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Finite volume effects are studied both with low-momentum cutoff and with momentum discretization
in the framework of an (axial) vector meson extended quark-meson model with Polyakov-loop variables.
In the momentum cutoff scenario, the critical endpoint (CEP) moves to lower temperatures and larger
quark chemical potentials as the characteristic system size is reduced, however, the treatment of the
vacuum term significantly affects its trajectory. The size dependence of the baryon fluctuations is also
studied by the kurtosis and the skewness, both of which show moderate dependence on temperature and
some dependence on quark chemical potential. The order of the phase transition is also studied near the
chiral limit at finite system size and found to be second order only at vanishing explicit breaking. The
implementation of the finite size effect with momentum discretization is more complicated and shows
peculiar behavior due to the different modes dropping below the Fermi surface and strong dependence on
the type of the boundary condition chosen. We found that both the different boundary conditions and the
treatment of the vacuum term cause significant changes in the trajectory of the CEP as the characteristic
system size is changed.
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I. INTRODUCTION

The phase diagram of the strong interaction and, in
particular, the existence and location of the critical endpoint
(CEP) has been the subject of intense study both in theory
and in experiment. However, heavy-ion collisions always
suffer from the effect of finite system size, in contrast to
field theoretical calculations in the thermodynamic limit. It
is expected that a sufficiently small volume can affect the
phase diagram and the CEP.
To study the effects of finite size in theoretical models, it

is common to consider the constraints in momentum space
imposed by the finite spatial extension. Such constraints
can be a discretization or a simple low-momentum cutoff

using the phenomenological observation that the lowest
modes are the most relevant for the phase transition. In the
former case, the momentum integrals are changed to a
summation over the modes determined by the boundary
conditions, most commonly periodic boundary condition
(PBC) and antiperiodic boundary condition (APBC). In the
present work, we will focus on these momentum space
constraints, but we note that there are other possible
implementations of the finite size effects, e.g., the use of
different distributions in the thermodynamics [1].
There have been several attempts in the literature to

study the finite volume effects with both discretization and
low-momentum cutoff schemes [2–29]. The treatment of
the vacuum term and its finite volume correction varies
among the different approaches employed in the analysis.
In linear sigma model (LSM) studies, the vacuum and
matter contributions are usually separated after performing
the Matsubara sum. However, in the previous works with
either discretization [2,3] or low-momentum cutoff [4,5],
the vacuum contribution is not present, and therefore its
size dependence is not studied.
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However, when the functional renormalization group
approach is applied to quark-meson models, there is a
renormalized fermionic vacuum integral, which is modified
by decreasing size to study the physical quantities at T ¼ 0
[6,7] or the phase transition at zero [8] and at finite quark
chemical potential (μq) [9–11].
The Nambu–Jona-Lasinio (NJL) model is nonrenorma-

lizable and therefore requires the specification of an UV
regularization scheme to define the model. When examin-
ing the finite size effects, an additional complexity arises on
the infrared side. To address this, the introduction of a low-
momentum cutoff can be employed [12–14] or via imple-
menting a discretization scheme [15,16,19].
The finite size effects are also studied with the Dyson-

Schwinger (DS) equations with a low-momentum cutoff
[25] and with discretization [26–29]. In the DS approach,
the modified integrals are more complicated compared to
the other discussed models. Because of the different
handling of the Matsubara summation, they have renor-
malized four-momentum integrals.
Combining the results of the different studies, one

could conclude that, in general, the CEP is likely to move
to lower T and higher μq with decreasing size. However,
not only the details of the criticality, e.g., the path and
existence of the CEP for very small sizes, but also the size
dependence of the phase boundary show different behav-
ior in the different works with different approximations.
By implementing several scenarios within a given model,
one can investigate whether these differences are due to
the approximations used, which will be the goal of the
present work.
First, we use a low-momentum cutoff to implement the

finite size effects and study the phase transition and
thermodynamics at different system sizes. This scenario
is also motivated by hadron resonance gas calculations
[30,31], where it was found that the volume correction can
be correctly reproduced by implementing a low-momentum
cutoff in the thermodynamic limit. We will also investigate
a less studied problem, the size dependence of baryon
fluctuations around the CEP as well, which has been briefly
studied in the DS approach [28]. To make a comparison
between the different implementations and boundary con-
ditions, we also consider the momentum discretization with
PBCs and APBCs, which is widely used, especially in the
case of the NJL model and the DS approach. Furthermore,
in contrast to other effective models, most previous studies
on the quark-meson model have neglected the vacuum
contribution to the fermion determinant and hence the size
dependence of this term. Therefore, we also study how the
treatment of the vacuum term—i.e., finite or infinite size—
affects the size dependence.
For this purpose, we use a vector and axial vector meson

extended Polyakov quark-meson model (ePQM) with 2þ 1

flavors [32], which is based on [33] with a fermion one-
loop contribution, including its—properly renormalized—
vacuum and matter part as well. This model gives a good
description of the meson phenomenology at T ¼ 0, μq ¼ 0,
and also of the chiral phase transition at finite temperatures,
in good agreement with lattice results, while predicting a
CEP and a first-order region for finite μq. The ePQMmodel
has been already used for many studies, including the
investigation of in-medium vector and axial vector masses
[34] and neutron star properties at T ¼ 0 as the high-density
part of a hybrid approach [35,36], as well as special limits of
the phase diagram such as Nc → ∞ [37].
The paper is organized as follows. In Sec. II, we briefly

introduce the ePQM model. Section III is dedicated to the
low-momentum cutoff scenario of the finite volume effects.
After its implementation in the ePQM model, the modifi-
cation of the phase diagram is discussed. In addition to the
importance of the treatment of the vacuum term, we study
the size dependence of thermodynamic quantities such as
the equation of state (EOS) at T ¼ 0 and the baryon
fluctuations in the vicinity of the CEP. Furthermore, we
show the size dependence of the transition and its order in
the chiral limit in Appendix A. In Sec. IV, we turn to the
discretization scenario. We discuss separately how the size
of the vacuum part affects the phase transition and show the
size dependence of the CEP with APBCs and PBCs.
Finally, we conclude in Sec. V.

II. THE EXTENDED POLYAKOV
QUARK-MESON MODEL

A vector and axial vector meson extended linear sigma
model was developed in [33] with SUð3ÞL × SUð3ÞR ×
Uð1ÞV × Uð1ÞA global symmetry. The model was further
extended with constituent quarks and Polyakov-loop var-
iables in [32] (ePQM model), where the main focus was on
the thermodynamics and the T − μB phase diagram. The
Lagrangian of the ePQM model is based on a scalar and a
pseudoscalar nonet as well as left- and right-handed vector
nonet fields,

M ¼ Sþ iP ¼
X
a

ðSa þ iPaÞTa;

Lμ ¼
X
a

ðVμ
a þ Aμ

aÞTa; Rμ ¼
X
a

ðVμ
a − Aμ

aÞTa; ð1Þ

where Ta ¼ λa=2 are the generators of the Uð3Þ group,

with λ0 ¼
ffiffi
2
3

q
13, and λiði ¼ 1;…; 8Þ are the Gell-

Mann matrices. Following [32], the Lagrangian can be
written as
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LePQM ¼ Tr½ðDμMÞ†ðDμMÞ� −m2
0Tr½M†M� − λ1ðTr½M†M�Þ2 − λ2Tr½ðM†MÞ2�

þ cðdetM þ detM†Þ þ Tr½HðM þM†Þ� − 1

4
Tr½LμνLμν þ RμνRμν�

þ Tr

��
m2

1

2
þ Δ

�
ðLμLμ þ RμRμÞ

�
þ h1

2
Tr½M†M�Tr½LμLμ þ RμRμ�

þ h2Tr½ðMRμÞ†ðMRμÞ þ ðLμMÞ†ðLμMÞ� þ 2h3Tr½RμMLμM†�
þ i

g2
2
ðTrfLμν½Lμ; Lν�g þ TrfRμν½Rμ; Rν�gÞ þ ψ̄ðiγμ∂μ − gFMÞψ ; ð2Þ

where ψ ¼ ðqu; qd; qsÞT are the constituent quarks, and the
quark mass matrix is defined as M ¼ Sþ iγ5P. The
covariant derivatives and the field strength tensors appear-
ing in (2) can be written with the help of the left- and right-
handed vector fields and the electromagnetic field Aμ

e as

Dμ ¼ ∂
μM − ig1ðLμM −MRμÞ − ieAμ

e½T3;M�;
Lμν ¼ ∂

μLν − ∂
νLμ − ieðAμ

e½T3; Lν� − Aν
e½T3; Lμ�Þ;

Rμν ¼ ∂
μRν − ∂

νRμ − ieðAμ
e½T3; Rν� − Aν

e½T3; Rμ�Þ: ð3Þ

The external fields corresponding to the scalar and vector
fields are defined as

H ¼ H0T0 þH8T8 ¼
1

2
diagðhN; hN;

ffiffiffi
2

p
hSÞ; ð4Þ

Δ ¼ Δ0T0 þ Δ8T8 ¼ diagðδN; δN; δSÞ: ð5Þ

Although in nature the isospin symmetry is broken, since
its effect is small here we consider the isospin symmetric
case (i.e., mu ¼ md). As a usual procedure, we assume
nonzero vacuum expectation values to scalar fields with
zero quantum numbers, that is, ϕN ¼ hσNi and ϕS ¼ hσSi,
which are called the nonstrange and strange condensates.
The corresponding scalar fields are subsequently shifted by
their expectation values, σN=S → σN=S þ ϕN=S.
To somewhat take into account the effects of confine-

ment, it is usual to introduce Polyakov loops, which can be
used to define the Polyakov-loop variables that signal the
breaking of the center symmetry (for details, see [32]).
Then the grand potential is calculated in a hybrid approxi-
mation, where the mesons are treated at tree level and the
fermions at one-loop level,

