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We study the time evolution of the numbers of charm mesons after the kinetic freeze-out of the
expanding hadron gas produced by the hadronization of the quark-gluon plasma from a central heavy-ion
collision. The πD reaction rates have contributions from aD� resonance in the s channel. The πD� reaction
rates are enhanced by t-channel singularities from an intermediate D. The contributions to reaction rates
from D� resonances and D-meson t-channel singularities are sensitive to thermal mass shifts and thermal
widths. In the expanding hadron gas, the t-channel singularities are regularized by the thermal D widths.
After kinetic freeze-out, the thermal D widths are dominated by coherent pion forward scattering. The
contributions to πD� reaction rates from t-channel singularities are inversely proportional to the pion
number density, which decreases to 0 as the hadron gas expands. The t-channel singularities produce small
but significant changes in charm-meson ratios from those predicted using the known D�-decay branching
fractions.
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I. INTRODUCTION

The charm mesons that are most easily observed in high-
energy experiments are the pseudoscalar mesons Dþ and
D0 and the vector mesons D�þ and D�0. The Ds have very
long lifetimes because they decay by the weak interactions.
The D�s are resonances whose widths are several orders of
magnitude narrower than those of most hadron resonances.
This remarkable feature arises because the D� −D mass
splittings are very close to the pion mass mπ, which limits
the phase space available for those decays D� → Dπ
that are kinematically allowed. The soft pion in the rest
frame of the D� suppresses the rate for a hadronic decay
D� → Dπ, making it comparable to that for a radiative
decay D� → Dγ.
Another consequence of D� −D mass splittings being

approximately equal to mπ is that there are charm-meson
reactions with a t-channel singularity. A t-channel

singularity is a divergence in the rate for a reaction in
which an unstable particle decays and one of the particles
from its decay is scattered [1]. The singularity arises
because the scattered particle can be on shell. The adjective
“t-channel” refers to the fact that in the case of a 2 → 2
reaction, the scattered particle is exchanged in the t
channel. The existence of t-channel singularities was first
pointed out by Peierls in 1961 in the case of πN� scattering
through the exchange of a nucleon [2]. An example of a
reaction with a t-channel singularity in the Standard Model
of particle physics is νeZ0 → νeZ0, which can proceed
through the exchange of ν̄e, which is one of the decay
products in Z0 → νeν̄e. The tree-level cross section
diverges when the center-of-mass energy is greater thanffiffiffi
2

p
MZ, because the ν̄e can be on shell. Another reaction

with a t-channel singularity is μþμ− → Wþe−ν̄e, which can
proceed through exchange of νμ, which is among the decay
products in μ− → νμe−ν̄e. Melnikov and Serbo solved the
divergence problem by taking into account the finite
transverse sizes of the colliding μþ and μ− beams [3].
A general discussion of t-channel singularities has been

presented by Grzadkowski et al. [1]. They pointed out that
if a reaction with a t-channel singularity occurs in a thermal
medium, the divergence is regularized by the thermal width
of the exchanged particle. The most divergent term in the
reaction rate is replaced by a term inversely proportional
to the thermal width. A general discussion of the thermal
regularization of t-channel singularities has recently been
presented by Iglicki [4].
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The simplest charm-meson reactions with a t-channel
singularity are πD� → πD�. There are t-channel singular-
ities in six of the ten scattering channels: the elastic
scattering of π0D�þ, πþD�þ, and π0D�0 and the inelastic
reactions π0D�þ→πþD�0, πþD�0 → π0D�þ, and π−D�þ →
π0D�0. These reactions can proceed through the decay
D� → Dπ followed by the inverse decay πD → D�. The
t-channel singularity arises because the intermediate D can
be on shell. The cross section diverges when the center-of-
mass energy squared, s, is in a narrow interval close to the
threshold. In the case of the elastic scattering reaction
πD� → πD�, the t-channel singularity region is

2M2� −M2 þ 2m2
π < s < ðM2� −m2

πÞ2=M2; ð1Þ

where M� and M are the masses of D� and D. The lower
endpoint of the interval is above the threshold ðM� þmπÞ2
by approximately 2Mδ, where δ ¼ M� −M −mπ. The
small energy difference δ is comparable to isospin splittings.
The difference between the upper and lower endpoints is
approximately 8ðM�=MÞmπδ, which has a further suppres-
sion factor of mπ=M. The interval in the center-of-mass
energy

ffiffiffi
s

p
is largest for the reaction π0D�0 → π0D�0,

extending from 6.1 to 8.1 MeV above the threshold
M� þmπ ¼ 2141.8 MeV. Since the t-channel singularity
arises because the intermediate D can be on shell, the
divergence in the cross section could be regularized by
taking into account the tiny decay width Γ of the D, which
would replace the divergent term by a termwith a factor 1=Γ.
However, the resulting enormous cross section is unphys-
ical. One reason is that the widths of the incoming and
outgoing D� are larger than Γ by about eight orders of
magnitude, so the D� widths are more relevant than the
width of D.
An obvious question is whether the t-channel singular-

ities in charm-meson reactions have any observable con-
sequences. One situation in which there may be observable
consequences is the production of charm mesons in
relativistic heavy-ion collisions. A central heavy-ion colli-
sion is believed to produce a hot dense region of quark-
gluon plasma in which quarks and gluons are deconfined.
The quark-gluon plasma expands and cools until it reaches
the temperature for the crossover transition to a hadron
resonance gas in which the quarks and gluons are confined
into hadrons. After hadronization, the hadron resonance gas
continues to expand and cool until it reaches kinetic freeze-
out, after which the momentum distributions of the hadrons
are no longer affected by scattering. After kinetic freeze-
out, the hadron gas continues to expand as the hadrons free-
stream away from the interaction region. The t-channel
singularities in charm-meson reactions could have signifi-
cant effects either during the expansion and cooling of the
hadron resonance gas between hadronization and kinetic
freeze-out or during the expansion of the hadron gas after
kinetic freeze-out.

In the hadron gas produced by a heavy-ion collision,
t-channel singularities are regularized by the thermal widths
of the hadrons. The divergent term in the rate for a reaction
with a t-channel singularity is replaced by a term inversely
proportional to the thermal width of the hadron that can be
on shell. Between hadronization and kinetic freeze-out, the
thermal widths are determined by the temperature. After
kinetic freeze-out, the thermal widths are determined by the
temperature at kinetic freeze-out and by the density of the
system, which decreases as the hadron gas expands.
In this paper, we restrict our study of the effects of

t-channel singularities in charm-meson reactions to the
expanding hadron gas after kinetic freeze-out. The restric-
tion to after kinetic freeze-out offers many simplifications.
The only hadrons in the hadron resonance gas that remain
are the most stable ones whose lifetimes τ are long enough
that cτ is larger than the size of the hadron gas, whose order
of magnitude is 10 fm. The most abundant hadrons by far
are pions. The temperature at kinetic freeze-out is low
enough that the interactions of charm mesons and pions can
be described by a chiral effective field theory. The relevant
charm mesons are Dþ, D0, D�þ, and D�0. The decays of
D�þ and D�0, whose lifetimes satisfy cτ > 2000 fm, occur
long after kinetic freeze-out. The dominant contribution
to the thermal width of a charm meson comes from the
coherent forward scattering of pions and is proportional to
the pion number density nπ, which decreases to 0 as the
hadron gas expands. A D-meson t-channel singularity
therefore gives a contribution to the reaction rate inversely
proportional to nπ . The factor of 1=nπ can cancel a
multiplicative factor of nπ in a term in a rate equation,
increasing the importance of that term at late times. In
Ref. [5], we showed thatD-meson t-channel singularities in
the reactions πD� → πD� produce significant modifica-
tions to the ratios of charm mesons produced by heavy-ion
collisions. In this paper, we present the details of the
calculations that lead to this surprising result.
The rest of the paper is organized as follows. In Sec. II,

we establish our notation for various properties of charm
mesons. In Sec. III, we describe the hadron resonance gas
produced by a heavy-ion collision and we present a simple
model for its time evolution. In Sec. IV, we calculate the
mass shifts and thermal widths of charm meson in a pion
gas. In Sec. V, we calculate reaction rates of charm meson
and pions in a pion gas. In Sec. VI, we solve the rate
equations for the charm-meson number densities in the
expanding hadron gas produced by a heavy-ion collision
after kinetic freeze-out. We show that D-meson t-channel
singularities produce small but significant changes in the
ratios of charm-meson abundances. We summarize our
results in Sec. VII. In Appendix A, we give the Feynman
rules for heavy-hadron χEFT used in the calculations in
Secs. IV and V. In Appendix B, we calculate a thermal
average over the pion momentum distribution that is
sensitive to isospin splittings.
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II. CHARM MESONS

In this section, we introduce notation for the masses and
decay widths of charm mesons. We also describe simple
relations between numbers of charm mesons that involve
D� branching fractions.

A. Masses and widths

We denote the masses of the pseudoscalar charm mesons
Dþ and D0 by Mþ and M0 and the masses of the vector
charm mesons D�þ and D�0 by M�þ and M�0. We denote
the D�a −Db mass difference by Δab ¼ M�a −Mb. The
average of the four mass differences is Δ ¼ 141.3 MeV.
We denote the masses of the pions π� and π0 by mπþ and
mπ0. We sometimes also denote the mass of the pion
produced in the transition D�a → Dbπ by mπab: mπab ¼
mπ0 if a ¼ b, mπab ¼ mπþ if a ≠ b. When isospin split-
tings can be neglected, we take the pion mass mπ to be the
average over the three pion flavors; mπ ¼ 138.0 MeV.
Many reaction rates are sensitive to the difference between
a D� mass and a Dπ scattering threshold. The differences
for the transitions D� → Dπ that conserve electric charge
are

Δ00 −mπ0 ¼ 7.04� 0.03 MeV; ð2aÞ

Δþ0 −mπþ ¼ 5.855� 0.002 MeV; ð2bÞ

Δþþ −mπ0 ¼ 5.63� 0.02 MeV; ð2cÞ

Δ0þ −mπþ ¼ −2.38� 0.03 MeV: ð2dÞ

The negative value of Δ0þ −mπþ implies that the decay
D�0 → Dþπ− is kinematically forbidden.
We denote the total decay widths of the vector charm

mesons D�þ and D�0 by Γ�þ and Γ�0. The decay width of
D�þ is measured. The decay width of D�0 can be predicted
using Lorentz invariance, chiral symmetry, isospin sym-
metry, and measured D� branching fractions,

Br½D�0 → D0π0�Γ�0
Br½D�þ → D0πþ�Γ�þ

¼ λ3=2ðM2
�0;M

2
0; m

2
π0Þ=M5

�0
2λ3=2ðM2�þ;M2

0; m
2
πþÞ=M5�þ

; ð3Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ. The
branching fractions for the decays D� → Dπ are

Bþ0 ≡ Br½D�þ → D0πþ� ¼ ð67.7� 0.5Þ%; ð4aÞ

B00 ≡ Br½D�0 → D0π0� ¼ ð64.7� 0.9Þ%; ð4bÞ

Bþþ ≡ Br½D�þ → Dþπ0� ¼ ð30.7� 0.5Þ%: ð4cÞ

The D� decay widths are

Γ�þ ≡ Γ½D�þ� ¼ 83.4� 1.8 keV; ð5aÞ

Γ�0 ≡ Γ½D�0� ¼ 55.4� 1.5 keV: ð5bÞ

The D� radiative decay rates are

Γ�þ;γ ≡ Γ½D�þ → Dþγ� ¼ 1.3� 0.3 keV; ð6aÞ

Γ�0;γ ≡ Γ½D�0 → D0γ� ¼ 19.6� 0.7 keV: ð6bÞ

The decay widths of the spin-0 charm mesons Dþ and D0

are smaller than those for D� by about eight orders of
magnitude, because they only decay through weak
interactions.
The interactions of low-energy pions with momenta at

most comparable to mπ can be described by chiral effective
field theory (χEFT) [6]. The self-interactions of pions in
χEFT at leading order (LO) are determined by the pion
decay constant fπ . It can be determined from the partial
decay rate for πþ into μþνμ,

Γ½πþ → μþνμ� ¼
1

8π
jVudj2G2

Ff
2
π
m2

μðm2
πþ −m2

μÞ2
m3

πþ
: ð7Þ

From the measured decay rate, we obtain fπ ¼
131.7 MeV.
The interactions of charm mesons with low-energy pions

can be described by heavy-hadron χEFT (HHχEFT) [7–9].
The first-order corrections in HHχEFT include terms sup-
pressed by mπ=M and Δ=M. Isospin splittings can be
treated as second-order corrections. The partial decay rate
for D� → Dπ in HHχEFT at LO is sensitive to isospin
splittings through a multiplicative factor ðΔ2 −m2

πÞ3=2.
Isospin splittings can be taken into account in the
partial decay rate for D�a→Dbπ by replacing Δ by Δab ¼
M�a −Mb and mπ by the mass mπab of the emitted pion.
The resulting expression for the partial decay rate is

Γ½D�a → Dbπ� ¼ g2π
12πf2π

ð2 − δabÞðΔ2
ab −m2

πabÞ3=2

× θðΔab −mπabÞ: ð8Þ

The dimensionless coupling constant gπ can be determined
from measurements of the decay D�þ → D0πþ:
gπ ¼ 0.520� 0.006.

