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In this work, we study the quasi-two-body decays B. — K*h — Kzh(h = D,D,, K, x,n,%') in the
perturbative QCD (PQCD) approach. The two-meson distribution amplitudes ®%** are introduced to
describe the final-state interactions of the Kz pair, which involve the timelike form factors F,(s)
parametrized by the relativistic Breit-Wigner function and the Gegenbauer polynomials. We calculate the
branching ratios for these quasi-two-body decays, from which one can obtain the branching ratios for the
corresponding two-body decays under the narrow width approximation relation. We find that B — K*+D°
and B} — K*°D™ have the largest branching ratios, which can reach up to 107, while the branching ratios
for other two-body decays are very small and only about 1078 — 10~7. As we expected, the branching ratios
of the pure annihilation decays are usually small, while in our considered such type of decays, the channel
B — K*K™ has the largest branching ratio, which is near 107°. These results are consistent with
the previously PQCD calculations obtained in the two-body framework, which can be tested by future
LHCb experiments. For the decays B} — K**D° - K%z*D°, B — K**D* - K*z~D*, and
B — KD} — K~z D, we also calculate their direct CP violations and find that A-p(BF — K**D° —
K7+ D) = (=14.61)7)% is the largest one, which is possible measured by the present LHCb experiments.
For the pure annihilation type decays, there is no CP violation, because only the tree operators are involved.
Furthermore, we give the differential distributions of the branching ratios and the direct CP violations in the

Kr invariant mass o for the decays B. — K*D(,) = KzDyy).

DOI: 10.1103/PhysRevD.108.076009

I. INTRODUCTION

In B, ; ;. meson systems, the B, meson is the only quark-
antiquark bound state (hc) composed of both heavy quarks
with different flavors. It can decay only via weak inter-
action, since the two flavor asymmetric quarks (b and c)
cannot be annihilated into gluons (photons) via strong
(electromagnetic) interaction. While each of the two heavy
quarks can decay individually through the b — ¢(u),c —
s(d) transitions, and they can also annihilate through weak
interaction, so the B. meson has many rich decay channels,
B. meson decays provide an ideal platform to study the
nonleptonic weak decays of heavy mesons, to test the
standard model, and to search for new physics signals. In
recent years, some experimental studies on B, meson
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decays to multihadron final states, such as B, —
KtK—z* [1], B, = J/wDYOK* J/wDW+K* [2], B, —
pprt  [3], and B, J/yrtzat,J/wK x xt,
J/wKTK~K™ [4], have been performed except for the
B, two-body decays. These kinds of decays are getting
more and more attention, which is caused by the following
reasons. First, these decays involve much more complicated
QCD dynamics compared with the two-body decays
because of entangled nonresonant and resonant contribu-
tions and significant final-state interactions. Second, many
new resonance states are observed in the invariant mass
distributions of the multihadron final states, which are
difficult to understand in terms of a common hadron and
called as exotic states. Last but not least, the direct CP
violations for some of these decays can be analyzed in both
two-body and multibody frameworks. In the multibody
framework, the direct CP asymmetry may depend on the
invariant mass distributions of the meson pair decaying from
some internal resonances and be (strongly) affected by the
finite widths of the resonances. Meanwhile, in the two-body
framework with the resonance masses being fixed, the direct
CP violation is just a number, which may be overestimated

Published by the American Physical Society
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or underestimated compared with the actual value. So it is
important and necessary to research the B, meson decays to
the multihadron final states. In this work, one of our main
purposes is to check the width effects of the resonance state
K* on the direct CP violations for the quasi-two-body
decays B. —» K*h — Kzh (h=D,Dg,K,7,n,n') in the
perturbative QCD (PQCD) approach. The other purpose is
to understand the annihilation contributions under the three-
body framework. As a feature of the PQCD approach, the
annihilation-type Feynman diagrams are calculable, which
are important for the decays occurring through the weak
annihilation diagrams only.

In fact, in order to study the quasi-two-body B
meson decays, many approaches based on symmetry prin-
ciples and factorization theorems have been proposed.
Symmetry principles include the U-spin [5-7], isospin
and flavor SU(3) symmetry [8-11], and the factorization-
assisted topological-diagram amplitude approach [12], etc.
Factorization theorems include the QCD-improved factori-
zation approach [13—17] and the PQCD approach [18-22]. It
is argued that the factorization theorem of the quasi-
two-body B(.) decays is approximately valid when the
two particles move collinearly and the bachelor particle
recoils back in the final states. According to this quasi-two-
body-decay mechanism, the two-hadron distribution ampli-
tudes (DAs) are introduced into the PQCD approach, where
the strong dynamics between the two final hadrons in the
resonant regions is included.

This paper is organized as follows. The framework of
the PQCD approach for the quasi-two-body B, decays
is reviewed in Sec. II, where the kinematic variables
for each meson are defined and the P-wave Kz pair
distribution amplitudes up to twist 3 are parametrized.
Then, the analytical formulas of decay amplitudes for each
Feynman diagram and the total amplitudes for these decays
are listed. In Sec. III, the numerical results and discussions
are presented. The final section is devoted to our conclu-
sions. Some details related functions are collected in the
Appendix.