ΩðT; μqÞ ¼ UðhMiÞ þΩð0Þ
q̄q ðT; μqÞ þ UðhΦi; hΦ̄iÞ; ð6Þ

where the first term is the tree-level mesonic potential, and
the second term is the fermionic contribution that includes

the effects of the Polyakov loops and consists of a vacuum
and a matter part,

Ωð0Þ
q̄q ¼ Ωð0Þv

q̄q þΩð0Þm
q̄q : ð7Þ

The third term is the Polyakov-loop potential, for which we
use the improved U ¼ Uglue, being defined in [32]. Within
the current level of mean-field approximation, the exact
choice of the Polyakov potential does not change our
qualitative results on the phase transition and its finite size
dependence as long as the thermodynamics is correctly
reproduced. Alternative potentials are available [38–40] if
one aims at analyzing the fluctuations of the Polyakov
loops and matching the curvature masses to lattice QCD
data [39]. In the current model, it is necessary to tune the
parameter Tglue

c ¼ 182 MeV in theUglue in order to obtain a
reasonable chiral pseudocritical temperature at vanishing
chemical potential. Even this ad hoc procedure can be
elevated by taking into account the dressing of the four-
quark coupling with quark loops [41], which naturally
resolves the problem and provides a natural explanation for
the phenomenon of inverse magnetic catalysis. However,
the study of fluctuations lies beyond the purpose of this
work and we defer such a study for future endeavors.
The model parameters are determined with a χ2-

minimization method using physical quantities like meson
masses and decay widths listed in Table V of [32]. The
fitted parameters are the bare masses m2

0 and m2
1, the

meson-meson couplings g1, g2, λ1, λ2, h1, h2, and h3,
the meson condensates ϕN=S, the external field δS, the
Uð1ÞA anomaly parameter c, and the fermion coupling gF.
The set of parameters can also be found in [32].
After parametrization of the model, the thermodynamics

is given by the field equations (FEs),

∂ΩðT;μqÞ
∂ϕN

¼ ∂ΩðT;μqÞ
∂ϕS

¼ ∂ΩðT;μqÞ
∂Φ

¼ ∂ΩðT;μqÞ
∂Φ̄

¼ 0: ð8Þ

The explicit form of these in the infinite volume limit is
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−
d
dΦ

�
UðΦ; Φ̄Þ

T4

�
þ 6

T3

X
f

Z
d3p
ð2πÞ3

�
e−βE

−
f ðpÞ

g−f ðpÞ
þ e−2βE

þ
f ðpÞ

gþf ðpÞ
�

¼ 0; ð9Þ

−
d
dΦ̄

�
UðΦ; Φ̄Þ

T4

�
þ 6

T3

X
f

Z
d3p
ð2πÞ3

�
e−βE

þ
f ðpÞ

gþf ðpÞ
þ e−2βE

−
f ðpÞ

g−f ðpÞ
�

¼ 0; ð10Þ

m2
0ϕN þ

�
λ1 þ

λ2
2

�
ϕ3
N þ λ1ϕNϕ

2
S −

cffiffiffi
2

p ϕNϕS − h0N þ gF
2

X
l¼u;d

hqlqli ¼ 0; ð11Þ

m2
0ϕS þ ðλ1 þ λ2Þϕ3

S þ λ1ϕ
2
NϕS −

ffiffiffi
2

p
c

4
ϕ2
N − h0S þ

gFffiffiffi
2

p hqsqsi ¼ 0; ð12Þ

where the quark-antiquark condensate is given by

hqfqfi ¼ −4Ncmf

�
m2

f

16π2

�
1

2
þ log

m2
f

M2
0

�
þ T f

�
; ð13Þ

while the matter part of the tadpole integral reads as

T f ¼ −
Z

d3p
ð2πÞ3

1

2EfðpÞ
ðf−f ðpÞ þ fþf ðpÞÞ: ð14Þ

Here

f�f ðpÞ ¼
Φ�e−βE

�
f ðpÞ þ 2Φ∓e−2βE�ðpÞe−βE

�
f ðpÞ

g�f ðpÞ
ð15Þ

are the modified Fermi-Dirac distribution functions with

gþf ¼ 1þ e−3βE
þ
f þ 3

h
Φ̄e−βE

þ
f þΦe−2βE

þ
f

i
: ð16Þ

Solving the field equations above, one can study
thermodynamics at finite T and/or μq and the phase
structure of the strongly interacting matter. To determine
the phase boundary between the chirally broken and
restored phases, it is common to use the so-called sub-
tracted condensate, which is also calculated on the lattice
[42] and can be written in our case as

ΔðTÞ ¼
ðϕN − hN

hS
ϕSÞjT

ðϕN − hN
hS
ϕSÞjT¼0

: ð17Þ

This quantity can be generalized for finite μq by choosing a
proper reference point of the denominator. The phase
boundary is given by the set of inflection points of
Δμq;0ðTÞ [or ΔT0

ðμqÞ in the μq direction].

III. THE EPQM MODEL WITH
LOW-MOMENTUM CUTOFF

A. Implementation of low-momentum cutoff

The low-momentum cutoff λ ¼ π=L can be included by
simply introducing a Heaviside function for momentum
integrals as

Z
d3p
ð2πÞ3 →

Z
d3p
ð2πÞ3 θðp − λÞ: ð18Þ

The fermionic vacuum part with the low-momentum cutoff
λ and the UV regularization Λ reads as

Ωð0Þv
q̄q;λ ¼ −2Nc

X
f¼u;d;s

Z
d3p
ð2πÞ3 EfðpÞΘðΛ − pÞΘðp − λÞ

¼ −
9

4π2
Λ4 −

3g2

8π2
ðϕ2

N þ ϕ2
SÞΛ2

þ 3g2

64π2
log ð2Λe−1=4Þðϕ4

N þ ϕ4
SÞ

−
3

8π2
X

f¼u;d;s

h
m4

f log
�
λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q �

− λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
ð2λ2 þm2

fÞ
i
; ð19Þ

where the mf tree-level constituent quark masses are

mu ¼ md ¼
gf
2
ϕN; ms ¼

gf
2
ϕS: ð20Þ

After the same renormalization as in the case of the infinite
volume model, the fermionic vacuum contribution reads
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Ωð0Þv
q̄q;λ;R ¼ −

3

8π2
X

f¼u;d;s

"
m4

f log

 
λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
M0

!

− λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
ð2λ2 þm2

fÞ
#
: ð21Þ

If λ is removed, the resulting expression agrees with the
formula in [32]. Using Eq. (18), the fermionic matter
contribution with low-momentum cutoff is given by

Ωð0ÞT
q̄q;λðT; μqÞ ¼ −2T

X
f

Z
d3p
ð2πÞ3Θðp − λÞ

× ½ln gþf ðpÞ þ ln g−f ðpÞ�; ð22Þ

where g�f ðpÞ is defined in Eq. (16).
Accordingly, the modified quark-antiquark condensate

reads

hq̄fqfiλ ¼ −4Ncmf

"
−

1

8π2
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q

þ m2
f

16π2

 
1

2
þ log

ðλþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
Þ2

M2
0

!
þ T λ

f

#
;

≡ hq̄fqfiλvac − 4NcmfT λ
f ð23Þ

with

T λ
f ¼ −

Z
d3p
ð2πÞ3

Θðp − λÞ
2EfðpÞ

ðf−f ðpÞ þ fþf ðpÞÞ: ð24Þ

Now, different linear sizes are chosen, L∈ ð2 fm;…6 fmÞ,
which corresponds to different low-momentum cutoffs
according to λ ¼ π=L. This can be also expressed in
MeV by using 1 fm−1 ¼ 197.3 MeV. Then the system
of field equations in Eqs. (9)–(12) is solved with all the
integrals replaced according to Eqs. (18) and (23).
The curvature meson masses for the scalars and pseu-

doscalars—which include one-loop fermion corrections—
are also modified in case of low-momentum cutoff. Details
can be found in Sec. B of [32]; here only the modifications
are highlighted. The curvature meson masses are defined as

m2
i;ab ¼

∂
2ΩðT; μqÞ
∂φi;a∂φi;b

				
min

¼ m2
i;ab þ Δm2

i;ab þ δm2
i;ab; ð25Þ

where the tree-level partm2
i;ab is unchanged and can be found

in Table I of [32]. In the matter part δm2
ij, the formulas of

Table I of [32] can be used by changing only the tadpole T f

and bubble Bf integrals
1 to their volume-dependent version

T λ
f in Eq. (24), and Bλ

f ¼ −dT λ
f=ðdm2

fÞ.2 Finally, the
fermionic vacuum contribution Δm2

ij can be written as

Δm2
ij ¼

X
f;f0¼u;d;s

"
m2

f;ij

∂Ωð0Þv
q̄q;λ;R

∂m2
f

þm2
f;im

2
f0;j

∂
2Ωð0Þv

q̄q;λ;R

∂m2
f∂m

2
f0

#
;

ð26Þ

wherem2
f;i ¼ ∂m2

f=∂φi andm2
f;ij ¼ ∂

2m2
f=∂φi∂φj are short-

hand notations for the meson field derivatives of the
constituent quark masses and can be found in Table II of

[32]. Whereas the derivatives of Ωð0Þv
q̄q;λ;R read

∂Ωð0Þv
q̄q;λ;R

∂m2
f

¼ −
3

16π2

 
4m2

f log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
þ λ

M0

− 4λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2

f

q
þm2

f

!
; ð27Þ

∂
2Ωð0Þv

q̄q;λ;R

∂m2
f∂m

2
f0
¼ −

3

16π2

 
4 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

f

q
þ λ

M0

−
4λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þm2
f

q þ 3

!
δff0 : ð28Þ

B. The phase diagram

If we change the system size L as described above, the
solution of the field equation at T ¼ μq ¼ 0 gives decreas-
ing values for the meson condensates ϕN and ϕS for
increasing L, which is shown in the top panel of Fig. 1
for ϕN. It can be seen that the pseudocritical temperature Tc
at μq ¼ 0—defined as the temperature at the inflection
point of ϕNðTÞ [or ΔðTÞ]—decreases with decreasing L. It
is worth noting that on the top figure the curve belonging to
L ¼ 2 fm is already in the region where the pion and sigma
masses have already become degenerate (see Fig. 2). It is
known that finite size effects are similar to thermal effects if
we consider different quantities as a function of 1=L. In
Fig. 2 the tree-level masses of the u and d constituent
quarks, and the curvature masses of sigma (or f0) and pion
are depicted as a function of 1=L in the vacuum
(T ¼ μq ¼ 0). The pion and sigma masses become degen-
erate around L ≈ 2 fm, which signals chiral symmetry

1We note that in [32] an unconventional sign was used for the
matter part of the tadpole integral. Therefore, there is a −1 factor
difference in the definition of T f compared to the cited work.