B. Charm-meson numbers

The numbers of charm hadrons created in a high-energy
collision must be inferred from the numbers that
are detected. The decay of D�0 always produces D0.
The decay of D�þ produces D0 and Dþ with branching
fractions Bþ0 and 1 − Bþ0. We denote the numbers of D0,
Dþ, D�0, and D�þ observed in some kinematic region by
ND0 , NDþ , ND�0 , and ND�þ . The observed numbers of D0
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and Dþ can be predicted in terms of the numbers ðNDaÞ0
and ðND�aÞ0 before D� decays and the branching fraction
Bþ0,

ND0 ¼ ðND0Þ0 þ ðND�0Þ0 þ Bþ0ðND�þÞ0; ð9aÞ

NDþ ¼ ðNDþÞ0 þ 0þ ð1 − Bþ0ÞðND�þÞ0: ð9bÞ

The last two terms in each equation come from D�0 and
D�þ decays, respectively. The difference between the
numbers of D0 and Dþ can be expressed as

ND0 − NDþ ¼ 2Bþ0ðND�þÞ0 þ ðND0 − NDþÞ0
þ ðND�0 − ND�þÞ0: ð10Þ

The simple relations in Eq. (9) have been assumed in all
previous analyses of charm-meson production. We will
show in this paper that these relations can be modified by
t-channel singularities.
In a high-energy hadron collision, the numbers ofD0 and

Dþ created in some kinematic region should be approx-
imately equal by isospin symmetry: ðND0Þ0 ≈ ðNDþÞ0.
Similarly, the numbers of D�0 and D�þ created should
be approximately equal; ðND�0Þ0 ≈ ðND�þÞ0. The deviations
from isospin symmetry in the charm cross section should be
negligible, because isospin splittings are tiny compared to
the energy available for producing additional hadrons. The
decays of bottom hadrons give isospin-violating contribu-
tions to charm-meson production, but the bottom cross
section is much smaller than the charm cross section at
present-day colliders.
The charm mesons that are most easily observed at a

hadron collider are D0, Dþ, and D�þ, because they have
significant decay modes with all charged particles. If the
only reactions of charm mesons after their production are
D� decays, the ratios of the observed numbers of D0, Dþ,
and D�þ are determined by the vector/pseudoscalar ratio
before D� decays, which we denote by ðND�=NDÞ0.
Assuming isospin symmetry, that ratio can be expressed
in terms of the observed numbers ND0 , NDþ , and ND�þ ,

�
ND�

ND

�
0

≈
2ND�þ

ND0 þ NDþ − 2ND�þ
: ð11Þ

Isospin symmetry also implies that there is a combina-
tion of the three observed numbers that is completely
determined by Bþ0,

ND0 − NDþ

ND�þ
≈ 2Bþ0 ¼ 1.35� 0.01: ð12Þ

Deviations from this prediction must come either from
initial conditions that deviate from isospin symmetry or
from charm-meson reactions other thanD� decays that also

violate isospin symmetry. Reactions with t-channel singu-
larities are examples of such reactions.

III. HEAVY-ION COLLISIONS

In this section, we present a simple model for the hadron
resonance gas produced by a central relativistic heavy-ion
collision. We describe the statistical hadronization model
for the abundances of hadrons produced by a heavy-ion
collision. Finally we describe the number densities of pions
and charm mesons both before and after the kinetic freeze-
out of the hadron gas.

A. Expanding hadron gas

The central collision of relativistic heavy ions is believed
to produce a quark-gluon plasma (QGP) consisting of
deconfined quarks and gluons which then evolves into
a hadron resonance gas (HRG) consisting of hadrons.
A heavy-ion collision involves multiple stages: the colli-
sions of the Lorentz-contracted nucleons in the nuclei, the
formation and thermalization of the QGP, the expansion and
cooling of the QGP, the hadronization of the QGP into the
HRG, the expansion and cooling of the HRG as most of the
resonances decay, the kinetic freeze-out of theHRGwhen its
density becomes too low for collisions to changemomentum
distributions, and finally the expansion of the resulting
hadron gas by the free-streaming of hadrons. For each stage,
complicated phenomenological models have been devel-
oped to provide quantitative descriptions [10–14].

A natural variable to describe the space-time evolution of
the system created by the heavy-ion collision is the proper
time τ since the collision. A simple phenomenological
model that may describe the essential features of the system
between the equilibration of the QGP and the kinetic freeze-
out of the HRG is a homogeneous system with volume VðτÞ
in thermal equilibrium at temperature TðτÞ. We denote the
proper time just after hadronization by τH and the proper
time at kinetic freeze-out by τkf. The volume increases from
VH at τH to Vkf at τkf , while the temperature decreases from
TH to Tkf . These proper times, volumes, and temperatures
can be determined by fitting the outputs of simplified
hydrodynamic models for heavy-ion collisions. Values of
the volumesVH andVkf and the temperaturesTH andTkf for
various heavy-ion colliders are given in Refs. [15,16]. An
explicit parametrization of the volume VðτÞ can be obtained
by assuming the boost-invariant longitudinal expansion
proposed by Bjorken [17] and an accelerated transverse
expansion caused by the pressure of the QGP before
hadronization and by the pressure of the HRG after
hadronization [18]. The parametrization of VðτÞ for the
HRG between hadronization and kinetic freeze-out is [19]

VðτÞ ¼ π
�
RH þ vHðτ − τHÞ þ aHðτ − τHÞ2=2

�
2cτ

ðτH < τ < τkfÞ; ð13Þ
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where RH, vH, and aH are the transverse radius, velocity,
and acceleration at τH. If the transverse velocity
vH þ aHðτ − τHÞ reaches the speed of light before kinetic
freeze-out, the subsequent transverse expansion proceeds
at the constant velocity c. The temperature TðτÞ can be
determined by assuming isentropic expansion. The para-
metrization of TðτÞ for the HRG between hadronization and
kinetic freeze-out in Ref. [20] is

TðτÞ ¼ TH þ ðTkf − THÞ
�

τ− τH
τkf − τH

�
4=5

ðτH < τ < τkfÞ:

ð14Þ

The parameters inVðτÞ andTðτÞ for central Pb-Pb collisions
at 5.02 TeVare given in Ref. [21]. Hadronization and kinetic
freeze-out occur at the proper times τH ¼ 10.2 fm=c and
τkf ¼ 21.5 fm=c. Between hadronization and kinetic freeze-
out, the temperature decreases from TH ¼ 156 MeV to
Tkf ¼ 115 MeV. The transverse radius increases from
RH ¼ 13.0 fm to 24.0 fm. The transverse speed increases
from vH ¼ 0.78c to c at τ ¼ 12.7 fm=c and then remains
constant at vkf ¼ c.
After kinetic freeze-out, the system continues to expand,

but the momentum distributions of the hadrons are those for
a fixed temperature: TðτÞ ¼ Tkf . A simple model for the
volume VðτÞ is continued longitudinal expansion at the
speed of light and transverse expansion at the same speed
vkf as at kinetic freeze-out,

VðτÞ ¼ π½Rkf þ vkfðτ − τkfÞ�2cτ ðτ > τkfÞ: ð15Þ

We assume the system remains homogeneous throughout
the expanding volume VðτÞ. In the absence of further
interactions, the number density for each stable hadron
would decrease in proportion to 1=VðτÞ as τ increases.
Charm quarks and antiquarks are created in the hard

collisions of the nucleons that make up the heavy ions.
Charm quarks are assumed to quickly thermalize with the
QGP at the temperature TðτÞ. They are not in chemical
equilibrium, because the temperature of the QGP is too low
for gluon and light-quark collisions to create charm quark-
antiquark pairs. The low density of charm quarks sup-
presses the annihilation of charm quarks and antiquarks, so
the charm-quark and charm-antiquark numbers are essen-
tially conserved. Conservation of charm-quark number
determines the charm-quark fugacity gcðτÞ in terms of
the temperature TðτÞ and the volume VðτÞ. After hadro-
nization, charm hadrons are in thermal equilibrium with the
HRG at the temperature TðτÞ. Their number densities
evolve according to rate equations consistent with the
conservation of charm-quark number. The charm hadrons
are assumed to remain in thermal equilibrium until kinetic
freeze-out, after which they free-stream to the detector.

B. Statistical hadronization model

The statistical hadronization model (SHM) is a model
for the abundances of hadrons produced by a heavy-ion
collision [22]. According to the SHM, the hadronization of
the QGP into the HRG occurs while they are in chemical
and thermal equilibrium with each other at a specific
hadronization temperature TH that can be identified with
the temperature of the crossover between the QGP and the
HRG. At hadronization, the number density of any spin
state of a light hadron depends only on the hadron mass
and the temperature TH. (At sufficiently high rapidity or at
lower heavy-ion collision energies, a number density can
also depend on the baryon chemical potential.) The SHM
takes into account the subsequent decays of hadron
resonances, which increase the abundances of the lighter
and more stable hadrons. The SHM does not take into
account the scattering reactions that allow the HRG to
remain in thermal equilibrium after hadronization.
The SHM can also describe the abundances of charm

hadrons produced by a heavy-ion collision [23]. According
to the SHM, charm hadrons are created during hadroniza-
tion while the QGP and HRG are in thermal equilibrium at
the temperature TH. At hadronization, the number density
of any spin state of a charm hadron is determined only by
its mass, the hadronization temperature TH, and multipli-
cative factors of the charm-quark fugacity gc. The number
density of a charm hadron with a single charm quark or
antiquark is larger than the number density in chemical
equilibrium by the factor gc. The number density of a
hadron whose heavy constituents consist of n charm quarks
and antiquarks is larger than the number density in
chemical equilibrium by gnc [24].
The SHM gives simple predictions for charm-hadron

ratios at hadronization. Since the mass of a charm hadron is
so large compared to TðτÞ, its momentum distribution in
the HRG can be approximated by a relativistic Boltzmann
distribution. The charm-hadron fugacity enters simply as a
multiplicative factor. At hadronization, the charm-hadron
fugacity is the product of the charm-quark fugacity gc and
the number of spin states. The factor of gc cancels in ratios
of charm-hadron number densities. The ratio of the
numbers of vector and pseudoscalar charm mesons at
hadronization is predicted to be

ND�

ND
¼ 3

M2�K2ðM�=THÞ
M2K2ðM=THÞ

; ð16Þ

where M and M� are the masses of D and D�, which we
take to be the isospin averages of the masses of the
pseudoscalar and vector charm mesons, respectively. At
the hadronization temperature TH ¼ 156 MeV, the vector/
pseudoscalar ratio is predicted to be ND�=ND ¼ 1.339.
Ratios of the charm-hadron number densities for isospin
partners are given by equations analogous to Eq. (16) but
without the factor of 3. The predicted ratio for pseudoscalar

CHARM-MESON t-CHANNEL SINGULARITIES IN AN … PHYS. REV. D 108, 076012 (2023)

076012-5



charm mesons at hadronization is ND0=NDþ ¼ 1.028. The
predicted ratio for vector charm mesons at hadronization
is ND�0=ND�þ ¼ 1.020. The SHM predictions for charm-
hadron ratios are modified from the simple predictions at
hadronization by the feeddown from the decays of higher
charm-hadron resonances.
The SHM has been applied to Pb-Pb collisions at

nucleon-nucleon center-of-mass energy
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV
in Ref. [24] for various centrality bins; we choose to focus
only on the most central collisions. The charm-quark
fugacity at hadronization has been determined to be
gc ¼ 29.6� 5.2. Predictions for the multiplicities dN=dy
for 4 charm mesons and 2 charm baryons at midrapidity
(jyj < 1

2
) are given in Table 1 of Ref. [24]. The expanding

hadron gas is modeled by a “core” in which the formation
of charm hadrons is described by the SHM and a “corona”
in which their formation is described by that in pp
collisions. For collisions in the centrality range 0–10%,
the predicted multiplicities dN=dy from the core for D0,
Dþ, and D�þ are 6.02, 2.67, and 2.36, respectively, with
error bars consistent with those from a multiplicative factor
of gc ¼ 29.6� 5.2. The error bars on ratios of the multi-
plicities should be much smaller than 18%, but they cannot
be determined from the results presented in Ref. [24].
The predicted additional multiplicities dN=dy from the
corona for D0, Dþ, and D�þ are 0.396, 0.175, and 0.160,
respectively. The effect of the corona is to increase all three
multiplicities by about 7%.
An SHM prediction for the vector/pseudoscalar ratio

beforeD� decays can be obtained by inserting the predicted
total multiplicities for D0, Dþ, and D�þ into Eq. (11):
ðND�=NDÞ0 ¼ 1.194. This is significantly smaller than the
ratio 1.339 at hadronization predicted by Eq. (16), but also
includes feed-down effects from decays of higher resonan-
ces. The SHM prediction for the ratio ðND0 − NDþÞ=ND�þ

is 1.42. This is larger than the isospin-symmetry prediction
1.35 in Eq. (12) by about 5%. This, in turn, is larger then the
thermal isospin-symmetry deviations at hadronization pre-
dicted by the SHM, which are less than 3%.

C. Pion momentum distributions

The temperature T of the HRG is comparable to the pion
mass mπ . By isospin symmetry, the pions π−, π0, and πþ
all have the same number density nπ. The number density for
pions in chemical and thermal equilibrium at temperatureT is

nðeqÞ
π ¼

Z
d3q
ð2πÞ3

1

eβωq − 1
; ð17Þ

whereωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

and β ¼ 1=T is the inverse tempera-
ture. At the kinetic freeze-out temperature Tkf ¼ 115 MeV,

the equilibrium number density is nðkfÞ
π ¼ 1=ð3.95 fmÞ3.

