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In this work, we study the quasi-two-body decays Bc → K�h → Kπhðh ¼ D;Ds; K; π; η; η0Þ in the
perturbative QCD (PQCD) approach. The two-meson distribution amplitudes ΦP-wave

Kπ are introduced to
describe the final-state interactions of the Kπ pair, which involve the timelike form factors FKπðsÞ
parametrized by the relativistic Breit-Wigner function and the Gegenbauer polynomials. We calculate the
branching ratios for these quasi-two-body decays, from which one can obtain the branching ratios for the
corresponding two-body decays under the narrow width approximation relation. We find that Bþ

c → K�þD0

and Bþ
c → K�0Dþ have the largest branching ratios, which can reach up to 10−6, while the branching ratios

for other two-body decays are very small and only about 10−8 − 10−7. As we expected, the branching ratios
of the pure annihilation decays are usually small, while in our considered such type of decays, the channel
Bþ
c → K̄�0Kþ has the largest branching ratio, which is near 10−6. These results are consistent with

the previously PQCD calculations obtained in the two-body framework, which can be tested by future
LHCb experiments. For the decays Bþ

c → K�þD0 → K0πþD0, Bþ
c → K�0Dþ → Kþπ−Dþ, and

Bþ
c → K̄�0Dþ

s → K−πþDþ
s , we also calculate their directCP violations and find that ACPðBþ

c → K�þD0 →

K0πþD0Þ ¼ ð−14.6þ9.2
−1.1 Þ% is the largest one, which is possible measured by the present LHCb experiments.

For the pure annihilation type decays, there is no CP violation, because only the tree operators are involved.
Furthermore, we give the differential distributions of the branching ratios and the direct CP violations in the
Kπ invariant mass ω for the decays Bc → K�DðsÞ → KπDðsÞ.

DOI: 10.1103/PhysRevD.108.076009

I. INTRODUCTION

InBu;d;s;c meson systems, theBc meson is the only quark-
antiquark bound state ðb̄cÞ composed of both heavy quarks
with different flavors. It can decay only via weak inter-
action, since the two flavor asymmetric quarks (b and c)
cannot be annihilated into gluons (photons) via strong
(electromagnetic) interaction. While each of the two heavy
quarks can decay individually through the b → cðuÞ; c →
sðdÞ transitions, and they can also annihilate through weak
interaction, so the Bc meson has many rich decay channels,
Bc meson decays provide an ideal platform to study the
nonleptonic weak decays of heavy mesons, to test the
standard model, and to search for new physics signals. In
recent years, some experimental studies on Bc meson

decays to multihadron final states, such as Bc →
KþK−πþ [1], Bc → J=ψDð�Þ0Kþ; J=ψDð�ÞþK�0 [2], Bc →
pp̄πþ [3], and Bc → J=ψπþπ−πþ; J=ψKþπ−πþ,
J=ψKþK−Kþ [4], have been performed except for the
Bc two-body decays. These kinds of decays are getting
more and more attention, which is caused by the following
reasons. First, these decays involve much more complicated
QCD dynamics compared with the two-body decays
because of entangled nonresonant and resonant contribu-
tions and significant final-state interactions. Second, many
new resonance states are observed in the invariant mass
distributions of the multihadron final states, which are
difficult to understand in terms of a common hadron and
called as exotic states. Last but not least, the direct CP
violations for some of these decays can be analyzed in both
two-body and multibody frameworks. In the multibody
framework, the direct CP asymmetry may depend on the
invariant mass distributions of the meson pair decaying from
some internal resonances and be (strongly) affected by the
finite widths of the resonances. Meanwhile, in the two-body
framework with the resonance masses being fixed, the direct
CP violation is just a number, which may be overestimated
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or underestimated compared with the actual value. So it is
important and necessary to research the Bc meson decays to
the multihadron final states. In this work, one of our main
purposes is to check the width effects of the resonance state
K� on the direct CP violations for the quasi-two-body
decays Bc → K�h → Kπh ðh ¼ D;Ds; K; π; η; η0Þ in the
perturbative QCD (PQCD) approach. The other purpose is
to understand the annihilation contributions under the three-
body framework. As a feature of the PQCD approach, the
annihilation-type Feynman diagrams are calculable, which
are important for the decays occurring through the weak
annihilation diagrams only.
In fact, in order to study the quasi-two-body BðcÞ

meson decays, many approaches based on symmetry prin-
ciples and factorization theorems have been proposed.
Symmetry principles include the U-spin [5–7], isospin
and flavor SUð3Þ symmetry [8–11], and the factorization-
assisted topological-diagram amplitude approach [12], etc.
Factorization theorems include the QCD-improved factori-
zation approach [13–17] and the PQCD approach [18–22]. It
is argued that the factorization theorem of the quasi-
two-body BðcÞ decays is approximately valid when the
two particles move collinearly and the bachelor particle
recoils back in the final states. According to this quasi-two-
body-decay mechanism, the two-hadron distribution ampli-
tudes (DAs) are introduced into the PQCD approach, where
the strong dynamics between the two final hadrons in the
resonant regions is included.
This paper is organized as follows. The framework of

the PQCD approach for the quasi-two-body Bc decays
is reviewed in Sec. II, where the kinematic variables
for each meson are defined and the P-wave Kπ pair
distribution amplitudes up to twist 3 are parametrized.
Then, the analytical formulas of decay amplitudes for each
Feynman diagram and the total amplitudes for these decays
are listed. In Sec. III, the numerical results and discussions
are presented. The final section is devoted to our conclu-
sions. Some details related functions are collected in the
Appendix.

II. THE FRAMEWORK

In the framework of the PQCD approach for the quasi-
two-body decays, the amplitude for the Bc → K�h → Kπh
decays can be written as [23,24]

A ¼ ΦBc
⊗ H ⊗ ΦP-wave

Kπ ⊗ Φh; ð1Þ

where ΦBc
ðΦhÞ denotes the DAs of the initial (final

bachelor) meson, ΦP-wave
Kπ represents the P-wave Kπ pair

DAs, and ⊗ denotes the convolution integrations over the
parton momenta. Similar to the two-body decay case, the
evolution of the hard kernel H for the b quark decay is
calculable perturbatively and starts with the diagrams of

single hard gluon exchange. The nonperturbative dynamics
is absorbed into those DAs ΦBc

, Φh, and ΦP-wave
Kπ .

In the rest frame of theBc meson, we define theBc meson
momentum pBc

, the KðπÞ meson momentum p1ðp2Þ, the
K� meson momentum p ¼ p1 þ p2, and the bachelor
meson h momentum p3 in light-cone coordinates as

pBc
¼ mBcffiffiffi

2
p ð1; 1; 0TÞ; p ¼ mBcffiffiffi

2
p ð1 − r2; η; 0TÞ;

p3 ¼
mBcffiffiffi
2

p ðr2; 1 − η; 0TÞ; ð2Þ

p1 ¼
mBcffiffiffi
2

p ðζð1 − r2Þ; ð1 − ζÞη;p1TÞ;

p2 ¼
mBcffiffiffi
2

p ðð1 − ζÞð1 − r2Þ; ζη;p2TÞ; ð3Þ

where η ¼ w2=½ð1 − r2Þm2
Bc
� with the mass ratio r ¼

mh=mBc
and ζ is the momentum fraction for the kaon

meson. The momenta of the light quarks in the Bc meson,
the K� meson, and the bachelor meson h are defined as kB,
k, and k3, respectively:

kB ¼ ð0; xBp−
B;kBTÞ; k ¼ ðzpþ; 0;kTÞ;

k3 ¼ ð0; x3p−
3 ;k3TÞ; ð4Þ

where xB, z, and x3 are the corresponding momentum
fractions.

