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We derive equations of motion for dissipative spin hydrodynamics from kinetic theory up to first order in
a gradient expansion. Choosing a specific form of the matching conditions, relating the change in the spin
potential to the spin diffusion and spin energy, we then show that the equations of motion, linearized around
homogeneous global equilibrium, are causal and stable in any Lorentz frame, if certain sufficient conditions
on the transport coefficients are fulfilled.
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I. INTRODUCTION

Relativistic spin hydrodynamics [1–34] is a recently
developed theory, mainly motivated by the observation of
polarization phenomena in heavy-ion collisions [35–42]. In
the framework of spin hydrodynamics, the spin tensor is
treated as an independent dynamical variable, with its
equations of motion following from the conservation of
total angular momentum [1,2]. If the system is in local
equilibrium, the spin tensor may be uniquely1 expressed as
a function of the so-called spin potential, which serves as
the thermodynamic potential for the conservation of total
angular momentum. The six equations of motion obtained
from the macroscopic conservation law for the angular-
momentum tensor then provide a closed system of equa-
tions of motion, determining the spin potential, and hence
the spin tensor. On the other hand, as soon as dissipative
effects are included in the theory, all components of the spin
tensor are independent, and one requires additional equa-
tions in order to determine the unknown components.
There are two common strategies to deal with such an

issue in a conventional hydrodynamic theory. In so-called
first-order hydrodynamics, one expresses all dissipative
components of the conserved currents, i.e., of the charge
current and the energy-momentum tensor, by spacetime
derivatives of the thermodynamic potentials, given by the
inverse temperature β, the chemical potential over temper-
ature α, and the fluid velocity uμ, up to first order in a
gradient expansion. Then, one obtains closed equations of
motion for the five independent quantities α, β, and uμ,
which constitute the only dynamical variables of the theory.
A well-known example for such a theory is Navier-Stokes

hydrodynamics [44]. Unfortunately, relativistic Navier-
Stokes equations of motion feature unphysical properties,
such as instability of global equilibrium and violation of
causality [45]. Recently, it has been found that such
unphysical behavior is not a general feature of first-order
theories, but instead is related to the choice of matching
conditions, which define the thermodynamic potentials in a
nonequilibrium situation. In Bemfica-Disconzi-Noronha-
Kovtun (BDNK) hydrodynamics, causality and stability
can be guaranteed, given that certain conditions on the
matching coefficients are fulfilled [46–50]. The discovery
of this new class of hydrodynamic theories led to a series of
recent investigations [51–58].
The other type of causal and stable hydrodynamic

theories is known as second-order hydrodynamics.2 In this
approach, all 14 components of the conserved currents are
treated dynamically and follow their own equations of
motion [59,60]. Second-order relativistic hydrodynamics is
established as an effective theory to describe the dynamics
in heavy-ion collision [61,62]; in particular, the equations
of motion for the 14 dynamical moments can describe the
evolution of the system already in a regime far from local
equilibrium due to the approximately boost-invariant
expansion in heavy-ion collisions [63,64]. On the other
hand, for systems sufficiently close to local equilibrium,
BDNK hydrodynamics is expected to yield a good descrip-
tion of the dynamics, while being simpler than second-
order hydrodynamics. Another advantage of BDNK hydro-
dynamics is that causality and stability of the equations of
motion can be easier controlled by adjusting the matching
conditions. Therefore, when deriving equations of motion
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1The form of the spin tensor depends on the choice of

pseudogauge [43]. Once a pseudogauge is chosen, the micro-
scopic definition of the spin tensor in this pseudogauge is a well-
defined function of the spin potential in local equilibrium.

2We follow the literature by using the terms “first-order” and
“second-order” hydrodynamics, although second-order hydro-
dynamics is not obtained by adding second-order terms to first-
order hydrodynamics. The crucial difference is the number of
dynamical variables, which are five for first-order but 14 for
second-order hydrodynamics.
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for spin hydrodynamics, it is desirable to include spin
degrees of freedom in both formulations, and decide in a
specific application whether first- or second-order spin
hydrodynamics is more suitable to describe the respective
situation.
First-order spin hydrodynamics with Navier-Stokes–type

matching conditions has been obtained in Refs. [7,22].
Recently, it has been shown that this theory suffers from
instability and acausality [65–68], similar to conventional
Navier-Stokes theory. Furthermore, second-order spin
hydrodynamics has been derived from spin kinetic theory
[69–72] (see also Refs. [73–78] for related work) in
Refs. [27,33] and from an entropy-current analysis in
Ref. [34]. The equations of motion in these theories are
expected to be causal and stable for a certain range of
transport coefficients, which is still to be investigated (see
Refs. [65,68] for first studies in this direction). On the other
hand, up to now a causal and stable formulation of
relativistic first-order spin hydrodynamics does not exist.
The goal of this paper is to fill this gap and provide BDNK-
type equations of motion for spin hydrodynamics together
with conditions on the transport coefficients, which, if
fulfilled, guarantee causality and stability of the theory, at
least in the linear regime around global equilibrium.
In this paper, we derive equations of motion for first-

order spin hydrodynamics from kinetic theory, using the
methods established in Refs. [27,33]. Assuming the colli-
sion term to be local, we obtain the equations of motion for
the spin potential from the conservation of the spin tensor.
Nonequilibrium contributions to the latter, which appear in
the conservation equation, are expressed in terms of
gradients of the thermodynamic potentials by making
use of the Boltzmann equation up to first order. There
are six dissipative components of the spin tensor for which
this strategy does not apply, since the projections of the
Boltzmann equation onto the relevant subspace in momen-
tum space are redundant with the already used conservation
law for the spin tensor. For this reason, one requires
matching conditions. We choose a matching that relates
the respective components of the spin tensor, corresponding
to spin energy and spin diffusion, to timelike derivatives of
the spin potential. While this is not the most general form of
matching, it is sufficient to render the equations of motion
for the spin potential causal and stable. To demonstrate this,
we linearize the resulting equations of motion around
homogeneous, i.e., nonrotating and unpolarized, global
equilibrium. Expanding the perturbations of the spin
potential in linear modes, we obtain dispersion relations
for the solutions. We then derive conditions on the transport
coefficients, which, if fulfilled, guarantee the causality
and stability of the theory in the linear regime in any
Lorentz frame.
This paper is organized as follows. In Sec. II, we derive

first-order equations of motion for the spin potential, and
linearize them around equilibrium. In Sec. III, we perform

the linear mode expansion, which splits up into longitudinal
and transverse spin modes. The stability and causality
conditions obtained from the dispersion relations of the
longitudinal spin modes are discussed in Sec. IV, while the
same is done for the transverse spin modes in Sec. V.
Finally, a summary of the stability and causality conditions
and conclusions are provided in Sec. VI.
We use the following notation and conventions:

a ·b¼aμbμ, a½μbν� ≡ aμbν − aνbμ, aðμbνÞ ≡ aμbν þ aνbμ,
gμν ¼ diagðþ;−;−;−Þ, ϵ0123 ¼ −ϵ0123 ¼ ϵ123 ¼ 1, and
repeated indices are summed over. The dual of any
rank-2 tensor Aμν is defined as Ãμν ≡ ϵμναβAαβ. We do
not distinguish between upper and lower spatial indices of
three vectors.