2This relation between the tadpole and bubble integrals holds
for vanishing external momenta, applied in our approximation.
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restoration. The transition is of crossover type. We also note
that the monotonic increase of the pion mass at small sizes
is consistent with results obtained with the Lüscher
formalism in chiral perturbation theory [43–45], although

in our case the increase turns out to be too large. In the top
panel of Fig. 3, the chiral phase boundary is shown for
different characteristic sizes. As it was already pointed out,
the pseudocritical temperature Tc at μq ¼ 0 decreases with
the decreasing L, behavior that has already been seen in the
literature [9,12,28]; however, opposite behavior was also
seen in the case of linear sigma models [2,4]. This difference
comes from the fact that, in our case, the fermionic vacuum
contribution is taken into account (see also Sec. III C). The
second-order CEP moves to smaller temperatures and
slightly higher chemical potentials3 and even disappears
around L ≈ 2.5 fm. This shrinking of the first-order tran-
sition line and the absence of the criticality at small volumes
is consistent with previous studies [2,4,9,12,28]. When the
first-order transition at T ¼ 0 is present, the critical quark
chemical potential μq;c also decreases with the decreasing
system size; thus the chirally broken region on the T − μq
plane becomes smaller with decreasing L. We note that a
similar picture can also be obtained in the case of the chiral
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3Interesting to note that below L ≈ 3 fm this trend is reversed,
just before the CEP disappears.
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limit studied inAppendixA. Instead of a crossover, one finds
a second-order phase transition at μq ¼ 0 ending in a
tricritical point, which moves to lower temperatures and
chemical potentials with the decreasing system size, similar
to the CEP in the case of a nonvanishing explicit symmetry
breaking.

C. Importance of the vacuum contribution

In previous works on finite volume effects within the
framework of the linear sigma model, usually the fermionic
vacuum contribution was not taken into account (see, e.g.,
[2,4,5]). To show the importance of the vacuum contribu-
tion, we also calculated the L dependence of the con-
densates and the phase diagram by keeping the vacuum part
of the fermion integral at infinite size, i.e., setting λ ¼ 0 in
Eqs. (21) and (23). It is important to note that it is not the
mere presence of the vacuum contribution that matters, but
the way of its handling, i.e., its finite or infinite size.4 In the
bottom panel of Fig. 1, the same curves are shown as in the
top panel, but for the case where the vacuum is kept at
infinite size. It can be seen that the T ¼ 0 value of ϕN
remains naturally fixed, while the L dependence of the
finite temperature integral pushes the pseudocritical tem-
perature to higher temperatures, as can be seen in Fig. 4, the
opposite of our previous case, but consistent with results in
[2,4,5]. The CEP—shown in the bottom panel of Fig. 3—
moves to smaller temperatures and higher chemical poten-
tials again. However, with no finite size effects in the
vacuum contribution, the path of the CEP has a qualita-
tively different curvature, and consequently, the critical
quark chemical potential μq;c at T ¼ 0 increases with the

decreasing L. We note that in this scenario the CEP does
not disappear until L ≈ 0.5 fm.5

Generally, it can be said that size dependence of the
vacuum pushes the system toward the chirally symmetric
phase, which is obvious already from the transition in
Fig. 2. The broken phase is squeezed down for decreasing
size and even disappears completely around L ¼ 2 fm, if
the full fermion one-loop contribution is size dependent.
Contrarily, for the vacuum part being fixed at L ¼ ∞ the
whole phase boundary moves further from the origin in the
T − μq plane, i.e., the chirally broken phase even extends.
Consequently, at very small sizes, the two approaches give
qualitatively different results regarding the existence of a
chirally broken phase.

D. Thermodynamics and baryon fluctuations

The pressure is defined as

pðT; μqÞ ¼ ΩðT ¼ 0; μq ¼ 0Þ −ΩðT; μqÞ; ð29Þ

while other thermodynamic quantities like the entropy
density s ¼ ∂p=∂T, the quark number density ρq ¼ ∂p=
∂μq, and the energy density ϵ ¼ −pþ Tsþ μqρq can be
derived from it. The equation of state, i.e., the pressure as a
function of energy density pðϵÞ is an important quantity,
which is shown at T ¼ 0 in Fig. 5. It can be seen that the
handling of the vacuum contribution affects the EOS.
The difference partially comes from the increasing width
of the unstable region between the spinodals in μq at T ¼ 0

and hence from the increasing ϵ at the transition point for
decreasing L in the case of an infinite size vacuum, which
pushes downward the pðϵÞ curve for small sizes.
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FIG. 4. The normalized pseudocritical temperature Tc=Tc;inf for
characteristic sizes L > 2.5 fm with the vacuum contribution
treated as finite or infinite.
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FIG. 5. The equation of state pðϵÞ for infinite and finite
volumes of the vacuum term.

4Already in infinite volume it can be seen that the treatment of
the vacuum term, e.g., the regularization used in NJL models, can
affect the resulting phase diagram.

50.5 fm is already beyond the reliability of our approach and
also smaller than the typical size of physical systems studied in
experiments.
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To study the baryon number fluctuations, the generalized
susceptibilities of the baryon number can be defined,

χn ¼
∂
np=T4

∂ðμq=TÞn
				
T

; ð30Þ

while the so-called cumulants are related to these suscep-
tibilities as

Cn ¼ VT3χn: ð31Þ

Since the cumulants are explicitly volume dependent,
usually their ratios are used, which are equal to the
corresponding susceptibility ratios. The most commonly
used quantities are the skewness Sσ ¼ χ3=χ2 and the
(excess) kurtosis κσ2 ¼ χ4=χ2, where σ is the variance,
for which σ ¼ χ2 holds. Although explicit volume depend-
ence is canceled in these ratios, they can still have implicit
dependence as shown in [10,46], which was already
investigated in effective approaches at vanishing chemical
potential in [5,13] and with functional methods around the
critical endpoint in [29]. The cumulants and their ratios are
proportional to higher powers of the correlation length, and
therefore they could play an important role in the identi-
fication of the CEP in experiments [47–49].
Baryon fluctuations for infinite volume were already

studied in the ePQM model in [50]. When system size is
decreased, the kurtosis at μq ¼ 0 smoothens as shown in
Fig. 6, which is consistent with previous results of other
effective model calculations [5,13]. This behavior is in line
with the behavior of the ϕN condensate that also smoothens
(see Fig. 1). The temperature dependence of the skewness
and the kurtosis is also calculated at μq ¼ μCEPq , which can
be seen in Fig. 7. Similarly, the quark chemical potential
dependence of the same quantities at T ¼ TCEP are shown
in Fig. 8. It should be noted that the arsinh function is used
to squeeze the function in the vertical direction for better
visibility and to be directly comparable to results in the

literature [29]. It can be seen in Fig. 7 that there is a slight
increase in the kurtosis for temperatures away from TCEP,
which becomes larger with decreasing volume. It should be
noted that this increase is somewhat artificial in the sense
that the TCEP values used for the rescale change substan-
tially with L. For instance, for L ¼ 3 fm TCEP ≈ 10 MeV,
which is ≈TCEP

∞ =5. This can be also seen in the inset, where
a slight decrease can be observed for smaller and smaller L.
On the other hand, in Fig. 8, in the case of μq dependence,
both the rescaled curves and the inset show a decrease away
from the transition, which is due to the fact that the change
in μq;CEP is moderate with decreasing L.
In conclusion, kurtosis shows a slight change for finite

volumes, but this effect is most probably originated from
the CEP movement toward the chemical potential axis. The
increase of κσ2 is not remarkable until the CEP comes very
close to the chemical potential axis. It is important to note
that our result does not contradict what was found in a
Dyson-Schwinger approach in [29].6 There the authors 0
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6Because of numerical calculations, it is much harder to see the
divergence in the DS approach, which gives rise to an artificial
depression in the kurtosis close to TCEP [29].
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concluded that the kurtosis can be size independent around
the CEP, since only a small deviation was found and it had
not followed a clear trend in the system size. We also note
that their CEP is located at a lower TCEP=μq;CEP and
significantly further away from the chemical potential axis.
Note that the temperature dependence of the kurtosis near
the critical endpoint has also been studied in a Polyakov–
Nambu–Jona-Lasinio (PNJL) model with momentum dis-
cretization [17]. However, due to the unusual phase
transition and the multiple CEPs arising in finite volumes
when the momentum is discretized (see Sec. IV C below),
these results cannot be directly compared.

IV. THE EPQM MODEL WITH MOMENTUM
DISCRETIZATION

Fourier transformation naturally implies discretization in
momentum space if the system has finite spatial size. The
modes that have to be taken into account are determined by
the boundary condition imposed on the surface of the
system’s volume, which therefore also set the lowest
momentummode. Inmost cases, the finite system is assumed

to be a cube with side length L and with periodic or
antiperiodic boundary condition. In these cases the momen-
tum integral is substituted with a sum that runs over the
modes pi ¼ 2niπ=L ¼ niΔp or pi ¼ ð2ni þ 1Þπ=L ¼
ðni þ 1=2ÞΔp, respectively, with ni ∈Z; i∈ ðx; y; zÞ, while
Δp≡ 2π=L is the size of the momentum grid.