A. Wave functions

In the course of the PQCD calculations, the necessary
inputs contain the DAs, which are constructed via the
nonlocal matrix elements. The Bc meson light-cone matrix
element can be decomposed asZ

d4zeikB·zh0jb̄αð0ÞcβðzÞjBcðpBc
Þi

¼ iffiffiffiffiffiffiffiffi
2Nc

p ½ðp=Bc
þMÞγ5ϕBc

ðkBÞ�βα; ð5Þ

where Nc ¼ 3 is the color factor. Here, we consider only
the contribution from the dominant Lorentz structure. In
coordinate space, the distribution amplitude ϕBc

with an
intrinsic b (the conjugate space coordinate to the trans-
verse momentum kT) dependence is adopted in a Gaussian
form [25]:

ϕBc
ðx; bÞ ¼ fBc

2
ffiffiffiffiffiffiffiffi
2Nc

p NBc
xð1 − xÞ exp

�
−
ð1 − xÞm2

c þ xm2
b

8ω2
bxð1 − xÞ

− 2ω2
bb

2xð1 − xÞ
�
; ð6Þ
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where the decay constant fBc
¼ 0.489� 0.005 GeV is

obtained in the lattice QCD [26] and the shape parameter
ωb ¼ 1.0� 0.1 GeV is related to the factor NBc

by the

normalization
R
1
0 ϕBc

ðx; 0Þdx ¼ fBc
2

ffiffiffiffiffiffi
2Nc

p . For the recent

development on the transverse-momentum-dependent
hadronic wave functions, one can find more in Refs.
[27,28].
For the D meson, the light-cone distribution amplitudes

(LCDAs) in the heavy quark limit can be written as [29,30]

hDðp3ÞjqαðzÞc̄βð0Þj0i

¼ iffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp3·z½γ5ð=p3 þmDÞϕDðx; bÞ�αβ; ð7Þ

with the distribution amplitude ϕDðx; bÞ:

ϕDðx; bÞ ¼
1

2
ffiffiffiffiffiffiffiffi
2Nc

p fD6xð1 − xÞ½1þ CDð1 − 2xÞ�

× exp

�
−ω2b2

2

�
; ð8Þ

where CD¼0.5�0.1, ω ¼ 0.1 GeV, and fD¼211.9MeV.
It is similar for the LCDAs of the Ds meson but with
different parameters CDs

¼ 0.4� 0.1, ω ¼ 0.2 GeV, and
fDs

¼ 249 MeV, caused by a little SU(3) breaking effect
[31]. As to the LCDAs for the light pseudoscalar mesons
π; K; ηð0Þ up to twist 3 can be found in our recent work [18].
The P-wave Kπ pair distribution amplitudes are

defined as [32]

ΦP-wave
Kπ ¼ 1ffiffiffiffiffiffiffiffi

2Nc
p

�
=pϕ0ðz; ζ;ω2Þ þ ωϕsðz; ζ;ω2Þ

þ =p1=p2 − =p2=p1

ωð2ζ − 1Þ ϕtðz; ζ;ω2Þ
�
; ð9Þ

with the functions

ϕ0 ¼
3FKπðsÞffiffiffiffiffiffiffiffi

2Nc
p zð1 − zÞ

�
1þ ak1K�3ð2z − 1Þ

þ ak2K�
3

2
ð5ð2z − 1Þ2 − 1Þ

�
P1ð2ζ − 1Þ;

ϕs ¼
3FsðsÞ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞP1ð2ζ − 1Þ;

ϕt ¼
3FtðsÞ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð2z − 1Þ2P1ð2ζ − 1Þ; ð10Þ

where the Legendre polynomial P1ð2ζ − 1Þ ¼ 2ζ − 1 and

the Gegenbauer moments ak1K� ¼ 0.05� 0.02 and ak2K� ¼
0.15� 0.05 [21]. It is well known that the relativistic Breit-
Wigner (RBW) function is an appropriate model for the
narrow resonances which can be well separated from any
other resonant or nonresonant contributions with the same
spin and is widely used in the experimental data analyses.
Here, the timelike form factor FKπðsÞ with s ¼ ω2 ¼
m2ðKπÞ via the RBW line shape is written as [33–35]

FKπðsÞ ¼
m2

K�

m2
K� − s − imK�ΓðsÞ ; ð11Þ

where the invariant mass-dependent width ΓðsÞ is defined as

ΓðsÞ ¼ ΓK�
mK�ffiffiffi

s
p

�j p1
�!j
j p0
�!j

�
3 1þ ðj p0

�!jrBWÞ2
1þ ðj p1

�!jrBWÞ2
: ð12Þ

Here, jp⃗1j is the magnitude of the momentum for the
daughter meson K or π in the K� meson rest frame defined
in the next subsection, and j p0

�!j is the value of j p1
�!j at

s ¼ m2
K� . The barrier radius rBW ¼ 4.0 GeV−1 is taken as in

Refs. [33–35].

B. Analytic formulas

For the quasi-two-body decays Bc → K�DðsÞ → KπDðsÞ,
the effective Hamiltonian relevant to the b → sðdÞ tran-
sition is given by [36]

Heff ¼
GFffiffiffi
2

p
(X

q¼u;c

VqbV�
qsðdÞ

h
C1ðμÞOðqÞ

1 ðμÞþC2ðμÞOðqÞ
2 ðμÞ

i

−
X

i¼3∼10
VtbV�

tsðdÞCiðμÞOiðμÞ
)
þH:c:; ð13Þ

where the Fermi coupling constant GF ≃ 1.166 ×
10−5 GeV−2 and VqbV�

qdðsÞ and VtbV�
tdðsÞ are the products

of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments. The scale μ separates the effective Hamiltonian into
two distinct parts: the Wilson coefficients Ci and the local
four-quark operators Oi. The local four-quark operators for
b → d transition are written as
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OðqÞ
1 ¼ ðdiqjÞV−Aðq̄jbiÞV−A; OðqÞ

2 ¼ ðd̄iqiÞV−Aðq̄jbjÞV−A;
O3 ¼ ðd̄ibiÞV−A

X
q

ðq̄jqjÞV−A; O4 ¼ ðd̄ibjÞV−A
X
q

ðq̄jqiÞV−A;

O5 ¼ ðd̄ibiÞV−A
X
q

ðq̄jqjÞVþA; O6 ¼ ðd̄ibjÞV−A
X
q

ðq̄jqiÞVþA;

O7 ¼
3

2
ðd̄ibiÞV−A

X
q

eqðq̄jqjÞVþA; O8 ¼
3

2
ðd̄ibjÞV−A

X
q

eqðq̄jqiÞVþA;

O9 ¼
3

2
ðd̄ibiÞV−A

X
q

eqðq̄jqjÞV−A; O10 ¼
3

2
ðd̄ibjÞV−A

X
q

eqðq̄jqiÞV−A; ð14Þ

where the color indices are i and j. Here, V � A refer to the Lorentz structures γμð1� γ5Þ. The local four-quark operators for
b → s transition can be obtained by replacing d with s in Eq. (14). While for the pure annihilation decays
Bc → K�πðK; ηð0ÞÞ → KππðK; ηð0ÞÞ, the related weak effective Hamiltonian is given as