II. FIRST-ORDER SPIN HYDRODYNAMICS
FROM KINETIC THEORY

Our starting point to derive equations of motion for
dissipative spin hydrodynamics is the Boltzmann
equation [70]

p · ∂fðx; p; sÞ ¼ C½f�; ð1Þ

where fðx; p; sÞ is the distribution function in extended
phase space and C½f� is the collision term. The conserved
quantities in spin hydrodynamics, which we aim to
calculate from the equations of motion to be derived in
the following, are the charge current Nμ, the Hilgevoord-
Wouthuysen (HW) energy-momentum tensor Tμν, and the
HW spin tensor Sλ;μν, given by [14]

Nμ ¼ hpμi;
Tμν ¼ hpμpνi;

Sλ;μν ¼ 1

2
hpλΣμν

s i − ℏ
4m2

∂
½νhpμ�pλi: ð2Þ

Here we introduced h� � �i≡ R
dΓð� � �Þfðx; p; sÞ, with dΓ≡

dPdSðpÞ denoting integration over the extended phase
space, where the on-shell momentum measure is given by
dP≡ ðd3p=2p0Þ and the spin measure reads

dSðpÞ≡ mffiffiffi
3

p
π
d4sδðs · sþ 3Þδðp · sÞ: ð3Þ

We also defined the dipole-moment tensor

Σμν
s ≡ −

1

m
ϵμναβpαsβ: ð4Þ

In general, the HW energy-momentum tensor may have a
nonzero antisymmetric part, originating from a nonlocal
collision term, and leading to a nonconserved spin tensor
[70]. However, in this work we will consider a local
collision term, such that the spin tensor is conserved,
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∂λSλ;μν ¼ 0: ð5Þ

Also note that the second term in the last equation in (2) is
conserved separately due to the conservation of the energy-
momentum tensor,

∂λTμλ ¼ 0: ð6Þ

Therefore, the conserved current related to the conservation
of total angular momentum is in our case given by the first
term in the expression for the spin tensor,

Sλ;μνΣ ≡ 1

2
hpλΣμν

s i: ð7Þ

In the following, we will show how to obtain this quantity
within a gradient expansion around local equilibrium up to
first order. To this end, we expand the distribution function

fðx; p; sÞ in dissipative spin moments τhμi;μ1���μln [27],

fðx; p; sÞ ¼ feqðx; p; sÞ

− fð0Þeq ðx; pÞ
X∞
l¼0

X
n∈Sl

HðlÞ
pn

�
gμν −

phμi
Ep

uν

�

× sντhμi;μ1���μln phμ1 � � �pμli; ð8Þ

where Ep ≡ p · u, phμi ≡ Δμνpν, phμ1 � � �pμli are irreduc-
ible tensors in momentum space, Sl is the set of considered

spin moments, and the functions HðlÞ
pn are defined in

Eq. (A8). The local-equilibrium distribution function up
to first-order in ℏ is given by [70]

feqðx; p; sÞ ¼
1

ð2πℏÞ3 e
−β·pþα

�
1þ ℏ

4
ΩμνΣ

μν
s

�
; ð9Þ

and fð0Þeq ðx; pÞ denotes the local-equilibrium distribution
function at zeroth order in ℏ. Furthermore, βμ ≡ βuμ, uμ is
the fluid velocity, β is the inverse temperature, α is the
chemical potential over temperature, and the antisymmetric
tensor Ωμν is the spin potential.
In Refs. [27,33] we derived equations of motion for

second-order dissipative spin hydrodynamics from kinetic
theory using the method of moments. In that approach, the
24 spin moments constituting the components of the HW
spin tensor (2) are treated dynamically, following equations
of motion derived from the Boltzmann equation. On the
other hand, in this work, we will follow a different strategy
and express the spin moments as a function of the spin
potential up to first order in gradients. Therefore, only the
six independent components of the spin potential constitute
the dynamical variables of the theory, for which we will
derive equations of motion in the following. The spin tensor
can then be expressed in terms of the spin potential up to
first order in gradients. An infinite set of coupled equations

of motion for both the spin potential and the spin moments
has been obtained in Ref. [27] from the Boltzmann
equation (1) without further approximations and will be
used as the starting point for the derivation of first-order
spin hydrodynamics in this work. The only difference
concerning these equations lies in the matching conditions,
which are essential to obtain causal and stable first-order
hydrodynamics [46–50]. In second-order spin hydrody-
namics, it is convenient to choose a Landau-type matching
condition of the form

uλJλ;μν ¼ uλJ
λ;μν
eq ; ð10Þ

where

Jλ;μν ≡ xμTλν − xνTλμ þ ℏSλ;μν ð11Þ

is the total angular-momentum tensor. This has been done
in Refs. [27,33]. For a local collision term, as considered in
this work, and in combination with the standard Landau
matching condition3

uλTλμ ¼ uλT
λμ
eq ð12Þ

the condition (10) is equivalent to

uλS
λ;μν
Σ ¼ uλS

λ;μν
Σ;eq: ð13Þ

On the other hand, to obtain causal and stable first-order
hydrodynamics, it is essential to choose matching con-
ditions different from Eqs. (12) [46–50] and (13), as wewill
see in the following (see also recent discussions in
Refs. [65–68] for instability of spin hydrodynamics with
Landau-type matching). We will therefore relax conditions
(12) and (13) and add the respective terms to the equations
of motion obtained in Ref. [27].
It is convenient to define the following components of

the spin potential:

ωα
0 ≡ 1

2
ϵαβμνuβΩμν ð14Þ

and

κμ0 ≡ −Ωμνuν: ð15Þ

The equations of motion for ωα
0 and κμ0 are then derived by

inserting Eq. (8) into the conservation law for the spin
tensor (5) and performing the momentum integration with
the orthogonality relation (A10); cf. Ref. [27],

3The matching condition for the energy-momentum tensor is
also called the hydrodynamic frame; e.g., Eq. (12) corresponds to
the Landau frame.
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ℏ
m2