A. Implementation of momentum discretization

In the present work, we implement the periodic boundary
condition, the antiperiodic boundary condition, and the
periodic boundary condition without the zero mode
(PBC-0). It should be noted that other prescriptions are
also possible for both the boundary condition (e.g.,
Dirichlet) and shape of the system (spherical or spheroid,
which would also require different BCs) that would give a
better description of a real fireball produced in heavy-ion
collisions. However, our purpose is to investigate the
differences between the results of the different approaches
used in the literature, for which the most commonly used
PBCs and APBCs are the best choices.
Summation over the momentum modes can be numeri-

cally very expensive for large volumes. To reduce the
computational costs, following [28,51], the summation is
rearranged as follows:

X∞
nx;ny;nz¼−∞

KðpiÞ ¼
X∞
j¼1

X
m

Kðpj;mÞ ð32Þ

for any integral kernel KðpÞ. Here the original grid points
of the cube are rearranged in spheres and pj’s are the radii
of larger and larger spherical shells in the momentum space
as j increases, while m is indexing the grid points on a
given shell. This is illustrated in two dimensions for APBC
in Fig. 9, where it can be seen that, for example, for j ¼ 2

one has p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ 9=4

p
Δp and a multiplicity of 8 from
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the trivial sum over m. It can also be seen in the case of the
two-dimensional sketch already, that the distance δpj ¼
pj − pj−1; j ≥ 1 between two consecutive spheres shows a
decreasing trend. Moreover, if the momentum is large
enough, an approximate δpj ∝ 1=pj behavior can be
found, which allows an additional approximation. For
integration in spherical coordinates, the integrand goes
to zero in the matter part and diverges as p3 in the vacuum
part of the fermion integral for p → ∞. Therefore, in the
matter part, the so-called UV improvement [27,28] can be
used. In the UV improvement, an intermediate momentum
scale λΣ is introduced and the summation is changed to
integration for momenta above this scale. This means that
for p < λΣ there is a summation over the discrete modes—
ordered now in spheres—while for p ≥ λΣ there is an
integration with a low-momentum cutoff, similar to our
previous scenario. It is worth clarifying the fitting of the
boundary of integration to the boundary of summation.
Since summation goes over for cubic cells of size Δp3 and
the integration starts from a sphere, there are some parts of
cubes around the boundary that penetrate into the integra-
tion region and some other parts that are missing—both for
PBCs and APBCs (see, e.g., Fig. 9 in the case of 2D). Thus,
there is no common boundary between the summation and
the integration. However, for the matter part, the error made
by this mismatch is suppressed by the δpj ∝ 1=pj factor
and the convergent behavior of the integrand for large
momentum. λΣ has to be set for each volume separately, by
finding a region where the results are already insensitive to
the change of the value of this cutoff. Therefore, the
continuum integration can be changed for finite volumes to

Z
d3p
ð2πÞ3 →

1

L3

Xjmax

j¼1

X
m

þ
Z

d3p
ð2πÞ3 θðp − λΣÞ; ð33Þ

where jmax ¼ maxfjjpj ≤ λΣg. Consequently, the fer-
mionic matter contribution can be written as

Ωð0ÞT
q̄q;ΣðT; μqÞ ¼ −2

T
L3

X
f

Xjmax

j¼1

X
m

½ln gþf ðpjÞ þ ln g−f ðpjÞ�

þ Ωð0ÞT
q̄q;λΣ

ðT; μqÞ: ð34Þ

Unfortunately, in the vacuum part, the integrand is
divergent for p → ∞ strong enough to overcome the δpj ∝
1=pj behavior. Consequently, the error made by changing
from a cubic-based summation to a spherical integration at
λΣ increases with λΣ. Note that this error purely comes from
the mismatch of the boundaries of the summation and the
integration. This can be seen for APBC as follows: let us
keep the original summation starting from some large
p0 value up to p0 þ nΔp, i.e., p0 ≤ pi ≤ p0 þ nΔp,
i∈ ðx; y; zÞ. This corresponds to an integration in

Descartes coordinates for the interval p0 − Δp=2 < pi <
p0 þ ðnþ 1=2ÞΔp, i∈ ðx; y; zÞ. The summation and the
integration are for exactly the same volume, thus
the summation is nothing else but a Riemann sum of the
integral. For arbitrary n and p0 ≫ Δp it can be shown that
with increasing p0 the error made by the summation with
midpoint rule compared to the integration decreases, as can
be seen in Fig. 10. In this case,KðpÞ ¼ EðpÞ and EðpÞ ∝ p
for large p. Consequently, considering a well-defined
cubic-based boundary between the summation and the
integration at a momentum p0, the error, made by changing
from summation to integration, can be made arbitrarily
small by setting p0 large enough. Therefore, integration can
be used in the large momentum part of the fermionic
vacuum contribution too. In addition to making the
calculation numerically less expensive, this also enables
the renormalization of the vacuum part, similar to the
infinite volume case. The simplest way to use the UV
improvement is to change from summation to integration at
λΣ in each direction; that is, to sum up to a cube of side
length 2λΣ. Note that the value of λΣ has to be chosen to be
half-integer or an integer multiple of the cell size, i.e., λΣ ¼
ðnþ 1=2ÞΔp for PBC and λΣ ¼ ðnþ 1ÞΔp for APBC. To
perform the integration that starts from the cube (of side
length 2λΣ), the integration is divided into two parts, the
first one from the cube to a sphere of radius

ffiffiffi
3

p
λΣ, i.e., the

smallest sphere that includes the cube, and the second one
which is a usual spherical integral that starts from
p≡ jpj ¼ ffiffiffi

3
p

λΣ. Since the integrand has rotational invari-
ance, in the first part of the integral in spherical coordinates
the solid angle integral can be calculated explicitly giving a
p-dependent solid angle as

ΩλΣðpÞ ¼

ΩλΣ

1 ðpÞ λΣ < p ≤
ffiffiffi
2

p
λΣ

ΩλΣ
2 ðpÞ ffiffiffi

2
p

λΣ < p ≤
ffiffiffi
3

p
λΣ

ð35Þ
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FIG. 10. The error made by replacing the summation with
integration for the kernel EðpÞ with m ¼ 300 MeV. Its decreas-
ing trend allows the use of an UV improvement.
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with

ΩλΣ
1 ðpÞ ¼ 12π

p − λΣ
p

ð36Þ

and

ΩλΣ
2 ðpÞ¼ 4

p

 
12parccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2Σ−p2

2λ2Σ−2p2

s

þ12λΣ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=λ2Σ−2

q
−3πðλΣ−pÞ

!
; ð37Þ

where there is a change in the expression for the solid angle
at p ¼ ffiffiffi

2
p

λΣ, when the sphere touches every middle point
of the cube edges. The formula above is derived in
Appendix B. Thus, the fermionic vacuum contribution in
Eq. (7) can be written as three terms, a sum up to pi ¼ �λΣ,
an integration from the cube to the sphere with radiusffiffiffi
3

p
λΣ, and a renormalized vacuum integral of the form of

Eq. (21) with lower cutoff λ ¼ ffiffiffi
3

p
λΣ,

Ωð0Þv
q̄q;λΣ;R

¼ −2Nc

X
f

1

L3

Xjpij<λΣ

px;py;pz

EfðpÞ

− 2Nc

X
f

Z
p¼ ffiffi

3
p

λΣ

pi¼λΣ

dp
ð2πÞ3 p

2ΩλΣðpÞEfðpÞ

þ Ωð0Þv
q̄q;
ffiffi
3

p
λΣ;R

: ð38Þ

We emphasize that the need for such a complicated
adjustment of the intermediate scale for the UV improve-
ment arises from the fact that the discretization does not
respect the symmetry of the integration and the renormal-
ization schemes, which has rotational invariance. To over-
come this problem, it would be possible to study the finite
volume effect with a judicious choice of scheme, so that it
is consistent with the symmetry chosen in the renormal-
ization scheme, e.g., with discretization in the radial
direction similar to [52], where an Oð3Þ scheme was used
for the Matsubara sum in 2þ 1-dimensional spacetime.
This would also be in line with the considerations to
implement a rotation invariant, spherical shape of the finite
volume system.
To illustrate the stability of the UV improvement with the

cubic boundary and the cubic-spherical integration, we
show the λΣ dependence of the tree-level constituent quark
masses—which are proportional to the meson condensates
—at fixed L in Fig. 11. The curves start at 1, since for
λΣ ¼ 0 the summation is absent and integration is per-
formed in the whole momentum range, which is equivalent
to the infinite size case. In the calculations, we used
λΣ=Δp > 50 to ensure the stability.

The field equations and the curvature meson masses
should be modified according to the grand potential in a
similar fashion to the low-momentum cutoff case discussed
in Sec. III A. Every integral derived from the fermionic
matter part has to be changed to the UV-improved version
given in Eq. (33). It is straightforward for Eqs. (9) and (10),
while the matter part of the tadpole integral in Eq. (14)
should be modified as

T Σ
f ¼ −

1

L3

XλΣ
j;m

1

2EfðpjÞ
ðf−f ðpjÞ þ fþf ðpjÞÞ þ T λΣ

f ; ð39Þ

with T λΣ
f being the tadpole with low-momentum cutoff

[Eq. (24)]. Moreover, the fermionic vacuum contribution to
the quark-antiquark condensate [first part of Eq. (13)] can
be derived from Eq. (38),

hq̄fqfiΣvac ¼ −2Nc

X
f

mf
1

L3

Xjpij<λΣ

px;py;pz

1

EfðpÞ

− 2Nc

X
f

mf

Z
p¼ ffiffi

3
p

λΣ

pi¼λΣ

dp
ð2πÞ3

p2ΩλΣðpÞ
EfðpÞ

þ hq̄fqfiλvac
			
λ¼ ffiffi

3
p

λΣ
; ð40Þ

where the last term is the renormalized contribution with a
low-momentum cutoff λ ¼ ffiffiffi

3
p

λΣ defined in Eq. (23).
The tree-level parts of the meson masses remain

unchanged, while for the fermionic matter contribution,
δm2

ij in Table I of [32] can be used by replacing the tadpole
and bubble integrals with T Σ

f and BΣ
f ¼ −dT Σ

f=ðdm2
fÞ,

respectively. Moreover, the fermionic vacuum contribution
is given similarly as in Eq. (26),
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Δm2
ij ¼

X
f;f0¼u;d;s

"
m2

f;ij

∂Ωð0Þv
q̄q;λΣ;R

∂m2
f

þm2
f;im

2
f0;j

∂
2Ωð0Þv

q̄q;λΣ;R

∂m2
f∂m

2
f0

#
;

ð41Þ

where m2
f;i and m2

f;ij can be found in Table II of [32].