Heff ¼
GFffiffiffi
2

p VcbV�
usðdÞ

h
C1ðμÞOðqÞ

1 ðμÞ þ C2ðμÞOðqÞ
2 ðμÞ

i
; ð15Þ

with the single tree operators

O1 ¼ ðd̄iujÞV−Aðc̄jbiÞV−A; O2 ¼ ðd̄iuiÞV−Aðc̄jbjÞV−A ðfor b → d transitionÞ; ð16Þ

O1 ¼ ðs̄iujÞV−Aðc̄jbiÞV−A; O2 ¼ ðs̄iuiÞV−Aðc̄jbjÞV−A ðfor b → s transitionÞ: ð17Þ

The typical Feynman diagrams at the leading order for the quasi-two-body decays Bc → K�h → Kπh are shown in Fig. 1,
where we take the decay Bþ

c → K�þD0 → K0πþD0 as an example. We mark LL, LR, and SP to denote the contributions
from ðV − AÞðV − AÞ, ðV − AÞðV þ AÞ, and ðS − PÞðSþ PÞ operators,1 respectively. The amplitudes from the factorizable
emission diagrams Figs. 1(a) and 1(b) are given as

(a)

0

0

(b) (c) (d)

(e) (f) (g) (h)

FIG. 1. The leading-order Feynman diagrams for the decay Bþ
c → K�þD0 → K0πþD0.

1It is noted that the ðS − PÞðSþ PÞ operators are obtained from ðV − AÞðV þ AÞ ones through the Fierz transformation to get the
right color structure for factorization to work.
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FLL
e ¼ 8πFKπm4

Bc
CF

Z
1

0

dxBdx3

Z
∞

0

b1b3db1db3ϕBðxB; b1ÞϕDðx3; b3Þf½−η̄½ηð1 − x3Þ þ x3ð1 − 2rÞ − 2rb�

− rrbð1þ ηÞ þ r2ðx3 − 2rbÞ�αsðtaÞhðαe; βa; b1; b3Þ exp½−SabðtaÞ�Stðx3Þ
þ ½η̄ð2rþ ηxBÞ − 2rxBð1þ ηÞ þ r2ðxB − 1Þ� × αsðtbÞhðαe; βb; b1; b3Þ exp½−SabðtbÞ�StðxBÞg; ð18Þ

FLL
e ¼ FLR

e ;F SP
e ¼ 0; ð19Þ

where η̄ ¼ 1 − η and the mass ratio rb ¼ mb=mBc
. η and r have been defined under Eq. (3). The hard function

hðαe; βa; b1; b3Þ, the hard scales ta;b, the Sudakov factor exp ½−SabðtÞ�, and the threshold resummation factor StðxÞ are given
in the Appendix. The amplitudes for the nonfactorizable emission diagrams Figs. 1(c) and 1(d) are written as

MLL
e ¼ 16

ffiffiffi
2

3

r
πm4

Bc
CF

Z
1

0

dxBdzdx3

Z
∞

0

b1bdb1dbϕBðxB; b1ÞϕDðx3; b1Þϕ0f½r½ð1þ ηÞðxB − 1Þ þ η̄x3 þ ηz�

þ ð1 − η2Þð1 − xB − zÞ�αsðtcÞhðβc; αe; b1; bÞ exp½−ScdðtcÞ� þ ½ðr − η̄Þð1 − x3Þη̄ − r½ð1þ ηÞxB − ηz�
þ η̄ð2xB − zÞ�αsðtdÞhðβd; αe; b1; bÞ exp½−ScdðtdÞ�g; ð20Þ

MLR
e ¼ 16

ffiffiffi
2

3

r
πm4

Bc
CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q Z
1

0

dxBdzdx3

Z
∞

0

b1bdb1dbϕBðxB; b1ÞϕDðx3; b1Þϕ0f½η̄ð1 − xB − zÞðϕs þ ϕtÞ

− rðη̄x3 − zÞðϕs − ϕtÞ þ 2rð1 − xB − zÞϕs�αsðtcÞhðβc; αe; b1; bÞ exp½−ScdðtcÞ� þ ½r½η̄ðx3 − 1Þ þ z�ðϕs þ ϕtÞ
þ 2rðxB − zÞϕs þ η̄ðxB − zÞðϕs − ϕtÞ�αsðtdÞhðβd; αe; b1; bÞ exp½−ScdðtdÞ�g; ð21Þ

MSP
e ¼ 16

ffiffiffi
2

3

r
πm4

Bc
CF

Z
1

0

dxBdzdx3

Z
∞

0

b1bdb1dbϕBðxB; b1ÞϕDðx3; b1Þϕ0f½ðr − η̄Þη̄x3 − rð1þ ηÞð1 − xBÞ

− rzηþ η̄½2ð1 − xBÞ − z��αsðtcÞhðβc; αe; b1; bÞ exp½−ScdðtcÞ� þ ½r½η̄ð1 − x3Þ þ ηðz − xBÞ − xB�
þ ð1 − η2ÞðxB − zÞ�αsðtdÞhðβd; αe; b1; bÞ exp½−ScdðtdÞ�g: ð22Þ

It is noticed that the integration of b3 has been performed using δ function δðb1 − b3Þ, leaving only integration of b1 and b.
The amplitudes from the nonfactorizable annihilation diagrams Figs. 1(e) and 1(f) are listed as

MLL
a ¼ 16

ffiffiffi
2

3

r
πm4

Bc
CF

Z
1

0

dxBdzdx3

Z
∞

0

b1b3db1db3ϕBðxB; b1ÞϕDðx3; b3Þϕ0

nh
η̄½ð1þ ηÞð1 − xB − zÞ − rb�ϕ0

− r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½zðϕs þ ϕtÞ − η̄x3ðϕs − ϕtÞ� þ 2ð2rb þ xB − 1Þϕs

i
αsðteÞhðβe; αa; b1; b3Þ exp½−SefðteÞ�

þ
h
η̄½η̄x3 − xBð1þ ηÞ þ rc þ ηz�ϕ0 þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½η̄x3ðϕs þ ϕtÞ þ zðϕs − ϕtÞ

þ 2ð2rc − xBÞϕs�
i
αsðtfÞhðβf; αa; b1; b3Þ exp½−SefðtfÞ�

o
; ð23Þ

MLR
a ¼ 16

ffiffiffi
2

3

r
πm4

Bc
CF

Z
1

0

dxBdzdx3

Z
∞

0

b1b3db1db3ϕBðxB; b1ÞϕDðx3; b3Þϕ0

n
½r½ð1þ ηÞðxB − rb − 1Þ þ η̄x3 þ ηz�ϕ0

þ η̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ð1þ rb − xB − zÞðϕs þ ϕtÞ�αsðteÞhðβe; αa; b1; b3Þ exp½−SefðteÞ� þ r½ð1þ ηÞðxB þ rcÞ

− η̄x3 − ηz�ϕ0 − η̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ðrc þ xB − zÞðϕs þ ϕtÞαsðtfÞhðβf; αa; b1; b3Þ exp½−SefðtfÞ�

o
: ð24Þ

The amplitudes from the factorizable annihilation diagrams Figs. 1(g) and 1(h) are listed as
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FLL
a ¼ −8πfBc

m4
Bc
CF

Z
1

0

dzdx3

Z
∞

0

bb3dbdb3ϕDðx3; b3Þ
nh

η̄ðη̄x3 þ ηÞϕ0

þ2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ð1þ ηþ η̄x3Þϕs

i
αsðtgÞhðαa; βg; b; b3Þ exp ½−SghðtgÞ�Stðx3Þ

þ
h
½2ð1þ ηÞrrc − η̄zþ r2ð2x2η̄ − 1Þ�ϕ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½2rzðϕs þ ϕtÞ