ω̇hαi
0 ¼ −

2

I30 − I31

��
ℏ

2m2
ð2θI30 − I40β̇0 þ I30α̇0Þ þ

ℏ
2m2

ðI41β̇0 − I31α̇0Þ −
1

6

ℏ
m2

I31θ

�
ωα
0

þ uλ∇α 1

3m
ðm2τλ0 − τλ2Þ − uλ

1

3m
ðm2τλ0 − τλ2Þu̇α þ

1

3m
θðm2τhαi0 − τhαi2 Þ

−
1

2

ℏ
m2

ϵhαiλμνκ0νð−I41uμ∇λβ0 þ I31uμ∇λα0 þ 3I31uμu̇λÞ −
1

2

ℏ
m2

ϵhαiλμνI31uμ∇λκ0ν

−
ℏ
m2

I31ðσαλ þ ωαλÞω0λ −
1

2m
Δα

β∇λτ
ρ;ðλ
1 ΔβÞ

ρ þ 1

2m
τhαi;ν1 u̇ν þ

1

m
uβΔα

ρ∇λτ
½β;ρ�λ
0

−
1

m
uβτ

β;αλ
0 u̇λ −

1

m
θðτhαi2 − uβτ

β;α
1 Þ − 1

m
uβΔα

λ

d
dτ

ðτ½λ2 uβ� − τ½β;λ�1 Þ
�

ð16Þ

and

ℏ
m2

κ̇hμi0 ¼ −
1

I31

�
ℏ

2m2
I30ϵμναβu̇αω0βuν þ

ℏ
2m2

ϵαμνβuν½−I31∇αω0β þ ðI41∇αβ0 − I31∇αα0Þω0β�

−
1

3m
ϵαμνβuν∇αðm2τ0β − τ2βÞ þ

1

3m
ϵαμνβuνu̇αðm2τ0β − τ2βÞ −

ℏ
2m2

I31ðσμν þ ωμνÞκ0ν

þ 1

2m
ϵμναβuατ1ðβ;λÞðσλν þ ωλ

νÞ þ
ℏ
m2

�
4

3
I31θ − I41β̇0 þ I31α̇0

�
κμ0

−
1

m
ϵμναβuνð∇λτ0β;αλ − u̇λτ0β;αλÞ −

1

m
θϵμναβuντ1β;α −

1

m
ϵμναβuν

d
dτ

ðuατ2β þ τ1β;αÞ
�
: ð17Þ

Here we defined ∇μ ≡ Δμ
ν∂

ν and Ȧ≡ u · ∂A≡ dA=dτ, as
well as the expansion scalar θ≡∇ · u, the shear tensor

σμν ≡∇hμuνi ≡ ½ð1=2ÞΔðμ
α ΔνÞ

β − ð1=3ÞΔμνΔαβ�∇αuβ, the

fluid vorticity ωμν ≡ ð1=2Þ∇½μuν�, and the thermodynamic
integrals Inq given in Eq. (A3). Note that Eqs. (16) and (17)
differ from the corresponding equations in Refs. [27,33] by
the last two terms in each equation, which vanish in
Refs. [27,33] due to the matching condition (10).
To obtain a closed system of equations for ωμ

0 and κ
μ
0, we

replace the independent spin moments in Eqs. (16) and (17)
with the first-order approximations of the equations of
motion derived in Refs. [27,33] and for convenience again
shown in Appendix A of this work. We also note that spin
moments which are parallel to uμ in the first index can be
expressed through orthogonal ones (see Ref. [27] and
Appendix A for details). On the other hand, the new
components u½ατ2β� þ τ1½β;α� appearing in Eqs. (16) and
(17), which would be zero for Landau matching (13),
cannot be determined from the equations of motion for the
corresponding spin moments, since the latter are redundant
with the conservation of the spin tensor (5). Instead, they
have to be determined through matching conditions. The
matching conditions serve to define the spin potential and
in general can have a form analogous to the matching
conditions for the energy-momentum tensor in Ref. [46],

uλðSλ;μνΣ − Sλ;μνΣ;eqÞ ¼ Dμν; ð18Þ

whereDμν is a function of β, α, uμ,Ωμν, and their first-order
derivatives. In principle, the most general form of Dμν may
be written as a sum of all possible tensor structures at our
disposal. However, due to the dependence on the spin
potential, which is absent in spinless hydrodynamics, in our
case taking into account all possible tensor structures would
result in long expressions, containing a large number of
arbitrary matching coefficients. To keep the discussion as
simple as possible, we note that causality and stability of
the equations of motion for the spin potential require the
presence of second-order time derivatives. Hence, we
choose matching conditions such that the spin moments
appearing in Eq. (18) are proportional to first-order time
derivatives of the spin potential. Inserting Eqs. (7) and (8)
into Eq. (18), performing the integrals with the help of the
orthogonality relation (A10), and contracting the result
with ϵαβμνuβ or ϵαβμνΔα

λΔ
β
ρ, respectively, we then find that

the following matching conditions are convenient:

τ½hμi;ν�1 ¼ ℏ
m
ðζϵμναβuακ̇0β þ ξΔ½μ

λ ∇ν�ωλ
0Þ;

τhμi2 − uντ
ν;μ
1 ¼ ℏ

m
{ω̇hμi

0 ; ð19Þ

where the matching coefficients ζ, ξ, and { are functions of
β and α. The last term in the first line will serve to simplify
the equation of motion for κμ0 with an appropriate choice
of ξ. Since we choose a special form of the matching
conditions, the requirements on the transport coefficients
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derived in the remainder of this paper correspond to
sufficient, but not necessary, conditions for linear stability
and causality. Physically, the matching conditions (19)
relate the change in the spin potential to the dissipative
parts of the spin-diffusion tensor

Hνμ ≡ −
1

2m
hEpphνisμi ð20Þ

and the spin-energy tensor

Nνμ ≡ −
1

2m
uνhE2

psμi; ð21Þ

which are proportional to

τμ;ν1 ≡ hEpphνisμi − hEpphνisμieq ð22Þ

and

τμ2 ≡ hE2
psμi − hE2

psμieq; ð23Þ

respectively.
Inserting Eqs. (19) together with the first-order expres-

sions shown in Appendix A, Eqs. (A13), (A15), and (A16),
for all appearing spin moments into Eqs. (16) and (17), one
obtains a closed system of equations of motion for the spin
potential. In practice, these equations of motion should be
solved in order to determine the spin potential. Then, one
obtains an approximate expression for the distribution
function by inserting the result for the spin potential into
Eqs. (A13), which are in turn inserted into Eq. (8). From the
distribution function one can then calculate all quantities of
interest, e.g., the spin tensor or the polarization.
Because of the length of the equations of motion for the

spin potential, we refrain from writing them out here.
Instead, we consider a simplified situation, given by small
perturbations of a homogeneous, i.e., nonrotating and
unpolarized, global equilibrium state,

uμ ¼ uμ0 þ δuμ; β ¼ β0 þ δβ; α ¼ α0 þ δα;

κμ0 ¼ δκμ0; ωμ
0 ¼ δωμ

0: ð24Þ

In the following, all projectors are meant with respect to the
unperturbed fluid velocity uμ0. Keeping only terms linear in
perturbations in Eqs. (16) and (17), we obtain

ω̇hαi
0 þ c0ω̈

hαi
0 ¼ −c1∇α∇ · ω0 − c2∇ ·∇ωα

0

þ c3ϵαλμνuμ∇λκ0ν ð25Þ

and

κ̇hμi0 þ d0κ̈
hμi
0 ¼ −d1∇μ∇ · κ0 − d2∇ ·∇κμ0

þ d3ϵμανβuν∇αω0β; ð26Þ

where the calculation and the coefficients in the 14þ 24-
moment approximation are shown in Appendix B. We see
that in the linear regime the equations ofmotion forωμ

