However, in more general
situations where powers of time derivatives exist, directly
constructing δH becomes challenging. Nevertheless, we
notice that any contributions to δH due to the exact
Hamiltonian H are at second order or higher in the
coefficients for Lorentz violation. Therefore, to obtain
the leading-order results, one can apply the following
substitution, as proposed in Refs. [33,14],

δH ≃ −γ0Q̂jp0→E0
; ð4Þ

where E0 is the unperturbed eigenvalue, which can be
obtained by solving the conventional Dirac equation for a
fermion in an electromagnetic field.

B. Perturbative energy shifts

Given the perturbative Hamiltonian δH as defined by
expression (4), the Lorentz- and CPT-violating perturba-
tive energy levels δEn;� of a confined particle can be
calculated using perturbation theory,

δEn;� ¼ hχn;�jδHjχn;�i; ð5Þ

where χn;� denote the unperturbed stationary eigenstates,
n specifies the energy-level number, and � represent the
spin states of a positive-energy fermion.
Before applying expression (5) to a confined particle in a

Penning trap, we note that a Penning trap can be idealized
as a uniform magnetic field responsible for confining
the radial motion of the particle plus a quadrupole electric
field providing confinement along the axial direction. The
primary contributions to the nonperturbative energy levels
are from the interactions of the confined particle with the
magnetic field, since the effects arising from the quadru-
pole electric field are suppressed by a factor of E=B ≃ 10−5

in natural units for a typical field configuration of
E ≃ 20 kV=m and B ≃ 5 T in a trap. Consequently, to
obtain the dominant results in the energy shifts, we can
simplify the trap configuration even further by conceptu-
alizing it as consisting solely of a uniform magnetic field in
which a quantum fermion moves.
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The corresponding shifts in the energy levels δEc
n;�

due to Lorentz and CPT violation for antifermions can
be obtained by applying the perturbation theory in a
similar way,

δEc
n;� ¼ hχcn;�jδHcjχcn;�i; ð6Þ

where χcn;� represent the eigenstates of positive-energy
antifermions obtained from the solutions of negative-
energy fermions χn;� by charge conjugation, δHc is the
perturbative Hamiltonian for the antifermion derived from
δH by charge conjugation in a similar way, n specifies the
energy level number, and � denote the spin states for the
antifermion as before.

C. Cyclotron and anomaly frequencies

The primary observables of interest in a Penning-trap
experiment are frequencies. Two key frequencies are the
cyclotron frequency νc ≡ ωc=2π and the Larmor spin-
precession frequency νL ≡ ωL=2π, with their difference
denoted by the anomaly frequency νL − νc ¼ νa ≡ ωa=2π.
In the Lorentz-invariant scenario, the charge-to-mass ratio
and the g factor of a confined particle moving in a Penning
trap with a magnetic field strength B are related to the
cyclotron and anomaly frequencies by

jqj
m

¼ ωc

B
; ð7Þ

and

g
2
¼ ωL

ωc
¼ 1þ ωa

ωc
; ð8Þ

respectively.
A frequency can be viewed as the difference between

different energy levels. For a confined fermion of flavor w
and charge sign σ in a Penning trap, the cyclotron and
anomaly frequencies can be defined as the energy differ-
ence between the following energy levels [35]:

ωw
c ¼ Ew

1;σ − Ew
0;σ; ωw

a ¼ Ew
0;−σ − Ew

1;σ: ð9Þ

The corresponding definitions for the cyclotron and
anomaly frequencies of an antifermion of flavor w̄ are
given by [35]

ωw̄
c ¼ Ew̄

1;σ − Ew̄
0;σ; ωw̄

a ¼ Ew̄
0;−σ − Ew̄

1;σ; ð10Þ

with the understanding that the charge signs σ in definitions
(10) are reversed compared to these in definitions (9).
In the presence of Lorentz and CPT violation, both the

cyclotron and anomaly frequencies for fermions and anti-
fermions can be shifted, given by

δωw
c ¼ δEw

1;σ − δEw
0;σ; δωw

a ¼ δEw
0;−σ − δEw

1;σ; ð11Þ

for fermions, and

δωw̄
c ¼ δEw̄

1;σ − δEw̄
0;σ δωw̄

a ¼ δEw̄
0;−σ − δEw̄

1;σ; ð12Þ

for antifermions, respectively.
Applying perturbation (5) and (6) and following the

definitions in expression (11), the cyclotron and anomaly
frequency shifts of a fermion due to Lorentz violation are
found to be [17]

δωw
c ¼

�
1

m2
w
b̃03w −

1

mw
ðc̃00w þ c̃11w þ c̃22w Þ

− ðb̃311w þ b̃322w Þ
�
eB;

δωw
a ¼ 2b̃3w − 2b̃33F;wB; ð13Þ

where the tilde coefficients are given by

b̃03w ¼ b3w þmwðg120w − g012w þ g021w Þ −m2
wb

ð5Þ300
w

− 2m2
wðHð5Þ1200

w −Hð5Þ0102
w þHð5Þ0201

w Þ
þ 2m3

wd
ð6Þ3000
w

þ 3m3
wðgð6Þ12000w − gð6Þ01002w þ gð6Þ02001w Þ;

c̃00w ¼ c00w −mwm
ð5Þ00
w − 2mwa

ð5Þ000
w

þ 3m2
wc

ð6Þ0000
w þ 2m2

we
ð6Þ000
w ;

c̃jjw ¼ cjjw − 2mwa
ð5Þj0j
w þ 3m2

wc
ð6Þj00j
w −mwa

ð5Þ0jj
w

−mwm
ð5Þjj
w þ 3m2

wc
ð6Þ00jj
w þ 3m2

we
ð6Þ0jj
w ;

b̃3jjw ¼ bð5Þ3jjw þHð5Þ12jj
w

− 3mwd
ð6Þ30jj
w − 3mwg

ð6Þ120jj
w ;

b̃3w ¼ b3w þH12
w −mwd30w −mwg120w þm2

wb
ð5Þ300
w

þm2
wH

ð5Þ1200
w −m3

wd
ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

b̃33F;w ¼ bð5Þ312F;w þHð5Þ1212
F;w −mwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w ;

ð14Þ

with j taking values of 1 or 2 (no summation assumed).
In a similar way, taking the differences in expression (12)

gives the shifts in the cyclotron and anomaly frequencies of
an antifermion due to Lorentz violation [14],

δωw̄
c ¼

�
−

1

m2
w
b̃0�3w −

1

mw
ðc̃�00w þ c̃�11w þ c̃�22w Þ

þ ðb̃�311w þ b̃�322w Þ
�
eB;

δωw̄
a ¼ −2b̃�3w þ 2b̃�33F;wB; ð15Þ
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where the starred tilde coefficients are given by

b̃0�3w ¼b3wþmwðg120w −g012w þg021w Þ−m2
wb

ð5Þ300
w

þ2m2
wðHð5Þ1200

w −Hð5Þ0102
w þHð5Þ0201

w Þ
−2m3

wd
ð6Þ3000
w

þ3m3
wðgð6Þ12000w −gð6Þ01002w þgð6Þ02001w Þ;

c̃�00w ¼c00w −mwm
ð5Þ00
w þ2mwa

ð5Þ000
w

þ3m2
wc

ð6Þ0000
w −2m2

we
ð6Þ000
w ;

c̃�jjw ¼cjjw þ2mwa
ð5Þj0j
w þ3m2

wc
ð6Þj00j
w þmwa

ð5Þ0jj
w

−mwm
ð5Þjj
w þ3m2

wc
ð6Þ00jj
w −3m2

we
ð6Þ0jj
w ;

b̃�3jjw ¼bð5Þ3jjw −Hð5Þ12jj
w þ3mwd

ð6Þ30jj
w −3mwg

ð6Þ120jj
w ;

b̃�3w ¼b3w−H12
w þmwd30w −mwg120w þm2

wb
ð5Þ300
w

−m2
wH

ð5Þ1200
w þm3

wd
ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

b̃�33F;w¼bð5Þ312F;w −Hð5Þ1212
F;w þmwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w ; ð16Þ

with j taking values of 1 or 2 (no summation assumed as
before).
We note in passing that comparing the result (13) to (15),

together with the relevant definitions (14) and (16), the
shifts in the cyclotron and anomaly frequencies between a
fermion and an antifermion differ only by the signs of all
the basic coefficients for Lorentz violation that control
CPT-odd effects, as might be expected. We also remark in
passing that the rotation properties of the coefficients for
Lorentz violation in results (13) and (15) are indicated by
their indices. To illustrate, the pair of indices “12” on the
right-hand sides of the definitions (14) and (16) are
antisymmetric. In three dimensions, any antisymmetry pair
of spatial indices rotate as a single spatial index. In
particular, the antisymmetry indices “12” obey the same
rotation rule as a single index “3”. This suggests that these
particular coefficients for Lorentz violation undergo rota-
tion transformations akin to a single index “3”, while
coefficients with an index “0” or a pair of indices “00” are
invariant under rotations. Also, the cylindrical rotational
symmetry inherent to the Penning trap is correctly reflected
in the fact that results (13) and (15) only depend on index
“0“, “3”, and “11þ 22”. However, when considering
boost transformations, each fundamental coefficient in def-
initions (14) and (16) has distinct transformation properties.

III. TRANSFORMATIONS

The SME coefficients are assumed to be constant and
uniform in any inertial reference frame. The value of each
coefficient is frame dependent as they transform as tensor
components under observer transformations [2], and in
general, they are spacetime dependent in noninertial

reference frames. For these reasons, all the limits on
SME coefficients should be reported in the same inertial
reference frame to allow for any systematic comparison of
the results obtained by different experiments. The canonical
frame commonly adopted in the literature for this purpose
is the Sun-centered celestial-equatorial frame [12]. By
definition, the rest frame of the Sun is not an inertial
reference frame, but it is more than close enough to one for
our purpose. The origin of the Sun-centered frame is
specified as the location of the Sun at the 2000 vernal
equinox. The time coordinate T is the Cartesian coordinate
time in the rest frame of the Sun. The spatial cartesian
coordinates XJ ≡ ðX; Y; ZÞ are specified by aligning the Z
axis along the Earth’s rotation axis and having the X axis
pointing from the Earth to the Sun at T ¼ 0. The Y axis is
obtained by completing a right-handed coordinate system.
After the preambles, we can move to the main part of this

section that describes the Lorentz transformation used to
express the frequency shifts in Eqs. (13) and (15) in terms
of the SME coefficients in the Sun-centered frame for an
Earth-based experiment. It is convenient to separate the
transformation into two stages. We start by transforming
from the Sun-centered frame to the so-called standard
laboratory frame with coordinates xμ ≡ ðt; x; y; zÞ [12]. The
standard laboratory frame is instantaneously comoving
with the laboratory, and its spatial axes are defined by
having the x-axis pointing to the local south, the y-axis
pointing to the local east, and the z-axis pointing to the
local zenith. The final stage in the transformation is a
rotation from the standard laboratory frame to the apparatus
frame with Cartesian coordinates xμ ≡ ðx0; x1; x2; x3Þ.
Equations (13) and (15) are expressed in the apparatus

frame that has the x3 axis in the direction of the applied
magnetic field [14]. We can always define the orientation of
the apparatus frame by specifying the Euler angles to rotate
from the standard laboratory frame to the apparatus frame.
Fortunately, all the systems considered in this work have
their applied magnetic field parallel or perpendicular to a
vector pointing toward the local zenith. We only need to
introduce two convections for the apparatus frame depend-
ing on the relative orientation between the z axis of the local
standard laboratory frame and the magnetic field [14]. For a
vertical magnetic field, parallel to the z axis, we define the
apparatus frame as the standard laboratory frame. In other
words, the rotation between the frames is the identity
matrix with the coordinates related by ðx0; x1; x2; x3Þ ¼
ðt; x; y; zÞ. For a horizontal magnetic field, perpendicular to
the z axis, we have the x2 axis toward the local zenith, the
x3 axis in the direction of the applied field, and the x1 axis
obtained by the right-hand rule.
The observer Lorentz transformation Λμ