B. Vacuum contribution

Similar to Sec. III C, we investigated the role of handling
of the vacuum contribution, i.e., its infinite or finite size. As
discussed in the previous section at T ¼ μq ¼ 0 the finite
size effect to the field equations comes from the discreti-
zation of the vacuum part of the chiral condensate hq̄qiΣvac
[Eq. (38)]. Unfortunately, as the system size is decreased,
around L ⪅ 4.5, the solution to the field equations ceases to
exist. Contrary to the low-momentum cutoff scenario, here
the magnitude of the vacuum contribution to the FEs
increases with decreasing L, which subsequently causes
the disappearance of the common solution to the two FEs
[Eqs. (11) and (12)] at T ¼ 0. Note that this kind of
instability for large meson condensates is a common feature
of the quark-meson models at mean-field level with
fermionic vacuum contribution. This is due to the fact that
the vacuum term gives a leading contribution to the grand
potential, which is ∝ −σ̄3 log σ̄ with the general order
parameter σ̄, and hence the grand potential is not bounded
from below as a function of σ̄. When the size decreases in
the discretized scenario, the local minimum moves to larger
values of the order parameter and collapses with the
maximum, hence leaving no extremum of the grand
potential. Nevertheless, we can still look at the effect of
different boundary conditions as a function of 1=L if we fix
mu (and consequently ϕN) and calculate hq̄qiΣvacðLÞ. This
can be seen in Fig. 12. The most significant contribution to
hq̄qiΣvac is at p ¼ 0, which is taken into account in the case

of PBCs and omitted in the case of APBCs. Consequently,
it would be expected that the absolute value of the chiral
condensate and thus (via the field equations) ϕN and ϕS
increases for PBCs and decreases for APBCs with decreas-
ing L. In terms of chiral symmetry, it means that the APBC
drives the system to chiral restoration while the PBC
increases the spontaneous symmetry breaking. In NJL
model studies with discretization of the regularized chiral
condensate, such behavior was found in [15,16,19]. A
qualitatively similar result was obtained in a parity doublet
model in [23]. We note that in these cases the vacuum
contribution is only regularized with special functions, and
no renormalization is performed. However, in the ePQM
model for L > 1 fm, the main difference between the
integral at L ¼ ∞ and the summation at finite L comes
from higher modes, and both boundary conditions give an
increasing absolute value for the chiral condensate, as
shown in Fig. 12. Therefore, as L decreases from infinity
and the finite size effect appears, the chirally broken phase
extends to higher T (and μq) not only for PBCs but also for
APBCs.
It is worth noting that if the vacuum size is kept infinite

the solution exists, which will be investigated in the next
section. On the other hand, it is still possible to take into
account the finite size effect of the vacuum in a restricted
way, as it was done in [2] for PBC,7 if we consider only the
lowest mode [i.e., p⃗ ¼ ð0; 0; 0Þ for PBC and p⃗ ¼
ð1=2; 1=2; 1=2Þ for APBC]. Practically, this means that
only the first term is kept from the sum in Eq. (40). In this
way, the solution to the FEs will exist up to L ≈ 2.5 fm.
Finally, in Fig. 12, the PBC-0 case is also shown (see,

e.g., in [28]). Here, the low-momentum cutoff caused by
the exclusion of the zero mode gives the main modification.
Consequently, the absolute value of the chiral condensate
decreases as soon as the finite size effect appears around
L ¼ 10 fm, similar to the low-momentum cutoff scenario.
In this scenario, the solution to the FEs exists.

C. Finite temperature and chemical potential

As a consequence of the analysis presented in the previous
section, from now on the fermionic vacuum contribution is
either kept at infinite volume, or the discretization is taken
into account only in the lowest mode, and we implement the
summation only for the matter part. To get a better under-
standing of the size dependence at finiteT and μq, in addition
to the ePQM model, we also considered a simpler linear
sigma model presented in [2] (called LSM A) and another
LSMmodelwith two different parametrizations from [53]. In
the latter case, the Lagrangian is similar to Eq. (2)without the
(axial) vector meson sector and without fermionic vacuum
contribution. The two sets of parameters usedhere are the one
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FIG. 12. Size dependence of the relative fermion vacuum
contribution with different boundary conditions for fixed
mu ¼ muðL ¼ ∞Þ ¼ 322 MeV.

7Although in [2] no fermionic vacuum part was taken into
account at L ¼ ∞, its zero mode was added as an extra
contribution to the classical potential at finite size.
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with mσ ¼ 600 MeV (LSM B) and with mσ ¼ 800 MeV
(LSMC). The parameter sets for LSMB and C can be found
in the11th and 13th row [bottompanel,withUð1ÞA breaking]
of Table II in [53].
Besides the absence of the fermionvacuum contribution in

LSMA, LSMB, and LSMC, the location of the CEP is also
very different. The ePQM model and LSM C both have a
“low-lying” CEP with μq=T ¼ 5–6 at ðμq; TÞ ¼ ð295; 53Þ
and (328,63) MeV, respectively, whereas LSM A and B
have a “high-lying” CEP with μq=T ¼ 2–2.5 at (207,100)
and (220,92) MeV, respectively.8

Before turning to the effects of finite size on the CEP in
the different models, we discuss the μq ¼ 0 and T ≈ 0 cases
in the ePQM model. At μq ¼ 0 with the vacuum contri-
bution of infinite size, the pseudocritical temperature
increases for APBC (after a transient decrease from 1=L ¼
0.1 to 1=L ¼ 0.25 fm−1), PBC, and also for PBC-0 as
shown in Fig. 13, labeled as TA

pc, TP
pc, and TP−0

pc , respec-
tively. As can be seen in the case of PBC, the solution
ceases to exist at L ≈ 5.46 fm. This is due to a new unstable
solution of the field equations—corresponding to a maxi-
mum of the grand potential. The new solution, which is
present at low values of ϕN and ϕS is caused by the
presence of the zero mode of the matter contribution at
finite temperatures. Furthermore, the problem with this
solution, which is connected to the solution at T ¼ 0, is that
it has no continuation at higher temperatures. This is
illustrated in Fig. 14. Therefore, the crossover is suddenly
replaced by a nonphysical first-order transition. By includ-
ing the effect of the finite size, at least in the zero mode of
the vacuum contribution, the zero mode of the matter part is
compensated, and the above problem does not exist. On the
other hand, the solvability of the model at T ¼ 0, μq ¼ 0

is still limited to L > 2.5 fm, due to the increasing

condensates (caused by the increasing vacuum contribu-
tion) discussed in the previous section. The resulting
pseudocritical temperature, denoted as TPþv0

pc , is also shown
in Fig. 13. For PBC, contrary to the low-momentum cutoff
scenario, the finite size effects on the vacuum contribution
(implemented only in the zero mode, but also if the full
discretization is applied) enhance the chiral symmetry
breaking,9 hence the pseudocritical temperature TPþv0

pc

increases with the decreasing system size.
In the T → 0 limit, the Fermi-Dirac distribution

(as a function of μq) becomes a step function, which is
one below the Fermi surface, i.e., EðpÞ < μq, and zero
above. When the momentum space is discretized, only the
modes below the Fermi surface contribute. With increasing
μq, the lowest modes enter below the Fermi surface, causing
jumps in the fermionic matter contribution in the FEs and
thus leading to drops in the meson condensates.10 Moreover,
the decrease of the condensates, and hence of the fermion
masses inEðpÞ, enhances the expansion of the Fermi surface
(generally driven by the growth of μq), which gets closer to
or even grows beyond the next modes. This leads to a
staircaselike decrease of the condensates with multiple steps,
hence multiple inflection points, which look like first-order
transitions on top of each other.11 The structure of ϕNðμqÞ is
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8In baryon chemical potential this means μB=T ¼ 15–18 for
the low-lying and μB=T ¼ 6–7.5 for the high-lying CEPs.

9This means an increase in ϕN=S and thus the restoration
happens at larger temperatures.

10This behavior may be an artifact of our assumption, but a
similar structure with multistep transitions could be realized, e.g.,
in some condensed matter systems, as is the case for the Hall
conductivity in [54].

11Instead of one phase transition from the chirally broken to the
symmetric phase, in the present case there are smaller steps (marked
generally by the lines of inflection points, but for a first-order
transition also by having multiple solutions at a given T and μq).
Therefore, the chiral restoration happens in multiple steps, which
wewill call “quasitransitions” since they separate phases with only
quantitatively different spontaneous symmetry breaking.
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shown in Fig. 15, where L ¼ 6 fm and APBC are applied
for the ePQM model at vanishing and nonzero temper-
atures. At T ¼ 0 the horizontal steps are connected
by quasisolutions (marked with dashed lines), where
∂Ω=∂ϕN=S ¼ 0 has a solution, but ∂Ω=∂ϕS=N has a
discontinuity. These quasisolutions change to real solu-
tions for nonzero temperatures. Since the transition at
T ≈ 0 is of first order, new second-order points appear on
the new quasi transition lines. A similar staircaselike
phase transition has also been observed in PNJL model
calculations [17], where it was named “quantized first-
order phase transition.” In these models, the gap equation,
which is solved self-consistently to find the value of the
chiral condensate at a given T and μq, formally contains
the same integral as the field equations in Eqs. (11) and
(12) and thus suffers from the problem of discrete modes
entering below the Fermi surface in the sameway. For PBC,
similar behavior to APBC can be seen when the unphysical
first-order transition is not present. From this behavior for
both boundary conditions it can be predicted that the low-T
and high-μq region of the phase diagram, where the CEP is
located, is strongly influenced by the T ≈ 0 structure. The
behavior of the CEP is considered separately for APBCs
and PBCs in the following subsections.
We note that we are working in the grand canonical

ensemble, where the chemical potential is an external
parameter and the Fermi surface is independent of L.
Meanwhile, the distance between the modes increases with
the decreasing size, and hence some of them fall out for a
given μq. Alternatively, for finite size, one could first
formulate the canonical picture with the discretized momen-
tum space and then derive the Fermi surface from the
chemical potential defined by the change of the free energy
F with the particle number N of the discretized system
μq ¼ dF=dN. To see whether such a treatment changes the
results or not, further investigations are needed.