þ ð2r − rcÞη̄ðϕs − ϕtÞ�
i
αsðthÞhðαa; βh; b3; bÞ exp ½−SghðthÞ�StðzÞ

o
; ð25Þ

F SP
a ¼ 16πfBc

m4
Bc
CF

Z
1

0

dzdx3

Z
∞

0

bb3dbdb3ϕDðx3; b3Þ

×
n
½rðx3η̄þ 2ηÞϕ0 þ 2η̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ϕs�αsðtgÞheðαa; βg; b; b3Þ exp ½−SghðtgÞ�Stðx3Þ

þ½½2rzη − η̄ðrc − 2rÞ�ϕ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½η̄zðϕs − ϕtÞ − 4rrcϕs��

× αsðthÞheðαa; βh; b3; bÞ exp ½−SghðthÞ�StðzÞ
o
: ð26Þ

By combining the amplitudes from the different Feynman diagrams, the total decay amplitudes for the quasi-two-body
decays Bc → K�DðsÞ → KπDðsÞ are given as

AðBþ
c → K�þD0 → K0πþD0Þ ¼ VusV�

ub½a1FLL
e þ C1MLL

e � þ VcsV�
cb½a1FLL

a þ C1MLL
a �

− VtsV�
tb

�
ðC3 þ C9ÞðMLL

e þMLL
a Þ þ ðC5 þ C7ÞðMLR

e þMLR
a Þ

þ
�
C4 þ

1

3
C3 þ C10 þ

1

3
C9

�
ðFLL

a þ FLL
e Þþ

�
C6 þ

1

3
C5 þ C8 þ

1

3
C7

�
ðF SP

a þ F SP
e Þ

�
;

ð27Þ

AðBþ
c → K�0Dþ → Kþπ−DþÞ ¼ VcsV�

cb½a1FLL
a þ C1MLL

a � − VtsV�
tb

��
C3 −

1

2
C9

�
MLL

e þ ðC3 þ C9ÞMLL
a

þ
�
C5 −

1

2
C7

�
MLR

e þ ðC5 þ C7ÞMLR
a þ

�
C4 þ

1

3
C3 þ C10 þ

1

3
C9

�
FLL

a

þ
�
C4 þ

1

3
C3 −

1

2
C10 −

1

6
C9

�
FLL

e þ
�
C6 þ

1

3
C5 −

1

2
C8 −

1

6
C7

�
F SP

e

þ
�
C6 þ

1

3
C5 þ C8 þ

1

3
C7

�
F SP

a

�
; ð28Þ

AðBþ
c → K̄�0Dþ

s → K−πþDþ
s Þ ¼ VcdV�

cb½a1FLL
a þ C1MLL

a � − VtdV�
tb

��
C3 −

1

2
C9

�
MLL

e þ ðC3 þ C9ÞMLL
a

þ
�
C5 −

1

2
C7

�
MLR

e þ ðC5 þ C7ÞMLR
a þ

�
C4 þ

1

3
C3 þ C10 þ

1

3
C9

�
FLL

a

þ
�
C4 þ

1

3
C3 −

1

2
C10 −

1

6
C9

�
FLL

e þ
�
C6 þ

1

3
C5 −

1

2
C8 −

1

6
C7

�
F SP

e

þ
�
C6 þ

1

3
C5 þ C8 þ

1

3
C7

�
F SP

a

�
: ð29Þ

Similarly, we can also obtain the total amplitudes for the pure annihilation decays Bc → K�h → Kπh with h ¼ K; π; ηð0Þ
as follows:
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AðBþ
c → K̄�0Kþ→ K̄0π0KþÞ¼VudV�

cb

h
a1FLL

a þC1MLL
a

i
; ð30Þ

AðBþ
c →K�þK̄0→K0πþK̄0Þ¼VudV�

cb

h
a1FLL

a þC1MLL
a

i
; ð31Þ

AðBþ
c →K�þπ0→K0πþπ0Þ¼VusV�

cb

h
a1FLL

a þC1MLL
a

i
; ð32Þ

AðBþ
c →K�0πþ→K0π0πþÞ¼AðBþ

c →K�þπ0→K0πþπ0Þ; ð33Þ

AðBþ
c → K�þη → K0πþηÞ ¼ VusV�

cb

h
a1ðFLL;ηq

a cosϕ − FLL;ηs
a sinϕÞ þ C1ðMLL;ηq

a cosϕþ FLL;ηs
a sinϕÞ

i
; ð34Þ

AðBþ
c → K�þη0 → K0πþη0Þ ¼ VusV�

cb

h
a1ðFLL;ηq

a sinϕþ FLL;ηs
a cosϕÞ þ C1ðMLL;ηq

a sinϕþ FLL;ηs
a cosϕÞ

i
; ð35Þ

where the combinations of the Wilson coefficients a1 ¼
C2 þ C1=3 and a2 ¼ C1 þ C2=3 and the subscripts ηq;s
represent the two flavor states composing to the physical
states η and η0 as follows:

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
ð36Þ

with ϕ ¼ 39.3°� 1.0° [37].
Then the differential decay rate can be described as

dB
dω2

¼ τBc

jp⃗1jjp⃗3j
64π3m3

B
jAj2; ð37Þ

where τBc
is the mean lifetime of Bc meson and the

kinematic variables jp⃗1j and jp⃗3j denote the magnitudes

of the K and the bachelor meson h momenta in the center-
of-mass frame of the Kπ pair:

jp⃗1j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�
m2

K −m2
π

	
2
− 2

�
m2

K þm2
π

	
w2 þ w4

i
=w2

r
;

jp⃗3j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�
m2

Bc
−m2

h

	
2
− 2

�
m2

Bc
þm2

h

	
w2 þ w4

i
=w2

r
:

ð38Þ
III. NUMERICAL RESULTS

The adopted input parameters in our numerical calcu-
lations are summarized as follows (the QCD scale,
the masses, the decay constants, and the widths are in
units of GeV, and the Bc meson lifetime is in units of
picoseconds) [38]:

ΛQCD ¼ 0.25; mBþ
c
¼ 6.274; mb ¼ 4.8; mK� ¼ 0.494; mK0 ¼ 0.498;

mπ� ¼ 0.140; mπ0 ¼ 0.135; mK�0 ¼ 0.89555; mK�� ¼ 0.89176;

fK� ¼ 0.217; ΓK�0 ¼ 0.0462; ΓK�� ¼ 0.0514; τBc
¼ 0.51: ð39Þ

As to the CKM matrix elements, we employ the Wolfenstein parametrization with the inputs [38]

λ ¼ 0.22500� 0.00067; A ¼ 0.826þ0.018
−0.015 ;

ρ̄ ¼ 0.159� 0.010; η̄ ¼ 0.348� 0.010: ð40Þ

By using the differential branching ratio in Eq. (37) and the squared amplitudes in Eqs. (27)–(35), integrating over the full
Kπ invariant mass region ðmK þmπÞ ≤ ω ≤ ðMBc

−mhÞwith h ¼ DðsÞ; K; π; ηð0Þ, we obtain the branching ratios for these
quasi-two-body decays as