νðθ; βÞ between
the apparatus frame and the Sun-centered frame is the
composition of a rotation Rμ

νðθÞ with a boost Bμ
νðβÞ,

Λμ
νðθ; βÞ ¼ Rμ

αðθÞBα
νðβÞ; ð17Þ
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where θ is the rotation parameter, and β is the velocity of
the apparatus frame in the Sun-centered frame. The speed
β ≃ 10−4 between the frames is small compared to the
speed of light. We can simplify the expression for Λμ

ν by
expanding it as a power series of β and truncating it at some
power of β. The truncation of the power series to zeroth
order in β reduces the transformation to a pure rotation,
where the boost matrix in Eq. (17) is replaced with the
identity matrix. Therefore, the Lorentz transformation Λμ

ν

takes the form

Λ0
T ¼ 1; Λ0

J ¼ Λj
T ¼ 0; Λj

J ¼ Rj
J; ð18Þ

where lower-case and upper-case indices represent spatial
cartesian coordinates in the apparatus frame and the Sun-
centered frame, respectively. The expressions for the
Lorentz-violating frequency shifts in Eqs. (13) and (15)
at the zeroth order in the boost were obtained in previous
publications [14,17,35,36]. Further below, we will repro-
duce some of the main results of these previous works to
facilitate the discussion. Our goal in this work is to extend
these previous works by expanding the Lorentz trans-
formation in Λμ

ν to linear order in β. At linear order
in β, we get that

Λ0
T ¼ 1; Λ0

J ¼−βJ; Λj
T ¼−Rj

JβJ; Λj
J ¼Rj

J:

ð19Þ

It is convenient to introduce the local sidereal time T⊕
before discussing the main results of the previous works.
The local sidereal time T⊕ is an offset from the time T in
the Sun-centered frame [14],

T⊕ ≃ T −
ð66.25° − λÞ

360°
23.934 hr; ð20Þ

where λ is the longitude of the laboratory in degrees. The
crucial property of the sidereal time is that ω⊕T⊕ is a
multiple of 2π every time that the y axis in the standard
laboratory frame lies along the Y axis in the Sun-centered
frame, where ω⊕ ≃ 2π=ð23.934 hrÞ is the sidereal fre-
quency of the Earth.
The rotation matrixRj

J in Eqs. (18) and (19) depends on
the direction of the magnetic field. For a vertical magnetic
field, it is given by [12,14]

Rj
J ¼

0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA;

ð21Þ

where χ is the colatitude of the laboratory. For a horizontal
magnetic field, the rotation matrix takes the form [14]

Rj
J ¼

0
B@

0 0 −1
− sin θ cos θ 0

cos θ sin θ 0

1
CA

×

0
B@

cos χ cosω⊕T⊕ cos χ sinω⊕T⊕ − sin χ

− sinω⊕T⊕ cosω⊕T⊕ 0

sin χ cosω⊕T⊕ sin χ sinω⊕T⊕ cos χ

1
CA;

ð22Þ

where θ is the angle of the horizontal magnetic field from
the local south assuming the convection that counterclock-
wise angles are positive.
The form of the frequency shifts in Eq. (13) in the

Sun-centered frame, at the zeroth order in the boost, is
obtained by expressing the apparatus-frame SME coeffi-
cients in terms of the Sun-centered-frame ones using
Eq. (18) together with Eq. (21) or Eq. (22). The effective
coefficients in Eq. (13) facilitate these transformations by
grouping all the coefficients that transform similarly under
rotations. The effective coefficients b̃jw and b̃0jw, given in
definition (14), contain only the SME coefficients that
rotate as vectors. All the coefficients that contribute to b̃jkF;w
and c̃jkw rotate as rank-2 tensors, and the ones that contribute
to b̃jklw as rank-3 tensors.
As an example, we will reproduce the results presented

in Ref. [14] for the anomaly frequency assuming a
vertical magnetic field. The relevant effective coefficients
transform as

b̃3w ¼ b̃Zw cos χ þ ðb̃Xw cosω⊕T⊕ þ b̃Yw sinω⊕T⊕Þ sin χ;
ð23Þ

and

b̃33F;w ¼ b̃ZZF;w þ 1

2
ðb̃XXF;w þ b̃YYF;w − 2b̃ZZF;wÞsin2χ

þ ðb̃ðXZÞF;w cosω⊕T⊕ þ b̃ðYZÞF;w sinω⊕T⊕Þ sin 2χ

þ
�
1

2
ðb̃XXF;w − b̃YYF;wÞ cos 2ω⊕T⊕

þ b̃ðXYÞF;w sin 2ω⊕T⊕

�
sin2χ: ð24Þ

Applying these results in Eq. (13) reveals that the Lorentz-
violating anomaly frequency shifts of a particle at the
zeroth order in β have the form

δωw
a;0 ¼ Aða;0Þ

0 þ Aða;0Þ
c cosω⊕T⊕ þ Aða;0Þ

s sinω⊕T⊕

þ Aða;0Þ
c2 cos 2ω⊕T⊕ þ Aða;0Þ

s2 sin 2ω⊕T⊕; ð25Þ
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where the 0 subscript in δωw
a;0 indicate the zeroth boost

order. The amplitudes Aða;0Þ
� are linear combinations of the

SME coefficients with subscripts � ranging over values
0; c; s; c2; s2 that specify the harmonics associated with
the amplitudes. According to this result, a signal for
Lorentz violation is a sidereal variation of the anomaly
frequency resulting from the rotation of the Earth relative
to a fixed inertial reference frame. A sidereal variation of a
resonance frequency is the most common signal for
Lorentz violation studied in the literature [4]. The signals
for Lorentz violation resulting from this analysis, at the
zeroth order in the boost, were studied in detail in
Refs. [14,17]. A reproduction of the main expressions
for the frequency shifts at the zeroth order in β obtained in
these publications is listed in the Appendix. The analysis
in Ref. [14] predicted a sidereal variation of the anomaly
frequency with the first and second harmonic of the
sidereal frequency, and the prediction of Ref. [17] is a
variation of the cyclotron frequency up to the third
harmonic of the sidereal frequency. The variation of the
anomaly frequency is only with the first harmonic of the
sidereal frequency and for the cyclotron frequency up to
the second harmonic if we limited the scope of these
works to the minimal SME coefficients by using the
frequency shifts defined in Eq. (29).
After summarizing the previous works, we consider the

advantages of including corrections at linear order in the
boost. A drawback of limiting the frame transformation to
zeroth order in β is that it disregards the contributions from
some SME coefficients to the frequency shifts [24]. The
expansion of these previous works to linear order in the
boost has the advantage of revealing a greater number of
SME coefficients that can produce signals for Lorentz
violation detectable in Penning-trap experiments. Another
feature of expanding the analysis is to unveil new signals
for Lorentz violation including an annual variation of the
anomaly and cyclotron frequencies.
An implication from Eq. (19) is that the time interval

measured between events happening at the laboratory is the
same in the apparatus frame as in the Sun-centered frame at
the first order in β. From now on, we will express the time
dependence of the Lorentz-violating frequency shifts using
time intervals ΔT in the Sun-centered frame as they are
identical, up to the first order in β, to the time intervals
measured in the laboratory frame. The velocity β of the
apparatus frame relative to the Sun-centered frame is
approximately given by

β ≃ β⊕ þ βL; ð26Þ

where β⊕ is the velocity of the Earth relative to the Sun and
βL is the velocity of the laboratory relative to Earth’s center
of mass, both expressed in the Sun-centered frame. Taking
the Earth’s orbit as circular, we get that

β⊕ ¼ β⊕ sinΩ⊕TX̂ − β⊕ cosΩ⊕Tðcos ηŶ þ sin ηẐÞ;
ð27Þ

where β⊕ ≃ 10−4 is the Earth’s orbital speed, Ω⊕ ≃ 2π=
ð365.26 dÞ is the Earth’s orbital angular frequency, and
η ≃ 23.4° is the angle between the XY plane and the Earth’s
orbital plane. Treating the Earth as a sphere, we have

βL ¼ r⊕ω⊕ sin χð− sinω⊕T⊕X̂ þ cosω⊕T⊕ŶÞ; ð28Þ

where χ is again the colatitude of the laboratory, r⊕ is the
radius of the Earth, and ω⊕ is the sidereal frequency.
The magnitude of βL is around 10−6 and two orders of
magnitude smaller than β⊕. Note that the sidereal time T⊕
is used in Eq. (28) and the difference of T − T⊕ given in
Eq. (20) is a phase that physically represents a convenient
choice of a local time zero.
A straightforward extension of the previous works would

include contributions to the frequency shifts at linear order
in β due to the SME coefficients with mass dimensions up
to six. In this work, we opted for a more pragmatic
approach by limiting the scope of our work to contributions
at linear order in β due to the minimal Lorentz-violating
operators. The challenge of including the nonminimal
terms is that the expressions for the frequency shifts can
become overwhelming as some of the coefficients that
contribute transform as rank-5 tensors under observer
Lorentz transformation even if they only transform as
rank-3 tensors under rotations. Another justification to
pursue this approach is that it results in new limits on
previously unconstrained minimal SME coefficients as
discussed in Sec. IV. The treatment of nonminimal SME
coefficients at linear order in β would be a subject of future
work. Keeping only the minimal SME coefficients in
the cyclotron and anomaly frequency shifts (13) and (15),
we have

δωw
c ¼

�
1

m2
w
b̃03w −

1

mw
ðc00w þ c11w þ c22w Þ

�
eB;

δωw
a ¼ 2b̃3w; ð29Þ

where the tilde coefficients are defined by

b̃03w ¼ b3w þmwðg120w − g012w þ g021w Þ;
b̃3w ¼ b3w þH12

w −mwd30w −mwg120w ; ð30Þ

and

δωw̄
c ¼

�
−

1

m2
w
b̃0�3w −

1

mw
ðc00w þ c11w þ c22w Þ

�
eB;