0 and κ
μ
0

couple to those for the spin-independent quantities only
through the transport coefficients, which are functions of β
andα.On the other hand, the equations ofmotion forβ,α, and
uμ do not depend on the spin potential at all [27].4 Therefore,
it is possible to first solve the equations of motion for
conventional BDNK hydrodynamics, and then study spin
effects by solving the equations of motion for the spin
potential on top. Since stability andcausality of the first-order
equations of motion for the spin-independent quantities have
already been studied in several works [46–50], we will only
discuss the equations of motion (25) and (26) for the spin
potential in the following. Note that the decoupling of the
equations of motion implies that for the energy-momentum
tensor any matching conditions compatible with BDNK
hydrodynamics may be chosen. The discussion of the
causality and stability of the spin modes in the remainder
of this paper is independent of this choice.
We close this section with a remark on the pseu-

dogauge choice. The HW pseudogauge is particularly
convenient for the derivation of first-order spin hydro-
dynamics, since it directly relates the conservation laws for
the energy-momentum tensor and the spin tensor, Eqs. (6)
and (5), to the microscopic collisional invariants, given
by the four-momentum and the dipole-moment tensor,
respectively [70],

∂λTμλ ¼
Z

dΓpμC½f� ¼ 0;

∂λSλ;μν ¼
Z

dΓΣμν
s C½f� ¼ 0: ð27Þ

The presence of these collisional invariants causes zero
modes of the collision term, and their equations of motion
have to be excluded from the collisionmatrixwhen inverting
it, as outlined in Appendix A. Imposing a matching con-
dition on the HW spin tensor [see Eq. (18)] directly
determines the spin moments corresponding to collisional
invariants. On the other hand, it would in principle also be
possible to choose amatching condition on the total angular-
momentum tensor in a different pseudogauge, which is
always conserved. Because of the arbitrariness of the
matching conditions, one could adjust them in a way that
Eqs. (19) are recovered. In contrast to second-order spin
hydrodynamics, where the choice of dynamical spin
moments depends on the pseudogauge [33], first-order

4In principle, one could introduce a dependence on the spin
potential through the matching conditions. However, since this
would significantly complicate the calculation without being
particularly useful or physically reasonable, we exclude such a
matching in this work.
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spin hydrodynamics can therefore be derived independently
of the pseudogauge.

III. LINEAR MODE EXPANSION

We will now study the stability of small perturbations of
the homogeneous global-equilibrium state; see, e.g.,
Refs. [48,79,80]. Consider the local rest frame of the
unperturbed fluid, uμ0 ¼ ð1; 0Þ and perturbations of the
spin potential expanded in linear waves in the fluid rest
frame,

δωμ
0 ¼ eiΩt−ik·xð0;ω1Þ; δκμ0 ¼ eiΩt−ik·xð0; κ1Þ: ð28Þ

We can divide any three-vector into components parallel and
orthogonal to k,

a ¼ akk̂þ a⊥; ð29Þ

where we defined k̂≡ k=k with k≡ jkj. The longitudinal
spin modes are obtained by projecting Eqs. (25) and (26)
parallel to k. Defining the vector Xk ≡ ðω1k; κ1kÞ we find

AkXk ¼ 0 ð30Þ

with

Ak ≡
�
−iΩ − ðc1 þ c2Þk2 þ c0Ω2 0

0 −iΩ − ðd1 þ d2Þk2 þ d0Ω2

�
: ð31Þ

The dispersion relations corresponding to nontrivial sol-
utions ΩðkÞ are obtained from

detAk ¼ 0; ð32Þ

or equivalently,

ð−iΩ− ðc1þ c2Þk2þ c0Ω2Þð−iΩ− ðd1þd2Þk2þd0Ω2Þ¼0:

ð33Þ

On the other hand, for the transverse spin modes, we
project Eqs. (25) and (26) orthogonal to k. With the
definition

X⊥ ≡ ðω1⊥; κ1⊥Þ ð34Þ

we obtain

A⊥X⊥ ¼ 0; ð35Þ

where we introduced the 6 × 6 matrix

A⊥≡
�
−iΩþ c0Ω2− c2k2 −ic3Bk

−id3Bk −iΩþd0Ω2−d2k2

�
; ð36Þ

with

Bik
k ≡ ϵijkkj: ð37Þ

To obtain the dispersion relations, it is more convenient to
calculate the solution directly than the determinant. We
have

−
k2d3c3

−iΩþ c0Ω2 − c2k2
− iΩþ d0Ω2 − d2k2 ¼ 0; ð38Þ

and therefore

c0d0Ω4 − iðc0 þ d0ÞΩ3 − ð1þ cð0d2Þk2ÞΩ2

þ ðid2k2 þ ic2k2ÞΩþ c2d2k4 − c3d3k2 ¼ 0: ð39Þ

From the dispersion relations obtained as solutions of
Eqs. (33) and (39), we will derive conditions for the
causality and stability of the theory in the rest frame.
We apply the following criteria [48,79,80]:

ImΩðkÞ ≥ 0 ðstabilityÞ;

lim
k→∞

				Re ∂ΩðkÞ
∂k

				 < 1 ðcausalityÞ: ð40Þ

The stability condition guarantees that the spin modes are
damped, and in contrast a negative imaginary part of Ω
would lead to exponentially growing modes. Furthermore,
the causality condition ensures that the group velocity of
the spin modes is smaller than the speed of light. In general,
if Eqs. (40) are fulfilled in the rest frame, this does not
imply causality and stability in an arbitrary frame. How-
ever, as we will see in the next sections, in our case we will
be able to prove stability and causality in any frame only
from the analysis in the rest frame. For the sake of
completeness, the analogs of Eqs. (33) and (39) in a
boosted frame and some special solutions for the longi-
tudinal spin modes are shown in Appendix C.

IV. STABILITY AND CAUSALITY CONDITIONS
FOR THE LONGITUDINAL SPIN MODES

A. Stability

Consider the longitudinal spin modes in the rest frame
with the dispersion relations determined by Eq. (33). We
see immediately that if c0 ¼ 0 or d0 ¼ 0, at least one of the
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dispersion relations has the same form as in Navier-Stokes
theory, with Ω ∼ ik2. These types of solutions are never
stable in a moving frame. Therefore, we exclude this case
and assume c0 ≠ 0, d0 ≠ 0 in the following. The solutions
for Eq. (33) then read

Ωk1 ¼
i
2

1

c0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

4c20
þ c1 þ c2

c0
k2

s
ð41Þ

and

Ωk2 ¼
i
2

1

d0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

4d20
þ d1 þ d2

d0
k2

s
: ð42Þ

Note that the dispersion relations depend on the matching
coefficients ζ and { through c0 and d0. Let us first discuss
the limit of a small wave number for Eq. (41). The two
solutions of Eq. (41) correspond to a hydrodynamic and a
nonhydrodynamic longitudinal spin mode, with the latter
having the frequency

Ωk1;nh →
i
c0

ðk → 0Þ: ð43Þ

For the nonhydrodynamic modes to be stable in the limit
k → 0, we thus require c0 > 0.
Considering Eq. (41) for an arbitrary wave number, we

find that for ðc1 þ c2Þ=c0 > 0 there exists a matching-
dependent critical wave number

kc ≡ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1 þ c2Þ

p ; ð44Þ

where for k > kc the modes propagate. For the longitudinal
spin modes to be stable, we need Im Ωk ≥ 0, i.e.,

c0 > 0 ðpropagatingÞ;
1

2c0
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4c20
−
c1 þ c2
c0

k2
s

> 0 ðnonpropagatingÞ: ð45Þ

Apparently the stability condition depends on the match-
ing. Inserting k > kc into the second inequality, we have

1

2c0



1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c0ðc1 þ c2Þk2

q �
>

1

2c0



1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c0ðc1 þ c2Þk2c

q �
¼ 1

2c0
> 0; ½ðc1 þ c2Þ=c0 > 0�: ð46Þ

Therefore, if c1 þ c2 ≥ 0, all longitudinal spin modes are
stable in the rest frame if andonly if c0 > 0. If c1 þ c2 < 0 and
c0 < 0, there are unstable propagating modes. If c1 þ c2 < 0
and c0 > 0, there are unstable nonpropagating modes.
An analogous discussion can be carried out for Eq. (42).