II. THE FRAMEWORK

In the framework of the PQCD approach for the quasi-
two-body decays, the amplitude for the B, — K*h — Krzh
decays can be written as [23,24]

A=0p ® HQ O™ @ @, (1)

where ®p (@) denotes the DAs of the initial (final
bachelor) meson, ®%»* represents the P-wave Kz pair
DAs, and ® denotes the convolution integrations over the
parton momenta. Similar to the two-body decay case, the
evolution of the hard kernel H for the b quark decay is
calculable perturbatively and starts with the diagrams of

single hard gluon exchange. The nonperturbative dynamics
is absorbed into those DAs ®p , @), and Py,

In the rest frame of the B, meson, we define the B,. meson
momentum py , the K(z) meson momentum p;(p,), the
K* meson momentum p = p; + p,, and the bachelor
meson 7 momentum ps in light-cone coordinates as

mpg mpg,
- = ]7]70 ) - < 1 _r27 90 )
PB. \/z( T) p ( n T)

V2
mp

P= (2. 1=n.07), (2)

mpg,
2

P2 = \/Z (1-90

where 1 =w?/[(1 = r?)mp ] with the mass ratio r=
my/mg_and ¢ is the momentum fraction for the kaon
meson. The momenta of the light quarks in the B, meson,
the K* meson, and the bachelor meson 4 are defined as kp,
k, and ks, respectively:

P = (¢ - rz)’ (1=On.pir).

= 7).{n. par). (3)

kg = (0,x3p5, Kpr), k= (zp*,0,krp),
ks = (0, x3p3. Ksr), (4)

where xp, z, and x5 are the corresponding momentum
fractions.

A. Wave functions

In the course of the PQCD calculations, the necessary
inputs contain the DAs, which are constructed via the
nonlocal matrix elements. The B, meson light-cone matrix
element can be decomposed as

/ d*2¢™5(0]b,4(0)cy(2)|B.(ps.))

\/W KﬁB + M)y5¢B (kB)]/}a (5)

where N, = 3 is the color factor. Here, we consider only
the contribution from the dominant Lorentz structure. In
coordinate space, the distribution amplitude ¢ with an
intrinsic b (the conjugate space coordinate to the trans-
verse momentum k) dependence is adopted in a Gaussian
form [25]:

ol U
— 2wb?x(1 = X)]’ (6)
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where the decay constant fp = 0.489 £ 0.005 GeV is
obtained in the lattice QCD [26] and the shape parameter
o, = 1.0+ 0.1 GeV is related to the factor Nz by the

/5.
2\/2N,
development on the transverse-momentum-dependent
hadronic wave functions, one can find more in Refs.
[27,28].

For the D meson, the light-cone distribution amplitudes
(LCDA?5) in the heavy quark limit can be written as [29,30]

normalization [ ¢p (x,0)dx = For the recent

(D(P3)144(2)24(0)[0)

1 .
\/Z—NZA dxe”P¥[ys(p3 + mp)dpp(x,b)] 5 (7)

with the distribution amplitude ¢p(x, b):

fpox(1 —x)[1+ Cp(1 —2x)]

(8)

where Cp =0.5+0.1, » = 0.1 GeV, and fp=211.9 MeV.
It is similar for the LCDAs of the D; meson but with
different parameters Cp = 0.4 £0.1, ® = 0.2 GeV, and
fp, =249 MeV, caused by a little SU(3) breaking effect
[31]. As to the LCDAs for the light pseudoscalar mesons

. K, 17(’ ) up to twist 3 can be found in our recent work [18].
The P-wave Kz pair distribution amplitudes are
defined as [32]

\/ZITC ﬂ¢0(z1 C, a)Z) + w¢s (Z7 g? a)Z)

P1¥r — P
(20 -1)

P-wave __
(I)I( n -

; bz w2>], (9)

with the functions

. 3FK7r(s)
¢O - \/W

+ a!K*%(S(Zz —1)2 - 1)]101(2(; - 1),

z(1-2z) [1 +al.302z-1)

_ 3F(s)
- 22N,
N 3Ft(s)
- 242N,

b5 (1-22)P(20 - 1),

¢ (22— 1)°Pi(20 - 1), (10)

where the Legendre polynomial P;(2{ —1) =2{ — 1 and

the Gegenbauer moments a! k= 0.05+£0.02 and aQK* =
0.15 £ 0.05 [21]. It is well known that the relativistic Breit-
Wigner (RBW) function is an appropriate model for the
narrow resonances which can be well separated from any
other resonant or nonresonant contributions with the same
spin and is widely used in the experimental data analyses.
Here, the timelike form factor Fy,(s) with s = @® =

m?(Kr) via the RBW line shape is written as [33-35]

2
Mg«

FKn(S) =

(11)

my. — s — img:T(s)’

where the invariant mass-dependent width I'(s) is defined as

. - 31 - 2
I(s) = Ty mg (| D1 |> + (I'po Irew)

. (12)
Vs \Ipol/) 1+ rew)’

Here, |p;| is the magnitude of the momentum for the
daughter meson K or z in the K* meson rest frame defined
in the next subsection, and | py’| is the value of | p;’| at
s = m%.. The barrier radius rgy = 4.0 GeV~! is taken as in
Refs. [33-35].

B. Analytic formulas

For the quasi-two-body decays B, — K*D(;) — KzDyy),
the effective Hamiltonian relevant to the b — s(d) tran-
sition is given by [36]

He = G—{ > VoV iy | €10 () + o) 0% ()]

\/z q=u,c
- Z thV;(d)Ci(/l)Oi(,u)}—I—H.C., (13)
i=3~10
where the Fermi coupling constant Gp~1.166 X

107 GeV~2 and V,, Vi i and V, V5, o are the products
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments. The scale y separates the effective Hamiltonian into
two distinct parts: the Wilson coefficients C; and the local
four-quark operators O;. The local four-quark operators for
b — d transition are written as
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FIG. 1. The leading-order Feynman diagrams for the decay Bf — K*+*D° — K%z+D°.