δωw̄
a ¼ −2b̃�3w ; ð31Þ
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where the starred tilde coefficients are given by

b̃0�3w ¼ b3w þmwðg120w − g012w þ g021w Þ;
b̃�3w ¼ b3w −H12

w þmwd30w −mwg120w : ð32Þ

Note b̃0�3w and b̃03w have the same expression in the limit of
the minimal SME.
The notation in the cyclotron and anomaly frequency

shifts (29) can be misleading if we move beyond the pure
rotation approximation. For instance, the coefficient b̃jw
doesn’t transform as a Lorentz vector under observer
transformations. We can observe from Eq. (30) that b̃jw is
a linear combination of coefficients that transform differ-
ently from each other under observer Lorentz trans-
formations. To illustrate the point, consider b3w and
g120w that are two of the coefficients contained in b̃3w.
The former coefficient transforms as a Lorentz vector
while the latter transforms as a rank-3 Lorentz tensor.
Hence, obtaining the expression for the frequency shifts
in the Sun-centered frame requires abandoning the
effective-coefficient notation and expressing the fre-
quency shifts in terms of coefficients that transform as
Lorentz tensors.
The SME coefficients in the apparatus frame can be

expressed in terms of the SME coefficients in the
Sun-centered frame at linear order in β by applying the
Lorentz transformation (17) together with the boost veloc-
ities (26)–(28), and the rotation matrix (21) or (22). For

example, assuming a vertical magnetic field, the coefficient
b3w contained in b̃w3 transforms as

b3w ¼ bZw cos χ þ sin χðbXw cosω⊕T⊕ þ bYw sinω⊕T⊕Þ
þ bTwβ⊕ cos χ sin η cosΩ⊕T

− bTwβ⊕ sin χ cosω⊕T⊕ sinΩ⊕T

þ bTwβ⊕ sin χ cos η sinω⊕T⊕ cosΩ⊕T: ð33Þ

As previously stated, the coefficient bTw appearing at linear
order in the boost is independent of the coefficients bXw, bYw,
and bZw appearing at the zeroth order in β.
Keeping terms up to linear order in β, the Lorentz-

violating cyclotron frequency shifts in Eq. (29) expressed in
terms of the SME coefficients in the Sun-centered frame
take the form

δωw
c ≃ δωw

c;0 þ δωw
c;1; ð34Þ

where δωw
c;0 are the boost-independent cyclotron fre-

quency shifts and δωw
c;1 denote the contributions at linear

order in the boost. The SME coefficients in δωw
c;0 includ-

ing nonminmal ones up to mass dimension six have been
studied in detail in Ref. [17]. For completeness, we
reproduce the zeroth order results δωw

c;0 in Eq. (A1) in
Appendix. The ratio between δωw

c;1 at linear order in β and
the product of the unit electric charge e and the magnetic
field B takes the form

δωw
c;1

eB
¼ Aðc;1Þ

0 þ Aðc;1Þ
c cosω⊕T⊕ þ Aðc;1Þ

s sinω⊕T⊕ þ Aðc;1Þ
C cosΩ⊕T þ Aðc;1Þ

S sinΩ⊕T

þ cosω⊕T⊕ðAðc;1Þ
cC cosΩ⊕T þ Aðc;1Þ

cS sinΩ⊕TÞ þ sinω⊕T⊕ðAðc;1Þ
sC cosΩ⊕T þ Aðc;1Þ

sS sinΩ⊕TÞ
þ cos 2ω⊕T⊕ðAðc;1Þ

c2C cosΩ⊕T þ Aðc;1Þ
c2S sinΩ⊕TÞ þ sin 2ω⊕T⊕ðAðc;1Þ

s2C cosΩ⊕T þ Aðc;1Þ
s2S sinΩ⊕TÞ

þ Aðc;1Þ
c2 cos 2ω⊕T⊕ þ Aðc;1Þ

s2 sin 2ω⊕T⊕; ð35Þ

where notation Aðc;1Þ
� is used for the amplitude of each

harmonic, with superscripts ðc; 1Þ representing the cyclo-
tron frequency shifts at linear order in β and subscript �
taking values ranging over 0; c; s; C; S; cC; cS; sC; sS;….
We list in Tables I and II the explicit expressions of the

amplitudes Aðc;1Þ
� for a vertical and horizontal magnetic

field, respectively. In each table, the first column specifies

the amplitudes Aðc;1Þ
� . The second column lists the corre-

sponding boost factors with β⊕ ≃ 10−4 denoting the Earth’s
revolution velocity about the Sun and βE ≡ r⊕ω⊕ ≃ 1.6 ×
10−6 specifying the tangential velocity of a point on the
Earth’s equator due to the Earth’s rotation, respectively.
Finally, the third column gives the combinations of the Sun-
centered frame SME coefficients. In the final column,
notations cϑ ¼ cos ϑ and sϑ ¼ sinϑ are used, where ϑ can

represent the colatitude χ, the angle η ≃ 23.4°, or the angle
θ between the local south and the magnetic field. The

amplitudes Aðc;1Þ
� are obtained by multiplying the terms in

the second and third columns.
The structure of the frequency shifts (35) predicts

sidereal variation of ωw
c up to the second harmonic of

the sidereal frequency in contrast to the case of δωw
c;0, see

Eq. (A1), that contains contributions up to the third
harmonic of the sidereal frequency [17], as expected, since
contributions from the nonminimal terms to δωw

c are
disregarded. If these nonminimal terms are included, the
sidereal variation would contain contributions up to the
fourth harmonic of the sidereal frequency. Emerging at
linear order in β is a variation of ωw

c with the first harmonic
of the annual frequency Ω⊕. The other variations of ωw

c are
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TABLE II. SCF expressions of cyclotron frequency shifts for a horizontal B.

Amplitude Boost factor Coefficient combination

Aðc;1Þ
0

βE sχ ½ðgXYZw mw − bTwÞsθ þ ð2cðTZÞw sθsχ − ð2gTZTw þ gXZXw þ gYZYw ÞcχÞmwcθ�=m2
w

Aðc;1Þ
c

βE sχ ½cðTYÞw ð3þ c2θÞ − cðTXÞw cχs2θ − 2ðgTXTw − gXYYw Þcθsχ �=mw

Aðc;1Þ
s

βE −sχ ½cðTXÞw ð3þ c2θÞ þ cðTYÞw cχs2θ þ 2ðgTYTw þ gXYXw Þcθsχ �=mw

Aðc;1Þ
C

β⊕ ½mwcηð2ðgTXTw − gXYYw Þcθsχ − cðTYÞw ð2þ c2θ þ c2χs2θ þ s2χÞÞ
−2mwc

ðTZÞ
w sηð1þ s2θs

2
χ þ c2χÞ−ðbTw þ ðgXYZw þ gXZYw − gYZXw ÞmwÞsηcθsχ �=m2

w

Aðc;1Þ
S

β⊕ ½2ðgTYTw þ gXYXw Þcθsχ þ cðTXÞw ð2þ c2χs2θ þ s2χ þ c2θÞ�=mw

Aðc;1Þ
c2

βE sχ ½ðgXZXw − gYZYw Þcθcχ þ ðgXZYw þ gYZXw Þsθ�=mw

Aðc;1Þ
s2

βE sχ ½ðgXZYw þ gYZXw Þcθcχ þ ðgYZYw − gXZXw Þsθ�=mw

Aðc;1Þ
cC

β⊕ ½cηððbTw −mwðgXYZw þ gXZYw þ gYZXÞÞsθ þ 2mwcθððgTZTw þ gYZYw Þcχ − cðTZÞsθsχÞÞ
−mwsηð2ðgXZZw − gTXTw Þsθ þ 2cθððgTYTw − gYZZw Þcχ þ cðTYÞw sθsχÞ þ cðTXÞc2θs2χÞ�=m2

w

Aðc;1Þ
cS

β⊕ ½2ðgTZTw þ gXZXw Þmwsθ − ðbTw þ ðgXZYw þ gYZXw − gXYZw ÞmwÞcθcχ þ cðTZÞw mwc2θs2χ �=m2
w

Aðc;1Þ
sC

β⊕ ½cηððbTw −mwðgXYZw þ gXZYw þ gYZXw ÞÞcθcχ − 2mwðgTZTw þ gYZYÞsθ − cðTZÞmwc2θs2χÞ
þsηmwð2ðgTXTw − gXZZw Þcθcχ þ 2sθðgTYTw − gYZZw þ cðTXÞw cθsχÞ − cðTYÞc2θs2χÞ�=m2

w

Aðc;1Þ
sS

β⊕ ½ðbTw þ ðgXZYw − gXYZw þ gYZXw ÞmwÞsθ þ 2mwcθððgTZTw þ gXZXw Þcχ − cðTZÞw sθsχÞ�=m2
w

Aðc;1Þ
c2C

β⊕ cη½cðTXÞw cχs2θ þ cðTYÞw ðc2χs2θ þ s2χ − c2θÞ�=mw

Aðc;1Þ
c2S

β⊕ −½cðTYÞw cχs2θ − cðTXÞw ðc2χs2θ þ s2χ − c2θÞ�=mw

Aðc;1Þ
s2C

β⊕ cη½cðTXÞw ð3c2θ þ 2c2θc2χ − 1Þ þ 4cðTYÞw cχs2θ�=4mw

Aðc;1Þ
s2S

β⊕ −½cðTYÞw ð3c2θ þ 2c2θc2χ − 1Þ − 4cðTXÞw cχs2θ�=4mw

TABLE I. SCF expressions of cyclotron frequency shifts for a vertical B.

Amplitude
Boost
factor Coefficient combination

Aðc;1Þ
0

βE −ð2gTZTw þ gXZXw þ gYZYw Þs2χ=mw

Aðc;1Þ
c

βE 2ð2cðTYÞw þ ðgTXTw − gXYYw ÞcχÞsχ=mw

Aðc;1Þ
s

βE 2ððgTYTw þ gXYXw Þcχ − 2cðTXÞw Þsχ=mw

Aðc;1Þ
C

β⊕ ½2sηððbTw þ ðgXYZw þ gXZYw − gYZXw ÞmwÞcχ þ cðTZÞw mwðc2χ − 3ÞÞ þ cηmwð4ðgXYYw − gTXTw Þcχ − cðTYÞw ð7þ c2χÞÞ�=2m2
w

Aðc;1Þ
S

β⊕ ðcðTXÞw ð7þ c2χÞ − 4ðgTYTw þ gXYXw ÞcχÞ=2mw

Aðc;1Þ
c2

βE ðgXZXw − gYZYw Þs2χ=mw

Aðc;1Þ
s2

βE ðgXZYw þ gYZXw Þs2χ=mw

Aðc;1Þ
cC

β⊕ 2ðcηðgTZTw þ gYZYw Þ þ sηðgYZZw − gTYTw þ cðTXÞw cχÞÞsχ=mw

Aðc;1Þ
cS

β⊕ −ðbTw þ ðgXZYw − gXYZw þ gYZXw Þmw þ 2cðTZÞw mwcχÞsχ=m2
w

Aðc;1Þ
sC

β⊕ ½cηðbTw −mwðgXYZw þ gXZYw þ gYZXw − 2cðTZÞw cχÞÞ þ 2mwsηðgTXTw − gXZZw þ cðTYÞw cχÞ�sχ=m2
w