1. Size dependence of the CEP with APBC

The trajectories of the CEP can be seen in Fig. 16 as L is
decreased in the case of APBC for the models discussed in
the previous section. In each case, the CEP belonging to
L ¼ ∞ (marked with a black dot) starts to move to lower
temperatures and higher quark chemical potentials. This
can be seen with the solid line for the LSM A and LSM B
models and with the dashed line for the LSM C and ePQM
models. However, as discussed in the previous section, the
ϕNðμqÞ has multiple inflection points (Fig. 15). For the
ePQM model and LSM C, the inflection point with higher
μq and lower ϕN is connected to the CEP belonging to
L ¼ ∞ (dashed trajectory), but at some L value this part of
the curve becomes a crossover. On the other hand, the
second inflection point (with lower μq and higher ϕN),
which coexist in some region with the first one, separates
the crossover and first-order regions for L ⪅ 4.5 fm; there-
fore it is reasonable to identify it as the CEP of the chiral
phase transition (solid trajectory) below the given L. The
second inflection point is induced by the first mode when
entering below the Fermi surface. For sufficiently small L,
this new CEP also turns to lower T and higher μq (like LSM
A and LSM B), while the original CEP is continued toward
the μq axis generated by the second lowest modes when
entering below the Fermi surface. Similar nonmonotonic
behavior was also found in [10] within a functional
renormalization group approach. For LSM A and LSM
B, the original CEPs start from a much lower μq and higher
T, so their trajectories continuously connect the CEP at
L ¼ ∞ to the CEP with the smallest possible L. The quasi-
CEPs (second-order points at lower ϕN values) of the
transitions generated by the second, third, etc. lowest
modes (when entering below the Fermi surface) are also
present for LSM A and B, but their presence remains
hidden. The 1=L dependence of μCEPq and TCEP is also
shown separately for each model in Fig. 17. It can be seen
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that for 1=L < 0.2 fm−1 (L > 5 fm) the curves are flat. For
0.2 < 1=L < 0.5 fm−1 (2 < L < 5 fm) for the ePQM and
LSM Cmodels, the original CEP disappears, while a newly
generated CEP emerges and becomes dominant. In this
range, the TCEP (μCEPq ) is continuously decreasing (increas-
ing) for LSM A and B. Finally, for 1=L > 0.5 fm−1

(L < 2 fm) both μCEPq and TCEP show a very similar trend
for each model. This also shows that for sufficiently small
sizes the CEP corresponds to the second-order point
belonging to the highest ϕN (first step in Fig. 15) of the
transition, which is generated by the first mode when
entering below the Fermi surface.

2. Size dependence of the CEP with PBC

For PBCs with a vacuum term of infinite size, the CEP
moves to higher temperatures and lower quark chemical
potentials with decreasing system size, leading to an
expansion of the first-order region for each model, as
shown (with solid lines) in Fig. 18. However, the appear-
ance of the new solution of the field equations discussed in
Sec. IV C turns the phase transition, either crossover or first
order, into an unphysical first-order transition in each
model at roughly the same size around L ¼ 5.5 fm (at L ¼
5.46 for the ePQM), thus we cannot continue the calcu-
lation to smaller sizes. For LSM A and B models, the CEP
reaches the T axis, leaving a first-order phase transition in
the full phase boundary well before the nonphysical effect
becomes dominant. For the LSM C and the ePQM models,
there is still a crossover region where this unphysical
transition occurs and the CEP is still very far from the T
axis. This CEP is marked with a black cross in the figure.

As mentioned in Sec. IV C, by including the effect of the
discretization in the vacuum part only in the zero mode, the
nonphysical transition disappears. Furthermore, this zero-
mode correction of thevacuumcontribution12 is large enough
to even reverse the trend of the CEP trajectory as L is
decreased. Therefore, it moves (for ePQM after some
transient oscillations) to higher temperatures and lower
chemical potentials with decreasing size, resulting in the
reduction of the first-order region. The trajectory of the CEPs
in this scenario is also shown in Fig. 18 with the dash-dotted
lines. For LSM A, this approximation reproduces the results
in [2] for PBC. We note that for low T and high μq there are
multiple solutions of the FEs [Eqs. (11) and (12)] due to the
structure generated by the modes entering below the Fermi
surface, which was discussed in the previous section (see
Fig. 15). However, in this case, the structure of
ϕN=SðT; μqÞ—and hence the structure of the order parameter
ΔðT; μqÞ—is more complicated than in the case of APBCs
with infinite vacuum, and it is difficult to identify well-
defined phase transitions for low T and high μq. Therefore,
when the T ¼ 0 behavior begins to affect the T ¼ TCEP

region at sufficiently small sizes—below L ¼ 4–5 fm for
LSM C and the ePQM models, and below L ¼ 2 fm for the
LSM A and B models—the CEP will not be tracked further
with decreasing size.
For PBC-0, the influence of the missing zero mode of the

fermionic thermal contribution—implying a cubic low-
momentum cutoff—will be dominant. It overwhelms any
effect of summation and pushes theCEP toward the chemical
potential axis. However, the appearance of the new CEP
arising from the T ¼ 0 behavior influences the path of the
critical endpoint also for this boundary condition. The
location of the CEP for very small system sizes is determined
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12Which is a discretization of the vacuum part only for the first
mode for ePQM, but an extra contribution for LSM A, B, and C,
since these models have no vacuum part at all.
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only by the first mode—following the absent zero mode—
entering below the Fermi surface.

V. CONCLUSION

In this paper we have investigated the effects of finite
system size in the framework of the vector and axial vector
meson extended Polyakov linear sigma model by using two
types of implementations: a low-momentum cutoff of the
momentum integrals and a discretization of the momentum
space implied by the finite spatial extent of the system. The
effect of these modifications on the phase diagram of
strongly interacting matter, the role of the vacuum term, and
the different boundary conditions have been studied in
detail.
First, the case of low-momentum cutoff was investigated.

In particular, the effect of the size of the vacuum, either
finite or left unchanged (infinite size), was studied. The
latter leads to similar results as in previous studies where
the fermionic vacuum corrections were not considered. It
was found that the modification of the vacuum integrals
strongly pushes the system toward the chirally symmetric
phase. Therefore, the whole phase boundary moves to
lower temperatures until the chirally broken phase vanishes
around L ≈ 2 fm, where a crossoverlike transition can be
observed in the vacuum physical quantities. However, if the
vacuum is kept in its infinite form, the chirally broken
phase even extends as the boundary moves to higher T and
μq. In both cases, the critical endpoint moves to lower
temperatures and higher chemical potentials. For a vacuum
term of finite size, it turns toward the chemical potential
axis and even disappears around L ≈ 2.5 fm. On the other
hand, for an infinite size vacuum, the CEP turns toward
high μq, and although the first-order line shrinks with
decreasing size, the CEP does not reach the axis until at
least L ≈ 0.5 fm. The volume dependence of the phase
diagram and the order of the chiral phase transition were
also studied in and near the chiral limit, i.e., the mu;d ¼ 0,
ms ≠ 0 axis of the Columbia plot. It was found that the
phase structure changes with decreasing size in a very
similar way to the physical case, while a second-order
phase transition is found only at vanishing explicit breaking
and crossover elsewhere.
We also studied the modification of the baryon fluctua-

tions at finite volume in the low-momentum cutoff scenario.
At μq ¼ 0 we found a smoothening of the kurtosis as a
function of temperature, which was expected. The kurtosis
and the skewness were also calculated through the critical
endpoint (μq ¼ μCEPq or T ¼ TCEP) as a function of T=TCEP

or μq=μCEPq . κðT=TCEPÞjμq¼μCEPq
showed an increasing behav-

ior on both sides, not very close to the CEP. However, we
concluded that this trend might be a consequence of the
rescaling by TCEP, since for small volumes the critical
endpoint moves to lower T values. For κðμq=μCEPq ÞjT¼TCEP

the rescaling by μCEPq did not alter the results and a slight

decrease was observed near the critical endpoint, which
might be also connected to the significant shift of the CEP.
Therefore, we claimed that the kurtosis probably does not
possess a strong size dependence, which is consistent with
what has been found in the literature using a DS approach.
As an alternative to the low-momentum cutoff, the

discretization of the momentum space was also studied.
On the one hand, it turned out that the implementation of
this approach is more complicated, and on the other hand,
in several cases, the solution of the field equations was lost.
Moreover, the μq dependence of the condensates showed a
more complicated, staircaselike structure than in the low-
momentum cutoff case, due to the different modes falling
below the Fermi surface—which may be an artifact of our
assumption due to the size-independent Fermi surface, but
could also be realized in certain physical systems, e.g., in
solid state physics. This behavior makes it more difficult to
define a unique transition point and causes some unex-
pected behavior in the trajectory of the CEP as a function of
the characteristic size L, and the resulting finite size effects
are not conclusive. The choice of different boundary
conditions, such as PBCs, APBCs, and PBC-0, also causes
significant changes in the trajectory of the CEP. We have
also compared the behavior of our model with other models
in the literature.
Comparing the predictions for the size dependence of the

CEP for the low-momentum cutoff with and without
modification of the vacuum part (see Fig. 3) and for the
discretization with APBCs (Fig. 16) and PBCs (Fig. 18), it
can be seen that completely different behavior can be
found. The role of the treatment of the vacuum term and the
different boundary conditions is paramount in the exact
trajectory of the CEP as L decreases. The only similarity
seems to be that, for small L, the CEP moves toward the μq
axis, as expected.
Since the present results donot provide a consistent picture

of the details of the finite size effects on the phase diagram,
we need to find better approaches to this problem. For this
purpose, in addition to improving the models used, we need
more sophisticated methods to implement these effects, e.g.,
by considering more physically motivated shape and boun-
dary conditions for the system. Furthermore, besides the
momentum space constraints, one could consider the finite
size dependence in direct space as well. However, this would
lead to a nonhomogeneous potential and hence to nonho-
mogeneous meson condensates, which would require over-
coming new obstacles.
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APPENDIX A: ORDER OF THE TRANSITION IN
THE CHIRAL LIMIT FOR FINITE SIZE