Between hadronization and kinetic freeze-out, the pions
are in chemical and thermal equilibrium. The temperature

TðτÞ of the HRG decreases as the proper time τ increases.
The momentum distribution fπ of the pions is the Bose-
Einstein distribution,

fπðωqÞ ¼
1

eβωq − 1
ðτH < τ < τkfÞ; ð18Þ

where β ¼ 1=TðτÞ. The temperature TðτÞ can be para-
metrized as in Eq. (14).
After kinetic freeze-out, the temperature remains

constant: Tðτ > τkfÞ ¼ Tkf . The pion number density
decreases in inverse proportion to the volume VðτÞ of
the expanding hadron gas,

nπðτÞ ¼
Vkf

VðτÞn
ðkfÞ
π ðτ > τkfÞ; ð19Þ

where nðkfÞ
π is the equilibrium pion number density in

Eq. (17) at the temperature Tkf and Vkf is the volume of the
hadron gas at kinetic freeze-out. The volume VðτÞ can be
parametrized as in Eq. (15). The normalization of the
momentum distribution fπ of the pions is determined by the
pion number density nπ,

fπðωqÞ ¼
nπ

nðkfÞ
π

1

eβkfωq − 1
ðτ > τkfÞ; ð20Þ

where βkf ¼ 1=Tkf .
We use angular brackets to denote the average over the

momentum distribution of a pion. The thermal average of a
function FðqÞ of the pion momentum is

hFðqÞi ¼
Z

d3q
ð2πÞ3 fπðωqÞFðqÞ

�Z
d3q
ð2πÞ3 fπðωqÞ: ð21Þ

The thermal average depends on the temperature T. After
kinetic freeze-out, the pion number density nπ cancels in
the thermal average in Eq. (21). If the thermal average is
sensitive to the flavor i of the pion, the pion energy in
Eq. (21) should be replaced by ωiq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πi þ q2
p

.
The multiplicities of πþ and π− produced by Pb–Pb

collisions at the LHC with
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV have been
measured by the ALICE Collaboration [25]. The pion
multiplicity averaged over πþ and π− from collisions in the
centrality range 0–10% is

dNπ=dy ¼ 769� 34: ð22Þ

The total pion multiplicity for πþ, π−, and π0 is 3 times
larger. A fit of the SHM to hadron abundances at mid-
rapidity in Pb–Pb collisions at the LHC with

ffiffiffiffiffiffiffiffi
sNN

p ¼
2.76 TeV has been presented in Ref. [26]. The central
values of the SHM fits for the multiplicities of πþ and π−

are lower than the data by about 10%, which is comparable
to the experimental error bars.
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D. Charm-meson momentum distributions

We denote the number densities of the charmmesonsDþ,
D0,D�þ, and D�0 in the hadron gas by nDþ, nD0 , nD�þ , and
nD�0 , respectively. Since charm-meson masses are so much
larger than the temperature T, the momentum distributions
of the charm mesons can be approximated by relativistic
Boltzmann distributions. If the charm mesons were in both
chemical and thermal equilibrium, their number densities
would be determined by the temperature T,

nðeqÞ
Da ¼

Z
d3q
ð2πÞ3 exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

a þ p2

q 	
¼ M2

aK2ðMa=TÞ
2π2=T

;

ð23aÞ

nðeqÞ
D�a ¼3

Z
d3q
ð2πÞ3exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�aþp2

q 	
¼3M2�aK2ðM�a=TÞ

2π2=T
:

ð23bÞ

However, the charmmesons in the expanding hadron gas are
not in chemical equilibrium. The number densities nDaðτÞ
and nD�aðτÞ evolve with the proper time according to
rate equations consistent with the conservation of charm-
quark number. The momentum distributions of the charm
mesons are

fDaðpÞ ¼ nDa

nðeqÞ
Da

exp
�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

a þ p2

q 	
; ð24aÞ

fD�aðpÞ ¼ 3
nD�a

nðeqÞ
D�a

exp
�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�a þ p2

q 	
: ð24bÞ

Before kinetic freeze-out, the number densities nDaðτÞ and
nD�aðτÞ evolve according to rate equations that take into
account charm-meson reactions and the expanding volume
VðτÞ. After kinetic freeze-out, the temperature remains
constant at Tkf , so β ¼ βkf . In the absence of further
interactions, nDaðτÞ and nD�aðτÞ would decrease in propor-
tion to 1=VðτÞ as τ increases, just like the pion number
density in Eq. (19). At very large proper times
(cτ > 2; 000 fm), the D�s decay into Ds.
The multiplicities of charm hadrons in central Pb–Pb

collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV have been predicted using
SHM in Ref. [24]. For collisions in the centrality range
0–10%, the central values of the predicted multiplicities
dN=dy at midrapidity for D0, Dþ, and D�þ are 6.42, 2.84,
and 2.52. No prediction was given for the multiplicity of
D�0. We can estimate the multiplicity of D�0 by assuming
that the ratio of the numbers of D�0 and D�þ is the same as
at hadronization,

N�0
N�þ

¼ M2
�0K2ðM�0=THÞ

M2�þK2ðM�þ=THÞ
: ð25Þ

For the hadronization temperature TH ¼ 156 MeV, this
ratio is 1.020. The estimated multiplicities for D�0 and
D�þ are

ðdND�0=dyÞ0 ¼ 2.57; ðdND�þ=dyÞ0 ¼ 2.52: ð26Þ

The SHM predictions for the multiplicities for D0 and Dþ
take into account D� decays. We obtain the predictions for
the multiplicities before D� decays by using Eq. (9) with
Bþ0 ¼ 67.7%,

ðdND0=dyÞ0 ¼ 2.14; ðdNDþ=dyÞ0 ¼ 2.03: ð27Þ

The ratio of a charm-meson multiplicity in Eqs. (26) or (27)
to the pion multiplicity in Eq. (22) can be identified with
the ratio of the charm-meson number density to the pion
number density at kinetic freeze-out

ðdNDð�Þa=dyÞ0
dNπ=dy

¼ nDð�ÞaðτkfÞ
nπðτkfÞ

: ð28Þ

IV. MASS SHIFTS AND THERMAL WIDTHS

In this section, we determine the mass shifts and thermal
widths of pions and charm mesons in a hadron gas at
temperatures near that of kinetic freeze-out. The dominant
effects from the hadronic medium come from coherent pion
forward scattering.

A. Coherent pion forward scattering

When a particle propagates through a medium, its
properties are modified by the interactions with the
medium. The modifications can be described by the self-
energy ΠðpÞ, which depends on the energy and momentum
of the particle and also on the properties of the medium.
The real part of ΠðpÞ at p ¼ 0 determines the shift in the
rest mass of the particle. The imaginary part of ΠðpÞ at
p ¼ 0 determines the thermal width of the particle at rest.
If the particle is in thermal equilibrium with the medium,

its self-energy can be calculated using thermal field theory.
To be more specific, we consider the self-energy ΠDðpÞ of
a pseudoscalar charm meson D. The one-loop Feynman
diagrams for ΠDðpÞ in HHχEFT are shown in Fig. 1. The
first diagram can be expressed as the sum of a vacuum
contribution and a thermal contribution from pions. The
second diagram can be expressed as the sum of a vacuum
contribution, a thermal contribution from pions, and a
thermal contribution from vector charm mesons D�. At
temperatures relevant to the hadron gas, thermal contribu-
tions from vector charm mesons are severely suppressed by
a Boltzmann factor expð−M�=TÞ. The thermal contribu-
tions from pions can be expressed as an integral over the
pion momentum q weighted by the Bose-Einstein distri-
bution 1=ðeβωq − 1Þ, where ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

.
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The thermal contribution from pions to theD self-energy
can be calculated alternatively from the tree diagrams for
πD scattering in Fig. 2. At this order, the thermal
contribution from pions comes from coherent pion forward
scattering. If a pion with flavor k and momentum q is
scattered back into the state with the same flavor k and
momentum q, the initial many-body state is the charm
meson plus the medium (which includes the pion with
flavor k and momentum q), and the final many-body state is
also the charm meson plus the medium. Since the initial
state is the same for all q and the final state is also the same,
the pion-forward-scattering amplitudes must be added
coherently for all momenta q and all pion flavors k. The
D self-energy from coherent pion forward scattering can be
obtained from the negative of the T -matrix element by
weighting it by fπðωqÞ=ð2ωqÞ, where fπðωqÞ is the pion
momentum distribution and 1=ð2ωqÞ is a normalization
factor, integrating over the pion momentum q with measure
d3q=ð2πÞ3, and summing over the three pion flavors. If the
pions are in chemical and thermal equilibrium at temper-
ature T, the pion momentum distribution is the Bose-
Einstein distribution in Eq. (18). However, this prescription
for the self-energy from coherent pion forward scattering
applies equally well to any medium in which the pions have
a momentum distribution fπðωqÞ.
The thermal contribution from pions to theD self-energy

can be obtained directly from the D self-energy diagrams
in Fig. 1 by making a simple substitution for the pion
propagator in the loop,

i
q2 −m2

π þ iϵ
→ fπðjq0jÞ2πδðq2 −m2

πÞ: ð29Þ

The delta function can be expressed as

δðq2 −m2
πÞ ¼

X
�
θð�q0Þ

1

2ωq
δðjq0j − ωqÞ: ð30Þ

This substitution is referred to as the cutting of the pion
line. The cutting of the pion line in the first diagram in
Fig. 1 is 0, because the vertex is 0 when the incoming and
outgoing pions have the same flavor. The cutting of the
pion line in the second diagram in Fig. 1 gives the last two
forward-scattering diagrams in Fig. 2. They come from the
positive and negative regions of q0, respectively.

B. Pions

The thermal mass shift and the thermal width for a pion
in a pion gas can be calculated using χEFT. The mass shift
for a pion in thermal equilibrium was first calculated using
χEFT at LO by Gasser and Leutwyler [27]. The pion
thermal width was calculated in the low-density limit using
χEFT at NLO by Goity and Leutwyler [28]. A complete
calculation of the self-energy of a pion in thermal equi-
librium in χEFT at NLO was presented by Schenk [29]. It
was used to obtain the pion mass shift and the pion thermal
width. The pion mass shift at NLO has also been calculated
by Toublan [30].
The pion self-energy in χEFT at LO is given by the

one-loop Feynman diagram in the left panel of Fig. 3.
The thermal contribution to the pion self-energy can also
be obtained from the Feynman diagram for coherent
pion forward scattering in the right panel of Fig. 3. The
self-energy Ππðp0; pÞ of a pion with 4-momentum ðp0; pÞ
can be obtained from the negative of the amplitude
Aik;jkðp0; p; qÞ for forward scattering of an on shell pion
with flavor k and 3-momentum q by weighting it by
fπðωqÞ=ð2ωqÞ, integrating over q, and summing over the
three pion flavors k,

FIG. 1. One-loop Feynman diagrams for the D self-energy in HHχEFT. The D, D�, and π are represented by solid, double
(solidþ dashed), and dashed lines, respectively.

FIG. 2. Feynman diagrams for the D self-energy from coherent pion forward scattering in HHχEFT at LO. The empty circles indicate
an incoming and outgoing pion with the same flavor and the same 3-momentum. These diagrams can be obtained by cutting the pion
lines in the diagrams in Fig. 1. The second diagram has a D� resonance contribution.
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Ππðp0; pÞδij ¼ −
X
k

Z
d3q

ð2πÞ32ωq
fπðωqÞAik;jkðp0; p; qÞ:

ð31Þ

The amplitude Aik;jk at LO does not depend on q,

Aik;jkðp0; pÞ ¼ −
2

3f2π

�ð2p2
0 − 2p2 þm2

πÞδij

− 2ðp2
0 − p2 þ 2m2

πÞδikδjk
�
: ð32Þ

The pion self-energy at LO is

Ππðp0; pÞ ¼
1

3f2π
ð4p2

0 − 4p2 −m2
πÞnπ



1

ωq

�
q

; ð33Þ

where the angular brackets represents the average over the
Bose-Einstein distribution for the pion defined in Eq. (21).
The pion mass shift δmπ and the thermal width Γπ can be

obtained by evaluating the pion self-energy on the mass
shell at zero 3-momentum,

Ππðp0 ¼ mπ; p ¼ 0Þ ¼ 2mπδmπ − imπΓπ: ð34Þ

The pion mass shift in χEFT at LO is

δmπ ¼
mπ

2f2π
nπ



1

ωq

�
q

: ð35Þ

The pion thermal width Γπ is 0 in χEFT at LO. In a pion gas
in chemical and thermal equilibrium at the temperature
Tkf ¼ 115 MeV, the pion mass shift is 1.55 MeV.

C. Pseudoscalar charm mesons

The contributions to the thermal mass shift and thermal
width of a pseudoscalar charm meson in a pion gas from
coherent pion forward scattering can be calculated
using HHχEFT.

1. D self-energy

In HHχEFT at LO, the reaction πD → πD proceeds
through the three diagrams in Fig. 4. The 4-momentum of
D can be expressed as P ¼ Mvþ p, where v is the velocity
4-vector and p is the residual 4-momentum. The amplitude
for the transition DaðpÞπiðqÞ → Dbðp0Þπjðq0Þ is

Aai;bjðp; q; q0Þ ¼
1

2f2π
½σi; σj�abv · ðqþ q0Þ

−
g2π
f2π

�
ðσiσjÞab

−q · q0 þ ðv · qÞðv · q0Þ
v · ðpþ qÞ − Δþ iΓ�=2

þ ðσjσiÞab
−q · q0 þ ðv · qÞðv · q0Þ
v · ðp − q0Þ − Δþ iΓ�=2

�
:

ð36Þ
We have inserted theD� width in the denominators to allow
for the possibility that the D� can be on shell. In the case of
the forward scattering of πkðqÞ to πkðqÞ, the amplitude
reduces to a function of v · p and v · q and it is diagonal in a
and b. The diagonal entry is

Aak;akðv ·p;v · qÞ

¼ −
2g2π
f2π

½ðv · qÞ2 −m2
π�ðΔ− v ·pÞ

ðv · qÞ2 − ðΔ− v ·pÞ2 þ iðΔ− v ·pÞΓ�
: ð37Þ

Since Γ� ≪ Δ, we have omitted the terms proportional to
Γ� in the numerator and to Γ2� in the denominator.
The D self-energy ΠDðv · pÞ in HHχEFT at LO is the

sum of the two one-loop diagrams in Fig. 1. The con-
tribution from coherent pion forward scattering is the sum
of the three tree diagrams in Fig. 2. The coherent sum of the
first diagram over pion flavors is 0. The D self-energy can
be obtained from the amplitude in Eq. (37) by multiplying it
by−1=2, weighting it by fπðωqÞ=ð2ωqÞ, integrating over the
momentum q, and summing over the three pion flavors k.
We choose the velocity 4-vector v of the charm meson to be
the same as the 4-vector that defines the thermal frame in
which the pion momentum distribution is Eq. (18) before
kinetic freeze-out and Eq. (20) after kinetic freeze-out. The
pion energy is v · q ¼ ωq. The D self-energy is

FIG. 3. One-loop Feynman diagram for the pion self-energy in χEFT at LO (left panel) and the corresponding Feynman diagram for
the pion self-energy from coherent pion forward scattering (right panel).
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ΠDðv · pÞ ¼
3g2π
f2π

Z
d3q

ð2πÞ32ωq
fπðωqÞ

×
ðω2

q −m2
πÞðΔ − v · pÞ

ω2
q − ðΔ − v · pÞ2 þ iðΔ − v · pÞΓ�

: ð38Þ

Since the charm-meson mass difference Δ ¼ M� −M is
approximately equal to the pion massmπ , the self-energy is
sensitive to isospin splittings when the D is close to the
mass shell v · p ¼ 0. The isospin splittings can be taken
into account by reintroducing a sum over the flavors c of
the intermediate D�. In the self-energy in Eq. (38), the
factor

P
kðσkσkÞaa ¼ 3δaa from the pion vertices is

replaced by
P

k

P
cðσkÞacðσkÞca ¼

P
cð2 − δacÞ. The mass

difference Δ is replaced by Δac and the pion energy is
replaced by ωcaq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πca þ q2
p

. The Da self-energy is

ΠDaðv · pÞ ¼ g2π
f2π

X
c

ð2 − δacÞ
Z

d3q
ð2πÞ32ωcaq

fπðωcaqÞ

×
q2ðΔca − v · pÞ

ω2
caq − ðΔca − v · pÞ2 þ iðΔca − v · pÞΓ�c

;

ð39Þ
where q2 is the square of the 3-momentum.