Aðc;1Þ
sS

β⊕ 2ðgTZTw þ gXZXw Þsχ=mw

Aðc;1Þ
c2C

β⊕ −cðTYÞw cηs2χ=mw

Aðc;1Þ
c2S

β⊕ −cðTXÞw s2χ=mw

Aðc;1Þ
s2C

β⊕ cðTXÞw cηs2χ=mw

Aðc;1Þ
s2S

β⊕ −cðTYÞw s2χ=mw
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the products between the first harmonics of Ω⊕ with the
first and second harmonics of ω⊕.
We can repeat the approach for the anomaly frequency

shifts in Eq. (29) in a similar way. At linear order in β,
the anomaly frequency shifts due to Lorentz violation in
terms of the Sun-centered frame SME coefficients can be
expressed as

δωw
a ≃ δωw

a;0 þ δωw
a;1; ð36Þ

where δωw
a;0, the shifts at the zeroth order in the boost, are

described in detail in Ref. [14] and take the form specified
in Eq. (A7) in Appendix. The expressions of δωw

a;1 can be
decomposed into

δωw
a;1 ¼ Aða;1Þ

0 þ Aða;1Þ
c cosω⊕T⊕ þ Aða;1Þ

s sinω⊕T⊕

þ Aða;1Þ
C cosΩ⊕T þ Aða;1Þ

S sinΩ⊕T

þ cosω⊕T⊕ðAða;1Þ
cC cosΩ⊕T þ Aða;1Þ

cS sinΩ⊕TÞ
þ sinω⊕T⊕ðAða;1Þ

sC cosΩ⊕T þ Aða;1Þ
sS sinΩ⊕TÞ

þ Aða;1Þ
c2 cos 2ω⊕T⊕ þ As2 sin 2ω⊕T⊕; ð37Þ

where a similar notation Aða;1Þ
� is used for the amplitudes for

the case of the anomaly frequency shifts and their expres-
sions are given in Tables III and IV for a vertical and
horizontal magnetic field, respectively. The structure of the
tables is the same as the ones described before for the
cyclotron frequency shifts.
The signals for Lorentz violation predicted by Eq. (37)

include a sidereal variation of ωw
a with the first and second

harmonic of the sidereal frequency similar to the signals
predicted at the zeroth order in β. Introduced at linear order
in β is a variation ofωa with the first harmonic of the annual

frequency Ω⊕ and the product between the first harmonics
of Ω⊕ with the first harmonic of ω⊕.
The frequency shifts δωw̄

c and δωw̄
a for antifermions, see

Eq. (31), at linear order in the boost are given by Eqs. (35)

and (37) with some modifications. The amplitudes Aðc;1Þ
�

and Aða;1Þ
� are replaced by Āðc;1Þ

� and Āða;1Þ
� , in which that the

signs in front of the CPT-odd SME coefficients bμw and gμναw

are reversed. As an example, the expression for Āða;1Þ
c is

Āða;1Þ
c ¼ βEsin2χðHTX

w þ ðdZYw þ gTXTw − gXYYw ÞmwÞ; ð38Þ
compared to

Aða;1Þ
c ¼ βEsin2χðHTX

w þ ðdZYw − gTXTw þ gXYYw ÞmwÞ: ð39Þ
Before concluding this section it is convenient to

introduce some terminology to facilitate the discussion
of the signals for Lorentz violation. We define the pure
sidereal variation of the cyclotron frequency shifts at linear
order in β by

ðδωw
c;1Þsid
eB

¼ Aðc;1Þ
c cosω⊕T⊕ þAðc;1Þ

s sinω⊕T⊕

þAðc;1Þ
c2 cos2ω⊕T⊕ þAðc;1Þ

s2 sin2ω⊕T⊕; ð40Þ
and for the anomaly frequency shifts, we define it by

ðδωw
a;1Þsid ¼ Aða;1Þ

c cosω⊕T⊕ þ Aða;1Þ
s sinω⊕T⊕

þ Aða;1Þ
c2 cos 2ω⊕T⊕ þ As2 sin 2ω⊕T⊕: ð41Þ

The pure annual variations are defined by

ðδωw
c;1Þann
eB

¼ Aðc;1Þ
C cosΩ⊕T þ Aðc;1Þ

S sinΩ⊕T ð42Þ

TABLE III. SCF expressions of anomaly frequency shifts for a vertical B.

Amplitude Boost factor Coefficient combination

Aða;1Þ
0

βE −ð2HTZ
w − ðdXYw − dYXw þ 2gTZTw þ gXZXw þ gYZYw ÞmwÞs2χ

Aða;1Þ
c

βE ðHTX
w þ ðdZYw − gTXTw þ gXYYw ÞmwÞs2χ

Aða;1Þ
s

βE ðHTY
w − ðdZXw þ gTYTw þ gXYXw ÞmwÞs2χ

Aða;1Þ
C

β⊕ −2cχ ½ðHTX
w þ ðdZYw − gTXTw þ gXYYw ÞmwÞcη − ðbTw − ðdTTw þ dZZw þ gXYZw ÞmwÞsη�

Aða;1Þ
S

β⊕ −2ðHTY
w − ðdZXw þ gTYTw þ gXYXw ÞmwÞcχ

Aða;1Þ
c2

βE ðdXYw þ dYXw − gXZXw þ gYZYw Þmws2χ

Aða;1Þ
s2

βE −ðdXXw − dYYw þ gXZYw þ gYZXw Þmws2χ

Aða;1Þ
cC

β⊕ 2½ðHTZ
w − ðdXYw þ gTZTw þ gYZYw ÞmwÞcη − ðHTY

w þ ðdXZw − gTYTw þ gYZZw ÞmwÞsη�sχ
Aða;1Þ
cS

β⊕ −2ðbTw − ðdTTw þ dXXw þ gYZXw ÞmwÞsχ
Aða;1Þ
sC

β⊕ 2½ðbTw − ðdTTw þ dYYw − gXZYw ÞmwÞcη þ ðHTX
w − ðdYZw þ gTXTw − gXZZw ÞmwÞsη�sχ

Aða;1Þ
sS

β⊕ 2ðHTZ
w − ð−dYXw þ gTZTw þ gXZXw ÞmwÞsχ
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for the cyclotron frequency shifts, and by

ðδωw
a;1Þann ¼ Aða;1Þ

C cosΩ⊕T þ Aða;1Þ
S sinΩ⊕T ð43Þ

for the anomaly frequency shifts. Finally, we define the
mixed annual-sidereal variation of the cyclotron and
anomaly frequency shifts by

ðδωw
c;1Þmix

eB
¼ cosω⊕T⊕ðAðc;1Þ

cC cosΩ⊕TþAðc;1Þ
cS sinΩ⊕TÞ

þsinω⊕T⊕ðAðc;1Þ
sC cosΩ⊕TþAðc;1Þ

sS sinΩ⊕TÞ
þcos2ω⊕T⊕ðAðc;1Þ

c2C cosΩ⊕TþAðc;1Þ
c2S sinΩ⊕TÞ

þsin2ω⊕T⊕ðAðc;1Þ
s2C cosΩ⊕TþAðc;1Þ

s2S sinΩ⊕TÞ
ð44Þ

and

ðδωw
a;1Þmix ¼ cosω⊕T⊕ðAða;1Þ

cC cosΩ⊕T þAða;1Þ
cS sinΩ⊕TÞ

þ sinω⊕T⊕ðAða;1Þ
sC cosΩ⊕T þAða;1Þ

sS sinΩ⊕TÞ:
ð45Þ

We use the same terminology for the frequency shifts for

antiparticles by replacing the amplitudes Aðc;1Þ
� , Aða;1Þ

� by

Āðc;1Þ
� , Āða;1Þ

� .

IV. EXPERIMENTS

In this section, we analyze several Penning-trap experi-
ments that measure the charge-to-mass ratios, the g factors,
and their comparisons between particles and antiparticles,
and use the reported experimental measurements to con-
strain the relevant Sun-centered frame SME coefficients
that are associated to linear-boost corrections. The experi-
ments chosen for discussion here are listed in Table V. For
each experiment, we include the relevant particle species,
the colatitude χ of the laboratory, the direction and

TABLE V. Experimental quantities for relevant Penning-trap experiments.

Experiment Species χ B direction B Precision

ATRAP [7] p, p̄ 43.8° Upward 5.85 T jδωp̄
c − 1.001δωp

c jconst < 3.33 × 10−26 GeV

BASE [8] p, p̄ 43.8° Horizontal (120°) 1.946 T jδωp̄
c − 1.001δωp

c jconst < 8.46 × 10−27 GeV
jδωp̄

c − 1.001δωp
c j1st < 8.83 × 10−26 GeV

BASE [16] p̄ 43.8° Horizontal (120°) 1.946 T jδωp̄
a j1st < 1.81 × 10−24 GeV

jδωp̄
a j2nd < 1.81 × 10−24 GeV

BASE [9,10] p, p̄ 40.0°, 43.8° Horizontal (18°, 120°) 1.9 T jδωp
a − 0.98δωp̄

a jconst < 9.53 × 10−25 GeV

TABLE IV. SCF expressions of anomaly frequency shifts for a horizontal B.

Amplitude
Boost
factor Coefficient combination

Aða;1Þ
0

βE −½ð2HTZ
w − ðdXYw − dYXw þ 2gTZTw þ gXZXw þ gYZYw ÞmwÞcθcχþð2bTw − ð2dTTw þ dXXw þ dYYw − gXZYw þ gYZXw ÞmwÞsθ�sχ

Aða;1Þ
c

βE −2ðHTX
w þ ðdZYw − gTXTw þ gXYYw ÞmwÞcθs2χ

Aða;1Þ
s

βE −2ðHTY
w − ðdZXw þ gTYTw þ gXYXw ÞmwÞcθs2χ

Aða;1Þ
C

β⊕ 2cθ½ðHTX
w þ ðdZYw − gTXTw þ gXYYw ÞmwÞcη − ðbTw − ðdTTw þ dZZw þ gXYZw ÞmwÞsη�sχ

Aða;1Þ
S

β⊕ 2ðHTY
w − ðdZXw þ gTYTw þ gXYXw ÞmwÞcθsχ

Aða;1Þ
c2

βE mwððdXYw þ dYXw − gXZXw þ gYZYw Þcθcχ − ðdXXw − dYYw þ gXZYw þ gYZXw ÞsθÞsχ
Aða;1Þ
s2

βE −mwððdXXw − dYYw þ gXZYw þ gYZXw Þcθcχ þ ðdXYw þ dYXw − gXZXw þ gYZYw ÞsθÞsχ
Aða;1Þ
cC

β⊕ 2cη½ðHTZ
w − ðdXYw þ gTZTw þ gYZYw ÞmwÞcθcχ þ ðbTw − ðdTTw þ dYYw − gXZYw ÞmwÞsθ�

þ2sη½ðHTX
w − ðdYZw þ gTXTw − gXZZw ÞmwÞsθ − ðHTY

w þ ðdXZw − gTYTw þ gYZZw ÞmwÞcθcχ �
Aða;1Þ
cS

β⊕ −2ðbTw − ðdTTw þ dXXw þ gYZXw ÞmwÞcθcχ þ 2ðHTZ
w þ ðdYXw − gTZTw − gXZXw ÞmwÞsθ

Aða;1Þ
sC

β⊕ 2cη½ðbTw − ðdTTw þ dYYw − gXZYw ÞmwÞcθcχ − ðHTZ
w − ðdXYw þ gTZTw þ gYZYw ÞmwÞsθ�

þ2sη½ðHTX
w − ðdYZw þ gTXTw − gXZZw ÞmwÞcθcχ þ ðHTY

w þ ðdXZw − gTYTw þ gYZZw ÞmwÞsθ�
Aða;1Þ
sS

β⊕ 2½ðHTZ
w þ ðdYXw − gTZTw − gXZXw ÞmwÞcθcχ þ ðbTw − ðdTTw þ dXXw þ gYZXw ÞmwÞsθ�
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magnitude of the magnetic field B used in the trap (for a
horizontal magnetic field, the angle in the parenthesis
specifies its direction in the horizontal plane, measured
from the local south in the counterclockwise direction),
and the translated precision from the reported measure-
ment by each experiment in terms of the upper limit of the
relevant frequencies in units of GeV (details are given in
the next two subsections). We note that the Penning-trap
experiments involving electrons and positrons are not
included in Table V as the limits of the electron coef-
ficients for Lorentz and CPT violation obtained from
these experiments are 107–1016 orders of magnitude larger
than the current best bounds obtained from other exper-
imental systems. For example, the limit on the magnitude
of the electron coefficient bTe obtained in this work is
jbTe j≲ 10−11 GeV, while experiments using a torsion
pendulum have constrained this coefficient to a
10−27 GeV level [25]. Therefore, we restrict our attention
to Penning-trap experiments involving protons and anti-
protons in this work.