BrðBþ
c → K�þD0 → K0πþD0Þ ¼ ð8.74þ1.30þ0.04þ0.00þ1.61

−1.43−0.03−0.01−1.03 Þ × 10−7; ð41Þ

BrðBþ
c → K�0Dþ → Kþπ−DþÞ ¼ ð14.0þ0.73þ0.02þ0.00þ2.20

−3.06−0.14−0.14−2.35 Þ × 10−7; ð42Þ

BrðBþ
c → K̄�0Dþ

s → K−πþDþ
s Þ ¼ ð1.17þ0.19þ0.03þ0.05þ0.00

−0.22−0.00−0.00−0.44 Þ × 10−7; ð43Þ
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BrðBþ
c → K̄�0Kþ → K̄0π0KþÞ ¼ ð3.32þ0.01þ0.14þ0.01þ1.37

−0.00−0.13−0.00−0.00 Þ × 10−7; ð44Þ

BrðBþ
c → K�þK0 → K0πþK0Þ ¼ ð1.30þ0.15þ0.05þ0.15þ0.00

−0.01−0.09−0.06−0.37 Þ × 10−7; ð45Þ

BrðBþ
c → K�0πþ → K0π0πþÞ ¼ ð0.74þ0.00þ0.01þ0.00þ1.09

−0.00−0.01−0.00−0.24 Þ × 10−8; ð46Þ

BrðBþ
c → K�þπ0 → K0πþπ0Þ ¼ ð0.74þ0.00þ0.01þ0.01þ0.81

−0.01−0.01−0.01−0.41 Þ × 10−8; ð47Þ

BrðBþ
c → K�þη → K0πþηÞ ¼ ð0.50þ0.01þ0.03þ0.09þ0.35

−0.00−0.03−0.08−0.13 Þ × 10−8; ð48Þ

BrðBþ
c → K�þη0 → K0πþη0Þ ¼ ð1.58þ0.00þ0.00þ0.04þ0.00

−0.01−0.02−0.09−1.31 Þ × 10−8; ð49Þ

where the first error is from the Bc meson shape parameter
uncertainty ωBc

¼ 1.0� 0.1 GeV, the following two
errors come from the Gegenbauer coefficients in the Kπ

pair distribution amplitudes ak1K� ¼ 0.05� 0.02 and

ak2K� ¼ 0.15� 0.05, and the last one is induced by varying
the hard scale t from 0.75t to 1.25t (without changing
1=bi) and QCD scale ΛQCD ¼ 0.25� 0.05 GeV, which
characterize the next-to-leading-order effect in the PQCD

approach. One can find that the errors induced by ak1K� and

ak2K� are from a few percent to 15% for most of these
considered decays. For the pure annihilation decay modes,
the error stemming from the uncertainty of the Bc meson
shape parameter ωBc

is small. It can be roughly understood
from the analytical formulas Eqs. (30)–(35). Because the
Wilson coefficient a1 ¼ C2 þ C1=3 is larger than C1, the
main contribution comes from the factorizable annihila-
tion amplitude FLL

a , where the terms about ωBc
are not

involved. The situation is a little different with the decay
Bþ
c → K�þD0 → K0πþD0, where the error induced by ωBc

can reach 16%. By comparison, the branching ratios of
these pure annihilation decays are more sensitive to the
variation of the hard scale t and the QCD scale ΛQCD. It

means that these decays might be sensitive to the higher-
order corrections. The errors arise from the uncertainties
of the parameters; for instance, the Wolfenstein parame-
ters, the pole mass of mK� , and the width ΓK� are very
small and have been neglected. Furthermore, the branch-
ing ratios for the decays involving the η; η0 mesons are not
sensitive to the variation of the η − η0 mixing angle
ðϕ ¼ 39.3� 1.0Þ°, and the corresponding uncertainties
from the branching ratios are less than 1%.
If we assume the isospin conservation for the strong

decays K� → Kπ, namely

ΓðK�0 →Kþπ−Þ
ΓðK�0 →KπÞ ¼ 2=3;

ΓðK�0 →K0π0Þ
ΓðK�0 →KπÞ ¼ 1=3;

ΓðK�þ →K0πþÞ
ΓðK�þ →KπÞ ¼ 2=3;

ΓðK�þ →Kþπ0Þ
ΓðK�þ →KπÞ ¼ 1=3; ð50Þ

under the narrow width approximation relation, the branch-
ing ratio of each quasi-two-body decay can be related with
that of the corresponding two-body decay using a simple
formula. Take the decay Bþ

c → K�þD0 → K0πþD0 as an
example, the formula can be expressed as

TABLE I. The CP averaged branching ratios for the two-body decays Bþ
c → K�h with h ¼ DðsÞ; K; π; ηð0Þ. The errors are the same as

those given in Eqs. (41)–(49).

Decay modes This work Two-body framework [40,41] RCQM [42]

Bþ
c → K�þD0 ð1.31þ0.20þ0.01þ0.00þ0.24

−0.21−0.01−0.00−0.16 Þ × 10−6 ð2.59þ0.27þ0.09þ0.15
−0.30−0.08−0.08 Þ × 10−6 3.47 × 10−6

Bþ
c → K�0Dþ ð2.10þ0.11þ0.00þ0.00þ0.33

−0.46−0.02−0.02−0.35 Þ × 10−6 ð1.91þ0.33þ0.01þ0.07
−0.25−0.00−0.07 Þ × 10−6 2.88 × 10−6

Bþ
c → K̄�0Dþ

s ð1.76þ0.28þ0.04þ0.07þ0.00
−0.33−0.00−0.00−0.66 Þ × 10−7 ð1.4þ0.2þ0.0þ0.1

−0.2−0.1−0.1 Þ × 10−7 1.0 × 10−7

Bþ
c → K̄�0Kþ ð9.97þ0.03þ0.42þ0.04þ4.10

−0.00−0.39−0.00−0.00 Þ × 10−7 ð10.0þ0.5þ1.7þ0.0
−0.6−3.3−0.2 Þ × 10−7 � � �

Bþ
c → K�þK̄0 ð1.95þ0.21þ0.07þ0.22þ0.00

−0.01−0.14−0.09−0.55 Þ × 10−7 ð1.8þ0.7þ4.1þ0.1
−0.1−2.1−0.0 Þ × 10−7 � � �

Bþ
c → K�0πþ ð2.23þ0.00þ0.03þ0.00þ3.27

−0.00−0.02−0.01−0.73 Þ × 10−8 ð3.3þ0.7þ0.4þ0.2
−0.2−0.4−0.1 Þ × 10−8 � � �

Bþ
c → K�þπ0 ð1.11þ0.00þ0.01þ0.02þ1.21

−0.01−0.02−0.02−0.62 Þ × 10−8 ð1.6þ0.4þ0.3þ0.1
−0.1−0.1−0.0 Þ × 10−8

Bþ
c → K�þη ð0.75þ0.01þ0.04þ0.13þ0.52

−0.00−0.04−0.12−0.20 Þ × 10−8 ð0.9þ0.1þ0.6þ0.0
−0.0−0.2−0.0 Þ × 10−8 � � �

Bþ
c → K�þη0 ð2.37þ0.00þ0.00þ0.06þ0.00

−0.02−0.03−0.14−1.97 Þ × 10−8 ð3.8þ1.1þ1.0þ0.0
−1.1−0.6−0.0 Þ × 10−8 � � �
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BrðBþ
c →K�þD0 →K0πþD0Þ ¼BrðBþ

c →K�þD0Þ
· BrðK�þ →K0πþÞ: ð51Þ

Then we can obtain the branching ratios of the relevant two-
body decays from those of the considered quasi-two-body
decays, which are listed in Table I. In these considered
decays, Bþ

