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We study electromagnetic radiation by a fast particle carrying electric charge in chiral medium. The
medium is homogeneous and isotropic and supports the chiral magnetic current which renders the fermion
and photon states unstable. The instability manifests as the chirality-dependent resonances in the
bremsstrahlung cross section, which enhance the energy loss in the chiral medium. We compute the
corresponding cross sections in the single scattering approximation and derive the energy loss in the high-
energy approximation.
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I. INTRODUCTION

This paper is the third in the series of papers dedicated to
the problem of energy loss by a fast particle in the chiral
medium due to the electromagnetic interactions. The
pivotal feature of chiral media is the peculiar response to
the external electromagnetic field caused by the chiral
anomaly [1,2]. In homogeneous media, it is given by the
chiral magnetic current j ¼ b0B [3–7], where the chiral
magnetic conductivity b0 is assumed to be a constant. It
was discussed in the context of Weyl and Dirac semimetals
[8–10], the quark-gluon plasma [11,12] and the axion
phenomenology [13]. In our first paper [14] we computed
the collisional energy loss and found that at high energies it
is dominated by the chiral Cherenkov radiation. In the
second paper [15] we considered the part of the radiative
energy loss that is driven by the resonance at q2 ¼ b20 in the
spatial part of the photon propagator DijðqÞ. The corre-
sponding contribution to the bremsstrahlung cross section is
proportional to the magnetic moment of the scatterer because
Dij couple only to the spatial part of the source current
whose leading multipole term is the magnetic momentM. It
will be further referred to as the “magnetic channel”. The
emergence of the resonance is a signature of the chiral
magnetic instability [16–18]. Another manifestation of this
instability is the appearance of the chiral run-away modes in
the modified photon dispersion relation. At high energies the
anomalous term in the photon dispersion relation is small
and can be neglected compared to the main contribution
stemming from the pole in Dij. This is to say that the

resonance in the magnetic bremsstrahlung cross section is
weakly dependent on the radiated photon kinematics.
In this article we consider the photon bremsstrahlung in

the chiral medium due to the Coulomb part D00ðqÞ of the
photon propagator. We dub it the “electric channel”.
Although D00ðqÞ itself has no conspicuous dependence
on b0, the resonance does emerge in the photon propagator
due to the anomaly in the photon dispersion relation. It
causes the momentum transfer q2 to vanish at finite photon
emission angles θ. Thus, unlike the magnetic channel
considered in [15], the electric channel is driven exclu-
sively by the anomaly in the photon dispersion relation.
Along with the photon propagator, the fermion one also
becomes resonant, indicating instability of fermions in the
chiral medium [17,18]. The main goal of this paper is to
compute the photon bremsstrahlung cross section in the
chiral medium due to the Coulomb term in the photon
propagator.
The paper is structured as follows. In Sec. II we derive

the general expression for the scattering cross section. In
Sec. III we observe that the cross section is divergent due to
the resonances in the photon and fermion propagators. The
divergences are regulated by the finite width of the unstable
modes which is proportional to the fermion relaxation rate
τ−1. Significantly, the same parameter regulates the diver-
gences in the fermion and photon propagators in the electric
channel (but not in the magnetic one discussed in [15]). The
final expression for the scattering cross section is quite
bulky and is given in Appendix A. The high-energy limit,
relevant in most applications, is developed in Sec. IV where
the resonant structures become very clear. Particularly
simple expressions for the cross section are derived at
low and high temperatures. Our main results are Eqs. (26),
(28), (34), and (35) for the bremsstrahlung cross section in
various limits. The results for the corresponding energy loss
are given in Sec. V. The summary and outlook are presented
in Sec. VI.
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II. SCATTERING CROSS SECTION

Following the original Bethe and Heitler calculation
[19], we consider scattering of a charged fermion off a
heavy nucleus of mass M, electric charge eZ and magnetic
moment M. The differential cross section for photon
radiation is given by the familiar expression

dσ ¼ 1

2

X
ss0λ

jMj2 1

8ð2πÞ5
ωjp0j
jpj dΩkdΩ0dω; ð1Þ

where p ¼ ðE; pÞ, p0 ¼ ðE0; p0Þ and k ¼ ðω; kÞ are the
incoming fermion, outgoing fermion, and radiated photon
momenta respectively. The matrix element M is repre-
sented by two Feynman diagrams shown in Fig. 1. The
corresponding analytical expression reads,

M ¼ e2ūðp0Þ
�
=e�kλ

=p0 þ =kþm
2p0 · kþ k2

=AðqÞ

− =AðqÞ =p − =kþm
2p · k − k2

=e�kλ

�
uðpÞ; ð2Þ

where AðqÞ indicates the external field, q ¼ p0 − pþ k is
the momentum transfer, m is the mass of the fermion, and
ekλ is the photon polarization vector. Whereas in vacuum
the photon four-momentum is lightlike, in chiral media it is
not. Moreover, in the Lorentz gauge, photon is forced to be
in one of the two circularly polarized states. This eliminates
the residual gauge invariance that is reflected in the Ward
identity [15]. The photon dispersion relation is

ω2 ¼ k2 þ k2 ¼ k2 − λb0jkj; ð3Þ

where λ ¼ �1 is right- or left-photon polarization.
The electromagnetic potential induced by the electric

current Jμ, associated with the nucleus, in a chiral medium
is Aμ ¼ −iDμνJν. The photon propagator in chiral medium
in the Lorentz/Landau gauge takes the form [15],