A. The charge-to-mass ratios

It is evident from Eq. (7) that the charge-to-mass ratio of
a charged particle or antiparticle confined in a Penning trap
is related to the ratios of its cyclotron frequency and the
magnetic field used in the trap. In the presence of Lorentz
and CPT violation, corrections can be introduced to the
cyclotron frequencies, as shown by expressions (29) and
(31) in the context of the minimal SME. These corrections
are controlled by a set of tilde effective coefficients b̃03w ,
c̃11w þ c̃22w , b̃0�3w , and c̃�11w þ c̃�22w in the apparatus frame. The
fundamental coefficients for Lorentz violation in these tilde
effective coefficients are given by definitions (30) and (32).
The coefficients for Lorentz violation appearing in these
expressions have nontrivial transformation properties
under rotations and boosts to the Sun-centered frame, thus
introducing time-varying signals to the measured cyclotron
frequencies given by Eq. (35), as discussed in detail in
Sec. III. Performing a time-variation analysis of the
measurement data can extract the time dependence of
the cyclotron frequencies and set bounds on relevant
coefficients for Lorentz violation.
Results (29) and (31) also show that the cyclotron

frequency shifts due to Lorentz and CPT violation for a
particle are different from these for its corresponding
antiparticle, due to the sign changes of all the CPT-odd
coefficients in these two expressions. For experiments
comparing the charge-to-mass ratios between a particle
and its corresponding antiparticle, the difference in the
charge-to-mass ratios corresponds to that in the cyclotron
frequency shifts,

ðjqj=mÞw̄
ðjqj=mÞw

− 1 ↔
ωw̄
c

ωw
c
− 1 ¼ δωw̄

c − δωw
c

ωw
c

; ð46Þ

where the Lorentz- and CPT-invariant pieces in the cyclo-
tron frequencies are exactly canceled by the CPT theorem
if the same magnetic field is used. The notation↔ indicates
the correspondence between the experimental interpreted
charge-to-mass ratio comparison and the measured fre-
quency difference. Based on relation (46), the measurement
precision in the difference jqj=mÞw̄=ðjqj=mÞw − 1 reported
by an experiment can be used to extract limits on the
relevant coefficients for Lorentz violation that appear in
δωw

c and δωw̄
c .

Before we start the analysis of the experiment results to
extract the limits on the coefficients for Lorentz violation,
we want to point out a subtlety related to the particle
species used in the experiments. For the experiment
comparing the charge-to-mass ratios between protons
and antiprotons, most experiments use a hydrogen ion
(H−) as a proxy for the proton to eliminate systematic
shifts caused by polarity switching of the trapping
voltages. This modifies relation (46) to

ðjqj=mÞp̄
ðjqj=mÞp

− 1 ¼ ðjqj=mÞp̄
Rðjqj=mÞH−

− 1 ↔
δωp̄

c − RδωH−
c

RωH−
c

; ð47Þ

where R ¼ mH−=mp ¼ 1.001089218754 is the ratio of the
mass between a hydrogen ion and a proton [8], ωH−

c is the
cyclotron frequency for the hydrogen ion, and δωH−

c is its
corresponding shift. To obtain δωH−

c , one can apply
w ¼ H− in expression (13) and the related tilde coeffi-
cients for Lorentz violation become the effective ones for
hydrogen ions. Expressing these effective coefficients in
terms of the corresponding fundamental coefficients for
the hydrogen ion constituents, the electron and proton
coefficients, is challenging due to nonperturbative issues
including binding effects in the composite hydrogen ion.
However, an approximation to these coefficient relations
can be obtained by treating the wave function of the
hydrogen ion as a product of the wave functions of a
proton and two electrons. Applying perturbation theory at
the lowest order and ignoring the related binding energies,
the cyclotron frequency shifts δωH−

c of the hydrogen ion
due to Lorentz and CPT violation can then be approxi-
mated as the sum of these for its constituents, δωH−

c ≃
δωp

c þ 2δωe−
c . The term δωe−

c contains coefficients for
Lorentz violation in the electron sector. Compared to
the shifts in the proton cyclotron frequencies, the ones
arising from the electron cyclotron frequency shifts are
suppressed by a factor of me=mp ≃ 10−3. For this reason,
we can ignore the term 2δωe−

c in the shifts of the hydrogen
ion cyclotron frequency shifts and keep contributions
from the protons only. Under this assumption, relation
(47) now becomes

ðjqj=mÞp̄
ðjqj=mÞp

− 1 ↔
δωp̄

c − Rδωp
c

RωH−
c

: ð48Þ
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In the following two subsections, we will use relation (48),
together with the reported precisions of the charge-to-
mass ratio comparisons between protons and antiprotons
and appropriate numerical values of ωH−

c for different
Penning-trap experiments to constrain the relevant coef-
ficients for Lorentz violation.

1. ATRAP at CERN

In a Penning-trap experiment located at CERN by the
ATRAP Collaboration, Gabrielse and his group achieved
a precision of 90 ppt for the difference of the proton-
antiproton charge-to-mass ratio comparison [7]. The
experiment applied an upward uniform magnetic field
B ¼ 5.85 T in the trap. The reported result was obtained
by taking the time average of the cyclotron frequency
measurements. This procedure resulted in a suppression of
the time-dependent terms and implies that only the coef-
ficients that appear in the constant term in the time
variations of the cyclotron frequencies can be constrained
using the experimental result.
Applying expression (48) by taking the reported pre-

cision of 90 ppt for ðjqj=mÞp̄=ðjqj=mÞp − 1 and identifying
ωH−
c ¼ 2π × 89.3 MHz given in the ATRAP experiment,

the following limit can be obtained,

jδωp̄
c − 1.001δωp

c jconst ≲ 3.33 × 10−26 GeV; ð49Þ

where the subscript “const” indicates that only the constant
terms contributing to the frequency shifts are relevant to the
above limit.

2. BASE at CERN

More recently, another Penning-trap experiment at
CERN by the BASE Collaboration led by Ulmer improved
the comparison to a sensitivity of 69 ppt [8], by applying a
horizontal magnetic field B ¼ 1.946 T pointing θ ¼ 120°
from the local south in the counterclockwise direction. The
BASE experiment analyzed the data of the charge-to-mass
ratio comparisons to search for both time-averaged effects
and sidereal variations in the first harmonic ω⊕ of the
Earth’s rotation frequency. Focusing on the linear order
boost effects, the reported results can be taken to set bounds

on not only the constant terms Aðc;1Þ
0 and Āðc;1Þ

0 , but also on

the amplitudes Aðc;1Þ
c , Aðc;1Þ

s , Āðc;1Þ
c and Āðc;1Þ

s , which are
proportional to the first harmonic of the variations in the
sidereal frequencies.
Using the reported 69 ppt for the time-averaged precision

and 720 ppt for the limit of the first harmonic amplitude for
the comparison (48) and taking ωH−

c ¼ 2π × 29.6 MHz for
the BASE experiment, the following limits are obtained,

jδωp̄
c − 1.001δωp

c jconst ≲ 8.46 × 10−27 GeV ð50Þ

and

jδωp̄
c − 1.001δωp

c j1st ≲ 8.83 × 10−26 GeV; ð51Þ

where the subscript “const” in the limit (50) takes the same
meaning as the one in (49), while the subscript “1st” in the
limit (51) specifies the amplitude of the first harmonic in
the sidereal variation.

B. The g factors

Another intrinsic fundamental quantity of a particle is
known as the g factor, which is associated to the particle’s
anomalous magnetic moment. The g factor of a particle
can be determined using a Penning trap by measuring the
ratio of its anomaly frequency and cyclotron frequency,
as shown by expression (8). Similar to the discussion of the
charge-to-mass ratios in Sec. IVA, Lorentz and CPT
violation can introduce shifts to both cyclotron and
anomaly frequencies of the particle in the trap according
to expressions (29) and (31). Compared to the shifts in the
anomaly frequencies δωw

a and δωw̄
a , contributions to the

cyclotron frequencies δωw
c and δωw̄

c are suppressed by
factors of eB=m2

w. Even for a comparatively large magnetic
field of B ≃ 5 T in a Penning trap, these factors are at orders
of eB=m2

p ≃ 10−16 for protons and antiprotons. Therefore,
to obtain the dominant effects due to Lorentz and CPT
violation, we can ignore the shifts in the cyclotron frequen-
cies and focus only on these in the anomaly frequencies.
According to expressions (29) and (31), the shifts in the
anomaly frequencies are controlled by the tilde combinations
b̃3w and b̃�3w in the apparatus frame, with their definitions in
terms of the fundamental coefficients for Lorentz violation
given by expressions (30) and (32). The rotation and boost
transformations of these fundamental coefficients for
Lorentz violation from the apparatus frame to the Sun-
centered frame introduce time-varying signals in the mea-
surements of the g factors. A time-variation analysis of the
anomaly frequency measurements would permit constraints
on the relevant coefficients for Lorentz violation.
Since the shifts in the anomaly frequencies due to

Lorentz and CPT violation between a particle and an
antiparticle are different, as shown in results (29) and (31),
for experiments comparing the g factors between a particle
and its antiparticle, the comparison is related to the
difference in the anomaly frequencies, given by

1

2
ðgw − gw̄Þ ↔

ωw
a

ωw
c
−
ωw̄
a

ωw̄
c
¼ δωw

a

ωw
c
−
δωw̄

a

ωw̄
c
; ð52Þ

where again all Lorentz- and CPT-invariant contributions
are canceled out on the right-hand side. Note relation (52)
doesn’t require the use of the same magnetic field to
measure the g factors of a particle and an antiparticle. If
different magnetic fields are used in the traps, ωw

c and ωw̄
c

would have different values, and the coefficients in δωw
a and

δωw̄
a would have different transformation expressions as
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they depend on the field orientations used in the traps. In
the next two subsections, we will analyze Penning-trap
experiments that measure the g factors of protons, anti-
protons, and their comparisons, and use the reported
precisions for these measurements to constrain the relevant
coefficients for Lorentz violation in the proton sector.