2. Mass shift and thermal width

The mass shift δMa and the thermal width δΓa for the
charm meson Da in HHχEFT at LO are obtained by
evaluating the Da self-energy on the mass shell v · p ¼ 0,

ΠDaðv · p ¼ 0Þ ¼ δMa − iδΓa=2: ð40Þ

The Da self-energy with isospin splittings in Eq. (39)
evaluated on the mass shell is

ΠDað0Þ ¼ g2π
f2π

X
c

ð2 − δacÞΔca

Z
d3q

ð2πÞ32ωcaq
fπðωcaqÞ

×
q2

q2 − q2ca þ iΔcaΓ�c
; ð41Þ

where q2ca ¼ Δ2
ca −m2

πca. Since ΔcaΓ�c ≪ jq2 − q2caj
except in a very narrow range of q2, the expressions for
δMa and δΓa can be simplified by taking the limit Γ�c → 0.
The Da mass shift in the limit Γ�c → 0 can be expressed
in terms of an average over the pion momentum distribution
of a function of q that involves a principal-value distribution,

δMa ¼
g2π
2f2π

nπ

X
c

ð2 − δacÞΔca



q2

ωcaq
P

1

q2 − q2ca

�
q

: ð42Þ

The principal value is necessary only ifΔca > mπca. TheDa

thermal width in the limit Γ�c → 0 can be evaluated
analytically by using a delta function,

δΓa ¼
g2π

4πf2π

X
c

ð2 − δacÞfπðΔcaÞq3caθðΔca −mπcaÞ: ð43Þ

This thermal width comes from the second diagram in Fig. 2
with a D� in the s channel. The contribution from an
intermediate D�c is nonzero only if Δca > mπca. In a pion
gas with temperature Tkf ¼ 115 MeV, the mass shifts for
Dþ and D0 in Eq. (42) are δMþ ¼ 1.269 MeV and
δM0 ¼ 1.418 MeV. The thermal widths for Dþ and D0

in Eq. (43) are δΓþ ¼ 31.6 keV and δΓ0 ¼ 110.3 keV.
The mass shift and thermal width ofDa can be expanded

in powers of isospin splittings using the methods in
Appendix B. The leading term in the expansion of the
mass shift is the same for Dþ and D0,

δM ≈
3g2π
2f2π

nπmπ



1

ωq

�
q

: ð44Þ

The leading term in the expansion of theDa thermal width is

δΓa ≈ 3fπðmπÞ
X
c

Γ
h
D�c → Daπ

i
; ð45Þ

where Γ½D�c → Daπ� is the partial decay rate of D�c in
Eq. (8). In a pion gas with temperature Tkf ¼ 115 MeV, the
D mass shift in Eq. (44) is δM ¼ 1.257 MeV. The thermal
widths for Dþ and D0 in Eq. (45) are δΓþ ¼ 32.6 keV
and δΓ0 ¼ 118.9 keV.

D. Vector charm mesons

The contributions to the thermal mass shift and thermal
width of a vector charm meson in a pion gas from coherent
pion forward scattering can be calculated using HHχEFT.

1. D� self-energy

In HHχEFT at LO, the reaction πD� → πD� proceeds
through the five diagrams in Fig. 5. The 4-momentum ofD�
can be expressed as P ¼ Mvþ p, where v is the velocity
4-vector and p is the residual 4-momentum. The amplitude
for the transition πiðqÞD�aðpÞ → πjðq0ÞD�bðp0Þ is

FIG. 4. Feynman diagrams for πD → πD in HHχEFT at LO. The second diagram has a D� resonance contribution.
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Aμν
ai;bj ¼ −

1

2f2π
gμν

�
σi; σj

�
abv · ðqþ q0Þ − g2π

f2π

�

σiσj

�
ab

qμq0ν

v · ðpþ qÞ þ iΓ=2
þ 


σjσi
�
ab

q0μqν

v · ðp − q0Þ þ iΓ=2

�

þ g2π
f2π

ϵμρλðvÞϵνσλ ðvÞ
�

σiσj

�
ab

qρq0σ
v · ðpþ qÞ − Δ

þ 

σjσi

�
ab

q0ρqσ
v · ðp − q0Þ − Δ

�
; ð46Þ

where ϵμρλðvÞ ¼ ϵμρλαvα. We have inserted the D width in
the denominators of the D propagators to allow for the
possibility that the D can be on shell. In the case of the
forward scattering of πkðqÞ to πkðqÞ, the amplitude is
diagonal in a and b. The diagonal entry is

Aμν
ak;ak ¼

2g2π
f2π

�
qμqν

v · p
ðv · qÞ2 − ðv · pÞ2 − iv · pΓ

− ϵμλðv; qÞϵνλðv; qÞ
v · p − Δ

ðv · qÞ2 − ðΔ − v · pÞ2
�
; ð47Þ

where ϵμλðv; qÞ ¼ ϵμλαβvαqβ. Since Γ ≪ Δ, we have omit-
ted terms proportional to Γ in the numerator and to Γ2 in the
denominator.
The self-energy tensor Πμν of a vector meson D� in

HHχEFT at LO is the sum of the three one-loop Feynman
diagrams in Fig. 6. The contribution from coherent pion

forward scattering can be obtained by cutting the pion
lines using the prescription in Eq. (29). The cut of the first
diagram in Fig. 6 is zero, because the coherent sum over
pion flavors is 0. The cuts of the last two diagrams in
Fig. 6 give the four tree diagrams in Fig. 7. By rotational
symmetry, the contribution to Πμν from the coherent
forward scattering of a pion with 4-momentum q is a
linear combination of gμν, qμqν, vμqν þ qμvν, and vμvν.
However the tensor structure of the D� propagator in
Eq. (A4) ensures that only the −gμν þ vμvν component
contributes to the D� self-energy ΠD� ðv · pÞ. That
component can be obtained from the tensor Aμν

ak;ak in
Eq. (47) by contracting it with ð−gμν þ vμvνÞ=3. The D�
self-energy can be obtained from that component by
multiplying it by −1=2, weighting it by fπðωqÞ=ð2ωqÞ,
integrating over q, and summing over the three pion
flavors k,

ΠD� ðv · pÞ ¼ −
g2π
f2π

Z
d3q

ð2πÞ32ωq
fπðωqÞðω2

q −m2
πÞ
�

v · p
ω2
q − ðv · pÞ2 − iv · pΓ

þ 2ðv · p − ΔÞ
ω2
q − ðv · p − ΔÞ2

�
: ð48Þ

FIG. 5. Feynman diagrams for πD� → πD� in HHχEFT at LO. The third diagram produces a D-meson t-channel singularity in the
reaction rate.

FIG. 6. One-loop Feynman diagrams for the D� self-energy in HHχEFT.

CHARM-MESON t-CHANNEL SINGULARITIES IN AN … PHYS. REV. D 108, 076012 (2023)

076012-11



Since the charm-meson mass difference Δ ¼ M� −M is
approximately equal to the pion massmπ , the self-energy is
sensitive to isospin splittings when the D� is close to the
mass shell v · p ¼ Δ. The isospin splittings can be taken
into account by reintroducing a sum over the flavors c of
the intermediate D or D�. In the self-energy in Eq. (48),
the factor

P
kðσkσkÞaa ¼ 3δaa from the pion vertices is

replaced by
P

k

P
cðσkÞacðσkÞca ¼

P
cð2 − δacÞ. The iso-

spin splittings in the denominators of the propagators can
be taken into account in the first term in Eq. (48)
by replacing v · p by v · p −Mc þM and Γ by Γc. They
can be taken into account in the second term by replacing
v · p − Δ by v · p −M�c þM. The mass-shell condition
v · p ¼ Δ is modified to v · p ¼ M�a −M.

2. Mass shift and thermal width

The mass shift δM�a and the thermal width δΓ�a for the
charm meson D�a in HHχEFT at LO are obtained by
evaluating the self-energy on the mass shell,

ΠD�aðv · p ¼ ΔÞ ¼ δM�a − iδΓ�a=2: ð49Þ

If isospin splittings are taken into account in Eq. (48), the
D�a self-energy on the mass shell is

ΠD�aðΔÞ ¼ −
g2π
3f2π

X
c

ð2 − δacÞ
Z

d3q
ð2πÞ32ωacq

fπðωacqÞ

×

�
q2Δac

q2 − q2ac − iΔacΓc
þ 2q2ðM�a −M�cÞ

ω2
acq

�
;

ð50Þ

where ωacq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πac þ q2
p

and q2ac ¼ Δ2
ac −m2

πac. In
the second term inside the parentheses, we have omitted
the term −ðM�a −M�cÞ2 in the denominator, because
M�þ −M�0 ≪ mπ .
Since ΔacΓc ≪ jq2 − q2acj except in a very narrow range

of q2, the expressions for δM�a and δΓ�a can be simplified
by taking the limit Γc → 0. The resulting D�a mass shift is

δM�a ¼ −
g2π
6f2π

nπ

X
c

ð2 − δacÞ
�
Δac



q2

ωacq
P

1

q2 − q2ac

�
q

þ 2ðM�a −M�cÞ



q2

ω3
acq

�
q

�
: ð51Þ

Note that the sum δM�þ þ δM�0 is equal to the sum δMþ þ
δM0 from Eq. (42) multiplied by −1=3. Thus the spin-
weighted average of the D and D� mass shifts is 0. The
resulting D�a thermal width can be evaluated analytically,

δΓ�a ¼
g2π

12πf2π

X
c

ð2 − δacÞfπðΔacÞq3acθðΔac −mπacÞ: ð52Þ

This thermal width comes from the coherent pion forward
scattering diagram with a D in the t channel in Fig. 7. Note
that the sum δΓ�þ þ δΓ�0 is equal to the 1=3 of the sum
δΓþ þ δΓ0 from Eq. (45). In a pion gas with temperature
Tkf ¼ 115 MeV, the mass shifts for D�þ and D�0 are
δM�þ ¼ −0.478 MeV and δM�0 ¼ −0.417 MeV. The
thermal widths for D�þ and D�0 are δΓ�þ ¼ 32.7 keV
and δΓ�0 ¼ 14.6 keV.
The mass shift and thermal width of D�a can be

expanded in powers of isospin splittings using the methods

FIG. 7. Feynman diagrams for the D� self-energy from coherent pion forward scattering in HHχEFT at LO. These diagrams can be
obtained by cutting the pion lines in the last two diagrams in Fig. 6. The second diagram in the first row produces a D-meson t-channel
singularity.
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in Appendix B. The leading term in the expansion of the
mass shift is the same for D�þ and D�0 and it differs from
the mass shift δM for Dþ and D0 in Eq. (44) by the
multiplicative factor −1=3,

δM� ≈ −δM=3; ð53Þ

The leading term in the expansion of the D�a thermal
width is

δΓ�a ≈ fπðmπÞ
X
c

Γ½D�a → Dcπ�; ð54Þ

where Γ½D�a → Dcπ� is theD� partial decay rate in Eq. (8).
In a pion gas with temperature Tkf ¼ 115 MeV, the D�
mass shift in Eq. (53) is δM� ¼ −0.419 MeV and the D�þ

and D�0 thermal widths in Eq. (54) are δΓ�þ ¼ 35.2 keV
and δΓ�0 ¼ 15.3 keV.

E. Expanding hadron gas

Thermal mass shifts and thermal widths have significant
effects on some reaction rates for pions and charm mesons
in the expanding hadron gas created by a heavy-ion
collision. The pion mass shift δmπ in χEFT at LO is given
in Eq. (35). The charm-meson mass shifts δMa for Da

and δM�a for D�a in HHχEFT at LO are given in Eqs. (42)
and (51). We will use the simpler approximations for the
charm-meson mass shifts in Eqs. (44) and (53). The mass
shifts in the hadron gas before kinetic freeze-out are
determined by the temperature T. The mass shifts after
kinetic freeze-out are determined by the pion number
density nπ. Some reaction rates are sensitive to mass
differences through a factor of M� −M −mπ raised to a
power. The four relevant mass differences in the vacuum
are given in Eq. (2). The thermal-mass shifts forD�,D, and
π are given in Eqs. (35), (44), and (53). The mass
differences in the hadron gas after kinetic freeze-out
decrease linearly with nπ with the same slope,

Δ00 −mπ0 ≈þ7.04 MeV − ð3.23 MeVÞnπ=n
ðkfÞ
π ; ð55aÞ

Δþ0 −mπþ ≈þ5.86 MeV − ð3.23 MeVÞnπ=n
ðkfÞ
π ; ð55bÞ

Δþþ −mπ0 ≈þ5.63 MeV − ð3.23 MeVÞnπ=n
ðkfÞ
π ; ð55cÞ

Δ0þ −mπþ ≈ −2.38 MeV − ð3.23 MeVÞnπ=n
ðkfÞ
π ; ð55dÞ

where nðkfÞ
π is the pion number density at kinetic freeze-out.