O\ = (di4))y_p @) y_- o5 = (Ez Dv-a(@7b))y_s-
dib )V—AZ(ZI,/'QJ')V_N 04 = (d;b; v—AZ(‘_Ith')v—A’
q q
Os = (aibi)V—AZ(E]ij)v+A’ O = (Elibj)v_AZ(Z]jQi>v+A’
q q
3 3 - _
0 E(db —AZ q]Qj V4A® 08 = E(dibj)V_AZeq(q.jqi)VJrA’
3 3
09 = 5 —AZ q;q; V_A’ Oy = 5 V AZ q]% V-A® (14)

where the color indices are i and j. Here, V + A refer to the Lorentz structures y, (1 + ys). The local four-quark operators for
b — s transition can be obtained by replacing d with s in Eq. (14). While for the pure annihilation decays
B. — K*'zn(K,n")) — Kzz(K,n")), the related weak effective Hamiltonian is given as

Hyr = i—gvcbvzs( 2 [C1 0 () + G ()0 (w) . (15)

with the single tree operators
0, = (d, ,)V_A(Ejb,»)v_A, 0, = (c_i,-ul-)V_A(Ejbj)V_A (for b — d transition), (16)
Oy = (5iuj)y_,(Cibi)y_yo Oy = (5;u;)y_4(¢;b;),_, (for b — s transition). (17)

The typical Feynman diagrams at the leading order for the quasi-two-body decays B, — K*h — Krh are shown in Fig. 1,
where we take the decay B — K**D® — K%2* D" as an example. We mark LL, LR, and SP to denote the contributions
from (V —A)(V —A), (V = A)(V + A), and (S — P)(S + P) operators,' respectively. The amplitudes from the factorizable
emission diagrams Figs. 1(a) and 1(b) are given as

"It is noted that the (S — P)(S 4 P) operators are obtained from (V — A)(V + A) ones through the Fierz transformation to get the
right color structure for factorization to work.
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1 o
Fit = Sﬂ'FKﬂm%CCFA dedx3A bybsdb dbygp(xp. by)dp(x3, b3){[-7[n(1 = x3) + x3(1 = 2r) = 2r,)]

- rrb(l + ’7) + r2(x3 - 2rb)]a.v(ta)h(ae’ﬁa’ bl’ bS) exp[_Sab(ta)]St(x3)
+ [1(2r +nxp) = 2rxp(1 +n) + 2 (xp = 1)] X (1) h(ae. By, b1 b3) exp[=Sap (1) S, (xp) . (18)

f]EL — JTIER?]:EP =0, (19)
where 7j =1 -7 and the mass ratio r, =m,/mg . n and r have been defined under Eq. (3). The hard function

h(a,, f4, by, b3), the hard scales ¢, ,, the Sudakov factor exp [—S,,(¢)], and the threshold resummation factor S,(x) are given
in the Appendix. The amplitudes for the nonfactorizable emission diagrams Figs. 1(c) and 1(d) are written as

2 1 o0 _
Mt = 16\/;”"1%‘.(71?/) dedzdx3A b\bdb,dbpg(xg, by)pp(x3, b1)po{[r[(1+1)(xp — 1) + fx3 + n2]

+ (1 - 772)(1 —XB— Z)]as<tc>h(ﬂc’ae7bl’b) exp{_Scd(tc)] + [(I"— Fl)(l —)C3)77] - I"[(l + ”I)XB - ’72]
+11(2xp — 2)]s(ta) h(Bas e, by, b) exp[=S.a(ta)]}, (20)

2 0
MR = 16\/5”’”4BCCF\/'1(1 — ) A ' dxgdudss A bbby dbdy(xg. b1)dp (s, by ol (1 — x5 — 2) (& + )

= r(iixg = 2)(¢* = ¢") + 2r(1 = x5 = 2)¢"las (1) h(Pes @, by, b) exp[=Sca(to)] + [rli(xs = 1) + 2)(¢" + ¢')
+2r(xp = 2)¢" +71(xp = 2) (" = ")as(1a) h(Ba, @e. b1, b) expl=Sca(ta)]}, (21)

> 1 o -
g = 16y 2, i [z, [ bubabiabyes b ot bl ~10es 1 1)1 =3y

—rzn +7[2(1 = xg) = z]]ag(te)h(Bes ac, by, b) exp[=S,q(te)] + [r[(1 — x3) + n(z — x5) — xp]
+ (1 =1*)(xg = 2)]as(ta) h(Ba, @e, by, b) exp[=Sca(ta)]}- (22)

It is noticed that the integration of b3 has been performed using & function 6(b, — b3), leaving only integration of »; and b.
The amplitudes from the nonfactorizable annihilation diagrams Figs. 1(e) and 1(f) are listed as

2 o
MLL = 16\/;7rm%CCFAI dedzdx3/0 bybydb dbsdp(xp, by )dp(x3, b3)¢0{ {;‘7[(1 +1)(1 = xg=2) = ry)¢p°
— (1= P + ) = s = 8] + 2020, + x = | (1) (Bi 0 b1 ) exp[=Seg ()]
o [l = xp(1 1)+ re 02+ 1y 01 = P (8 + ) + 2(¢8 = )

+ 2025 = xu)] | (1) h (B ag. 1. bs) expl=Ses (1) }. (23)

2 1 0
MR = 16\/;7””%6@?[) dedde3A byb3db,db3¢p(xp, by)dp(x3, b3)¢0{[’”[(1 +n)(xp = rp = 1) + 7ix3 4 nz]¢p°