c → K�þD0 and Bþ
c → K�0Dþ have the largest

branching ratios which can reach up to 10−6 and are possible
measured by the future High-Energy LHC (HE-LHC) and
High-Luminosity LHC (HL-LHC) experiments [39]. From
our calculations, we find that, in these decays with DðsÞ
meson involved, the penguin amplitudes are dominated.
Although the values of the CKM matrix elements VcbVcsðdÞ
and VtbVtsðdÞ are close to each other, the tree contributions
associated with VcbVcsðdÞ are from the annihilation-type
amplitudes and very tiny. For example, such contributions
are only about 2.9(1.1)% of the total branching ratio for the
decay Bþ

c → K�0DþðBþ
c → K̄�0Dþ

s Þ. There are some
differences in the decay Bþ

c → K�þD0, which receives
two kinds of tree contributions: One is associated with
the CKM matrix elements V�

ubVus, and the other is asso-
ciated with the CKM elements V�

cbVcs. Although V�
ubVus is

smaller than V�
cbVcsðV

�
ubVus

V�
cbVcs

¼ 0.0215Þ, the former is con-

nected with the (non)factorizable emission amplitude
FLL

e ðMLL
e Þ, and the latter is connected with the (non)

factorizable annihilation amplitude FLL
a ðMLL

a Þ shown in
Eq. (27). It is interesting that the differences from the
amplitudes are huge enough to compensate the differences
from the CKM elements. In fact, the proportions of these
three kinds of contributions being connected with V�

tbVts,
V�
ubVus, and V�

cbVcs in the total branching ratios are
1∶0.24∶0.06. So the tree contributions coming from
CKM matrix elements V�

ubVus are more important than
those from V�

cbVcs in the decay Bþ
c → K�þD0. Although

these tree contributions are not much helpful to increase the
branching ratio, they are important to the direct CP violation
of the decay Bþ

c → K�þD0. Because of the absence of the
tree contribution from the factorizable and nonfactorizable
emission amplitudes in the decays Bþ

c → K�0Dþ and
Bþ
c → K̄�0Dþ

s , the direct CP asymmetries in these two
decays may be smaller. We will make a detailed discussion
on this topic in the latter. As to the decay Bþ

c → K̄�0Dþ
s , its

analytical formulas for the tree (penguin) amplitudes are
almost the same as those for the decay Bþ

c → K�0Dþ (the
differences are from the wave functions of D andDs), while
the value of the corresponding CKM elements VcdðVtdÞ is
only about 0.2 times that of VcsðVtsÞ. So the branching ratio
of the decay Bþ

c → K̄�0Dþ
s is much smaller and only about

the order of 10−7. Compared with the branching ratios
obtained in the previous PQCD calculations under the two-
body framework [40,41], one can find that three-body and
two-body calculations about these decays are consistent with
each other; it supports the PQCD approach to exclusive

hadronic Bc meson decays. For the decay Bþ
c → K�þD0, its

branching ratio is smaller than the result given by the
relativistic constituent quark model (RCQM) [42] but is
much larger than 0.68 × 10−7 predicted by the light front
quark model (LFQM) [43] and 1.36 × 10−7 given by the
Salpeter method [44]. This is because that the contributions
from annihilation diagrams and penguin diagrams are
missed in the LFQM and Salpeter method, so the decays
dominated by the annihilation and penguin contributions
might not be well predicted by these approaches. It is
no surprise that BrðBþ

c → K�0DþÞ ¼ 1.59 × 10−7 and
BrðBþ

c → K̄�0Dþ
s Þ ¼ 2.09 × 10−8 given by the Salpeter

method are almost one order of magnitude smaller than
the PQCD predictions. It is meaningful to clarify these
divergences in the future LHCb experiments. For the pure
annihilation decays Bc → K�h with h representing a light
pseudoscalar mesonK, π, or ηð0Þ, there are two decay modes;
one is strange decay (ΔS ¼ 1) corresponding to the smaller
CKM matrix element Vus ∼ 0.22, which refers to
Bþ
c → K�0πþ; K�þπ0; K�þηð0Þ, and the other is nonstrange

decay (ΔS ¼ 0) corresponding to the larger CKM matrix
element Vus ∼ 1, which refers to Bþ

c → K̄�0Kþ; K�þK̄0.
One can find that the branching ratios for the ΔS ¼ 0
channels are much larger than those for the ΔS ¼ 1 decays.
For these two ΔS ¼ 0 processes, the decay Bþ

c → K̄�0Kþ

has the larger branching ratio, which is near 10−6 and
possibly observed by the future LHCb experiments. It is
interesting that this result is consistent with the estimation
from the SU(3) flavor symmetry [45]. Although both of the
decays Bþ

c → K̄�0Kþ and Bþ
c → K�þK̄0 belong to the same

decay mode, there exists a large gap between their branching
ratios. It is very different for the case of BrðBþ

u → K̄�0KþÞ
and BrðBþ

u → K�þK̄0Þ, which are close to each other
predicted by many theoretical approaches, such as the
PQCD approach [46], the QCD factorization approach
[47], and the soft-collinear effective theory [48]. Such
abnormality shows significant difference for the annihilation
amplitudes between the B (heavy-light system) and Bc
(heavy-heavy system) decays. If this point can be clarified
by the experiments, it will be helpful to further improve our
understanding of the annihilation contributions.
The decay amplitudes of the quasi-two-body decays

depend on the Kπ invariant mass, which are different from
the fixed kinematics in the two-body decays. So we can plot
the differential distribution of the branching ratios shown in
Fig. 2, where we take the decays with DðsÞ involved as
examples. One can see that the differential branching ratios
for these three decays exhibit peaks at the K� meson mass.
The main portion of the branching ratios lies in the region
around the pole mass of the K� resonance as expected. For
example, the branching ratio obtained by integrating over ω
in the range mK� − ΓK� to mK� þ ΓK� is about 70% of the
total decay rate for the channel Bþ

c → K�þD0 → K0πþD0.
Although we plot the differential branching ratios versus the
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invariant mass ω in the range mK þmπ to 2 GeV, the
contributions from the energy region ω > 1.2 GeV can be
neglected safely.
Now we turn to the evaluations of the CP violation for

the decays with DðsÞ meson involved. The direct CP
violations induced from the interference between the tree
and penguin amplitudes can be defined as

ACP ¼ ΓðB−
c → f̄Þ − ΓðBþ

c → fÞ
ΓðB−

c → f̄Þ þ ΓðBþ
c → fÞ ; ð52Þ

where f̄ is the CP conjugated final state of f. The
numerical results for these direct CP asymmetries are
given as

ACPðBþ
c → K�þD0 → K0πþD0Þ

¼ ð−14.6þ2.7þ0.4þ0.0þ8.8
−1.0−0.5−0.1−0.0 Þ × 10−2; ð53Þ

ACPðBþ
c → K�0Dþ → Kþπ−DþÞ

¼ ð−0.14þ0.02þ0.01þ0.02þ0.13
−0.00−0.01−0.02−0.00 Þ × 10−2; ð54Þ

ACPðBþ
c → K̄�0Dþ

s → K−πþDþ
s Þ

¼ ð1.07þ0.22þ0.13þ0.18þ0.00
−0.42−0.24−0.09−7.61 Þ × 10−2; ð55Þ

where the errors are the same with those given in
Eqs. (41)–(49). Unlike the branching ratio, the direct
CP asymmetry is not sensitive to the parameters in DAs

but suffers from large uncertainties due to the hard scale t
and the QCD scale ΛQCD, which can be reduced by
including the high-order corrections. From the numerical
results, we find the following points.
(1) Under the three-body framework calculations,

there do not exist so large direct CP violations
as more than 60% in magnitude predicted by the
previous PQCD calculations [40] for the decays
Bc → K�þD0; K̄�0Dþ

s . Our predictions are more
comparable with those given by the Salpeter
method and the RCQM shown in Table II. These
results can be clarified by the future LHCb ex-
periments.