The signs of the mass differences in Eq. (55) imply that the
decays D�0 → D0π0, D�þ → Dþπ0, and D�þ → Dþπ0 are
always kinematically allowed in the expanding hadron gas
after kinetic freeze-out, while the decay D�0 → Dþπ− is
always forbidden.

The partial widths of the charm mesons from the decays
D� → Dπ are given in Eq. (8),

ΓD�þ→Dþπ ¼
g2π

12πf2π
ðΔ2þþ −m2

π0Þ3=2: ð56aÞ

ΓD�þ→D0π ¼
g2π

6πf2π
ðΔ2

þ0 −m2
πþÞ3=2; ð56bÞ

ΓD�0→D0π ¼
g2π

12πf2π
ðΔ2

00 −m2
π0Þ3=2; ð56cÞ

ΓD�0→Dþπ ¼ 0; ð56dÞ

where Δab ¼ M�a −Mb is the D�a −Db mass difference.
In the vacuum, the masses M�a, Mb, and mπab are
constants. In the hadron gas, the mass shifts from coherent
pion forward scattering can be taken into account by
replacing Δab in Eq. (56) by Δab þ δM� − δM, where
δM and δM� are the charm-meson mass shifts in Eqs. (44)
and (53), and replacingmπi bymπi þ δmπ, where δmπ is the
pion mass shift in Eq. (35). In the expanding hadron gas
after kinetic freeze-out, the terms Δ2

ab −m2
πab in Eq. (56)

are quadratic functions of nπ .
The thermal width Γa of Da from coherent pion forward

scattering is given in Eq. (45). The thermal widths for Dþ

and D0 are

Γþ ¼ 3fπðmπÞΓD�þ→Dþπ; ð57aÞ

Γ0 ¼ 3fπðmπÞ


ΓD�0→D0π þ ΓD�þ→D0π

�
: ð57bÞ

In the hadron gas before kinetic freeze-out, the factor
fπðmπÞ depends on the temperature T. In the hadron gas
after kinetic freeze-out at the temperature Tkf ¼ 115 MeV,

fπðmπÞ ¼ 0.431nπ=n
ðkfÞ
π , where nðkfÞ

π is the pion number
density at kinetic freeze-out. The thermal widths Γa in
Eq. (57) also depend on T or nπ through the factors of
ðΔ2

ab −m2
πabÞ3=2 in ΓD�a→Dbπ .

The thermal correction δΓ�a to the width forD�a is given
in Eq. (54). The total widths for D�þ and D�0 are

Γ�þ¼ �
1þ fπðmπÞ

�

ΓD�þ→DþπþΓD�þ→D0π

�þΓ�þ;γ; ð58aÞ

Γ�0 ¼
�
1þ fπðmπÞ

�
ΓD�0→D0π þ Γ�0;γ; ð58bÞ

where Γ�þ;γ and Γ�0;γ are the radiative decay rates in
Eq. (6). The terms with the factor fπðmπÞ come from
coherent pion forward scattering. In the hadron gas before
kinetic freeze-out, fπðmπÞ depends on T. In the hadron gas

after kinetic freeze-out, fπðmπÞ ¼ 0.431nπ=n
ðkfÞ
π . The ther-

mal widths Γ�a in Eq. (58) also depend on T or nπ through
the factors of ðΔ2

ab −m2
πabÞ3=2 in ΓD�a→Dbπ .

The thermal widths for the charm mesons after kinetic
freeze-out at the temperature Tkf ¼ 115 MeV are shown
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as functions of the pion number density nπ in Fig. 8.
The thermal widths ofDþ andD0 are given in Eq. (57). The
thermal widths of D�þ and D�0 are given in Eq. (58). The
thicker curves in Fig. 8 take into account the thermal mass
shifts of pions and charm mesons in the partial decay rates
for D�a → Dbπ in Eq. (56). The thinner straight lines in
Fig. 8 are obtained by setting the masses of pions and
charm mesons in those partial decay rates equal to their
vacuum values. The effects of the thermal mass shifts are
large. At kinetic freeze-out, the thermal widths of Dþ and

D0 are 9.1 keV and 40.2 keV. As nπ decreases from nðkfÞ
π

to 0, those decay rates increase to the maximum values

10.6 keVand 42.9 keV near 0.74 nðkfÞ
π and then decrease to

0. At kinetic freeze-out, the thermal widths of D�þ and D�0

are 35.6 keVand 39.9 keV. As nπ decreases from nðkfÞ
π to 0,

those decay rates increase to the vacuum values in Eq. (5)
to within errors. The decrease in the thermal widths of
D�þ and D�0 with increasing nπ may be counterintuitive,
but it is a consequence of the decreasing phase space
available for the decay because of the decreasing mass
differences in Eq. (55).

V. REACTION RATES

In this section, we calculate reaction rates for charm
mesons in a pion gas. The results are applied to the hadron
gas from a heavy-ion collision after kinetic freeze-out.

A. D� ↔ Dπ

The decays of D� into Dπ are 1-body reactions that give
contributions to the rate equations for the number densities

ofD� in a pion gas that are not suppressed by any powers of
the pion number density. The partial decay rate in the
vacuum for D�a → Dbπ in HHχEFT at LO is given
in Eq. (8). This rate is nonzero only if Δab > mπab, and
it is sensitive to the masses through the factor of
ðΔ2

ab −m2
πabÞ3=2. This expression can also be used for

the partial decay rate in the pion gas by taking into account
the mass shifts from coherent pion forward scattering. The
charm-meson mass difference Δab is shifted by δM� − δM,
where δM� and δM are given by Eqs. (44) and (53).
The pion mass mπab is shifted by δmπ, which is given
in Eq. (35).
The radiative decays of D� into Dγ are also one-body

reactions. The partial decay rates for D� → Dγ in the
vacuum are not sensitive to masses, because the D� −D
mass differences are much larger than the mass shifts.
The radiative decay rates in the pion gas can therefore
be approximated by their values in the vacuum
in Eq. (6).
A vector charm meson D� can be produced in a pion gas

by the inverse decay πD → D�. The Feynman diagram for
this reaction in HHχEFT at LO is shown in Fig. 9. The
reaction rate in the vacuum for Daπ → D�b averaged over
the three pion flavors is

vσ½πDa → D�b� ¼ πg2π
6f2π

ð2 − δabÞ
q2ba
Δba

δðωbaq − ΔbaÞ; ð59Þ

where ωbaq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πba þ q2
q

and q2ba ¼ Δ2
ba −m2

πba. The

reaction rate in the pion gas is obtained by averaging over
the momentum distributions of the incoming D and π. The
average over the D momentum distribution has no effect,
because the reaction rate in Eq. (59) does not depend on
the charm-meson momentum. The average over the pion-
momentum distribution can be evaluated using the delta
function in Eq. (59),

�
vσ

�
πDa → D�b�� ¼ ðfπðΔbaÞ=nπÞΓ

�
D�b → Daπ

�
; ð60Þ

where Γ½D�b → Daπ� is the decay rate in Eq. (8). SinceΔba
is large compared to isospin splittings, it can be approxi-
mated by the average Δ over the four D�b → Daπ tran-
sitions or alternatively by the pion mass mπ . The reaction
rates for πDa → D�b in the hadron gas near or after kinetic
freeze-out are

FIG. 8. Thermal widths for the charm mesons in the hadron gas
after kinetic freeze-out as functions of the pion number density
nπ : Dþ (dashed red), D0 (dashed blue), D�þ (solid red), and D�0
(solid blue). The thicker curves include the effects of mass shifts
from coherent pion forward scattering. The thinner straight lines
ignore the thermal mass shifts.

FIG. 9. Feynman diagram for πD → D� in HHχEFT at LO. The
dashed line is a π, the solid line is a D, and the double
(solidþ dashed) line is a D�.
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�
vσπDþ→D�þ

� ¼ �
fπðmπÞ=nπ

�
ΓD�þ→Dþπ; ð61aÞ

�
vσπD0→D�þ

� ¼ ½fπðmπÞ=nπ�ΓD�þ→D0π; ð61bÞ

hvσπD0→D�0i ¼ ½fπðmπÞ=nπ�ΓD�0→D0π; ð61cÞ

hvσπDþ→D�0i ¼ 0: ð61dÞ

Before kinetic freeze-out, the factor fπðmπÞ=nπ is deter-
mined by the temperature T. After kinetic freeze-out at the
temperature Tkf ¼ 115 MeV, that factor has the constant

value 0.431=nðkfÞ
π independent of nπ .

B. πD → πD

The reaction πDa → πDb can change the flavor of a
pseudoscalar charm meson. The Feynman diagrams for
this reaction in HHχEFT at LO are shown in Fig. 4. The
reaction rate has a D� resonance contribution from the
second diagram in Fig. 4 that is sensitive to isospin
splittings and to the D� width. A simple expression for
the nonresonant contribution to the reaction rate can be

obtained by setting the D� −D mass splitting Δ equal to
the pion mass mπ and then taking the limit as the D� width
Γ� approaches 0. A simple expression for the resonant
contribution to the reaction rate can be obtained by
isolating the term with the factor 1=Γ�. We approximate
the reaction rate by the sum of the nonresonant reaction rate
and the resonant reaction rate.
The T -matrix element for πiDa → πjDb in the zero-

width limit is obtained from the amplitude in Eq. (36) by
setting Γ� ¼ 0 and by putting the external legs on shell by
setting v · p ¼ 0, v · q ¼ ωq, and v · q0 ¼ ωq0 ,

T ai;bj ¼
1

2f2π
½σi; σj�abðωq þ ωq0 Þ

−
g2π
f2π

�
ðσiσjÞab

q · q0

ωq − Δ
− ðσjσiÞab

q · q0

ωq0 þ Δ

�
: ð62Þ

We can ignore the recoil of D and set jq0j ¼ jqj. The
nonresonant reaction rate can be obtained by taking the
limit Δ → mπ . The nonresonant reaction rate for πDa →
πDb averaged over incoming pion flavors is

vσ½πDa → πDb�nonres ¼
1

12πf4π

�
2ð2 − δabÞð1þ g4π=3Þω2

q þ δabg4πm2
π

� q
ωq

; ð63Þ

where q is the 3-momentum of the incoming pion. The reaction rate in the pion gas can be obtained by averaging over the
momentum distributions of the incoming D and π:

hvσ½πDa → πDb�nonresi ¼
1

12πf4π

�
2ð2 − δabÞð1þ g4π=3Þhωqqiq þ δabg4πm2

π



q
ωq

�
q

�
; ð64Þ

where the angular brackets represents the average over the
Bose-Einstein distribution for the pion defined in Eq. (21).
The second diagram in Fig. 4 with D�c in the s channel

gives a resonance contribution to the reaction rate propor-
tional to 1=Γ�c if Δac > mπac. In the square of the matrix
element for the scattering of a D with momentum Mvþ p
and a π with momentum q, the resonance contribution can
be isolated by making a simple substitution for the product
of the D� propagator and its complex conjugate,

1

v · ðpþ qÞ − Δþ iΓ�=2

�
1

v · ðpþ qÞ − Δþ iΓ�=2

��

→
2π

Γ�
δðv · ðpþ qÞ − ΔÞ: ð65Þ

The resonant reaction rate for πDa → πDb averaged over
the flavors of the incoming pion is

vσ½πDa→πDb�res¼
g4π

72f4π

X
c

ð2−δacÞð2−δbcÞ

×
q2caq3cb
ΔcaΓ�c

θðΔcb−mπcbÞδðωcaq−ΔcaÞ;

ð66Þ

where q is the 3-momentum of the incoming pion. Using
the expressions for Γ½D� → Dπ� in Eq. (8) and vσ½πD →
D�� in Eq. (59), the singular term in the reaction rate can be
expressed as

vσ½πDa→πDb�res¼
X
c

1

Γ�c
vσ½πDa→D�c�Γ½D�c→Dbπ�:

ð67Þ

The reaction rate in the pion gas can be evaluated by using
the thermal average of vσ½πD → D�� in Eq. (60),
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hvσ½πDa → πDb�resi

¼ fπðΔÞ
nπ

X
c

Γ½D�c → Daπ�Γ½D�c → Dbπ�
Γ�c

: ð68Þ

The reaction rate for πDa → πDb in the pion gas can be
approximated by the sum of the nonresonant reaction rate
in Eq. (64) and the resonant reaction rate in Eq. (68). The
reaction rates in the hadron gas near or after kinetic freeze-
out are

hvσπD0→πD0i ¼ ð0.496þ 0.188g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

�Γ2
D�0→D0π

Γ�0
þ Γ2

D�þ→D0π

Γ�þ

�
; ð69aÞ

hvσπD0→πDþi ¼ ð0.991þ 0.330g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

ΓD�þ→D0πΓD�þ→Dþπ

Γ�þ
; ð69bÞ

hvσπDþ→πD0i ¼ ð0.991þ 0.330g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

ΓD�þ→D0πΓD�þ→Dþπ

Γ�þ
; ð69cÞ

hvσπDþ→πDþi ¼ ð0.496þ 0.188g4πÞ
m2

π

f4π
þ fπðmπÞ

nπ

Γ2
D�þ→Dþπ

Γ�þ
:

ð69dÞ

The dimensionless numbers in the first terms depend only
on mπ=T, which we have evaluated at Tkf ¼ 115 MeV.
Before kinetic freeze-out, the factor fπðmπÞ=nπ is deter-
mined by T. After kinetic freeze-out at Tkf ¼ 115 MeV,

that factor has the constant value 0.431=nðkfÞ
π independent

of nπ . There can also be dependence on T or nπ through the
mass shifts in ΓD�a→Dbπ and through the factors of 1=Γ�c.
The D� resonance terms in the reaction rates for πDa →

πDb in Eq. (69) can be obtained from the reaction rates for
πDa → D�c from Eq. (61) by multiplying by the branching
fraction ΓD�c→Dbπ=Γ�c and summing over the two flavors of
D�c. Thus if the reaction rates for πD → D� in Eq. (61) and
πD → πD in Eq. (69) are both included in a rate equation,
the contributions of πD → D� in which D� subsequently
decays toDπ are double counted. The only contributions of

πD → D� that are not double counted are those in which
D� subsequently decays toDγ. The double counting can be
avoided by replacing the reaction rates for πD → D� in
Eq. (61) by the contributions from the subsequent radiative
decay of D�,

hvσπDþ→Dþγi ¼ ½fπðmπÞ=nπ�ΓD�þ→DþπðΓ�þ;γ=Γ�þÞ; ð70aÞ

hvσπD0→Dþγi ¼ ½fπðmπÞ=nπ�ΓD�þ→D0πðΓ�þ;γ=Γ�þÞ; ð70bÞ

hvσπD0→D0γi ¼ ½fπðmπÞ=nπ�ΓD�0→D0πðΓ�0;γ=Γ�0Þ; ð70cÞ

hvσπDþ→D0γi ¼ 0; ð70dÞ

where Γ�þ;γ and Γ�0;γ are the radiative decay rates in the
vacuum in Eq. (6).