+i/n(1 =) (141, —xp = 2)(¢" + @)l (1. )h(Be. ag. br. by) exp[=S,,(t,)] + r[(1 +n)(xp + 1)

—iix3 = n2)¢” =\ [n(1 = ?)(r. + xp = 2)(¢* + @)t (t7) (. g, by b3) exp[—Sef(ff)]}- (24)

The amplitudes from the factorizable annihilation diagrams Figs. 1(g) and 1(h) are listed as

076009-5



ZHANG, ZHANG, WANG, SUN, and YANG PHYS. REV. D 108, 076009 (2023)

1 00
Pyt = =8afy s Cp [ dzdrs [ bbsdbdbgoles,b){ s +

+2rm(l +n+ 7lx3)¢s} a,(ty)h(a,, By, b, bs)exp [=S,,(t,)]S(x3)
+ [[2(1 +n)rr. — iz + r*(2xa0 — 1)]¢° — W[M(df + )

+ (2r - rc)ﬁ(¢s - 4)[)]} as(th)h(awﬁh’ b3’ b) €xXp [_Sgh(th>]sf(z)}’ (25)
FSP = 16xfymb Cr A ' dzds /0 * bbsdbdbsdp (x3, bs)
s [+ 20000 + 2010 = ) L (1, @y By b ) exp =S8, 1S, ()
+[2rzn = qi(re = 20)]¢° + /(1 = ) [7z(¢* = ¢') = 4rr.¢p*]]
(26)

X as(th)he (aa’ﬂhv b3v b) exXp [_Sgh(th)]sl(z)}'

By combining the amplitudes from the different Feynman diagrams, the total decay amplitudes for the quasi-two-body
decays B, = K*D(;) = KznDy) are given as
A(Bf - KD - K°z*D%) =V, Vi, [a, F5- + C,MEY] + V (Vi [ FEX + € MEY]
= ViV, [(C3 + Co)(MEh + MEH) + (Cs + C7)(M® + MEF)

1 1 1 1
+ <C4 +2C3+ Cyg +—C9> (Fa-+ f&L)+<C6 +3C+ Gyt gC7) (F3P + J—“EP)] ,

3 3
(27)
1
A(Bf = K*D" - Kt7~D") =V, Vi [a F5- + CMEY =V, Vi, [<C3 - ZCQ) M+ (C5 + Co) M-
1 LR LR 1 1 LL
1 1 1 1 1 1
+ <C4 +§C3 _ECIO —6C9>~7:]£L + <C6 +§C5 _ECS —6C7)~7:§P
1 1
+ <C6 +3Cs+ G+ 5C7> fﬂ ; (28)
_ 1
A(Bf — KD} —» K=n™D) =V Vi, [a, Fi + CMEY ] =V Vi, [(03 - 5@) MEE 4 (C3 4 Co) M-
1 LR LR 1 1 LL
H(Cs=5C )M+ (Cs + C)MG® + [ Cy +3C 4 Cuot 56 ) F
1 1 1 1 1 1
+ <C4 +36G-5C0 —6C9)-7:%L + <C6 +36 =56 —6C7)-7:§P
1 1
+ <C6 +3Cs+ Gyt §C7> J—'ﬁl’} . (29)

Similarly, we can also obtain the total amplitudes for the pure annihilation decays B, — K*h — Kxh with h = K, z,n")

as follows:
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A(B = KK = KO29KH) =V, V7, [albe + ClMgL} , (30)

A(BE = K KO = KOn KO =V V%, [alf% + CIMI;L} : (31)

A(BF = K20 - KO 2%) = V,, V7, [alfgL + CIMH : (32)

ABf - K2t - K°2%1) = A(Bf - K** 7" —» KOz 70), (33)

A(BF = K= KOt n) = Vo V%, [al( L4 o5 ¢ — FEE sin ) + Cy (MES" cos ¢ + FEE™ sin ¢)} . (34)
ABE = K = Konty) =V, V5, [al (Fa&" sinp + FE- cos ) + Cy(Mg™" sin p + FE-" cos d))} , (35)

where the combinations of the Wilson coefficients a; =
C, +Cy/3 and a, = C, + C,/3 and the subscripts 7,
represent the two flavor states composing to the physical

states n and 7’ as follows:
. > ( ) (36)
cos ¢ N

< n > B <cos ¢
7))  \sing
with ¢ = 39.3°+ 1.0° [37].

Then the differential decay rate can be described as

dB _ _ |pil|ps]

2
T
dw? < 64nms3,

AP, (37)

where 75 is the mean lifetime of B. meson and the
kinematic variables |p;| and |p;| denote the magnitudes

of the K and the bachelor meson # momenta in the center-
of-mass frame of the Kz pair:

1
kA :5\/[(171%( —m%)2 —2<m%( +m%)w2 —i—w“}/wz,

1
ol = [, =2 =2+ o ] o

(38)

III. NUMERICAL RESULTS

The adopted input parameters in our numerical calcu-
lations are summarized as follows (the QCD scale,
the masses, the decay constants, and the widths are in
units of GeV, and the B, meson lifetime is in units of
picoseconds) [38]:

Agep =025, mpe = 6274, m, =48,  mge =0494,  mg = 0.498,
me=0140,  mp=0.135,  mgo=0.89555,  my-- = 0.89176,
frr=0217,  Tgo=00462, Ty =00514, 75 =051, (39)

As to the CKM matrix elements, we employ the Wolfenstein parametrization with the inputs [38]

A =0.22500 £ 0.00067,
p = 0.159 £ 0.010,

A= 082610018,
77 = 0.348 £ 0.010. (40)