(2) Compared with the channel Bþ
c → K�0Dþ →

Kþπ−Dþ, the decay Bþ
c → K�þD0 → K0πþD0 re-

ceives more tree amplitude contributions, which
come from not only the emission diagrams, but also
the annihilation diagrams. Although the emission
factorizable amplitude FLL

e is suppressed by the
CKM matrix elements VusV�

ub, it still provides
strong interference with the penguin amplitudes
because of the large Wilson coefficient a1 ¼ C2þ
C1=3. So there exists more significant direct CP
violation in the decay Bþ

c → K�þD0 → K0πþD0 as
we expected.

(3) As to the decay Bþ
c → K�0Dþ → Kþπ−Dþ,

although the CKM matrix element products
VcsV�

tb and VtsV�
tb associated with the tree and

penguin amplitudes, respectively, are almost equal
to each other, the tree contributions from the

(a) (b) (c)

FIG. 2. The predicted Bc → K�DðsÞ → KπDðsÞ decay spectra in the Kπ invariant mass.

TABLE II. The direct CP violation (×10−2) of the decays Bþ
c → K�þD0, Bþ

c → K�0Dþ, and Bþ
c → K̄�0Dþ

s ,
where the various errors have been added in quadrature. By comparison, we also give the results from the PQCD
approach in the two-body framework [40], the Salpeter method [44], and the RCQM [42].

Decay modes This work PQCD (two-body framework) [40] Salpeter method [44] RCQM [42]

Bþ
c → K�þD0 −14.6þ9.2

−1.1 −66.2þ15.2
−6.5 −25.5 −6.22

Bþ
c → K�0Dþ −0.14þ0.13

−0.02 3.5þ0.7
−0.9 −0.53 −0.822

Bþ
c → K̄�0Dþ

s 1.07þ0.31
−7.63 61.0þ7.9

−14.7 9.04 13.3
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annihilation-type amplitudes are very small and
about 2 orders lower than the penguin contributions.
So the interference between these two kinds of
contributions is weak, which induces much smaller
CP violation.

(4) The amplitudes of the decay Bþ
c → K̄�0Dþ

s →
K−πþDþ

s can be obtained from those of the channel
Bþ
c →K�0Dþ→Kþπ−Dþ by replacingDþðVts;VcsÞ

with Dþ
s ðVtd; VcdÞ. The total decay amplitudes for

these two decays can be rewritten as

A¼ V�
cbVcqT −V�

tbVtqP¼ V�
cbVcqT

h
1þ zeiðαþδÞ

i
;

ð56Þ

where T and P are the tree and penguin amplitudes,
respectively, and α and δ are the weak and strong
phases, respectively. The parameters z and α are
defined as

z ¼




 V�

tbVtq

V�
cbVcq

P
T





; α ¼ arg

�
−
V�
tbVtq

V�
cbVcq

�
; ð57Þ

with q ¼ dðsÞ for the decay Bþ
c → K̄�0Dþ

s →
K−πþDþ

s ðBþ
c → K�0Dþ → Kþπ−DþÞ. Then the di-

rect CP asymmetries are

ACP ¼ 2z sin α sin δ
z2 þ 1þ 2 cos α cos δ

: ð58Þ

As the weak phases are measured as arg½− V�
tbVtd

V�
cbVcd

� ∼
−0.40 and arg½− V�

tbVts

V�
cbVcs

� ∼ 0.02 [38], their corre-

sponding sine values are about −0.39 and 0.02,
respectively. So one can find that the size of
ACPðBc → K̄�0Dþ

s Þ is larger than that of ACPðBþ
c →

K�0DþÞ mainly because of the larger weak phase in
the former. They have opposite signs due to the
differences from the weak phases.

Last, we plot the differential distributions of the direct
CP violations for the decays Bþ

c → K�þD0 → K0πþD0,
Bþ
c → K�0Dþ → Kþπ−Dþ, and Bc → K̄�0Dþ

s →K−πþDþ
s

shown in Fig. 3. The measured CP violation is just a number
in the two-body framework, where theK� resonance mass is
fixed to mK� during the calculations, while the direct CP
violation in the three-body framework is dependent on the
Kπ invariant massω. So the total directCP asymmetry is the
integration of the corresponding differential distribution over
ω. The integrated direct CP asymmetry for the quasibody
decays may be very different with that obtained in the two-
body framework; that is to say, the latter may be overesti-
mated or underestimated compared with the actual value. In
view of this point, the three-body framework should be more
appropriate for studying the quasi-two-body decays. Here,
we also find that the differential distribution curve for
ACPðBc → K̄�0Dþ

s → K−πþDþ
s Þ lies in the positive value

region, which is contrary to the cases of ACPðBc →
K�þD0 → K0πþD0Þ and ACPðBþ

c →K�0Dþ→Kþπ−DþÞ.
It is mainly because of the differences from the weak phases.

IV. SUMMARY

In this paper, we studied the quasi-two-body decays
Bc → K�h → Kπh with h ¼ D;Ds; K; π; η; η0 by using the
PQCD approach. Under the quasi-two-body-decay mecha-
nism, the Kπ pair DAs were introduced, which include the
final-state interactions between the Kπ pair in the resonant
region. Both the resonant and nonresonant contributions are
described by the timelike form factors FKπðsÞ, which are
parametrized by using the relativistic Breit-Wigner formula
for the P-wave resonance K�. Under the narrow width
approximation relation and the isospin conservation, the
branching ratios for the two-body decays Bþ

c → K�þh can
be related with those of the considered quasi-two-body
decays, so it provides us a new way to study these quasi-
two-body Bc decays in the three-body framework. We
found that the branching ratios are consistent with those
calculated under the two-body framework. It supports the
PQCD approach to exclusive hadronic Bc meson decays.

(a) (b) (c)

FIG. 3. The differential distributions of ACP in ω for the decays Bþ
c → K�þD0 → K0πþD0, Bþ

c → K�0Dþ → Kþπ−Dþ, and
Bþ
c → K̄�0Dþ

s → K−πþDþ
s .
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For the direct CP violation, there exist significant
differences between the three-body and two-body frame-
works. Under the two-body framework with the kinematics
fixed, the direct CP violation ACP is just a number, while
under the three-body framework the directCP asymmetry is
a differential distribution, which depends on the Kπ
invariant mass ω. It is more convenient to compare with
the Dalitz-plot analysis of ACP provided by experiments.
The ACP calculated in the two-body framework corresponds
to that in the three-body framework with the Kπ invariant
mass ω being fixed to K� pole mass. In general, the
integration of the ACP differential distribution over the
invariant mass ω under the three-body framework is differ-
ent from that obtained under the two-body framework; the
latter is usually overestimated or underestimated. Compared
with the direct CP violations for the decays Bc → K�DðsÞ
obtained in these two frameworks under the PQCD
approach, the results from the three-body framework are
moderated by the finite width of the K� resonance and
become comparable with those calculated within other
theoretical approaches, such as the Salpeter method and
the RCQM. This indicates that it is more appropriate to
study the quasi-two-body Bc meson decays in the three-
body framework than in the two-body framework. These
results can be tested by future experiments.
We also researched the annihilation amplitude contri-

butions to the pure annihilation decay modes Bc → K�h →

Kπh with h ¼ K; π; η; η0 in the three-body framework and
found there exist significant differences in the annihilation
amplitudes between the B (heavy-light system) and Bc
(heavy-heavy system) decays through comparing the
branching ratios of the decays Bþ → K̄�0Kþ; K�þK̄0

and Bþ
c → K̄�0Kþ; K�þK̄0. If such a point can be clarified

by future experiments, it will be helpful to further improve
our understanding about the annihilation contributions.
Furthermore, among these considered pure annihilation
decays, the channel Bþ

c → K�þK̄0 has the largest branch-
ing ratio, which is near 10−6. It is possibly observed by the
LHCb experiments.