C. πD� ↔ πD

The reactions πD� ↔ πD can change vector charm
mesons into pseudoscalar charm mesons and vice versa.
Their Feynman diagrams are shown in Fig. 10. The reaction
πD� → πD is exothermic, releasing a mass energy com-
parable to mπ . Since this is large compared to isospin
splittings, isospin splittings can be neglected. Relatively
simple expressions for the reaction rates can be obtained by
taking the limit Δ → mπ . The square of the matrix element
for πðqÞD�a → πðq0ÞDb averaged over D� spins and
averaged/summed over pion flavors is

jMj2 ¼ g4π
9f4π

ðq × q0Þ2
ω2
qω

2
q0

�
2ð2 − δabÞðωq − ωq0 Þ2

þ 3δabðωq þ ωq0 Þ2
�
: ð71Þ

The reaction rate can be reduced to

vσ½πD�a → πDb� ¼ g4π
216πf4π

q2
�ðωq þ ΔÞ2 −m2

π

�
3=2

ω3
qðωq þ ΔÞ2

×
�
3δabð2ωq þ ΔÞ2 þ 2ð2 − δabÞΔ2

�
:

ð72Þ

The reaction rate in the pion gas in the limit Δ → mπ is

FIG. 10. Feynman diagrams for πD� → πD in HHχEFT at LO. The diagrams for πD → πD� are the mirror images of these diagrams.

BRAATEN, BRUSCHINI, HE, INGLES, and JIANG PHYS. REV. D 108, 076012 (2023)

076012-16



hvσ½πD�a → πDb�i

¼ g4π
216πf4π



q2

ðωq þmπÞ2
�
ωq þ 2mπ

ωq

�
3=2

×½3δabð2ωq þmπÞ2 þ 2ð2 − δabÞm2
π

��
q
: ð73Þ

The square of the matrix element for πDa → πD�b
summed over D� spins and averaged/summed over the

pion flavors can be obtained from jMj2 for πD�a → πDb in
Eq. (71) by multiplying by 3. The reaction rate in the pion
gas in the limit Δ → mπ is

hvσ½πDa → πD�b�i

¼ g4π
72πf4π



q2

ðωq −mπÞ2
�
ωq − 2mπ

ωq

�
3=2

×
�
3δabð2ωq −mπÞ2 þ 2ð2 − δabÞm2

π

�
θðωq − 2mπÞ

�
q
:

ð74Þ

The theta function restricts the pion energy to be above
the threshold 2mπ for producing πD�, which requires
q >

ffiffiffi
3

p
mπ .

The reaction rates for πDa → πD�b in the hadron gas
after kinetic freeze-out are

hvσπD0→πD�0i ¼ hvσπDþ→πD�þi ¼ 0.215 g4πm2
π=f4π; ð75aÞ

hvσπD0→πD�þi ¼ hvσπDþ→πD�0i ¼ 0.005 g4πm2
π=f4π: ð75bÞ

The reaction rates for πD�a → πDb in the hadron gas after
kinetic freeze-out are

hvσπD�0→πD0i ¼ hvσπD�þ→πDþi ¼ 0.243 g4πm2
π=f4π; ð76aÞ

hvσπD�0→πDþi ¼ hvσπD�þ→πD0i ¼ 0.006 g4πm2
π=f4π: ð76bÞ

The dimensionless numerical factors depend only on
mπ=T, which has been evaluated at Tkf ¼ 115 MeV.

D. πD� → πD�

The reaction πD� → πD� can change the flavor of a
vector charm meson. The five Feynman diagrams for this
reaction in HHχEFT at LO are shown in Fig. 5. The third
diagram, which proceeds through an intermediate D,
produces a t-channel singularity in the reaction rate that
is proportional to 1=Γ in the limit Γ → 0. The singularity
comes from the decay D� → πD followed by the inverse
decay πD → D�. A relatively simple expression for the
nonsingular contribution to the reaction rate is obtained by
setting Δ ¼ mπ and then taking the limit Γ → 0. A simple
expression for the resonant contribution to the reaction rate
can be obtained by isolating the term with the factor 1=Γ.
We approximate the reaction rate by the sum of the
nonsingular reaction rate and the singular reaction rate.
The T -matrix element for πiD�a → πjD�b in the zero-

width limit is obtained from the amplitude in Eq. (46) by
contracting it with the D� polarization vectors, setting
Γ ¼ 0, and then putting the external legs on shell by setting
v · p ¼ Δ, v · q ¼ ωq, and v · q0 ¼ ωq0 ,

εμT
μν
ai;bjε

0�
ν ¼ −

1

2f2π
½σi; σj�abðωq þ ωq0 Þðε · ε0�Þ −

g2π
f2π

�
ðσiσjÞab

ðε · qÞðq0 · ε0�Þ
ωq þ Δ

− ðσjσiÞab
ðε · q0Þðq · ε0�Þ

ωq0 − Δ

�

þ g2π
f2π

�
ðσiσjÞab

ðε × qÞ · ðq0 × ε0�Þ
ωq

− ðσjσiÞab
ðε × q0Þ · ðq × ε0�Þ

ωq0

�
: ð77Þ

We can ignore the recoil of D� and set jq0j ¼ jqj. The nonsingular contribution to the reaction rate can be obtained by
taking the limit Δ → mπ . The reaction rate averaged over incoming pion flavors and incoming D� spins is

vσ½πD�a → πD�b�nonsing ¼
1

36πf4π

n
ð2 − δabÞ

�
6ω2

q þ 2g4πðm2
π þ q4=ω2

qÞ
�þδabg4πð3ω2

q þ q4=ω2
qÞ
o q
ωq

: ð78Þ

The reaction rate in the pion gas is obtained by averaging over the momentum distributions of the incoming
D and π,

hvσ½πD�a→πD�b�nonsingi¼
1

36πf4π

��
6ð2−δabÞþ2ð2þδabÞg4π

�hωqqiq−4g4πm2
π



q
ωq

�
q

þð4−δabÞg4πm4
π



q
ω3
q

�
q

�
: ð79Þ
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The third diagram in Fig. 5 produces a t-channel
singularity, because the intermediate D can be on shell.
In the square of the matrix element for an incomingD� with
momentum ðM þ ΔÞvþ p and an outgoing pion with
momentum q0, the t-channel singularity can be isolated
by making a simple substitution for the product of the D
propagator and its complex conjugate,

1

v · ðΔvþ p − q0Þ þ iΓ=2

�
1

v · ðΔvþ p − q0Þ þ iΓ=2

��

→
2π

Γ
δðΔþ v · p − v · q0Þ: ð80Þ

The t-channel singularity contribution to the reaction rate
for πðqÞD�aðpÞ → πðq0ÞD�bðp0Þ averaged over incoming
D� spins and over incoming pion flavors is

vσ½πD�a → πD�b�sing
¼ g4π

72f4π

X
c

ð2 − δacÞð2 − δbcÞ

×
q2bcq

3
ac

ΔbcΓc
δðωbcq − ΔbcÞθðΔac −mπacÞ: ð81Þ

Using the expressions for Γ½D� → Dπ� in Eq. (8) and
vσ½Dπ → D�� in Eq. (59), the singular term in the reaction
rate can be expressed as

vσ½πD�a → πD�b�sing
¼

X
c

1

Γc
Γ½D�a → Dcπ�vσ½Dcπ → D�b�: ð82Þ

The reaction rate in the pion gas can be evaluated using the
thermal average of vσ½Dπ → D�� in Eq. (60),

hvσ½πD�a → πD�b�singi

¼ fπðΔÞ
nπ

X
c

Γ½D�a → Dcπ�Γ½D�b → Dcπ�
Γc

: ð83Þ

This differs from the resonant term in the reaction rate for
πD → πD in Eq. (68) in that the sum is over D flavors
instead of D� flavors and that the product of D� partial
decay rates is divided by a D decay rate Γc instead of a D�
decay rate Γ�c.
The reaction rates for πD�a → πD�b in the hadron gas

near or after kinetic freeze-out can be approximated by
the sum of the nonsingular reaction rates in Eq. (79) and the
t-channel singularity reaction rate in Eq. (83),

hvσπD�0→πD�0i¼ð0.496þ0.469 g4πÞ
m2

π

f4π
þ fπðmπÞ

nπ

Γ2
D�0→D0π

Γ0

;

ð84aÞ

hvσπD�0→πD�þi ¼ ð0.991þ 0.306 g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

ΓD�0→D0πΓD�þ→D0π

Γ0

; ð84bÞ

hvσπD�þ→πD�0i ¼ ð0.991þ 0.306 g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

ΓD�0→D0πΓD�þ→D0π

Γ0

; ð84cÞ

hvσπD�þ→πD�þi¼ð0.496þ0.469 g4πÞ
m2

π

f4π

þ fπðmπÞ
nπ

�Γ2
D�þ→D0π

Γ0

þΓ2
D�þ→Dþπ

Γþ

�
: ð84dÞ

The dimensionless numbers in the first terms depend only
on mπ=T, which we have evaluated at Tkf ¼ 115 MeV.
Before kinetic freeze-out, the factor fπðmπÞ=nπ is deter-
mined by T. After kinetic freeze-out at Tkf ¼ 115 MeV,

that factor has the constant value 0.431=nðkfÞ
π independent

of nπ . There can also be dependence on T or nπ through
the mass shifts in ΓD�a→Dbπ and through the factors
of 1=Γc.
After kinetic freeze-out, the most dramatic dependences

on nπ can be made explicit by inserting the expressions for
the thermal widths of Dþ and D0 in Eq. (57). The resulting
expression for the reaction rate for πD�0 → πD�þ (or
πD�þ → πD�0) is

hvσπD�0→πD�þi ¼ ð0.991þ 0.306 g4πÞ
m2

π

f4π

þ 1

3nπ

ΓD�0→D0πΓD�þ→D0π

ΓD�0→D0π þ ΓD�þ→D0π
: ð85Þ

At kinetic freeze-out, the t-channel singularity term is
smaller than the nonsingular term by the factor 0.0003.
However the multiplicative factor of 1=nπ makes the
t-channel singularity term increase dramatically as the
hadron gas expands. It becomes equal to the nonsingular
term when nπ decreases by the factor 0.0009. Since the
volume VðτÞ of the hadron gas increases roughly as τ3, this
corresponds to an increase in its linear dimensions by about
a factor of 10.
Many of the πDð�Þ → πDð�Þ scattering reactions change

the flavor or spin of the charm meson. The reaction rates in
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the hadron gas after kinetic freeze-out at Tkf ¼ 115 MeV
for incoming neutral charm mesonsD0 orD�0 are shown as
functions of the pion number density nπ in Fig. 11. For
each of these reactions, there is another one with an
incoming charged charm meson Dþ or D�þ that has the
same reaction rate. The reaction rate for πD0 → πDþ is
given in Eq. (69b). The reaction rates for πD0 → πD�0 and
πD0 → πD�þ are given in Eqs. (75a) and (75b). The
reaction rates for πD�0 → πD0 and πD�0 → πDþ are given
in Eqs. (76a) and (76b). The largest reaction rates in Fig. 11
are for reactions that change the charm-meson flavor only.
The reaction rate for πD0 → πDþ has a D�þ resonance
contribution that makes it increase as nπ decreases.
However the D�þ resonance contribution is about three
orders of magnitude smaller than the nonresonant term, so
the decrease is not visible in Fig. 11. The reaction rate for
πD�0 → πD�þ has a D0 t-channel singularity contribution
that makes it diverge as nπ → 0. The other reaction rates in
Fig. 11 are constant functions of nπ . The rates in Fig. 11 for
reactions that change the charm-meson spin are suppressed
by more than 1.5 orders of magnitude. The rates for
reactions that change both the flavor and spin of the charm
meson are suppressed by more than three orders of
magnitude.

VI. EVOLUTION OF CHARM-MESON RATIOS

In this section, we calculate the evolution of the charm-
meson number densities in the expanding hadron gas from
a heavy-ion collision after kinetic freeze-out.