By using the differential branching ratio in Eq. (37) and the squared amplitudes in Eqs. (27)—(35), integrating over the full
K invariant mass region (mg +m,) <@ < (Mg —m,) withh = D), K, x, "), we obtain the branching ratios for these
quasi-two-body decays as

B(B; — K™D = Ko DF) = (874" 480018 x 107, (an
Br(B: =KD" — K*a~D") = (1400 < 107 )
BB — KD} — K DY) = (L1 0) x 107, )
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Br(Bf —» K*°K* — K'2°K*) =
Br(Bf - KKO > KOH+F) =
Br(B —» Kzt — K°2%7%) = (

Br(Bf —» K2’ - Kz 2%) = (

40.014+0.14-+0.014+1.37 7

3.32%50020.13-0.00-0.00 ) X 1077, (44)
+0.1540.05+0.15-+0.00 -7

1.30%070720.00-0.06-0.37 ) % 1077, (45)

0 74+0.00+0.01+0.00+1.09

F000-0.01-0.00 024 ) X 1078, (46)

+0.0040.01-+0.01+0.81 -8
0.742501-001-0.01-0.41 ) X 107°, (47)

Br(Bj - K*+1’] - KOJT+I1) _ (0'504»0401+0.03+0.09+0.35) X 10—8’ (48)

Br(B! — K — Ko') = (

where the first error is from the B, meson shape parameter
uncertainty wp = 1.0+ 0.1 GeV, the following two
errors come from the Gegenbauer coefficients in the Kz

pair distribution amplitudes aqK* =0.05+0.02 and

ag x+ = 0.15 £ 0.05, and the last one is induced by varying
the hard scale ¢ from 0.75¢ to 1.25¢ (without changing
1/b;) and QCD scale Agcp = 0.25 +0.05 GeV, which
characterize the next-to-leading-order effect in the PQCD

approach. One can find that the errors induced by aq k- and

agK* are from a few percent to 15% for most of these

considered decays. For the pure annihilation decay modes,
the error stemming from the uncertainty of the B, meson
shape parameter wg_1is small. It can be roughly understood
from the analytical formulas Eqs. (30)—(35). Because the
Wilson coefficient a; = C, 4+ C,/3 is larger than C, the
main contribution comes from the factorizable annihila-
tion amplitude FL", where the terms about wp are not
involved. The situation is a little different with the decay
Bf — K*"D® — K%z D°, where the error induced by wp_
can reach 16%. By comparison, the branching ratios of
these pure annihilation decays are more sensitive to the
variation of the hard scale ¢ and the QCD scale Agcp. It

—0.00-0.03-0.08-0.13

1 58+0'00+0'00+0‘04+0'00

0012002000 141 ) X 1078, (49)

means that these decays might be sensitive to the higher-
order corrections. The errors arise from the uncertainties
of the parameters; for instance, the Wolfenstein parame-
ters, the pole mass of mg-+, and the width ['x- are very
small and have been neglected. Furthermore, the branch-
ing ratios for the decays involving the 7, 7 mesons are not
sensitive to the variation of the n —#' mixing angle
(¢ =39.3+£1.0)°, and the corresponding uncertainties
from the branching ratios are less than 1%.

If we assume the isospin conservation for the strong
decays K* — Kz, namely

%0 4+ _— *0 0.0
'K ()—)Kﬂ)zz/& 'K 0—>K77.'):]/3’
I'(K* — Kn) ['(K* - Kn)
(K - K°z+) (K" - K*a°)
['(K*" - Kn) /3 I'(K*" - Kn) /3. (50)

under the narrow width approximation relation, the branch-
ing ratio of each quasi-two-body decay can be related with
that of the corresponding two-body decay using a simple
formula. Take the decay B} — K**D° — K27 DO as an
example, the formula can be expressed as

TABLEI. The CP averaged branching ratios for the two-body decays B — K*h with h = D, K, m, n"). The errors are the same as

those given in Egs. (41)-(49).

Decay modes This work Two-body framework [40,41] RCQM [42]
B~ KD L3130 00102%) x 1070 (2397030009 % 1070 347 1070
B!~ KD* 2107010050 W509) 106 (1919300047) x 1079 288 1079
B KD} LTGRO0 x 107 (L2008 x 107 10107
B — K*K* 9.97 506-030-0.00-060 ) X 1077 (10.0253553207) x 1077
_ 0.7+4.1+0.1 -
2001-0.14-0090.55 ) X 10 7 ~8f0.17:r2‘1j0.0) x 1077

B/ - K*0z*
B} —» K*tz0
BY - K*'p

Bf - K"y

+0.00+0.03+0.00+3.27 -8
2232500 0.05-0.01-073 ) X 10

+0.00--0.01+0.02+1.21 -8
LI1Z061 20022002062 ) % 10

+0.0140.04+0.13+0.52 -8
0.75Z5 00 0.04—0.12-050 ) X 10

2.37+0400+0400+0.06+0.00 X ]0—8

( )
( )
( )
( )
Bf — K" K° (1.95+02150.07+:0.2240.00)
( )
( )
( )
(2375500 0.03-0.14-197 )

1
+0.7+0.4+0.2 -8
33505 04201 ) % 10

(

( )
(L6201701 05 ) x 1078
(0.9205205 3 ) x 1078
( )

1.141.040.0 -8
3.8% 1206200 ) X 10
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Br(B — K"+ D" — K+ D%) = Br(B} — K** D)
Br(K** — K°z%). (51)