Hence, the stability conditions for the longitudinal spin
modes in the rest frame can be summarized as

c0 > 0; d0 > 0;

c1 þ c2 ≥ 0; d1 þ d2 ≥ 0: ð47Þ

B. Causality

Next, we discuss the requirements from the causality of
the longitudinal spin modes in the rest frame. The group
velocity vg ≡ Re∂Ω=∂k of the propagating modes corre-
sponding to the solutions (41) is determined as

vgk1 ¼
ðc1 þ c2Þk

c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

4c2
0

þ c1þc2
c0

k2
q : ð48Þ

For k → ∞ the group velocity becomes

vgk1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				 c1 þ c2

c0

				
s

; ðk → ∞Þ; ð49Þ

hence we need

jc0j > jc1 þ c2j ð50Þ

for causality. An analogous discussion of Eq. (42) yields
the condition

jd0j > jd1 þ d2j: ð51Þ

Equations (50) and (51) give a minimal required absolute
value of the matching coefficients ζ and {.
As mentioned before, in general, causality and stability

in the rest frame do not imply causality and stability in a
moving frame. However, here we have that Ω ∼ k for
k → ∞. In this case, the causality in the moving frame can
directly be proven from Eq. (49). Since the group velocity
is constant, the boosted group velocity can be obtained
from Eq. (49) by simply applying relativistic addition of
velocities, and hence it cannot become larger than 1 [48].
Furthermore, if the theory is causal in any frame and stable
in the rest frame, it is also stable in any frame [49]. Since
the calculations for the longitudinal spin modes in a
boosted frame are still compact, the causality conditions
in a moving frame are for illustration purposes shown to be
identical to those in the rest frame in Appendix C.
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V. STABILITY AND CAUSALITY CONDITIONS
FOR THE TRANSVERSE SPIN MODES

A. Stability

Let us now discuss the transverse spin modes with the
dispersion relations given by the solutions of Eq. (39). Again
we first consider the limit of a small wave number. The
nonhydrodynamic modes for k → 0 have the frequency

Ω⊥1;nh ¼
i
d0

; Ω⊥2;nh ¼
i
c0
; ðk → 0Þ: ð52Þ

These modes are nonpropagating and stable in this limit due
to the already known conditions (47). Furthermore, we have
for the hydrodynamic modes (Ω ∼ k for k → 0)

Ω⊥;h ¼ �i
ffiffiffiffiffiffiffiffiffi
c3d3

p
k; ðk → 0Þ: ð53Þ

We therefore obtain another stability condition,

c3d3 < 0: ð54Þ

The solution of Eq. (39) for an arbitrary wave number
can be straightforwardly obtained; however, we refrain
from writing it out due to the length of the expression.
Instead, to investigate stability, we rewrite Eq. (39) with
Ω⊥ ≡ −iΩ̄⊥ as

c0d0Ω̄4⊥ þ ðc0 þ d0ÞΩ̄3⊥ þ ð1þ cð0d2Þk2ÞΩ̄2⊥
þ ðd2 þ c2Þk2Ω̄⊥ þ c2d2k4 − c3d3k2 ¼ 0: ð55Þ

Since this is a fourth-order polynomial in Ω̄⊥ with real
coefficients, we may apply the Routh-Hurwitz criterion for
the stability condition ReΩ̄⊥ < 0 (see, e.g., Ref. [48]).
Assuming the conditions (47) to be fulfilled, all coefficients
are larger than zero for all k if in addition

c2d2 > 0; c3d3 < 0: ð56Þ

The Routh-Hurwitz criterion yields the additional require-
ment

c2d2k4− c3d3k2

c0d0
<
ðd2þ c2Þk2
c0þd0

�
1þ cð0d2Þk2

c0d0
−
ðd2þ c2Þk2
c0þd0

�
:

ð57Þ

The inequality has to hold for any k. Considering the terms
∼k4, the relation can be simplified to

ðc0d2 − c2d0Þ2k4 > 0; ð58Þ

which is always fulfilled, since the coefficients are real, and
does not result in an additional condition. On the other hand,
from the terms ∼k2, we obtain the last stability condition

−c3d3 <
c2 þ d2
c0 þ d0

: ð59Þ

Given that Eqs. (56) and (59) are fulfilled, the transverse
spin modes are stable in the rest frame.

B. Causality

The solutions of Eq. (39) for k → ∞ read

Ω2⊥1 ¼
d2
d0

k2; Ω2⊥2 ¼
c2
c0
k2; ðk → ∞Þ: ð60Þ

Hence, the group velocities are obtained as

vg⊥1 ¼ Re

ffiffiffiffiffi
d2
d0

s
; vg⊥2 ¼ Re

ffiffiffiffi
c2
c0

r
; ðk →∞Þ: ð61Þ

Since the terms under the square roots are positive, this
yields the causality conditions

jd2j < jd0j; jc2j < jc0j: ð62Þ
However, these requirements are already implied by the
previously found conditions (47), (50), (51), and (56). As
Ω ∼ k for k → ∞, the group velocity is again constant and
causality in the rest frame implies causality in any frame.
Together with the conditions for stability in the rest frame,
stability in any frame in guaranteed.

VI. CONCLUSIONS

In this paper, we derived linearly stable and causal
equations of motion for first-order spin hydrodynamics from
kinetic theory. The crucial step is to choose matching
conditions which relate the spin energy and spin diffusion
to time derivatives of the spin potential. This introduces
second-order time derivatives in the equations of motion for
the spin potential, rendering them causal and stable for a
certain class of transport coefficients, despite the presence of
second-order spatial derivatives, analogously to spinless
BDNK hydrodynamics. Linearizing the equations of motion
for the spin potential around homogeneous global equilib-
rium, we obtained the compact equations of motion (25) and
(26).We then derived conditions for causality and stability of
these equations in any Lorentz frame by analyzing the
dispersion relations for the linear modes corresponding to
small perturbations of the spin potential. These conditions on
the transport coefficients are summarized as follows:

c0 > c1 þ c2 ≥ 0; d0 > d1 þ d2 ≥ 0;