ACKNOWLEDGMENTS

We thank Professor Hsiang-nan Li for valuable discus-
sions. This work is partly supported by the National Natural
Science Foundation of China under Grant No. 11347030,
by the Program of Science and Technology Innovation
Talents in Universities of Henan Province 14HASTIT037,
and Natural Science Foundation of Henan Province under
Grant No. 232300420116.

APPENDIX: SOME RELEVANT FUNCTIONS

The explicit expressions of the hard functions hi with
i ¼ ða;…; hÞ are obtained from the Fourier transform of
the hard kernels and given as

hiðα; β; b1; b2Þ ¼ h1ðβ; b2Þ × h2ðα; b1; b2Þ;

h1ðβ; b2Þ ¼
(
K0ð

ffiffiffi
β

p
b2Þ; β > 0;

K0

�
i

ffiffiffiffiffiffi
−β

p
b2
	
; β < 0;

h2ðα; b1; b2Þ ¼
�
θðb2 − b1ÞI0ð

ffiffiffi
α

p
b1ÞK0ð

ffiffiffi
α

p
b2Þ þ ðb1 ↔ b2Þ; α > 0;

θðb2 − b1ÞI0ð
ffiffiffiffiffiffi
−α

p
b1ÞK0ði

ffiffiffiffiffiffi
−α

p
b2Þ þ ðb1 ↔ b2Þ; α < 0;

ðA1Þ

where K0 and I0 are modified Bessel functions with KðixÞ ¼ π
2
ð−N0ðxÞ þ iJ0ðxÞÞ and J0 is a Bessel function. The hard

scales ti are chosen as the maximum of the virtuality of the internal momentum transition in the hard amplitudes and listed
as follows:

ta ¼ max
n
mBc

ffiffiffiffiffiffiffiffi
jαaj

p
; mBc

ffiffiffiffiffiffiffiffi
jβaj

p
; 1=b3; 1=b1

o
; tb ¼ max

n
mBc

ffiffiffiffiffiffiffiffi
jαbj

p
; mBc

ffiffiffiffiffiffiffiffi
jβbj

p
; 1=b1; 1=b3

o
;

tc ¼ max
n
mBc

ffiffiffiffiffiffiffiffi
jαcj

p
; mBc

ffiffiffiffiffiffiffi
jβcj

p
; 1=b1; 1=b

o
; td ¼ max

n
mBc

ffiffiffiffiffiffiffiffi
jαdj

p
; mBc

ffiffiffiffiffiffiffiffi
jβdj

p
; 1=b1; 1=b

o
;

te ¼ max
n
mBc

ffiffiffiffiffiffiffiffi
jαej

p
; mBc

ffiffiffiffiffiffiffi
jβej

p
; 1=b3; 1=b1

o
; tf ¼ max

n
mBc

ffiffiffiffiffiffiffiffi
jαfj

q
; mBc

ffiffiffiffiffiffiffiffi
jβfj

q
; 1=b3; 1=b1

o
;

tg ¼ max
n
mBc

ffiffiffiffiffiffiffiffi
jαgj

q
; mB

ffiffiffiffiffiffiffi
jβgj

q
; 1=b3; 1=b

o
; th ¼ max

n
mBc

ffiffiffiffiffiffiffiffi
jαhj

p
; mBc

ffiffiffiffiffiffiffiffi
jβhj

p
; 1=b; 1=b3

o
; ðA2Þ

where
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αa ¼ r2b þ ð1 − r2Þ½ðη − 1Þx3 − η�; βa ¼ ðr2 − xBÞ½ð1 − ηÞðx3 − 1Þ þ xB�;
αb ¼ ðr2 − xBÞðxB þ η − 1Þ; βb ¼ βa;

αc ¼ βa; βc ¼ ½1 − xB − ð1 − r2Þz�½ð1 − ηÞx3 þ xB − 1�;
αd ¼ βa; βd ¼ ½ð1 − zÞr2 − xB þ z�½ð1 − ηÞðx3 − 1Þ þ xB�;
αe ¼ ð1 − ηÞðr2 − 1Þx3z; βe ¼ r2b − ½ð1 − r2Þzþ xB − 1�½ð1 − ηÞx3 þ xB − 1�;
αf ¼ αe; βf ¼ r2c − ½ðr2 − 1Þzþ xB�½ðη − 1Þx3 þ xB�;
αg ¼ ð1 − r2Þ½ðη − 1Þx3 − η�; βg ¼ αe;

αh ¼ r2c þ ð1 − ηÞ½r2ðz − 1Þ − z�; βh ¼ αe: ðA3Þ

The Sudakov factors can be written as

SabðtÞ ¼ s

�
mBcffiffiffi
2

p xB; b1

�
þ s

�
mBcffiffiffi
2

p x3; b1

�
þ 5

3

Z
t

1=b1

dμ
μ
γqðμÞ þ 2

Z
t

1=b3

dμ
μ
γqðμÞ;

ScdðtÞ ¼ s

�
mBcffiffiffi
2

p xB; b1

�
þ s

�
mBcffiffiffi
2

p z; b

�
þ s

�
mBcffiffiffi
2

p ð1 − zÞ; b
�
þ s

�
mBcffiffiffi
2

p x3; b1

�
þ 11

3

Z
t

1=b1

dμ
μ
γqðμÞ þ 2

Z
t

1=b

dμ
μ
γqðμÞ;

SefðtÞ ¼ s

�
mBcffiffiffi
2

p xB; b1

�
þ s

�
mBcffiffiffi
2

p z; b3

�
þ s

�
mBcffiffiffi
2

p ð1 − zÞ; b3
�
þ s

�
mBcffiffiffi
2

p x3; b3

�
þ 5

3

Z
t

1=b1

dμ
μ
γqðμÞ þ 4

Z
t

1=b3

dμ
μ
γqðμÞ;

SghðtÞ ¼ s

�
mBcffiffiffi
2

p z; b

�
þ s

�
mBcffiffiffi
2

p ð1 − zÞ; b
�
þ s

�
mBcffiffiffi
2

p x3; b3

�
þ 2

Z
t

1=b

dμ
μ
γqðμÞ þ 2

Z
t

1=b3

dμ
μ
γqðμÞ: ðA4Þ

As we know, the double logarithms αs ln2 x produced by the radiative corrections are not small expansion parameters when
the end point region is important; in order to improve the perturbative expansion, the threshold resummation of these
logarithms to all orders is needed, which leads to a quark jet function

StðxÞ ¼
21þ2cΓð3=2þ cÞffiffiffi

π
p

Γð1þ cÞ ½xð1 − xÞ�c; ðA5Þ

with c ¼ 0.3. It is effective to smear the end point singularity with a momentum fraction x → 0.
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