1. BASE at CERN

The measurement of the g factor for antiprotons has
reached a record precision of 1.5 ppb by the BASE
Collaboration using a Penning trap located at CERN, with
a horizontal magnetic field B ¼ 1.946 T at θ ¼ 120° from
the local south [10]. A sidereal-variation analysis of the
Larmor frequencies was performed at the frequencies ofω⊕
and 2ω⊕, yielding a precision of 5.3 ppb and 5.2 ppb,
respectively. Since ωL ¼ ωa þ ωc, any shift in the Larmor
frequency of the antiproton is the sum of the shifts in
its anomaly frequency and the cyclotron frequency.
However, as discussed at the beginning of this subsection,
shifts in the cyclotron frequencies are suppressed by these
in the anomaly frequencies by a factor of eB=m2

p ≃ 10−16.
Keeping only the dominant contributions to the Larmor
frequency, we have δωL ¼ δωa. Identifying ωp̄

L ¼ 2π ×
82.82 MHz, together with the reported precisions of
5.3 ppb and 5.2 ppb of the sidereal variations in ω⊕ and
2ω⊕, we have the following limits in natural units

jδωp̄
a j1st ≲ 1.81 × 10−24 GeV ð53Þ

and

jδωp̄
a j2nd ≲ 1.81 × 10−24 GeV; ð54Þ

where the subscripts “1st” and “2nd” take the same
meaning as before.

2. BASE at Mainz and CERN

The proton’s g factor has been measured to a record
precision of 0.3 ppb, by the same BASE Collaboration
using a Penning trap located at Mainz with a horizontal
magnetic field B ¼ 1.9 T at θ ¼ 18° from the local
south [9]. At the end of this subsection, we combine the
proton’s g factor measurement with that of an antiproton,
discussed in the preceding section, to extract limits of
additional coefficients for Lorentz violation in the proton
sector. Combining the reported precisions of 0.3 ppb
(proton) and 1.5 ppb (antiproton) for the time-averaged
measurements, and identifying ωp

c ¼ 2π × 28.96 MHz
and ωp̄

c ¼ 2π × 29.66 MHz for each experiment, compari-
son (52) gives

jδωp
a − 0.98δωp̄

a jconst ≲ 9.53 × 10−25 GeV; ð55Þ

where the same subscript “const” is used to specify only
the constant terms in the transformation are relevant to the
above limit. The factor 0.98 is the ratio of wp

c =w
p̄
c due to the

different cyclotron frequencies in the two experiments.

C. Results

The limits appearing in expressions (49)–(55) contain
the shifts in the cyclotron and anomaly frequencies of
protons and antiprotons. The exact expressions of these
frequency shifts in terms of the fundamental coefficients
for Lorentz violation in the Sun-centered frame depend, in
general, on the field configuration of each experiment, as
given by Tables I–IV in Sec. III. Extracting the terms in the
relevant amplitudes according to the subscripts of the limit
expressions, together with the corresponding experimental
values listed in Table V for each experiment, the limits
on the relevant coefficients for Lorentz violation can be
obtained. To illustrate this idea in more detail, we provide
here an example that analyzes the BASE experiment
comparing the charge-to-mass ratios between protons
and antiprotons at CERN.
Since the BASE experiment at CERN applied a magnetic

field of B ¼ 1.946 T in the horizontal direction, and
limits (50) and (51) include shifts in the cyclotron frequen-
cies of protons and antiprotons, the corresponding table
that lists the transformation results is identified as Table II.
The subscript “const” in limit (50) suggests that only the
constant terms in the time variations can be constrained
using this limit, which are the terms appearing in the

amplitudes Aðc;0Þ
0 , Aðc;1Þ

0 , Āðc;0Þ
0 , and Āðc;1Þ

0 in the first
expression in Eq. (A6). Similarly, the subscript “1st” in
limit (51) implies that the terms corresponding to both
cosω⊕T⊕ and sinω⊕T⊕ can be bounded. These terms can

be identified as the ones in the amplitudes Aðc;0Þ
c , Aðc;0Þ

s ,

Aðc;1Þ
c , Aðc;1Þ

s , Āðc;0Þ
c , Āðc;0Þ

s , Āðc;1Þ
c , and Āðs;1Þ

s in the second
expression in Eq. (A6). The amplitudes with a 0 in the
superscripts denote contributions at the zeroth boost order
and they have been studied in detail in Ref. [17], therefore,
we focus here on the reinterpretation of limits (50) and (51)
on the amplitudes at the linear boost order. Keeping only
the amplitudes at linear boost order in limits (50) and (51)
with the laboratory colatitude χ ¼ 43.8° listed in Table V
and taking βE ≃ 1.6 × 10−6, the limits on the relevant
combination of coefficients for Lorentz violation are thus
obtained. We note that in deriving the limits from the BASE
at Mainz and CERN experiments (discussed in Sec. IV B 2)
using this method, since the two BASE experiments used
magnetic fields in different directions, the angle θ in the
transformations of δωp

a and δωp̄
a takes different values. We

also note that Appendix provides an extended discussion on
combining the present work at linear boost order with the
previous works on zeroth boost order [14,17].
Some intuition about the scope of the limits on the

individual fundamental coefficients for Lorentz violation
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appearing in the above limits can be obtained using a
common practice adopted in many subfields searching for
Lorentz and CPT violation [4], which assumes that only
one individual coefficient is nonzero at a time and neglects
any possible cancellation among different coefficients.
This procedure offers a reasonable insight into the maxi-
mum conceivable sensitivity from the constraint to each
individual coefficient, allowing us to quickly compare the
sensitivities of different experiments to the individual
coefficients and to recognize which sectors of the SME
remain poorly explored. Following this spirit, we set limits
on individual components of the coefficients for Lorentz
violation and list them in Table VI. In the table, the first
column lists the components of the coefficients for Lorentz
violation in the Sun-centered frame, with parentheses on n
indices implying symmetrization and brackets on n indices
indicating antisymmetrization, both with a factor of 1=n!.
The second column displays the constraints obtained from
other work. A blank space in this column indicates that we
did not find any previous work that has imposed a limit
on this coefficient in the literature. We also verified that
the listed coefficient does not contribute to any of the

constraints reported in the most recent edition of the Tables
for Lorentz and CPT violation [4], including the ones listed
in Tables D9 and D10 of this reference. The third column
displays the constraints obtained by this work. The final
column gives the relevant experiments used to obtain the
constraints, in which the notations in the parentheses indicate
the relevant particle species and quantities measured by the
experiment. For example, (p g) means g factor measure-
ments for protons and (p − p̄ c=m) implies proton-
antiproton charge-to-mass ratio comparisons. As shown in
Table VI, this work obtained 18 first-time limits on coef-
ficients that have not been bounded before and improved
the constraints of two additional coefficients, bTp and dTTp ,
by about 4 and 10 orders of magnitude compared to the

previous constraints. The limits on cðTXÞp , cðTYÞp , and cðTZÞp are
not comparable to the previous ones, but for completeness,
we also include them in the table.

V. PROSPECTS

We provide in this section the prospects of improving the
current SME limits or imposing first-time SME limits from

TABLE VI. Limits on the proton coefficients in the minimal SME.

Coefficient Previous constraint This work Experiment

jbTpj 3.8 × 10−15 GeV [37] 3.8 × 10−19 GeV BASE at Mainz (p g)

jcðTXÞp j 1.0 × 10−20 [38] 5.1 × 10−1 BASE at CERN (p − p̄ c=m)

jcðTYÞp j 1.0 × 10−20 [38] 5.1 × 10−1 BASE at CERN (p − p̄ c=m)

jcðTZÞp j 1.0 × 10−20 [38] 2.1 × 10−1 BASE at CERN (p − p̄ c=m)

jdTTp j 3.0 × 10−8 [39] 8.2 × 10−19 BASE at Mainz (p g)

jdXXp j 1.6 × 10−18 BASE at Mainz (p g)

jd½XY�p j 8.9 × 10−19 BASE at Mainz (p g)

jdYYp j 1.6 × 10−18 BASE at Mainz (p g)

jdZXp j 2.5 × 10−18 BASE at CERN (p̄ g)

jdZYp j 2.5 × 10−18 BASE at CERN (p̄ g)

jHTX
p j 2.3 × 10−18 GeV BASE at CERN (p̄ g)

jHTY
p j 2.3 × 10−18 GeV BASE at CERN (p̄ g)

jHTZ
p j 4.2 × 10−19 GeV BASE at Mainz (p g)

jgTXTp j 2.5 × 10−18 BASE at CERN (p̄ g)

jgTYTp j 2.5 × 10−18 BASE at CERN (p̄ g)

jgTZTp j 1.4 × 10−18 BASE at Mainz (p g)

jgXYXp j 2.5 × 10−18 BASE at CERN (p̄ g)

jgXYYp j 2.5 × 10−18 BASE at CERN (p̄ g)

jgXYZp j 3.6 × 10−5 BASE at CERN (p − p̄ c=m)

jgXZXp j 1.8 × 10−18 BASE at CERN (p̄ g)

jgXZYp j 8.1 × 10−19 BASE at Mainz (p g)

jgYZXp j 8.1 × 10−19 BASE at Mainz (p g)

jgYZYp j 1.8 × 10−18 BASE at CERN (p̄ g)
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time-variation analysis of ωw
c and ωw

a of confined particles
or antiparticles in Penning-trap experiments. The limits
listed in Table VI were obtained from pure sidereal-
variation studies of the cyclotron and anomaly frequencies
and their comparisons between particles and antiparticles.
A detailed comparison of the SME coefficients from
different rows in each of Tables I–IV reveals that some
SME coefficients that contribute to a pure sidereal variation
also appear in a pure annual variation. This indicates that an
additional pure annual variation study could potentially
achieve greater sensitivities to these overlapping SME
coefficients than a pure sidereal variation analysis due to
the larger value of β⊕ compared to βE, by about two orders
in magnitude. Moreover, an additional pure annual varia-
tion or mix sidereal-annual variation analysis of ωw

c and ωw
a

could constrain additional SME coefficients that are unde-
tectable in a pure sidereal variation study.
To give an explicit example, we consider the measure-

ments of the anomaly frequencies with a horizontal
magnetic field, corresponding to the setup used in
Penning-trap experiments carried out by the BASE
Collaboration. As observed in Sec. IV, the SME coeffi-

cients in Aða;1Þ
0 and Āða;1Þ

0 can be constrained by particle-
antiparticle comparison studies while those contributing

to Aða;1Þ
c , Aða;1Þ

s , Aða;1Þ
c2 , and Aða;1Þ

s2 are sensitive to pure
sidereal variation studies. Some of the coefficients that
contribute to these amplitudes in Table IValso contribute to

the Aða;1Þ
C and Aða;1Þ

S in the same table. These coefficients are
identified as bTw, HTX

w , HTY
w , dTTw , dZXw , dZYw , gTXTw , gTYTw ,

gXYXw , and gXYYw . A pure annual variation study is potentially
up to two orders of magnitude more sensitive to these
coefficients because β⊕=βE ≃ 102. In addition to the above
SME coefficients, the pure annual variation analysis is
also sensitive to two more SME coefficients, dZZw and gXYZw ,
that do not contribute to either the constant term or the
amplitudes of the sidereal variations of the anomaly
frequencies. We note that the coefficient gXYZw does con-