Then we can obtain the branching ratios of the relevant two-
body decays from those of the considered quasi-two-body
decays, which are listed in Table I. In these considered
decays, B — K**D° and B} — K**D* have the largest
branching ratios which can reach up to 10 and are possible
measured by the future High-Energy LHC (HE-LHC) and
High-Luminosity LHC (HL-LHC) experiments [39]. From
our calculations, we find that, in these decays with Dy
meson involved, the penguin amplitudes are dominated.
Although the values of the CKM matrix elements V.,V 4
and V V) are close to each other, the tree contributions
associated with V.,V 4 are from the annihilation-type
amplitudes and very tiny. For example, such contributions
are only about 2.9(1.1)% of the total branching ratio for the
decay B} — K**D(Bf — K*°Df). There are some
differences in the decay B — K**D° which receives
two kinds of tree contributions: One is associated with
the CKM matrix elements V7,V , and the other is asso-
ciated with the CKM elements V7,V ... Although V?,V is

smaller than Vﬁths(“QbK“ = 0.0215), the former is con-
cbh” s

nected with the (non)factorizable emission amplitude
FLE(MLY), and the latter is connected with the (non)
factorizable annihilation amplitude FL-(MLE) shown in
Eq. (27). It is interesting that the differences from the
amplitudes are huge enough to compensate the differences
from the CKM elements. In fact, the proportions of these
three kinds of contributions being connected with V7,V ,
ViV, and V7,V .o in the total branching ratios are
1:0.24:0.06. So the tree contributions coming from
CKM matrix elements V7,V  are more important than
those from V7,V in the decay B — K*"D°. Although
these tree contributions are not much helpful to increase the
branching ratio, they are important to the direct CP violation
of the decay B} — K**D°. Because of the absence of the
tree contribution from the factorizable and nonfactorizable
emission amplitudes in the decays B} — K*°D* and
B — K*°Df, the direct CP asymmetries in these two
decays may be smaller. We will make a detailed discussion
on this topic in the latter. As to the decay B — K*°D{, its
analytical formulas for the tree (penguin) amplitudes are
almost the same as those for the decay B — K*°D™ (the
differences are from the wave functions of D and D), while
the value of the corresponding CKM elements V.,(V,;) is
only about 0.2 times that of V (V). So the branching ratio
of the decay B — K*°D7 is much smaller and only about
the order of 10~7. Compared with the branching ratios
obtained in the previous PQCD calculations under the two-
body framework [40,41], one can find that three-body and
two-body calculations about these decays are consistent with
each other; it supports the PQCD approach to exclusive

hadronic B, meson decays. For the decay B} — K*+ DV, its
branching ratio is smaller than the result given by the
relativistic constituent quark model (RCQM) [42] but is
much larger than 0.68 x 10~ predicted by the light front
quark model (LFQM) [43] and 1.36 x 10~/ given by the
Salpeter method [44]. This is because that the contributions
from annihilation diagrams and penguin diagrams are
missed in the LFQM and Salpeter method, so the decays
dominated by the annihilation and penguin contributions
might not be well predicted by these approaches. It is
no surprise that Br(B! — K**D*) =159 x 1077 and
Br(Bf — K**D}) =2.09 x 1078 given by the Salpeter
method are almost one order of magnitude smaller than
the PQCD predictions. It is meaningful to clarify these
divergences in the future LHCb experiments. For the pure
annihilation decays B, — K*h with h representing a light
pseudoscalar meson K, 7, or 11(’ ), there are two decay modes;
one is strange decay (AS = 1) corresponding to the smaller
CKM matrix element V, ~0.22, which refers to
Bf — KOzt K*t2% K*ty!"), and the other is nonstrange
decay (AS = 0) corresponding to the larger CKM matrix
element V,, ~ 1, which refers to Bf — K*'K+, K**K°.
One can find that the branching ratios for the AS =0
channels are much larger than those for the AS = 1 decays.
For these two AS = 0 processes, the decay B} — K*°K™
has the larger branching ratio, which is near 107 and
possibly observed by the future LHCb experiments. It is
interesting that this result is consistent with the estimation
from the SU(3) flavor symmetry [45]. Although both of the
decays B — K*°K* and B} — K**K? belong to the same
decay mode, there exists a large gap between their branching
ratios. It is very different for the case of Br(B;} — K*'K™)
and Br(B; — K**K"), which are close to each other
predicted by many theoretical approaches, such as the
PQCD approach [46], the QCD factorization approach
[47], and the soft-collinear effective theory [48]. Such
abnormality shows significant difference for the annihilation
amplitudes between the B (heavy-light system) and B,
(heavy-heavy system) decays. If this point can be clarified
by the experiments, it will be helpful to further improve our
understanding of the annihilation contributions.

The decay amplitudes of the quasi-two-body decays
depend on the Kz invariant mass, which are different from
the fixed kinematics in the two-body decays. So we can plot
the differential distribution of the branching ratios shown in
Fig. 2, where we take the decays with Dy, involved as
examples. One can see that the differential branching ratios
for these three decays exhibit peaks at the K* meson mass.
The main portion of the branching ratios lies in the region
around the pole mass of the K* resonance as expected. For
example, the branching ratio obtained by integrating over @
in the range myg+ — g+ to myg- 4+ I'g+ is about 70% of the
total decay rate for the channel B — K**D% — K%z DO,
Although we plot the differential branching ratios versus the
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dBr/do (10°Gev')
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FIG. 2. The predicted B, — K*D(;) — KzD ) decay spectra in the Kr invariant mass.

invariant mass @ in the range myg + m, to 2 GeV, the
contributions from the energy region @ > 1.2 GeV can be
neglected safely.