It is expected that the chiral phase transition, which is a
crossover for the explicitly broken theory, at small chemical
potential turns to a second-order phase transition as the
explicit breaking is removed. As seen from the mean-field
level Landau theory of phase transitions, this happens only
in the explicitly restored limit. Since in our case also a
mean-field approximation is used, it is not surprising that
we see a second-order phase transition only in the chi-
ral limit.
However, in recent works [55,56] using a different model

the authors found that for finite sizes the transition becomes
second-order already for a small but nonzero explicit
breaking. Accordingly, we investigate the order of the
chiral phase transition in and close to the chiral limit using
the low-momentum cutoff scenario to mimic the impact of
finite system size.
The explicit breaking of the chiral symmetry in the

ePQM model is governed by the external fields hN=S which
are coupled to a single meson field in the Lagrangian (2).
Thus, to study the removal of the explicit breaking and the
chiral limit, one has to start with the physical value of hN
determined by the parametrization and reduce this param-
eter until reaching hN ¼ 0. The field equation for ϕN in
Eq. (11) can be rewritten in the form

m2
π
ϕN

Z2
π
− hN ¼ 0; ðA1Þ

whereZπ is the pion wave function renormalization constant
that is connected with the pion decay constant by fπ ¼
ϕN=Zπ . For hN → 0, and nonzero spontaneous symmetry
breaking (i.e., ϕN > 0), the pion mass has to vanish as
expected in the chiral limit (Goldstone theorem). We note
that to connect the parameter hN to the current quark mass,
which does not appear naturally in a quark-meson model, a
possible way is provided by the Gell-Mann–Oakes–Renner
(GMOR) relation, m2

πf2π ¼ −2m0hq̄qi, where m0 is the
current quark mass, while hq̄qi is the chiral condensate.
According toEq. (A1) theGMORrelation can be rewritten as
hNϕN ¼ −2m0hq̄qi, which directly connects the product of
the explicit and spontaneous symmetry breaking parameters
in the linear sigma model to the parameters in a quark-based
model, like the NJL. Although hNϕN gives the expected
physical value for the product, to obtain m0 (≡mu) the
identification of the hq̄qi chiral condensate would be needed
in the quark-mesonmodel separately. However, in the ePQM
model, the quark-antiquark condensate is included in the

meson masses via the fermion one-loop correction.
Therefore, the parametrization that is based on the meson
masses fixes the value of the chiral condensate, which turns
out to be too low in our case.
In Fig. 19, the chiral phase boundary is shown in the

chiral limit for the Nf ¼ 2ðlightÞ þ 1ðheavyÞ case, i.e., for
hN → 0, hS ¼ hphysS (left axis on the Columbia plot). It can
be seen that the transition at vanishing μq moves to lower
temperature with the decreasing hN and the crossover
becomes a second-order phase transition at hN ¼ 0, which
is consistent with the behavior found in previous studies
[57–59]. The CEP moves to lower quark chemical poten-
tials and higher temperatures and ends up in a tricritical
point, as it is expected. The universality class of the second-
order phase transition is of the mean-field theory, which can
be seen in Fig. 20, where the scaling of the order parameter
Δ (subtracted condensate) is presented in the chiral limit. In
Fig. 21, the volume dependence of the phase boundary can
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be seen in the chiral limit. The solid and dashed lines
correspond to first- and second-order phase transitions,
respectively, while the black dots now mark the tricritical
points. It is clear that the qualitative picture is the same as in
the case of physical explicit breaking shown in the top
panel of Fig. 3.
A possible method to find the order of a phase transition

is to look at the chiral susceptibility, i.e., the derivative of
the order parameter with respect to the temperature
χch ¼ ∂Δ=∂T. χch diverges in the case of a second-order
phase transition at the transition point. Although in a
numerical calculation the divergence can never be seen
explicitly, for any hN > 0 it can be shown that the
maximum of χch is finite for any investigated L values.
The hN=h

phys
N dependence of the maximum of the chiral

susceptibility is shown in Fig. 22 for L ¼ 4 fm. It seems
from the log-log plot that there will be no divergence for
finite hN . The points can be fitted with the form aðxþ cÞb
for x ¼ hN=h

phys
N . However, the c parameter is getting

smaller and smaller when the number of points is increased
or the accuracy of the computation is improved. The best
fit can be obtained by setting c ¼ 0, in which case a ¼
16.99 and b ¼ −0.33 is found. Furthermore, from the field
equation in Eq. (11) it is clear that for any T < ∞
temperature and for a nonvanishing explicit breaking
ϕN ¼ 0 cannot be a solution. Therefore, the order param-
eter will not vanish for finite temperatures, resulting in an
increasingly sharper but still crossover transition when hN
is decreased. On the other hand, we also emphasize that at
hN ¼ 0 one finds a second-order phase transition even for
finite volumes.

APPENDIX B: SOLID ANGLE INTEGRATION
FROM A CUBE TO A SPHERE

In this section, Eqs. (35)–(37) are derived, which are the
result of a solid angle integral. Imagine a cube with side
length 2λΣ and draw a sphere with a radius R ¼ p which is
in the interval λΣ < p <

ffiffiffi
3

p
λΣ. If p ¼ λΣ, the sphere is

inside the cube and touches its sides, while if p ¼ ffiffiffi
3

p
λΣ,

the sphere includes the cube and touches its vertices. In
between, part of the sphere is outside the cube, while part is
inside. Our goal is to calculate—for a general p in the
interval mentioned—the area of the sphere that is outside of
the cube. If we divide the resulting area by p2, we get the
desired solid angle Ω ¼ S=p2. This is illustrated in Fig. 23.
For λΣ < p ≤

ffiffiffi
2

p
λΣ there is a cap on each side of the

cube. The surface of this spherical zone is Szone ¼ 2πRh
with height h ¼ p − λΣ and R ¼ p, from which the full
solid angle in this p range is given by

ΩλΣ
1 ðpÞ ¼ 6Szone=p2 ¼ 12

πðp − λΣÞ
p

: ðB1Þ

At p ¼ ffiffiffi
2

p
λΣ the caps touch each other. As the momentum

increases, they overlap, so either the double counting must
be removed or another method is needed. In both cases, one
has to calculate spherical triangles and circular sectors of a
spherical cap. We will calculate the contribution of modi-
fied caps that avoid double counting by dividing them into
four congruent spherical triangles △S (shown as ordinary
triangles when drawn in a plane for simplicity) and four
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FIG. 21. The phase diagram for several finite sizes in the chiral
limit. Here the dashed lines correspond to second-order phase
boundary.

 10

 100

 1000

 10000

1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00

� c
h

m
a
x
  
[1

/G
e
V

]

hN/hN
phys

fitting f(x)=a x
b

numerical results

FIG. 22. The maximum of the chiral susceptibility as a function
of the explicit breaking hN=h

phys
N .

FIG. 23. Intersection of a cube with side length 2λΣ and a
sphere with radius R ¼ p for λΣ < p <

ffiffiffi
2

p
λΣ (left), p ¼ ffiffiffi

2
p

λΣ
(middle), and

ffiffiffi
2

p
λΣ < p <

ffiffiffi
3

p
λΣ (right).
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congruent sectors, as can be seen in Fig. 24. To determine
the parameters of △S and the angle of the circular sectors,
one can use the right-angled triangles △1−3 also shown in
the same figure. The solid angle covered by a spherical
triangle is equal to its spherical excess, which in our case is
E△S

¼ 2δþ β − π. The angle β can be calculated from the
right triangle △1 on the side of the cube with vertices at
the center of the side, at half of the edge of the cube, and at
the point on the edge where the sphere intersects it. Its
unknown leg with length g=2 can be obtained from the right
triangle △2, which has the same vertices on the edge of the
cube, but the third one is in the center of the cube. With a
straightforward calculation, one can get

β ¼ 2 arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=λ2Σ − 2

q
: ðB2Þ

We obtain δ using Napier’s rule for right spherical
triangles [60],

tanðγ=2Þ ¼ cosðδÞ tanðρÞ; ðB3Þ

where γ and ρ are the angles of the arcs, γ̃ ¼ pγ and ρ̃ ¼ pρ,
which are the sides of△S. They can be expressed with p and
λΣ, with using △2 and △3 (with vertices at the center of the

cube, at the side of the cube, and at the intersection of the
sphere and the edge of the cube), respectively, to have

γ ¼ 2 arccos
� ffiffiffi

2
p

λΣ=p
�
; ðB4Þ

ρ ¼ arccos ðλΣ=pÞ; ðB5Þ

which results in

δ ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2λ2Σ
2p2 − 2λ2Σ

s
: ðB6Þ

Thus, the excess of the spherical triangle becomes

E△S
¼ 2 arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2λ2Σ
2p2 − 2λ2Σ

s
ðB7Þ

þ2 arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=λ2Σ − 2

q
− π: ðB8Þ

The contribution of a circular sector of a spherical cap
can be given by the solid angle of the cap itself normalized
by the ratio of the inner angle α and 2π. Using
4α ¼ 2π − 4β, the four sectors of a cap give

Ω4⌔ ¼
�
2π − 8 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=λ2Σ − 2

q �
ðp − λΣÞ=p; ðB9Þ

and thus the full solid angle of the sphere outside the cube
for

ffiffiffi
2

p
λΣ < p <

ffiffiffi
3

p
λσ is finally given by

ΩλΣ
2 ðpÞ ¼ 4

p

 
12p arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2λ2Σ
2p2 − 2λ2Σ

s

þ 12λΣ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=λ2Σ − 2

q
− 3πðλΣ − pÞ

!
:

ðB10Þ

[1] J. D. Castaño Yepes, F. M. Paniagua, V. Muñoz Vitelly,
and C. F. Ramirez-Gutierrez, Phys. Rev. D 106, 116019
(2022).

[2] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G 38,
085101 (2011).

[3] E. S. Fraga, T. Kodama, L. F. Palhares, and P. Sorensen,
Proc. Sci. FACESQCD2010 (2010) 017.

[4] N. Magdy, M. Csanád, and R. A. Lacey, J. Phys. G 44,
025101 (2017).

[5] N. Magdy, Universe 5, 94 (2019).
[6] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 71, 014032

(2005).
[7] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 72, 034017

(2005).
[8] J. Braun, B. Klein, H. J. Pirner, and A. H. Rezaeian, Phys.

Rev. D 73, 074010 (2006).
[9] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, Phys.

Rev. D 90, 054012 (2014).

FIG. 24. Division of the modified caps into spherical triangles
and sectors (top) and the right-angled triangles (bottom).