tribute to the constant term Aðc;1Þ
0 of the cyclotron frequen-

cies, and we used limit (50) to obtain a first bound on the
size of this coefficient, which is listed in Table VI.
However, a pure annual variation study of the anomaly
frequencies could in principle improve its limit from 10−5

level to 10−18 level, an improvement of 13 orders of
magnitude, since the minimal SME contributions to the
anomaly frequencies are independent of the term jeBj
compared to these to the cyclotron frequencies. There are
four more SME coefficients, dXZw , dYZw , gXZZw , and gYZZw that
only contribute to the amplitudes of the mixed annual-
sidereal variations in Table IV and therefore, can only be
detected by searching for this type of variation. These four
coefficients are currently unconstrained in the proton
sector. The attainable limits on their size based on a
mixed annual-sidereal variation study are in the order of
10−18 or better.
To make the discussion complete, we provide Table VII

to summarize the improvable and new SME coefficients
by additional annual and mixed sidereal-annual variation
studies of the cyclotron and anomaly frequencies for
different field configurations. In this table, the first column
gives the frequencies of analysis and the second column
displays the field direction used in an experiment. The third
column lists the SME coefficients that appear in both a pure
sidereal variation (including the constant term) and a pure
annual-variation analysis. Note for these coefficients,
assuming a pure sidereal variation study has been per-
formed already, an additional pure annual-variation analy-
sis has the advantage of improving their bounds by about
two orders in magnitude, as discussed at the beginning
of this section. The fourth column specifies the new SME
coefficients that can be detected by an additional annual
variation analysis. The final column presents the additional
SME coefficients that are sensitive to an additional mixed
sidereal-annual variation study, assuming pure sidereal and
annual variation studies have been performed already. At
the end of this section, we point out that since the limit of
coefficient gXYZp listed in Table VI is obtained by analyzing
the cyclotron frequency difference between protons and
antiprotons from the BASE experiment using a horizontal
magnetic field, and this coefficient also lies in the category
of “Coefficients improvable by an annual variation” for the
case of ωw

c with a horizontal magnetic field in Table VII, an
additional pure annual variation study could in principle
improve its limit by one or two orders of magnitude due to
the larger boost factor associated with the annual variation.
The BASE Collaboration recently performed an annual

TABLE VII. Accessibility of different time-variation studies to the SME coefficients.

Frequency
Field

direction Coefficients improvable by an annual variation

New coefficients
by an annual
variation

New coefficients
by a mixed
variation

ωw
c Vertical cðTXÞw , cðTYÞw , gTXTw , gTYTw , gXYXw , gXYYw , gXZYw , gYZXw bTw, c

ðTZÞ
w , gXYZw

gXZZw , gYZZw

ωw
c Horizontal bTw, c

ðTXÞ
w , cðTYÞw , cðTZÞw , gTXTw , gTYTw , gXYXw , gXYYw , gXZYw , gYZXw , gXYZw

None gXZZw , gYZZw

ωw
a Vertical HTX

w , HTY
w , dZXw , dZYw , gTXTw , gTYTw , gXYXw , gXYYw bTw, dTTw , dZZw , gXYZw dXZw , dYZw , gXZZw , gYZZw

ωw
a Horizontal bTw, HTX

w , HTY
w , dTTw , dZXw , dZYw , gTXTw , gTYTw , gXYXw , gXYYw dZZw , gXYZw dXZw , dYZw , gXZZw , gYZZw
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variation study of the cyclotron frequency difference
between protons and antiprotons as a test of the weak
equivalence principle [11], so it has a great potential to
improve the limit of gXYZp .

VI. SUMMARY

In this work, we studied the Lorentz- and CPT-violating
effects at linear boost order in Penning-trap experiments.
Within the SME framework, we first reproduced the
dominant Lorentz- and CPT-violating cyclotron and
anomaly frequency shifts of confined particles and anti-
particles in Penning traps. We then presented a general
discussion of transforming SME coefficients from the
apparatus frame to the Sun-centered frame at linear boost
order. Restricting the analysis to the minimal SME, the
transformation was applied to express the cyclotron and
anomaly frequency shifts in terms of the Sun-centered
frame SME coefficients. We found that the expressions of
these frequency shifts can be decomposed as a sum of
harmonics of the Earth’s sidereal frequency, the annual
frequency, and the product of the two. The amplitudes of
the harmonics expressed in terms of the Sun-centered frame
SME coefficients were given in Tables I–IV. Moving to the
applications to Penning-trap experiments, we adopted the
experimental measurements of the charge-to-mass ratios,
the g factors, and their comparisons between protons and
antiprotons from the ATRAP and BASE Penning-trap
experiments and translated them in terms of the limits
on the cyclotron and anomaly frequency shifts. Relating the
frequency limits to the SME coefficients, we extracted first-
time constraints on 18 SME coefficients and improved the
limits of two additional SME coefficients, by about 4 and
10 orders of magnitude. The results were summarized
in Table VI. To conclude the work, we provided some
comments on improving the current SME limits or impos-
ing limits on new SME coefficients from different time-
variation analysis. Following the present summary,
Appendix presented the Lorentz- and CPT-violating con-
tributions to the cyclotron and anomaly frequency shifts at
the zeroth boost order.

Overall, this work presents a general methodology for
studying Lorentz- and CPT-violating boost effects in
Penning-trap experiments. It provides a strong basis for
future searches for Lorentz and CPT violation using Earth-
based experiments. Given the impressive measurement
precision and excellent coverage of the SME coefficients,
Penning-trap experiments remain in the exciting category
of experiments that have great potential to unveil novel
signals for Lorentz and CPT violation in nature.

APPENDIX: EXPRESSIONS FOR PURE
SIDEREAL VARIATIONS AT BOTH ZEROTH

AND FIRST ORDER IN β

The discussion in this work focused on Lorentz- and
CPT-violating corrections to the cyclotron and anomaly
frequencies at linear order in β due to the minimal SME
terms. The results at the zeroth order in β including the
nonminimal SME terms up to mass dimensions six were
given in Refs. [14,17]. For completeness and the conven-
ience of future time-variation studies of Penning-trap
experiments, we provide in this appendix the full results
including both the zeroth and linear order in β.
We start the discussion by reproducing the main results

for the cyclotron frequency shifts obtained in Ref. [17]. The
general form of the Lorentz- and CPT-violating shifts to
the cyclotron frequencies of confined particles at the zeroth
order in β is given by

δωw
c;0

eB
¼ Aðc;0Þ

0 þ Aðc;0Þ
c cosω⊕T⊕ þ Aðc;0Þ

s sinω⊕T⊕

þ Aðc;0Þ
c2 cos 2ω⊕T⊕ þ Aðc;0Þ

s2 sin 2ω⊕T⊕

þ Aðc;0Þ
c3 cos 3ω⊕T⊕ þ Aðc;0Þ

s3 sin 3ω⊕T⊕; ðA1Þ

where ω⊕ is the sidereal frequency and T⊕ the sidereal
time. As discussed in Sec. III, the explicit expressions of

the amplitudes Aðc;0Þ
� in Eq. (A1) depend on the field

orientation in a trap. For a vertical magnetic field, Aðc;0Þ
� are

given by

Aðc;0Þ
0 ¼

�
2b̃0Zw cχ −mwðc̃XXw þ c̃YYw Þð1þ c2χÞ − 2mwðc̃TTw þ c̃ZZw s2χÞ

�
=2m2

w −
�
b̃ZXXF;w þ b̃ZYYF;w

�
cχc2χ

þ
�
b̃XðXZÞF;w þ b̃YðYZÞF;w − b̃ZZZF;w

�
cχs2χ ;

Aðc;0Þ
c ¼

�
b̃0Xw þ 2mwc̃

ðXZÞ
w cχ −

m2
w

8
ðb̃XYYw ð7þ c2χÞ − 16b̃ZðXZÞw c2χ þ b̃XXXw ð5þ 3c2χÞÞ

�
sχ
m2

w
−
�
b̃XZZw −

1

2
b̃YðXYÞw

�
s3χ ;

Aðc;0Þ
s ¼

�
b̃0Yw þ 2mwc̃

ðYZÞ
w cχ −

m2
w

8
ðb̃YXXw ð7þ c2χÞ − 16b̃ZðYZÞw c2χ þ b̃YYYw ð5þ 3c2χÞÞ

�
sχ
m2

w
−
�
b̃YZZw −

1

2
b̃XðXYÞw

�
s3χ ;

Aðc;0Þ
c2 ¼

�
c̃XXw − c̃YYw −mw

�
2b̃YðYZÞw − 2b̃XðXZÞw − b̃ZXXw þ b̃ZYYw

�
cχ
� s2χ
2mw

;
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Aðc;0Þ
s2 ¼

�
c̃ðXYÞw þmw

�
b̃YðXZÞw þ b̃XðYZÞw þ b̃ZðXYÞw

�
cχ
� s2χ
mw

;

Aðc;0Þ
c3 ¼ −

s3χ
4

�
2b̃YðXYÞw − b̃XXXw þ b̃XYYw

�
; Aðc;0Þ

s3 ¼ s3χ
4

�
2b̃XðXYÞw þ b̃YXXw − b̃YYYw

�
: ðA2Þ

For a horizontal magnetic field, we have

Aðc;0Þ
0 ¼ −

�
b̃0Zw cθsχ þmw

�
c̃TTw þ 1

2
ðc̃XXw þ c̃YYw Þðc2θ þ c2χs2θ þ s2χÞ þ c̃ZZw ðc2χ þ s2θs

2
χÞ
��

=m2
w

−
1

8
ðb̃XðXZÞw þ b̃YðYZÞw − b̃ZZZw Þcθð5sχ − 4c2θs3χ þ s3χÞ −

1

16
ðb̃ZXXw þ b̃ZYYw Þð2c3θs3χ − cθsχð3c2θ þ 11ÞÞ;

Aðc;0Þ
c ¼ ðb̃0Xw cθcχ þ b̃0Yw sθ −mwðc̃ðXZÞw c2θs2χ þ c̃ðYZÞw s2θsχÞÞ=m2

w −
1

16
b̃YðXYÞw cθððc2θ − 7Þcχ − 2c2θc3χÞ

− cθcχ
1

16
ðb̃XXXw ð3c2θ − 6c2θc2χ þ 7Þ þ b̃XYYw ðc2θ − 2c2θc2χ þ 13Þ þ 16b̃XZZw ðs2θs2χ þ c2χÞ − 16b̃ZðXZÞw c2θs2χÞ

þ 1

2
sθðb̃XðXYÞw ðc2θc2χ þ s2θc

2
χ þ s2χÞ − 2b̃YZZw ðs2θs2χ þ c2χÞ þ 4b̃ZðYZÞw c2θs

2
χÞ

−
1

32
½b̃YXXw ðsθð25 − 4c2θc2χÞ þ s3θÞ þ b̃YYYw ðsθð11 − 12c2θc2χÞ þ 3s3θÞ�;