c2d2 > 0; c3d3 < 0; −c3d3 <
c2 þ d2
c0 þ d0

: ð63Þ

Note that with our choice of matching conditions only c0 and
d0 depend on the matching coefficients { and ζ. The other
transport coefficients are fixed functions of temperature and
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chemical potential, some of them also depending on the
microscopic interaction. Therefore, one has to checkwhether
the transport coefficients fulfill all requirements, potentially
depending on the model used for the collision term, before
applying the first-order spin hydrodynamics derived in
this work. Even if the stability and causality conditions
(63) are not fulfilled in a particular situation, this does not
imply that first-order spin hydrodynamics cannot be causal
and stable in that case. Instead, one may try to choose
more general matching conditions and adjust the additional
matching coefficients accordingly, at the expense of fac-
ing more complicated equations of motion. On the other
hand, if all conditions (63) are fulfilled for some choice of {
and ζ, the matching conditions employed in this work are
sufficient for linear stability and causality of first-order spin
hydrodynamics.
The theory of causal and stable first-order spin hydro-

dynamics derived in this paper has potential applications
for both relativistic heavy-ion collisions and astrophysics.
In particular, it may be used to dynamically calculate the
local Lambda polarization for heavy-ion collisions. If the
causality and stability conditions are fulfilled, one can
numerically solve the equations of motion, obtaining a
result for the spin potential, and hence for the spin tensor
and the polarization, valid up to first order in gradients.
It would be interesting to compare such a result both to
local-equilibrium calculations [81–84] and results from
second-order spin hydrodynamics derived in Refs. [27,33].
This may shed light on the importance of polarization
dynamics beyond local equilibrium in heavy-ion collisions.
Furthermore, one may extend the work done in this paper
by analyzing linear stability conditions around an inho-
mogeneous (polarized and/or rotating) equilibrium state,
and general causality conditions not restricted to the linear
regime [47]. As another possible extension, one may also
consider a nonlocal collision term, which is responsible for
the conversion between orbital angular momentum and
spin, and will therefore lead to a coupling between the
equations of motion for the spin potential and the other
thermodynamic potentials.
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APPENDIX A: FIRST-ORDER SPIN MOMENTS
FROM EQUATIONS OF MOTION

In this appendix, we shortly outline how to obtain the
expressions for the spin moments valid up to first order in a

gradient expansion, which we will insert into Eqs. (25) and
(26). The steps are analogous to those performed in
Ref. [27] and make use of the same assumptions, and
we refer to that work for a more detailed discussion.
Keeping only first-order terms in the equations of motion
for the spin moments obtained in Ref. [27], we find

−Chμi
r−1 ¼

ℏ
2m

ξð0Þr θωμ
0 −

ℏ
4m

Iðrþ1Þ1Δ
μ
λ∇νΩ̃λν

−
ℏ
4m

Ω̃hμiνIðrþ1Þ1Iν −
ℏ
4m

Iðrþ1Þ0ϵμναβuνΩ̇αβ;

−Chμi;hνi
r−1 ¼ ℏ

4m
Δμ

ρΔν
λΩ̃

ρλξð1Þr θ þ ℏ
4m

Δμ
ρΔν

λ
˙̃ΩρλIðrþ2Þ1

−
ℏ
2m

ωμ
0Iðrþ2Þ1Iν −

ℏ
2m

βIðrþ3Þ2Ω̃
hμi
λ σνλ

−
ℏ
4m

Iðrþ2Þ1Δ
μ
ρð∇νΩ̃ρλÞuλ;

−Chμi;hνλi
r−1 ¼ ℏ

2m
ξð2Þr Ω̃hμihνIλi þ ℏ

2m
Iðrþ3Þ2Δ

μ
ρΔνλ

αβ∇αΩ̃ρβ

−
ℏ
2m

Ω̃μρβuρσνλIðrþ4Þ2 ðA1Þ

with

ξð0Þr ≡ −Iðrþ1Þ0 − rIðrþ1Þ1

−
1

D20

½G2ðrþ1Þðϵ0 þ P0Þ −G3ðrþ1Þn0�;

ξð1Þr ≡G3ðrþ2Þ
D20

n0 −
G2ðrþ2Þ
D20

ðϵ0 þ P0Þ −
5

3
βIðrþ3Þ2;

ξð2Þr ≡ Iðrþ3Þ2 −
n0

ϵ0 þ P0

Iðrþ4Þ2; ðA2Þ

where n0 is the local-equilibrium particle density, ϵ0 is the
local-equilibrium energy density, and P0 is the thermody-
namic pressure. Furthermore, we defined Iμ ≡∇μα0, the
thermodynamic functions

Inqðα;βÞ≡ 1

ð2qþ1Þ!!
Z

dΓEn−2q
p ð−ΔαβpαpβÞqfeqðx;p;sÞ

ðA3Þ

and

Gnm ≡ In0Im0 − Iðn−1Þ0Iðmþ1Þ0;

Dnq ≡ Iðnþ1ÞqIðn−1Þq − I2nq; ðA4Þ

as well as the collision integrals

Cμ;hμ1���μni
r ≡

Z
dΓEr

pphμ1 � � �pμnisμC½f�: ðA5Þ

The latter can be expressed through spin moments as [27]

LINEARLY STABLE AND CAUSAL RELATIVISTIC FIRST- … PHYS. REV. D 108, 076011 (2023)

076011-9



Cμ
r−1 ¼ −

X
n∈S0

Bð0Þ
rn τ

μ
n;

Cμ;hνi
r−1 ¼ −

X
n∈S1

Bð1Þ
rn τ

μ;hνi
n ;

Cμ;hνλi
r−1 ¼ −

X
n∈S2

Bð2Þ
rn τ

μ;hνλi
n ; ðA6Þ

where

BðlÞ
rn ≡−16

1

2lþ1
Δν1���νl

μ1���μl

Z
dPdP0dP1dP2W0

×fð0Þeq ðx;pÞfð0Þeq ðx;p0ÞEr−1
p phμ1 � ��pμliHðmÞ

pn phν1 � � �pνmi;

ðA7Þ

with W0 being the transition rate (see Refs. [27,71] for

details). The coefficient function HðlÞ
pn is given by

HðlÞ
pn ¼ wðlÞ

l!

XNl

m¼n

aðlÞmnP
ðlÞ
pm; ðA8Þ

with

PðlÞ
pn ≡

Xn
r¼0

aðlÞnrEr
p ðA9Þ

being orthogonal polynomials in energy. The coefficients

aðlÞnr are determined such that

2

Z
dP

wðlÞ

ð2lþ 1Þ!! ðΔ
αβpαpβÞlfð0Þðx; pÞPðlÞ

pmP
ðlÞ
pn ¼ δmn;

ðA10Þ

and the normalization reads wðlÞ ¼ ð−1Þl=I2l;l. Note that
we neglect contributions from the nonlocal collision term in
this work. For spin moments with non-negative n and l ≠ 1,
we invert the matrix B to obtain

τμ;μ1���μln ¼ −
X
r∈Sl

TðlÞ
nrC

μ;hμ1���μli
r−1 ; ðA11Þ

where we defined the matrix

TðlÞ ≡ ðBðlÞÞ−1: ðA12Þ

For l ¼ 1, we symmetrize Eq. (A11) in the two Lorentz

indices, since the antisymmetric part of τhμi;μ11 , which is the
only spin moment of tensor rank two we need in Eqs. (25)
and (26), corresponds to a collisional invariant related to the
conservation of the spin tensor and is determined by the
matching conditions. We thus obtain