A. Rate equations

The evolution of the number density nDð�Þ ðτÞ of a charm
meson in the expanding hadron gas with the proper time τ
can be described by a first-order differential equation. The
number density decreases because of the increasing volume
VðτÞ, but it can also be changed by reactions. The time
derivative of nDð�Þ has positive contributions from reactions
with Dð�Þ in the final state and negative contributions from
reactions with Dð�Þ in the initial state. Near kinetic freeze-
out, the most important reactions involve pions, because
pions are by far the most abundant hadrons in the
hadron gas.
After kinetic freeze-out, most interactions have a neg-

ligible effect on the number density nDð�Þ ðτÞ of a charm
meson. The charm-meson number density decreases in
proportion to 1=VðτÞ, like the pion number density nπðτÞ in
Eq. (19). The effect of the increasing volume can be
removed from the differential equation by considering
the rate equation for the ratio of number densities
nDð�Þ=nπ . The remaining terms in the rate equation come
from reactions that change the spin or flavor of the charm
meson. The reaction rate is multiplied by a factor of the
number density for every particle in the initial state. The
reaction rate is determined by the temperature, which is
fixed at the kinetic freeze-out temperature Tkf , the charm-
meson number density nDð�Þ, and the pion number density
nπðτÞ, which decreases as 1=VðτÞ. Some reaction rates in
the expanding hadron gas are sensitive to the thermal mass
shifts and the thermal widths of the hadrons. The greatest
sensitivities to the thermal mass shifts for charm mesons
and pions are in reactions whose rates are proportional to a
power of MD� −MD −mπ , such as D� → Dπ decay rates.
The greatest sensitivity to the thermal width Γa of a
pseudoscalar charm meson Da comes from D-meson
t-channel singularities, which can produce contributions
to reaction rates proportional to 1=Γa in the limit
Γa → 0.
The most relevant reactions for charm mesons in the

expanding hadron gas include the decays D� → Dπ and
D� → Dγ, the scattering reactions πD → πD, πD → Dγ,
and πD� → πD� that change the charm-meson flavor, and
the scattering reactions πD → πD� and πD� → πD that
change the charm-meson spin. The rate equations for the
number densities of the pseudoscalar charm mesonsDa and
the vector charm mesons D�a are

FIG. 11. Reaction rates hvσπDð�Þ→πDð�Þ i for the scattering of an
incoming neutral charm meson D0 or D�0 and a pion in the
hadron gas after kinetic freeze-out as functions of the pion
number density nπ : πD0 → πDþ, πD0 → πD�0, πD0 → πD�þ
(dashed curves: higher red, intermediate purple, and lower blue),
πD�0 → πD�þ, πD�0 → πD0, πD�0 → πDþ (solid curves: higher
red, intermediate purple, and lower blue). The increase in the
reaction rate for πD�0 → πD�þ as nπ → 0 comes from a
D-meson t-channel singularity.
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nπ
d
dτ

�
nDa

nπ

�
¼ ½1þ fπðmπÞ�

X
b

ΓD�b→DaπnD�b þ Γ�a;γnD�a

þ 3
X
b≠a

�hvσπDb→πDaiðnDb − nDaÞ þ hvσπDb→DaγinDb − hvσπDa→DbγinDa

�
nπ

þ 3
X
b

�hvσπD�b→πDainD�b − hvσπDa→πD�binDa

�
nπ þ…; ð86aÞ

nπ
d
dτ

�
nD�a

nπ

�
¼ −

�
½1þ fπðmπÞ�

X
b

ΓD�a→Dbπ þ Γ�a;γ

�
nD�a þ 3

X
b≠a

hvσπD�b→πD�aiðnD�b − nD�aÞnπ

þ 3
X
b

�hvσπDb→πD�ainDb − hvσπD�a→πDbinD�a
�
nπ þ…: ð86bÞ

The partial decay rates ΓD�a→Dbπ and Γ�a;γ are given in
Eqs. (6) and (56). The reaction rates hvσπDa→πDbi and
hvσπDa→Dbγi, which have D� resonance contributions, are
given in Eqs. (69) and (70). The reaction rates hvσπDa→πD�bi
and hvσπD�a→πDbi are given in Eqs. (75) and (76).
The reaction rates hvσπD�a→πD�bi, which have D-meson
t-channel singularities, are given in Eq. (84). The rate
equations in Eq. (86) are consistent with the conservation of
charm-quark number, which implies that the sum of the
ratios of the number densities for all four charm mesons
remains constant,

nπ
d
dτ

�
nD0 þ nDþ þ nD�0 þ nD�þ

nπ

�
¼ 0: ð87Þ

Given initial conditions on the ratios nDð�Þ ðτÞ=nπðτÞ of
charm-meson and pion number densities, the rate equations
in Eq. (86) can be integrated to determine the ratios at larger
τ. As our initial conditions on the ratio at kinetic freeze-out,
we take the ratio of the multiplicity of the charm meson
before D� decays and the pion multiplicity,

nDaðτkfÞ
nπðτkfÞ

¼ ðdNDa=dyÞ0
dNπ=dy

; ð88aÞ

nD�aðτkfÞ
nπðτkfÞ

¼ ðdND�a=dyÞ0
dNπ=dy

: ð88bÞ

In the case of Pb-Pb collisions in the centrality range
0–10% at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, the multiplicity dNπ=dy for
a single-pion flavor measured by the ALICE Collaboration
is given in Eq. (22) [25]. The multiplicities ðdND�a=dyÞ0
and ðdNDa=dyÞ0 for charm mesons before D� decays
inferred from SHM predictions are given in Eqs. (26)
and (27). The resulting initial values of the ratios of charm-
meson and pion number densities at kinetic freeze-out for
D0, Dþ, D�0, and D�þ are 0.00278, 0.00264, 0.00334, and
0.00328, respectively.
The solutions to the rate equations in Eq. (86) with the

initial conditions in Eq. (88) are shown in Fig. 12. The

ratios nD�0=nπ and nD�þ=nπ decrease exponentially to 0 on
time scales comparable to the D� lifetimes. The ratio
ND0=NDþ of the numbers of D0 and Dþ is predicted to
increase from 1.053 at kinetic freeze-out to about 2.092 at
the detector. The naive prediction for the effects of D�
decays on the numbers ND0 and NDþ at the detector can be
obtained by inserting the initial conditions at kinetic freeze-
out into Eq. (9). The naive prediction for the ratioND0=NDþ

at the detector is 2.255. This is about 10% larger than
the ratio from solving the rate equations. Thus the rate
equations in Eq. (86) must include reactions other than
D� decays whose effects are not negligible after kinetic
freeze-out.

B. Asymptotic evolution

As τ increases, the pion number density nπðτÞ decreases
to 0 as 1=VðτÞ. As nπ approaches 0, most of the reaction
rates in Eq. (86) approach the finite constant reaction rates
in the vacuum. The exceptions are hvσπD�0→πD�þi and

FIG. 12. Proper-time evolution of the ratios of number densities
of charm meson and pions from solving the rate equations in
Eq. (86); nD0=nπ , nDþ=nπ (dashed curves: higher blue, lower
red), nD�0=nπ , nD�þ=nπ (solid curves: higher blue, lower red).
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hvσπD�þ→πD�0i, which are given in Eqs. (84b) and (84c).
They have contributions with a factor of 1=Γ0 from a
D-meson t-channel singularity. Since Γ0, which is given in
Eq. (57b), decreases to 0 in proportion to nπ as nπ → 0,
these reaction rates increase as 1=nπ . The limiting behav-
iors of the reaction rates hvσπD�b→πD�ai as nπ → 0 in
Eq. (84) are

hvσπD�0→πD�0i → 1

3nπ

ðB00Γ�0Þ2
B00Γ�0 þ Bþ0Γ�þ

; ð89aÞ

hvσπD�0→πD�þi → 1

3nπ

ðB00Γ�0ÞðBþ0Γ�þÞ
B00Γ�0 þ Bþ0Γ�þ

; ð89bÞ

hvσπD�þ→πD�0i → 1

3nπ

ðB00Γ�0ÞðBþ0Γ�þÞ
B00Γ�0 þ Bþ0Γ�þ

; ð89cÞ

hvσπD�þ→πD�þi → 1

3nπ

� ðBþ0Γ�þÞ2
B00Γ�0 þ Bþ0Γ�þ

þ BþþΓ�þ

�
;

ð89dÞ

where Γ�a is the decay rate for D�a in the vacuum given in
Eq. (5) and Bab is the branching fraction for D�a → Dbπ
given in Eq. (4). The factors of 1=nπ in these asymptotic
reaction rates can cancel explicit factors of nπ in the rate
equations.
At large times τ, the only terms in the rate equation that

survive are one-body terms with a single factor of a number
density nD or nD�. There are one-body terms from the
decays D� → Dπ and D� → Dγ. The t-channel singular-
ities produce additional one-body terms. If the one-body
terms from D-meson t-channel singularities are taken into
account, the asymptotic rate equations become

nπ
d
dτ

�
nDþ

nπ

�
→ ð1 − Bþ0ÞΓ�þnD�þ ; ð90aÞ

nπ
d
dτ

�
nD0

nπ

�
→ Γ�0nD�0 þ Bþ0Γ�þnD�þ ; ð90bÞ

nπ
d
dτ

�
nD�þ

nπ

�
→ −ðΓ�þ þ γÞnD�þ þ γnD�0 ; ð90cÞ

nπ
d
dτ

�
nD�0

nπ

�
→ −ðΓ�0 þ γÞnD�0 þ γnD�þ ; ð90dÞ

where the rate γ is

γ ¼ 1

1=ðB00Γ�0Þ þ 1=ðBþ0Γ�þÞ
¼ 21.9 keV: ð91Þ

The terms in Eq. (90) with the factor γ come fromD-meson
t-channel singularities.

The asymptotic rate equations in Eq. (90) can be solved
analytically. If the numbers of D0, Dþ, D�0, and D�þ at
kinetic freeze-out are ðND0Þ0, ðNDþÞ0, ðND�0Þ0, and
ðND�þÞ0, the predicted asymptotic numbers of D0 and
Dþ are

N0 ¼ ðN0Þ0 þ ðN�0Þ0 þ Bþ0ðN�þÞ0
−

ð1 − Bþ0Þγ
Γ�þΓ�0 þ ðΓ�þ þ Γ�0Þγ

×
�
Γ�þðN�0Þ0 − Γ�0ðN�þÞ0

�
; ð92aÞ

Nþ ¼ ðNþÞ0 þ ð1 − Bþ0ÞðN�þÞ0
þ ð1 − Bþ0Þγ
Γ�þΓ�0 þ ðΓ�þ þ Γ�0Þγ

×
�
Γ�þðN�0Þ0 − Γ�0ðN�þÞ0

�
; ð92bÞ

where γ is given in Eq. (91). The coefficients of ðN�0Þ0 and
ðN�0Þþ in Eq. (92) depend only on Bþ0, B00, and the ratio
Γ�0=Γ�þ. The prediction for the difference between the
numbers of D0 and Dþ are

N0 − Nþ ¼ 2Bþ0ðN�þÞ0 þ ðN0 − NþÞ0 þ ðN�0 − N�þÞ0
−

2ð1 − Bþ0Þγ
Γ�þΓ�0 þ ðΓ�þ þ Γ�0Þγ

×
�
Γ�þðN�0Þ0 − Γ�0ðN�þÞ0

�
: ð93Þ

If we impose the isospin-symmetry approximations ðN0Þ0 ≈
ðNþÞ0 and ðN�0Þ0 ≈ ðN�þÞ0, the difference reduces to

N0−Nþ≈2

�
Bþ0−

ð1−Bþ0ÞðΓ�þ−Γ�0Þγ
Γ�þΓ�0þðΓ�þþΓ�0Þγ

�
ðN�þÞ0: ð94Þ

The two terms in the parantheses come fromD� decays and
the D-meson t-channel singularity, respectively. The effect
of D-meson t-channel singularities is to reduce the coef-
ficient of ðN�þÞ0 from 1.35� 0.01, which includes the
effects ofD� decays only, to 1.30� 0.01. The change in the
coefficient is small but statistically significant.
We use our initial conditions on the ratios of the charm-

meson/pion number densities at kinetic freeze-out to
illustrate the effect of t-channel singularities on the ratio
N0=Nþ of the observed numbers of D0 and Dþ. The ratio
before D� decays is ðND0Þ0=ðNDþÞ0 ¼ 1.053. The pre-
dicted numbers of D0 and Dþ at the detector are given in
Eq. (92). Their ratio is predicted to increase to 2.178�
0.016 at the detector, where the error bar is from Bþ0, B00,
Γ�0, and Γ�þ only. The naive ratio ND0=NDþ ignoring
t-channel singularities, which is obtained using Eq. (9), is
2.255� 0.014. The difference between the predicted ratio
taking into account t-channel singularities and the naive
prediction is −0.077� 0.006, which differs from 0 by
about 13 standard deviations.
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VII. CONCLUSION