SENSITIVITY OF FINITE SIZE EFFECTS TO THE … PHYS. REV. D 108, 076010 (2023)

076010-19

https://doi.org/10.1103/PhysRevD.106.116019
https://doi.org/10.1103/PhysRevD.106.116019
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.22323/1.117.0017
https://doi.org/10.1088/1361-6471/44/2/025101
https://doi.org/10.1088/1361-6471/44/2/025101
https://doi.org/10.3390/universe5040094
https://doi.org/10.1103/PhysRevD.71.014032
https://doi.org/10.1103/PhysRevD.71.014032
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1103/PhysRevD.90.054012
https://doi.org/10.1103/PhysRevD.90.054012


[10] G. Almasi, R. Pisarski, and V. Skokov, Phys. Rev. D 95,
056015 (2017).

[11] B. Klein, Phys. Rep. 707–708, 1 (2017).
[12] A. Bhattacharyya, P. Deb, S. K. Ghosh, R. Ray, and S. Sur,

Phys. Rev. D 87, 054009 (2013).
[13] A. Bhattacharyya, R. Ray, and S. Sur, Phys. Rev. D 91,

051501 (2015).
[14] Z. Pan, Z.-F. Cui, C.-H. Chang, and H.-S. Zong, Int. J. Mod.

Phys. A 32, 1750067 (2017).
[15] Q.-W. Wang, Y. Xia, C. Shi, and H.-S. Zong, arXiv:

1802.00258.
[16] Q. Wang, Y. Xiq, and H. Zong, Mod. Phys. Lett. A 33,

1850232 (2018).
[17] K. Xu and M. Huang, Phys. Rev. D 101, 074001 (2020).
[18] S.-S. Wan, D. Li, B. Zhang, and M. Ruggieri, arXiv:

2012.05734.
[19] N. B. Mata Carrizal, E. Valbuena Ordóñez, A. J. Garza

Aguirre, F. J. Betancourt Sotomayor, and J. R. Morones
Ibarra, Universe 8, 264 (2022).

[20] L. M. Abreu, E. S. Nery, and A. P. C. Malbouisson, Phys.
Rev. D 91, 087701 (2015).

[21] L. M. Abreu and E. S. Nery, Int. J. Mod. Phys. A 31,
1650128 (2016).

[22] L.M. Abreu and E. S. Nery, Phys. Rev. C 96, 055204 (2017).
[23] T. Ishikawa, K. Nakayama, and K. Suzuki, Phys. Rev. D 99,

054010 (2019).
[24] G. Kovács, P. Kovács, P. M. Lo, K. Redlich, and G. Wolf,

Proc. Sci. FAIRness2022 (2023) 029.
[25] B.-L. Li, Z.-F. Cui, B.-W. Zhou, S. An, L.-P. Zhang, and

H.-S. Zong, Nucl. Phys. B938, 298 (2019).
[26] J. Luecker, C. S. Fischer, and R. Williams, Phys. Rev. D 81,

094005 (2010).
[27] Y.-Z. Xu, C. Shi, X.-T. He, and H.-S. Zong, Phys. Rev. D

102, 114011 (2020).
[28] J. Bernhardt, C. S. Fischer, P. Isserstedt, and B.-J. Schaefer,

Phys. Rev. D 104, 074035 (2021).
[29] J. Bernhardt, C. S. Fischer, and P. Isserstedt, Phys. Lett. B

841, 137908 (2023).
[30] F. Karsch, K. Morita, and K. Redlich, Phys. Rev. C 93,

034907 (2016).
[31] K. Redlich and K. Zalewski, arXiv:1611.03746.
[32] P. Kovács, Z. Szép, and G. Wolf, Phys. Rev. D 93, 114014

(2016).
[33] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa, and D. H.

Rischke, Phys. Rev. D 87, 014011 (2013).
[34] G. Kovács, P. Kovács, and Z. Szép, Phys. Rev. D 104,

056013 (2021).

[35] J. Takátsy, P. Kovács, Z. Szép, and G. Wolf, Universe 5, 174
(2019).

[36] P. Kovács, J. Takátsy, J. Schaffner-Bielich, and G. Wolf,
Phys. Rev. D 105, 103014 (2022).

[37] P. Kovács, G. Kovács, and F. Giacosa, Phys. Rev. D 106,
116016 (2022).

[38] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[39] P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich, and C.

Sasaki, Phys. Rev. D 88, 074502 (2013).
[40] P. M. Lo, K. Redlich, and C. Sasaki, Phys. Rev. D 103,

074026 (2021).
[41] P. M. Lo, M. Szymański, K. Redlich, and C. Sasaki, Eur.

Phys. J. A 58, 172 (2022); 58, 191(E) (2022).
[42] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).
[43] G. Colangelo, S. Durr, and R. Sommer, Nucl. Phys. B, Proc.

Suppl. 119, 254 (2003).
[44] G. Colangelo and S. Durr, Eur. Phys. J. C 33, 543 (2004).
[45] G. Colangelo, S. Durr, and C. Haefeli, Nucl. Phys. B721,

136 (2005).
[46] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C 88,

034911 (2013).
[47] X. Luo (STAR Collaboration), Proc. Sci. CPOD2014 (2015)

019.
[48] J. Adamczewski-Musch et al. (HADES Collaboration),

Phys. Rev. C 102, 024914 (2020).
[49] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126,

092301 (2021).
[50] G. Kovacs and P. Kovacs, Acta Phys. Pol. B Proc. Suppl. 14,

115 (2021).
[51] T. Goecke, C. S. Fischer, and R. Williams, Phys. Rev. B 79,

064513 (2009).
[52] P. M. Lo and E. S. Swanson, Phys. Rev. D 89, 025015

(2014).
[53] B.-J. Schaefer and M. Wagner, Phys. Rev. D 79, 014018

(2009).
[54] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[55] H.-t. Feng, Y.-h. Xia, and H.-s. Zong, Phys. Rev. D 100,

054012 (2019).
[56] Y. Hu and H.-t. Feng, Eur. Phys. J. C 81, 1134 (2021).
[57] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A.

Stephanov, and J. J. M. Verbaarschot, Phys. Rev. D 58,
096007 (1998).

[58] Y. Hatta and T. Ikeda, Phys. Rev. D 67, 014028 (2003).
[59] O. Philipsen, Symmetry 13, 2079 (2021).
[60] I. Todhunter, Spherical Trigonometry: For the Use of

Colleges and Schools, 5th ed. (Macmillan, London, 1886).

KOVÁCS, KOVÁCS, WOLF, LO, and REDLICH PHYS. REV. D 108, 076010 (2023)

076010-20

https://doi.org/10.1103/PhysRevD.95.056015
https://doi.org/10.1103/PhysRevD.95.056015
https://doi.org/10.1016/j.physrep.2017.09.002
https://doi.org/10.1103/PhysRevD.87.054009
https://doi.org/10.1103/PhysRevD.91.051501
https://doi.org/10.1103/PhysRevD.91.051501
https://doi.org/10.1142/S0217751X17500671
https://doi.org/10.1142/S0217751X17500671
https://arXiv.org/abs/1802.00258
https://arXiv.org/abs/1802.00258
https://doi.org/10.1142/S0217732318502322
https://doi.org/10.1142/S0217732318502322
https://doi.org/10.1103/PhysRevD.101.074001
https://arXiv.org/abs/2012.05734
https://arXiv.org/abs/2012.05734
https://doi.org/10.3390/universe8050264
https://doi.org/10.1103/PhysRevD.91.087701
https://doi.org/10.1103/PhysRevD.91.087701
https://doi.org/10.1142/S0217751X16501281
https://doi.org/10.1142/S0217751X16501281
https://doi.org/10.1103/PhysRevC.96.055204
https://doi.org/10.1103/PhysRevD.99.054010
https://doi.org/10.1103/PhysRevD.99.054010
https://doi.org/10.22323/1.419.0029
https://doi.org/10.1016/j.nuclphysb.2018.11.015
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.81.094005
https://doi.org/10.1103/PhysRevD.102.114011
https://doi.org/10.1103/PhysRevD.102.114011
https://doi.org/10.1103/PhysRevD.104.074035
https://doi.org/10.1016/j.physletb.2023.137908
https://doi.org/10.1016/j.physletb.2023.137908
https://doi.org/10.1103/PhysRevC.93.034907
https://doi.org/10.1103/PhysRevC.93.034907
https://arXiv.org/abs/1611.03746
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.87.014011
https://doi.org/10.1103/PhysRevD.104.056013
https://doi.org/10.1103/PhysRevD.104.056013
https://doi.org/10.3390/universe5070174
https://doi.org/10.3390/universe5070174
https://doi.org/10.1103/PhysRevD.105.103014
https://doi.org/10.1103/PhysRevD.106.116016
https://doi.org/10.1103/PhysRevD.106.116016
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevD.88.074502
https://doi.org/10.1103/PhysRevD.103.074026
https://doi.org/10.1103/PhysRevD.103.074026
https://doi.org/10.1140/epja/s10050-022-00822-7
https://doi.org/10.1140/epja/s10050-022-00822-7
https://doi.org/10.1140/epja/s10050-022-00836-1
https://doi.org/10.1103/PhysRevD.77.014511
https://doi.org/10.1016/S0920-5632(03)80450-4
https://doi.org/10.1016/S0920-5632(03)80450-4
https://doi.org/10.1140/epjc/s2004-01593-y
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://doi.org/10.1103/PhysRevC.88.034911
https://doi.org/10.1103/PhysRevC.88.034911
https://doi.org/10.22323/1.217.0019
https://doi.org/10.22323/1.217.0019
https://doi.org/10.1103/PhysRevC.102.024914
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.5506/APhysPolBSupp.14.115
https://doi.org/10.5506/APhysPolBSupp.14.115
https://doi.org/10.1103/PhysRevB.79.064513
https://doi.org/10.1103/PhysRevB.79.064513
https://doi.org/10.1103/PhysRevD.89.025015
https://doi.org/10.1103/PhysRevD.89.025015
https://doi.org/10.1103/PhysRevD.79.014018
https://doi.org/10.1103/PhysRevD.79.014018
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevD.100.054012
https://doi.org/10.1103/PhysRevD.100.054012
https://doi.org/10.1140/epjc/s10052-021-09927-7
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.67.014028
https://doi.org/10.3390/sym13112079