Now we turn to the evaluations of the CP violation for
the decays with D(,) meson involved. The direct CP
violations induced from the interference between the tree
and penguin amplitudes can be defined as

4 _T(BZ = ) =T(B > f)
“ T r(B; - )+ (B = f)’

(52)

where f is the CP conjugated final state of f. The
numerical results for these direct CP asymmetries are
given as

ACP(Bj - K*+DO - KOH+D0)

_(_ +2.74+0.4+0.0+8.8 -2
= (—14.6"7 05 0.1-00 ) X 1072,

(53)
14CP(BSL d I{*ol)Jr d K+7[—D+)

_ [ +0.02+0.0140.02+0.13 2
= (=0.14255020.01-0.02—000 ) X 1077,

(54)
Acp(Bf —» K*°Df — K7t DY)

— (1.07+0.22+0.13+0.18+0.00) X 10—2’

—0.42-0.24-0.09-7.61 (55)

where the errors are the same with those given in

Egs. (41)-(49). Unlike the branching ratio, the direct
CP asymmetry is not sensitive to the parameters in DAs

TABLE II.

but suffers from large uncertainties due to the hard scale ¢
and the QCD scale Agcp, which can be reduced by
including the high-order corrections. From the numerical
results, we find the following points.

(1) Under the three-body framework calculations,
there do not exist so large direct CP violations
as more than 60% in magnitude predicted by the
previous PQCD calculations [40] for the decays
B, — K**D° K**DY. Our predictions are more
comparable with those given by the Salpeter
method and the RCQM shown in Table II. These
results can be clarified by the future LHCb ex-
periments.

Compared with the channel B} — K*D* —
Ktz D%, the decay Bf — K**D° = K972t DO re-
ceives more tree amplitude contributions, which
come from not only the emission diagrams, but also
the annihilation diagrams. Although the emission
factorizable amplitude FLY is suppressed by the
CKM matrix elements V, V7, it still provides
strong interference with the penguin amplitudes
because of the large Wilson coefficient a; = C,+
C,/3. So there exists more significant direct CP
violation in the decay B} — K**D® — K%z+D° as
we expected.

As to the decay B} — K**D* - Ktz~ D%,
although the CKM matrix element products
V.Vy, and V V7 associated with the tree and
penguin amplitudes, respectively, are almost equal
to each other, the tree contributions from the

(@)

3

The direct CP violation (x1072) of the decays Bf — K**D°, Bf — K*°D*, and Bf — K*°D{,

where the various errors have been added in quadrature. By comparison, we also give the results from the PQCD
approach in the two-body framework [40], the Salpeter method [44], and the RCQM [42].

Decay modes This work PQCD (two-body framework) [40] Salpeter method [44] RCQM [42]
Bf — K*TD° —14.61)2 -66.2"2%? =255 —6.22
Bf - KD —0.14703 3.5504 —-0.53 —0.822
B} — K*°Df 1.07:9% 61.017, 9.04 13.3
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annihilation-type amplitudes are very small and  Last, we plot the differential distributions of the direct
about 2 orders lower than the penguin contributions. ~ CP violations for the decays B} — K**D° — K°z+D°,
So the interference between these two kinds of B — K*'D+ - K*z~D*, and B, - KD} - K~z D}
contributions is weak, which induces much smaller  shown in Fig. 3. The measured CP violation is just a number

CP violation.

in the two-body framework, where the K* resonance mass is

(4) The amplitudes of the decay B — K*D] = fixed to my. during the calculations, while the direct CP
K=zt D{ can be obtained from those of the channel  violation in the three-body framework is dependent on the
Bf - K**D* — K*a~D" by replacing D*(V,,V,,) K invariant mass w. So the total direct CP asymmetry is the
with Df(V,;.V,,). The total decay amplitudes for  integration of the corresponding differential distribution over
these two decays can be rewritten as

. The integrated direct CP asymmetry for the quasibody
decays may be very different with that obtained in the two-

A=V V T=V4V, P=V:V.T [ 142 ei(a+5):| body framework; that is to say, the latter may be overesti-
c cq t q c cq 5

mated or underestimated compared with the actual value. In
(56)  view of this point, the three-body framework should be more
appropriate for studying the quasi-two-body decays. Here,

where T and P are the tree and penguin amplitudes, =~ We also find that the differential distribution curve for
respectively, and @ and & are the weak and strong ~ Acp(B. = K**Df — K~z Dy) lies in the positive value
phases, respectively. The parameters z and a are  region, which is contrary to the cases of Acp(B. —

defined as KD - K2t D) and Acp(Bf - K*°D* - K+tn~DV).
It is mainly because of the differences from the weak phases.
_ V?bvtq B ’ a=arg|— V?bvtq , (57)
VisVeq T ViVeq IV. SUMMARY

In this paper, we studied the quasi-two-body decays

with g =d(s) for the decay B = K™Di = g g~ Kzh with h = D.D,. K.x.n.nf by using the
K~ n"D{(Bi — K*'D* — K*z~D"). Then the di- PQCD approach. Under the quasi-two-body-decay mecha-

rect CP asymmetries are

2z sina siné

Acp

T Z 11+ 2cosacossd

nism, the Kz pair DAs were introduced, which include the
final-state interactions between the Kz pair in the resonant
(58) region. Both the resonant and nonresonant contributions are
described by the timelike form factors F,(s), which are
parametrized by using the relativistic Breit-Wigner formula

As the weak phases are measured as arg[— %] ~  for the P-wave resonance K*. Under the narrow width
cbVed . . . . . .