Aðc;0Þ
s ¼ ðb̃0Yw cθcχ − b̃0Xw sθ þmwðc̃ðXZÞw s2θsχ − c̃ðYZÞw c2θs2χÞÞ=m2

w þ 2c2θs
2
χðb̃ZðYZÞw cθcχ − b̃ZðXZÞw sθÞ

−
1

16
cθcχ ½b̃YXXw ðc2θ − 2c2θc2χ þ 13Þ þ b̃YYYw ð3c2θ − 6c2θc2χ þ 7Þ þ 16b̃YZZw ðs2θs2χ þ c2χÞ�

−
1

32
½2b̃XðXYÞw cθððc2θ − 7Þcχ − 2c2θc3χÞ þ b̃XXXw ðsθð12c2θc2χ − 11Þ − 3s3θÞ þ b̃XYYw ðsθð4c2θc2χ − 25Þ − s3θÞ�

þ sθ½b̃XZZw ðs2θs2χ þ c2χÞ −
1

2
b̃YðXYÞw ðc2θc2χ þ s2θc

2
χ þ s2χÞ�; ðA3Þ

and

Aðc;0Þ
c2 ¼ −

�
1

8
ðc̃XXw − c̃YYw Þð1 − 3c2θ − 2c2θc2χÞ − c̃ðXYÞw cχs2θ

�
=mw − ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þsθc2θs2χ

þ 1

32
ð2b̃XðXZÞw − 2b̃YðYZÞw þ b̃ZXXw − b̃ZYYw Þððcθ − 5c3θÞsχ − 4c3θs3χÞ;

Aðc;0Þ
s2 ¼ −

�
1

2
ðc̃XXw − c̃YYw Þcχs2θ þ

1

4
c̃ðXYÞw ð1 − 3c2θ − 2c2θc2χÞ

�
=mw þ

�
b̃XðXZÞw − b̃YðYZÞw þ 1

2
ðb̃ZXXw − b̃ZYYw Þ

�
sθc2θs2χ

þ 1

16
ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þððcθ − 5c3θÞsχ − 4c3θs3χÞ;

Aðc;0Þ
c3 ¼ 1

64
ðb̃XYYw − b̃XXXw þ 2b̃YðXYÞw Þð3ðcθ − 5c3θÞcχ − 4c3θc3χÞ −

1

32
ð2b̃XðXYÞw þ b̃YXXw − b̃YYYw Þð3sθð1 − 4c2θc2χÞ − 5s3θÞ;

Aðc;0Þ
s3 ¼ 1

32
ðb̃XXXw − b̃XYYw − 2b̃YðXYÞw Þð3sθð1 − 4c2θc2χÞ − 5s3θÞ −

1

64
ð2b̃XðXYÞw þ b̃YXXw − b̃YYYw Þð3ðcθ − 5c3θÞcχ − 4c3θc3χÞ;

ðA4Þ

where the definitions of all the relevant tilde effective coefficients can be found in Ref. [17]. The frequency shifts δωw̄
c;0 for

antiparticles can be obtained by replacing the amplitudes Aðc;0Þ
� by Āðc;0Þ

� in Eq. (A1). The expressions of amplitudes Āðc;0Þ
�

are obtained from Eqs. (A2)–(A4) by replacing b̃0Jw → −b̃0�Jw , c̃JKw → c̃�JKw , and b̃JKLF;w → −b̃�JKLF;w .
For pure sidereal variation studies of the cyclotron frequencies, the expressions of the different amplitudes can be

obtained by summing Eqs. (A1) and (35), given by
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jδωw
c jconst ¼

���Aðc;0Þ
0 þ Aðc;1Þ

0

���;
jδωw

c j1st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c þ Aðc;1Þ

c

�
2 þ

�
Aðc;0Þ
s þ Aðc;1Þ

s

�
2

r
;

jδωw
c j2nd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c2 þ Aðc;1Þ

c2

�
2 þ

�
Aðc;0Þ
s2 þ Aðc;1Þ

s2

�
2

r
;

jδωw
c j3rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c3

�
2 þ

�
Aðc;1Þ
s3

�
2

r
; ðA5Þ

where the Aðc;1Þ
� amplitudes are given by Tables I and II.

Note the constraining of amplitudes jAðc;0Þ
0 j and jAðc;1Þ

0 j
in jδωw

c jconst requires comparisons of different cyclotron
frequencies.
For cyclotron frequency shifts comparisons jδωw

c − δωw̄
c j

between particles and antiparticles, the expressions of
different amplitudes for a pure sidereal variation study
are given by

jδωw
c − δωw̄

c jconst ¼
���Aðc;0Þ

0 þ Aðc;1Þ
0 − Āðc;0Þ

0 − Āðc;1Þ
0

���;
jδωw

c − δωw̄
c j1st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c þ Aðc;1Þ

c − Āðc;0Þ
c − Āðc;1Þ

c

�
2 þ

�
Aðc;0Þ
s þ Aðc;1Þ

s − Āðc;0Þ
s − Āðc;1Þ

s

�
2

r
;

jδωw
c − δωw̄

c j2nd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c2 þ Aðc;1Þ

c2 − Āðc;0Þ
c2 − Āðc;1Þ

c2

�
2 þ

�
Aðc;0Þ
s2 þ Aðc;1Þ

s2 − Āðc;0Þ
s2 − Āðc;1Þ

s2

�
2

r
;

jδωw
c − δωw̄

c j3rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aðc;0Þ
c3 − Āðc;0Þ

c3

�
2 þ

�
Aðc;1Þ
s3 − Āðc;1Þ

s3

�
2

r
: ðA6Þ

The limits (49), (50), and (51) obtained by pure sidereal
variation studies of ωc can be used to impose constraints on
the first two expressions in Eq. (A6). This expands the
results obtained in Ref. [17] by including the contributions

at linear order in β contained in the amplitudes Aðc;1Þ
�

and Āðc;1Þ
� .

Moving the discussion to the anomaly frequencies,
the general form of the Lorentz- and CPT-violating shifts
to the anomaly frequencies at the leading order in β is
given by

δωw
a;0 ¼ Aða;0Þ

0 þ Aða;0Þ
c cosω⊕T⊕ þ Aða;0Þ

s sinω⊕T⊕

þ Aða;0Þ
c2 cos 2ω⊕T⊕ þ Aða;0Þ

s2 sin 2ω⊕T⊕; ðA7Þ

with the amplitudes Aða;0Þ
� given by

Aða;0Þ
0 ¼ 2b̃Zwcχ − Bð2b̃ZZF;w þ ðb̃XXF;w þ b̃YYF;w − 2b̃ZZF;wÞs2χÞ;

Aða;0Þ
c ¼ 2b̃Xwsχ − 2Bb̃ðXZÞF;w s2χ ;

Aða;0Þ
s ¼ 2b̃Ywsχ − 2Bb̃ðYZÞF;w s2χ ;

Aða;0Þ
c2 ¼ Bðb̃YYF;w − b̃XXF;wÞs2χ ;

Aða;0Þ
s2 ¼ −2Bb̃ðXYÞF;w s2χ ; ðA8Þ

for a vertical magnetic field, and

Aða;0Þ
0 ¼ −2b̃Zwsχcθ

−Bððb̃XXF;w þ b̃YYF;wÞðc2χc2θ þ s2θÞþ 2b̃ZZF;wc
2
θs

2
χÞ;

Aða;0Þ
c ¼ 2ðb̃Xwcθcχ þ b̃YwsθÞþ 4Bcθsχðb̃ðXZÞF;w cθcχ þ b̃ðYZÞF;w sθÞ;

Aða;0Þ
s ¼ 2ðb̃Ywcθcχ − b̃XwsθÞþ 4Bcθsχðb̃ðYZÞF;w cθcχ − b̃ðXZÞF;w sθÞ;

Aða;0Þ
c2 ¼ Bððb̃YYF;w − b̃XXF;wÞðc2θc2χ − s2θÞ− 2b̃ðXYÞF;w cχs2θÞ;

Aða;0Þ
s2 ¼ −Bð2b̃ðXYÞF;w ðc2θc2χ − s2θÞþ ðb̃YYF;w − b̃XXF;wÞcχs2θÞ;

ðA9Þ

for a horizontal magnetic field. Similarly, the anomaly
frequency shifts δωw̄

a;0 for antiparticles can be determined

by replacing Aða;0Þ
� to Āða;0Þ

� in Eq. (A7), with Āða;0Þ
� given

by replacing b̃Jw → −b̃�Jw and b̃JKF;w → −b̃�JKF;w in Eqs. (A8)
and (A9).
The corresponding different amplitudes in a pure sidereal

variation study of the anomaly frequencies can be deter-
mined by adding Eq. (37) to (A7). These amplitudes were
found to be

jδωw
a jconst ¼

���Aða;0Þ
0 þ Aða;1Þ

0

���;
jδωw

a j1st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aða;0Þ
c þ Aða;1Þ

c

�
2 þ

�
Aða;0Þ
s þ Aða;1Þ

s

�
2

r
;

jδωw
a j2nd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aða;0Þ
c2 þ Aða;1Þ

c2

�
2 þ

�
Aða;0Þ
s2 þ Aða;1Þ

s2

�
2

r
;

ðA10Þ
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where the amplitudes Aða;1Þ
� are given by Table III for a

vertical magnetic field and by Table IV for a horizontal one.
Applying the limits (53) and (54) from pure sidereal
variation studies of ωa to the expressions of jδωw

a j1st
and jδωw

a j2nd in Eq. (A10) expands the results in

Ref. [14] by including amplitudes Aða;1Þ
� from linear-order

boost contributions.
For particle-antiparticle anomaly frequency shifts com-

parisons jδωw
a − δωw̄

a j, the corresponding amplitudes are
found in a similar way,

jδωw
a − δωw̄

a jconst ¼
���Aða;0Þ

0 þ Aða;1Þ
0 − Āða;0Þ

0 − Āða;1Þ
0

���;
jδωw

a − δωw̄
a j1st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aða;0Þ
c þ Aða;1Þ

c − Āða;0Þ
c − Āða;1Þ

c

�
2 þ

�
Aða;0Þ
s þ Aða;1Þ

s − Āða;0Þ
s − Āða;1Þ

s

�
2

r
;

jδωw
a − δωw̄

a j2nd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Aða;0Þ
c2 þ Aða;1Þ

c2 − Āða;0Þ
c2 − Āða;1Þ

c2

�
2 þ

�
Aða;0Þ
s2 þ Aða;1Þ

s2 − Āða;0Þ
s2 − Āða;1Þ

s2

�
2

r
: ðA11Þ

We note that if the anomaly frequency comparison
jδωw

a − δωw̄
a j is based on Eq. (52) using experiments with

magnetic fields of different strengths, we can define a
factor ξ≡ ωw

c =ωw̄
c to represent the cyclotron frequency

ratio between particles and antiparticles. To obtain limits
of the SME coefficients, this factor is then incorporated

into the comparison as jδωw
a − ξδωw̄

a j and carried along

with the amplitudes Āða;0Þ
� and Āða;1Þ

� in Eq. (A11) as well.
Using the limit (55) together with the first expression in
Eq. (A11), we can extend the results obtained in Ref. [14]
by including the contributions at linear order in β.
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