τhμin ¼ Kð0Þ
θω;nθω

μ
0 þKð0Þ

∇Ω;nΔ
μ
λ∇νΩ̃λν þKð0Þ

IΩ;nΩ̃
hμiνIν

þKð0Þ
Ω̇;nϵ

μναβuνΩ̇αβ;

τðhμi;hνiÞn ¼ −Kð1Þ
ωI;nω

ðμ
0 I

νÞ þKð1Þ
Ωσ;nΩ̃

ðhμi
λ σνÞλ

−Kð1Þ
∇Ω;nΔ

ðμ
ρ ð∇νÞΩ̃ρλÞuλ;

τhμi;hνλin ¼ Kð2Þ
ΩI;nΩ̃

hμihνIλi þKð2Þ
∇Ω;nΔ

μ
ρΔνλ

αβ∇αΩ̃ρβ

−Kð2Þ
ωσ;nΩ̃μρuρσνλ ðA13Þ

with

Kð0Þ
θω;n ≡ ℏ

2m

X
r∈Sl

TðlÞ
nrξ

ð0Þ
r ;

Kð0Þ
∇Ω;n ≡ −

ℏ
4m

X
r∈Sl

TðlÞ
nr Iðrþ1Þ1 ≡Kð0Þ

IΩ;n;

Kð0Þ
Ω̇;n ≡ −

ℏ
4m

X
r∈Sl

TðlÞ
nr Iðrþ1Þ0;

Kð1Þ
ωI;n ≡ ℏ

2m

X
r∈Sl

TðlÞ
nr Iðrþ2Þ1;

Kð1Þ
Ωσ;n ≡ −

ℏ
2m

β
X
r∈Sl

TðlÞ
nr Iðrþ3Þ2;

Kð1Þ
∇Ω;n ≡

ℏ
4m

X
r∈Sl

TðlÞ
nr Iðrþ2Þ1;

Kð2Þ
ΩI;n ≡ ℏ

2m

X
r∈Sl

TðlÞ
nrξ

ð2Þ
r ;

Kð2Þ
∇Ω;n ≡

ℏ
2m

X
r∈Sl

TðlÞ
nr Iðrþ3Þ2;

Kð2Þ
ωσ;n ≡ ℏ

2m
β
X
r∈Sl

TðlÞ
nr Iðrþ4Þ2: ðA14Þ

The minimal set of summation indices is given by the
14þ 24-moment truncation, S0 ¼ f0; 2g, S1 ¼ f1g,
S2 ¼ f0g, for which the transport coefficients (A14) for
the respective spin moments reduce to those given in
Ref. [27]. This set may be extended to improve the
approximation. Note that in any case r ¼ 2 has to be
excluded from S0 and r ¼ 1 from S1 for the antisymmetric

spin moments when inverting the collision term, since τhμi2

and τ½hμi;ν�1 are parts of the collisional invariants and are
fixed by the matching conditions. The components of the
spin moments parallel to uμ are expressed through the
orthogonal ones using [27]
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uμτ
μ
r ¼ −τμr−1;μ;

uμτ
μ;ν
r ¼ −τμ;νr−1μ −

1

3
ðm2τhνir−1 − τhνirþ1Þ;

uμτ
μ;νλ
r ¼ −τμ;νλr−1μ þ

2

15
ðm2τμr−1;μ − τμrþ1;μÞΔνλ

−
1

5
ðm2τðhνi;λÞr−1 − τðhνi;λÞrþ1 Þ: ðA15Þ

Finally, spin moments with negative r are obtained from the
relation [27]

τμ;μ1���μl−r ¼
X
n∈Sl

τμ;μ1���μln FðlÞ
−rn; ðA16Þ

with

FðlÞ
−rn ≡ 2l!

ð2lþ 1Þ!!
Z

dPE−r
p HðlÞ

pnðΔαβpαpβÞlfð0Þeq ðx; pÞ

ðA17Þ

(see also Ref. [60]).

APPENDIX B: TRANSPORT COEFFICIENTS
FOR LINEARIZED EQUATIONS OF MOTION

To derive Eqs. (25) and (26) from Eqs. (16) and (17), we
insert the following spin moments, obtained by linearizing
Eqs. (A13):

τhμi0 ¼ 2Kð0Þ
∇Ω;0ϵμναβuα∇νκ0β þ 2Kð0Þ

Ω̇;0ω̇
μ
0;

τðhμi;νÞ1 ¼ −2Kð1Þ
∇Ω;1∇ðνωμÞ

0 ;

τhμi;νλ0 ¼ 2Kð2Þ
∇Ω;0uτϵμτσhν∇λiκ0σ: ðB1Þ

We furthermore find from Eqs. (A15)

uλðm2τλ0 − τλ2Þ ¼ 2ðm2Fð1Þ
−11 − 1ÞKð1Þ

∇Ω;1∇ · ω0;

uμτ
μ;νλ
0 ¼ −

4

15
ðm2Fð1Þ

−11 − 1ÞΔνλKð1Þ
∇Ω;1∇ · ω0

þ 2

5
ðm2Fð1Þ

−11 − 1ÞKð1Þ
∇Ω;1∇ðνωλÞ

0 ; ðB2Þ

where we used the 14þ 24-moment approximation. With
the matching conditions (19) we obtain

τhμi2 þ τν;μ0ν þ 1

3
ðm2τhμi0 − τhμi2 Þ ¼ ℏ

m
{ω̇μ

0; ðB3Þ

which implies

τhμi2 ¼
�
3

2

ℏ
m
{ −m2Kð0Þ

Ω̇;0

�
ω̇μ
0

−
�
m2Kð0Þ

∇Ω;0 −
5

2
Kð2Þ

∇Ω;0
�
ϵμναβuα∇νκ0β: ðB4Þ

Using these results in Eqs. (16) and (17), we obtain at linear
order in perturbations

ℏ
m2

ω̇α
0 ¼−

2

I30− I31

�
2

3m
ðm2Fð1Þ

−11−1ÞKð1Þ
∇Ω;1∇α∇ ·ω0

−
1

2

ℏ
m2

ϵαλμνI31uμ∇λκ0νþ
1

m
Kð1Þ

∇Ω;1∇λ∇ðαωλÞ
0

þ 1

m

�
2

15
ðm2Fð1Þ

−11−1Þ∇αKð1Þ
∇Ω;1∇ ·ω0

þ2

5
ðm2Fð1Þ

−11−1ÞKð1Þ
∇Ω;1∇ ·∇ωα

0

�
−

ℏ
m2

{ω̈α
0

�
ðB5Þ

and

ℏ
m2

κ̇μ0 ¼ −
1

I31

�
−I31

ℏ
2m2

ϵαμνβuν∇αω0β

−
1

3m

�
3m2Kð0Þ

Ω̇;0 −
3

2

ℏ
m
{

�
ϵαμνβuν∇αω̇0β

−
1

3m

�
3m2Kð0Þ

∇Ω;0 −
5

2
Kð2Þ

∇Ω;0
�
∇α∇½μκα�0

−
1

m
Kð2Þ

∇Ω;0
�
−2∇ · ∇κμ0 þ 1

3
∇α∇½μκα�0

�
þ ℏ
m2

ζκ̈μ0

−
ℏ
m2

ξϵμναβuν∇αω̇0β

�
: ðB6Þ

Choosing

ξ ¼ −
m
3ℏ

�
3m2Kð0Þ

Ω̇;0 −
3

2

ℏ
m
{

�
; ðB7Þ

we arrive at the equations of motion (25) and (26) with the
coefficients given by