040 and VaVil 002 1381, thei ! approximation relation and the isospin conservation, the

—0.40 and arg[- V?th] ~0.02 [38], their corre- branching ratios for the two-body decays B/ — K**h can

sponding sine values are about —0.39 and 0.02,  be related with those of the considered quasi-two-body
respectively. So one can find that the size of  decays, so it provides us a new way to study these quasi-
Acp(B. = K*°DY) is larger than that of Acp(Bf —  two-body B, decays in the three-body framework. We
K**D*) mainly because of the larger weak phase in ~ found that the branching ratios are consistent with those
the former. They have opposite signs due to the  calculated under the two-body framework. It supports the

differences from the weak phases.
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PQCD approach to exclusive hadronic B, meson decays.
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FIG. 3. The differential distributions of Acp in @ for the decays B — K**D° — K°z*D°, B} — K*D* — K*z~D*, and

Bf - KD} - K=2tD7.
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For the direct CP violation, there exist significant
differences between the three-body and two-body frame-
works. Under the two-body framework with the kinematics
fixed, the direct CP violation Acp is just a number, while
under the three-body framework the direct CP asymmetry is
a differential distribution, which depends on the K=z
invariant mass . It is more convenient to compare with
the Dalitz-plot analysis of Acp provided by experiments.
The Acp calculated in the two-body framework corresponds
to that in the three-body framework with the Kz invariant
mass @ being fixed to K* pole mass. In general, the
integration of the A p differential distribution over the
invariant mass @ under the three-body framework is differ-
ent from that obtained under the two-body framework; the
latter is usually overestimated or underestimated. Compared
with the direct CP violations for the decays B, — K* Dy,
obtained in these two frameworks under the PQCD
approach, the results from the three-body framework are
moderated by the finite width of the K* resonance and
become comparable with those calculated within other
theoretical approaches, such as the Salpeter method and
the RCQM. This indicates that it is more appropriate to
study the quasi-two-body B, meson decays in the three-
body framework than in the two-body framework. These
results can be tested by future experiments.

We also researched the annihilation amplitude contri-
butions to the pure annihilation decay modes B, — K*h —

Krh with h = K, ,n, 7' in the three-body framework and
found there exist significant differences in the annihilation
amplitudes between the B (heavy-light system) and B,
(heavy-heavy system) decays through comparing the
branching ratios of the decays B — K*'K* K*TK°
and B} — K*°K*, K*TK°. If such a point can be clarified
by future experiments, it will be helpful to further improve
our understanding about the annihilation contributions.
Furthermore, among these considered pure annihilation
decays, the channel B} — K**K° has the largest branch-
ing ratio, which is near 1075, It is possibly observed by the
LHCDb experiments.
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APPENDIX: SOME RELEVANT FUNCTIONS

The explicit expressions of the hard functions #; with
i = (a,...,h) are obtained from the Fourier transform of
the hard kernels and given as

hi(a, B, by, by) = h((f,by) X hy(a, by, by),
Ko(VBb), p>0;
B { \/_bz p<0;
hy(t, by, by) = { bi)lo( \/_b VKo(v/@by) + (by < b)), > 0: "
b)Io(/=aby)Ky(iv/=aby) + (by <> by), a<0;

where K, and I, are modified Bessel functions with K (ix)

=% (=No(x) + iJy(x)) and J, is a Bessel function. The hard

scales #; are chosen as the maximum of the virtuality of the internal momentum transition in the hard amplitudes and listed

as follows:

@l my /1B 1/b5.1/by }.
m, mp /B /b1 1/b.
mp /Tl mg /I 1 /b3 1 /by
Vel

mg JIBil.1/b3.1/6}.

E

where

{my /o] mp /1B 1751 1/b3}.
14 = max {mB( Vl0aal,mg \/|Bal, 1/b1, l/b},

t; = max {ch\/E’mBF\/W 1/bs, l/bl},
{mBL \/W, mp, \/W 1/b, 1/193},

(A2)
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a,=ry+(L=r)[(n=1)x3=nl.  Ba=(r —xp)[(1 =n)(x3 = 1) + xg].

ap = (r* = xg)(xg + 1 - 1), Po = Pa

a = Pa. Be=[1—xp—(1=r)z[(1 =n)x; + x5 — 1],

aq = Pa Ba=[(1-2)r* —xp +2][(1 —n)(xs — 1) + x3],

a, = (1=n)(r* = 1)xsz, Be=r, = [(1 =)z + x5 = 1][(1 = n)x; + x5 = 1],

Ay = a,, By =re—=[(r* = Dz + xp][(n = 1)x3 + xp],

ay = (1=r*)[(n—1)x3 =1, By = .

ay=re+ (1 =n)r(z-1) -1, B = .. (A3)

The Sudakov factors can be written as

Suh(t):s<%x3,b ) +s<\/B§x3,b > +§//tb1 i (M)+2//th3@yq( ).
Scd(t)_s<%x3,b>+s<\/§z b) ( 320(1— 2). b> +s(\/B§x3,b,> +%/jbl +2/t ‘Z—” vo(u
1= (o)) 1-20) 35 3 2o

S,1(1) —s(t}%z,b) +s<'f/%(1—z),b> +s %x3,b3) H//tbiﬂ (M)+2/’ d—”yq(ﬂ). (A4)

1/b; M
As we know, the double logarithms a, In? x produced by the radiative corrections are not small expansion parameters when
the end point region is important; in order to improve the perturbative expansion, the threshold resummation of these
logarithms to all orders is needed, which leads to a quark jet function

21421 (3/2 + ¢)
V(1 + ¢)

with ¢ = 0.3. It is effective to smear the end point singularity with a momentum fraction x — 0.

Si(x) = (1 = x)]°, (AS)
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