The reactions πD� → πD� have t-channel singularities in
six of the ten scattering channels. These reactions can
proceed at tree level through the decay D� → πD followed
by the inverse decay πD → D�. The t-channel singularity
appears because the intermediate D can be on shell. The
tree-level cross section diverges inside a narrow interval
of the center-of-mass energy near the threshold, which is
given by Eq. (1) if the incoming and outgoing π andD have
the same flavor. If the singularity is regularized by inserting
the width Γ of the D into its propagator, the cross section
has a term with a factor of theD lifetime 1=Γ. The resulting
enormous cross section is unphysical, because the lifetimes
of the incoming and outgoing D� are many orders of
magnitude smaller than the D lifetime. A more physical
regularization of the t-channel singularity in the reaction
rate for πD� → πD� could perhaps be obtained by a
resummation of loop diagrams. There are n-loop diagrams
with nþ 1 D propagators, n D� propagators, and n pion
propagators in which all 2nþ 1 charm-meson propagators
are nearly on shell. A resummation of these diagrams to all
orders could produce a regularization of the t-channel
singularity that is determined by the D� width.
As pointed out by Grzadkowski et al. in Ref. [1], the

thermal widths of particles in a medium provide a physical
regularization of t-channel singularities. In a hadronic
medium, the t-channel singularity in the reaction rate for
πD� → πD� is regularized by the thermal width of D. A
physical example of such a hadronic medium is the hadron
gas produced by a central relativistic heavy-ion collision.
The effects of the hadron gas are particularly simple near
and after kinetic freeze-out, because it can be accurately
approximated by a pion gas. The thermal widths of the
charm mesons come primarily from coherent pion forward
scattering. At leading order in the pion interactions, the
thermal widths Γþ of Dþ and Γ0 of D0 are given by
Eq. (57). Before kinetic freeze-out, the D widths are
determined by the decreasing temperature T. After kinetic
freeze-out, the D widths are determined by the kinetic
freeze-out temperature and the decreasing pion number
density nπ.
In a hadronic medium, the t-channel singularities in the

reaction rates for πD� → πD� produce terms in the average
reaction rates hvσπD�→πD� i inversely proportional to the
thermal widths Γþ and Γ0. These terms come from πD�
scattering in regions near the threshold, and they are
sensitive to differences Δ −mπ between D� −D mass
differences in the medium and pion masses in the medium.
There are also nonsingular contributions from πD� scatter-
ing that are determined primarily by the temperature T and
are insensitive to the values of Δ −mπ . We found a simple
prescription for the nonsingular reaction rates that allowed
the total reaction rate to be approximated by the sum of the
nonsingular term and the t-channel singularity terms. Our
prescription for the nonsingular reaction rate is simply the

rate in the limit Δ → mπ . The resulting expressions for the
reaction rates hvσπD�a→πD�bi in the pion gas after kinetic
freeze-out are given in Eq. (84). After kinetic freeze-out,
the most dramatic dependence of reaction rates for πD� →
πD� on nπ comes from a multiplicative factor of 1=nπ . This
dependence for hvσπD�0→πD�þi is made explicit in Eq. (85).
In rate equations for the evolution of number densities, a

reaction rate is multiplied by the number density of each of
the incoming particles. In the hadron gas after kinetic
freeze-out, all the number densities are decreasing in
inverse proportion to the expanding volume VðτÞ. Thus
n-body reactions, which have n ≥ 2 incoming particles, are
suppressed compared to decays, which are one-body
reactions, by the additional factors of the number densities.
A two-body reaction whose rate is proportional to an
inverse power of a number density provides an exception,
because its effects in the rate equation can be comparable to
one-body terms. In particular, the effects of the reactions
πD� → πD� can be comparable to one-body terms because
of the multiplicative factor of 1=nπ in the t-channel
singularity term. Rate equations for the number density
ratios nDa=nπ and nD�a=nπ are given in Eq. (86). The
numerical solutions of these rate equations after kinetic
freeze-out for specific initials conditions motivated by the
statistical hadronization model are illustrated in Fig. 12.
There is a small but significant difference between the
asymptotic charm-meson ratios and the naive predictions
from Eq. (9), which take into account only the decays of
D�0 and D�þ.
The asymptotic forms of the rate equations in the limit

nπ → 0 are given in Eq. (90). The only rates that remain in
that limit are one-body terms, but those terms come not
only from D� decays but also from the t-channel singu-
larities in πD� → πD� reactions. The rates are completely
determined byD� decay rates andD� branching fractions in
the vacuum. From the analytic solutions of the asymptotic
rate equations, we deduced the simple approximations in
Eq. (92) for the asymptotic numbers of D0 and Dþ given
the numbers of the D0, Dþ, D�0, and D�þ at kinetic freeze-
out. The new terms from t-channel singularities are those
with a factor of the rate γ. The predicted deviations of
charm-meson ratios from the naive predictions from Eq. (9)
are small but much larger than the statistical errors from
the D� decay rates and branching fractions. The analytic
predictions from Eq. (92) give good approximations to
numerical solutions of the more accurate rate equations
in Eq. (86).
There are other charm-meson reactions with t-channel

singularities including πD� → ππD and ππD → πD�. The
reaction πD� → ππD has a pion t-channel singularity from
the decayD� → Dπ followed by the scattering ππ → ππ. In
a hadronic medium, the t-channel singularity is regularized
by the thermal width Γπ of the pion. In a pion gas, the
leading term in Γπ is proportional to nπ . Our preliminary
result for the t-channel singularity contribution to the
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reaction rate for πD� → ππD can be reduced to
ΓD�→Dπ=nπ , which is comparable to the t-channel singu-
larity term in the reaction rate for πD�0 → πD�þ in
Eq. (85). This suggests that the contributions from pion
t-channel singularities may be comparable to those from
D-meson t-channel singularities.
There have been previous studies of the effects of a

thermal hadronic medium on charm mesons [31–34]. In
these studies, isospin splittings have been ignored and
therefore the possibility of t-channel singularities has not
been considered. It might be worthwhile to look for other
aspects of the thermal physics of charm mesons in which
the effects of t-channel singularities are significant. One
such aspect is the production of the exotic heavy hadrons
Xð3872Þ and Tþ

ccð3875Þ. Their tiny binding energies
relative to a charm-meson-pair threshold imply that they
are loosely bound charm-meson molecules. In previous
studies of the production of charm-meson molecules, it has
been assumed that they are produced before kinetic freeze-
out [16,35–40]. It is possible that t-channel singularities
could have a significant effect on their production after
kinetic freeze-out.
The problem of t-channel singularities is an unavoidable

aspect of reactions involving unstable particles. Unstable
particles are ubiquitous in hadronic physics. In the Standard
Model of particle physics, the weak bosons and the Higgs
are unstable particles. Most models of physics beyond the
Standard Model have unstable particles. We have identified
a simple aspect of charm-meson physics in which the
effects of t-channel singularities are significant. This
provides encouragement to look for other effects of

t-channel singularities in hadronic, nuclear, and particle
physics.
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APPENDIX A: FEYNMAN RULES FOR HHχEFT

In χEFT, the propagator for a pion with momentum p
and isospin indices i, j is

iδij

p2 −m2
π þ iϵ

: ðA1Þ

At LO in χEFT, the only interaction parameter for pions is
the pion decay constant fπ . The four-pion vertex is

πiðpÞπjðqÞ → πmðp0Þπnðq0Þ∶ 2i
f2π

�
sδijδmn þ tδimδjn þ uδinδjm −

3m2
π þQ2

3
ðδijδmn þ δimδjn þ δinδjmÞ

�
; ðA2Þ

where the Mandelstam variables are s ¼ ðpþ qÞ2,
t ¼ ðp − p0Þ2, and u ¼ ðp − q0Þ2 and Q2 ¼ p2 þ q2 þ
p02 þ q02 − 4m2

π .
The interactions of charm mesons with pions can be

described using heavy-hadron chiral effective field theory
(HHχEFT). In HHχEFT, the 4-momentum of a charm
meson is expressed as the sum of Mv, with v a velocity
4-vector that satisfies v2 ¼ 1, and a residual 4-momentum
p. The propagator for a pseudoscalar charm meson D with
momentum Mvþ p and isospin indices a, b is

iδab
2ðv · pþ iϵÞ : ðA3Þ

In amplitudes that are sensitive to isospin splittings, v · p
in the propagator for Da should be replaced by
v · p − ðMa −MÞ. If Da can be on its mass shell, the term
þiϵ in the denominator should be replaced by þiΓa=2,

where Γa is the width of Da. The propagator for a vector
charm meson D� with momentum Mvþ p and isospin
indices a, b is

iδabð−gμν þ vμvνÞ
2ðv · p − Δþ iϵÞ ; ðA4Þ

where Δ ¼ M� −M is the mass difference between the
vector and pseudoscalar meson. The mass shell for Dð�Þ is
v · p ¼ Δ. In amplitudes that are sensitive to isospin
splittings, v · p − Δ in the propagator for D�a should be
replaced by v · p − ðM�a −MÞ. If D�a can be on its mass
shell, the term þiϵ in the denominator should be replaced
by þiΓ�a=2, where Γ�a is the width of D�a.
The interactions between charm meson and pions in

HHχEFT at LO are determined by the pion decay constant
fπ and a dimensionless coupling constant gπ . The vertices
for Dð�Þπ → Dð�Þπ are
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DaπiðqÞ→Dbπjðq0Þ∶ þ i
2f2π

v ·ðqþq0Þ½σi;σj�ab; ðA5aÞ

D�a
μ πiðqÞ → D�b

ν πjðq0Þ∶ −
i

2f2π
gμνv · ðqþ q0Þ½σi; σj�ab:

ðA5bÞ

The vertices for Dð�Þ → Dð�ÞπðqÞ are

D�a
μ → DbπiðqÞ∶ þi

ffiffiffi
2

p
gπ

fπ
σiabq

μ; ðA6aÞ

Da → D�b
μ πiðqÞ∶ −i

ffiffiffi
2

p
gπ

fπ
σiabq

μ; ðA6bÞ

D�a
μ → D�b

ν πiðqÞ∶ þi

ffiffiffi
2

p
gπ

fπ
σiabϵ

μναβvαqβ: ðA6cÞ

The vertices for Dð�ÞπðqÞ → Dð�Þ are obtained by replacing
q by −q. Our convention for the Levi-Civita tensor in
Eq. (A6c) is ϵ0123 ¼ þ1.

APPENDIX B: INTEGRALS OVER THE
MOMENTUM OF A THERMAL PION

In this appendix, we evaluate the integrals over the pion
momentum that appear in the on shell charm-meson self-
energies in HHχEFT at LO.

1. iϵ prescriptions

The on shell self-energies for the charm mesons Da and
D�a are given in Eqs. (41) and (50). The thermal average
that appears in these self-energies is

F cd ¼



q2

ωcdqðq2 − q2cd þ iϵÞ
�
; ðB1Þ

where ωcdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πcd þ q2
q

, q2cd ¼ Δ2
cd −m2

πcd, Δcd is the

D�c −Dd mass splitting, and mπcd is the mass of the pion
produced by the transition D�c → Ddπi. The angular
brackets represent the average over the Bose-Einstein
momentum distribution of the pion, which is defined in
Eq. (21) as the ratio of momentum integrals.
The numerator of the thermal average F cd in Eq. (B1)

can be expressed as an integral over a single momentum
variable of the form

F ðσÞ ¼ lim
ϵ→0þ

Z
∞

0

dq
Fðq2Þ

q2 − σ þ iϵ
; ðB2Þ

where Fðq2Þ is a smooth, real-valued function that
decreases as q4 as q → 0 and decreases exponentially to
0 as q → ∞. The real parameter σ, which can be positive or
negative, is small compared to the scale of q2 set by Fðq2Þ.
We would like to expand F ðσÞ in powers of σ.
The function F ðσÞ can be expressed as the sum of a

principal-value integral and the integral of a delta function,

F ðσÞ ¼
Z

∞

0

dqFðq2Þ
�
P

1

q2 − σ
− iπδðq2 − σÞ

�

¼
Z

∞

0

dq
Fðq2Þ − FðσÞ

q2 − σ
− i

π

2
ffiffiffi
σ

p FðσÞθðσÞ: ðB3Þ

We have used an identity to express the principal-value
integral in terms of an ordinary integral. The Taylor
expansion of the real part of F ðσÞ can be obtained by
expanding the integrand in the second line of Eq. (B3) as a
Taylor expansion in σ,

Re½F ðσÞ� ¼
Z

∞

0

dq
Fðq2Þ − Fð0Þ

q2
þ σ

Z
∞

0

dq
Fðq2Þ − Fð0Þ − F0ð0Þq2

q4

þ σ2
Z

∞

0

dq
Fðq2Þ − Fð0Þ − F0ð0Þq2 − 1

2
F00ð0Þq4

q6
þ…: ðB4Þ

The first term Fðq2Þ=ðq2Þn in each integrand can be
obtained simply by expanding the left side of Eq. (B3)
in powers of σ. The remaining terms in the integrand
subtract the divergent terms in the Laurent expansion of
Fðq2Þ=ðq2Þn in q2.

2. Integral over momentum

The thermal average F cd is defined in Eq. (B1). If
Δcd > mπcd, its real part can be expressed in terms of a

principal-value integral that can be reduced to the form in
the first term of the second line of Eq. (B3),

Re½F cd� ¼
1

2π2nπ

Z
∞

0

dq

�
q4

ωcdq
fπðωcdqÞ −

q4cd
Δcd

fπðΔcdÞ
�

×
1

q2 − q2cd
; ðB5Þ
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where ωcdq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πcd þ q2
q

and q2cd ¼ Δ2
cd −m2

πcd. The

denominator has a zero at qcd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

cd −m2
πcd

q
. The sub-

traction of the numerator makes the integral convergent. If
Δcd < mπcd, the subtraction at ωcdq ¼ Δcd is not necessary
because the integral is convergent.
The imaginary part of F cd is nonzero only if

Δcd > mπcd. It can be evaluated analytically using a delta
function as in Eq. (B3),

Im½F cd� ¼ −
1

4πnπ

�
fπðΔcdÞ
Δcd

q3cd

�
θðΔcd −mπcdÞ: ðB6Þ

3. Expansion in isospin splittings

The thermal average over the Bose-Einstein distribution
for a pion is defined in Eq. (21). The thermal average F cd

defined in Eq. (B1) depends on Δ2
cd −m2

πcd, which is linear
in isospin splittings. The thermal average can be expanded
in powers of Δ2

cd −m2
πcd using the results presented in

Sec. B 1. The real part can be expanded in integer powers of
isospin splittings divided by mπ. The leading term in the
expansion of the real part of F cd is

Re½F cd� ≈



1

ωq

�
: ðB7Þ

The imaginary part ofF cd is nonzero only ifΔcd > mπcd. It
can be expanded in half-integer powers of isospin splittings
divided by mπ. The leading term in the expansion of the
imaginary part is

Im½F cd� ≈
fπðmπÞ
4πnπ

�
−

1

mπ
q3cd

�
θðΔcd −mπcdÞ: ðB8Þ
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