c0≡−
2

I30−I31
{; c1≡m

ℏ
2

5ðI30−I31Þ
Kð1Þ

∇Ω;1ð4m2Fð1Þ
−11þ1Þ;

c2≡m
ℏ

2

5ðI30−I31Þ
Kð1Þ

∇Ω;1ð2m2Fð1Þ
−11þ3Þ; c3≡ I31

I30−I31
ðB8Þ

and

d0 ≡ 1

I31
ζ; d1 ≡ m

ℏI31

�
−m2Kð0Þ

∇Ω;0 þ
1

2
Kð2Þ

∇Ω;0
�
;

d2 ≡m
ℏ

1

I31

�
3

2
Kð2Þ

∇Ω;0 þm2Kð0Þ
∇Ω;0

�
; d3 ≡ −

1

2
: ðB9Þ
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APPENDIX C: DISPERSION RELATIONS
IN A MOVING FRAME

We consider a general background velocity uμ0 ≡
ðγ; γV; 0; 0Þ with γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
, which can be obtained

from a Lorentz boost with velocity V of uμ0⋆ ≡ ð1; 0Þ,
assuming the boost to be in the x-direction without loss of
generality. Now denoting the wave vector in the fluid rest
frame by ðΩ⋆;k⋆Þ and the wave vector in the boosted
frame by ðΩ;kÞ, we obtain the new dispersion relations by
taking Ω → Ω⋆ and k → k⋆ in Eqs. (33) and (39), and then
using Ω⋆ ¼ γΩ − γVkx and k2⋆ ¼ γ2ðΩV − kxÞ2 − k2T with

kT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
. We find for the new dispersion relation

ΩðkÞ of the longitudinal spin modes in the boosted frame
from the first term in Eq. (33)

γ2½c0 − ðc1 þ c2ÞV2�Ω2

þ ½−iγ − 2c0γ2Vkx þ γ2ðc1 þ c2Þ2Vkx�Ωþ iγVkx

− ðc1 þ c2Þðγ2k2x − k2TÞ þ c0γ2V2k2x ¼ 0; ðC1Þ

and the same equation with c → d from the second term.
For the transverse spin modes we obtain from Eq. (39)

½c0d0 þ γ4V4c2d2 þ −cð0d2Þγ4V2�Ω4 þ ½−ic0 − id0 − 4γ4c0d0Vkx þ cð0d2Þ4γ4V3kx þ ðid2 þ ic2Þγ3V2

− 4c2d2γ4V3kx�Ω3 þ ½c0d0γ46V2k2x − 3ð−ic0 − id0Þγ3Vkx − 1 − cð0d2Þðγ4V4k2x þ 4γ4V2k2x þ γ4k2x − γ2k2TÞ
þ ðid2 þ ic2Þð−γ3V3kx − 2γ3VkxÞ þ d2c2ð6γ4V2k2x − 2γ2V2k2TÞ − c3d3γ2V2�Ω2 þ ½−4c0d0γ4V2k3x

− ðic0 þ id0Þ3γ3V2k2x þ 2γ2Vkx − cð0d2Þð−2γ4V3k3x − 2γ4k2xV þ 2γ2Vkxk2TÞ þ c2d2ð−4γ4Vk3x þ 4γ2Vkxk2TÞ
þ 2c3d3γ2Vkx�Ωþ c0d0γ4V4k4x − ð−ic0 − id0Þγ3V3k3x − γ2V2k2x − cð0d2Þðγ2k2x − k2TÞγ2V2k2x

− ðid2 þ ic2Þðγ2k2x − k2TÞγVkx þ c2d2ðγ4k4x − 2γ2k2xk2T þ k4TÞ − c3d3ðγ2k2x − k2TÞ ¼ 0: ðC2Þ

In the following, we will discuss only the longitudinal spin
modes for the sake of illustration of the arguments given in
the main text. Although the solution of Eq. (C2) for the
transverse spin modes can also be straightforwardly ob-
tained, it is not very enlightening due to its length.
As an example, consider Eq. (C1) for a small wave

number. The nonhydrodynamic modes for k → 0 are
given by

γ2½c0 − ðc1 þ c2ÞV2�Ω2 − iγΩ ¼ 0; ðC3Þ

with the result

Ωk1;nh ¼
i

γ½c0 − ðc1 þ c2ÞV2� ; ðk → 0Þ: ðC4Þ

We see that in this limit the nonhydrodynamic modes are
stable given that both the stability conditions (47) and the
causality conditions (50) in the rest frame are fulfilled.
We now show that the conditions (47) and (50) are

sufficient to ensure causality of the longitudinal modes in
the boosted frame for any wave number. Assume that
Eqs. (47) and (50) hold and consider the causality condition
for the dispersion relation for the longitudinal modes in a
general frame, given by Eq. (C1). Since Ω ∼ k in the limit
of large k, Eq. (C1) becomes for k → ∞

γ2½c0 − ðc1 þ c2ÞV2�Ω2 − 2γ2V½c0 − ðc1 þ c2Þ�kxΩ
− ðc1 þ c2Þðγ2k2x − k2TÞ þ c0γ2V2k2x ¼ 0; ðC5Þ

which has the solution

Ωk1 ¼
c0 − ðc1 þ c2Þ

c0 − ðc1 þ c2ÞV2
V cos θk

� 1

c0 − ðc1 þ c2ÞV2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2V2 þ 1þ V4Þc0ðc1 þ c2Þ cos2 θ −

1

γ2
½c0 − ðc1 þ c2ÞV2�ðc1 þ c2Þ sin2 θ

s
k; ðC6Þ

where we defined kx ≡ k cos θ and kT ≡ k sin θ. The term under the square root is maximal for θ ¼ 0; therefore we have

vg ≤
1

c0 − ðc1 þ c2ÞV2

n
½c0 − ðc1 þ c2Þ�V þ 1

γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1 þ c2Þ

p o
≤ 1

⇔ c0 þ ðc1 þ c2ÞV − ð1þ VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1 þ c2Þ

p
≥ 0 :
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For V ¼ 0 this reduces to the known condition (47). On the
other hand, for V ¼ 1 we obtain

c0þðc1þc2Þ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1þc2Þ

p
¼ð ffiffiffiffi

c0
p

−
ffiffiffiffiffiffiffiffiffiffiffiffi
c1þc2

p Þ2≥0: ðC8Þ

Since Eq. (C7) is a linear function of V, the inequality holds
for all 0 ≤ V ≤ 1. Hence, the longitudinal modes are causal
in any frame, explicitly demonstrating the statement made
in the main text.
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