DμνðqÞ ¼ −i
q2gμν þ iϵμνρσbρqσ þ bμbν

q4 þ b2q2 − ðb · qÞ2

þ i
½q2 − ðb · qÞ2=q2�qμqν þ b · qðbμqν þ bνqμÞ

q2½q4 þ b2q2 − ðb · qÞ2� ;

ð4Þ

where bμ ¼ ðb0; 0Þ. In the static limit q0 ¼ 0 the compo-
nents of the photon propagator read [20]

D00ðqÞ ¼
i
q2

; ð5aÞ

D0iðqÞ ¼ Di0ðqÞ ¼ 0; ð5bÞ

DijðqÞ ¼ −
iδij

q2 − b20
−

ϵijkqk

b0ðq2 − b20Þ
þ ϵijkqk

b0q2
þ iqiqj
q2ðq2 − b20Þ

:

ð5cÞ

The gauge-dependent terms proportional to qμ and qν
vanish when substituted into the scattering amplitude.
The spatial components [Eq. (5)] couple to the nucleus
magnetic moment and have a resonance at q2 ¼ b20. We
analyzed this magnetic channel in our previous paper [15].
In this paper we are interested in the monopole component
of the external field which is determined by the nuclear
electric charge. Convolution of the current JνðxÞ ¼
eZδν0δðxÞ with the D00 component of the photon propa-
gator gives rise to the Coulomb potential,

A0ðqÞ ¼ eZ=q2; AðqÞ ¼ 0: ð6Þ

Plugging (6) into (2) and averaging over the fermion spin
directions, we can obtain a fairly compact expression for the
differential cross section of the electric channel,

dσ ¼ Z2

2

X
λ

dΩkdΩ0dω
4ð2πÞ5

jp0j
jpj

e6

ωq4

�
4

����Ep0 · eλ
κ0 þ k2

2ω

−
E0p · eλ
κ − k2

2ω

����2

− q2
���� p0 · eλ
κ0 þ k2

2ω

−
p · eλ
κ − k2

2ω

����2 þ ω2ðq2 − ðκ − κ0 − k2
ωÞ2Þ

ðκ − k2
2ωÞðκ0 þ k2

2ωÞ

þ k2

4

�
q2
�

1

κ − k2
2ω

−
1

κ0 þ k2
2ω

�
2

þ 4jp · eλ − p0 · eλj2
ðκ − k2

2ωÞðκ0 þ k2
2ωÞ

− 4

�
E0

κ − k2
2ω

−
E

κ0 þ k2
2ω

�
2
��

; ð7Þ

where κ ¼ p · k=ω and κ0 ¼ p0 · k=ω. In (7) the sum over λ
is left explicit in order to isolate individual photon polar-
izations. Equation (7) reduces to the Bether-Heitler formula
in the limit jkj → ω, or, equivalently, k2 → 0.
The photon plane waves can only have a circular

polarization which satisfies the transversality condition

FIG. 1. The two diagrams corresponding to the matrix element
for the scattering cross section. Double lines indicate photons in
chiral medium.
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k · ek ¼ k · eλ ¼ 0 in the Lorentz gauge. We seek comput-
ing the cross section for each photon polarization. To
perform the angular integrals in (7) it is advantageous to
eliminate the photon-polarization vectors in favor of
particle momenta. To this end, we introduce a Cartesian
reference frame with the z-axis pointing in the direction of
the photon momentum k,

k ¼ ð0; 0; jkjÞ; eλ ¼
1ffiffiffi
2

p ð1; iλ; 0Þ;

p ¼ ðp⊥; 0; pkÞ; p0 ¼ ðp0⊥ cosϕ; p0⊥ sinϕ; p0
kÞ; ð8Þ

where ϕ is the azimuthal angle. We derive the following
identities:

jp · eλj2 ¼
jp × kj2
2k2

; ð9aÞ

jp0 · eλj2 ¼
jp0 × kj2ðcos2ϕþ λ2sin2ϕÞ

2k2
¼ jp0 × kj2

2k2
;

ð9bÞ

ðp · eλÞðp0 · e�λÞ ¼
jp × kjjp0 × kjðcosϕ − iλ sinϕÞ

2k2
; ð9cÞ

q2 ¼ p2 þ p02 þ k2 þ 2k · p0 − 2k · p

− 2
k · pk · p0 þ jk × pjjk × p0j cosϕ

k2
: ð9dÞ

We observe that the dependence on the azimuthal angle ϕ
appears in (7) only by the way of (9c) and (9d). Therefore,
all terms proportional to sinϕ in (7) vanish after integration
over the directions of the outgoing fermion. This con-
clusion holds even after we regulate the divergence in the
fermion propagator using (13) in the next section. Dropping
the imaginary part of ðp · eλÞðp0 · e�λÞ, observing that

p · p0 ¼ m2 þ ωðκ0 − κÞ þ k2 − q2

2
; ð10Þ

and using (8), the nonvanishing terms proportional to eiλe
�j
λ

can be written in terms of κ; κ0 and q2,

jeλ · pj2 ¼
jk × pj2
2k2

¼ p2

2
−
ðp · kÞ2
2k2

¼ ω2Eκ
k2

−
k2

2k2
E2

−
m2

2
−

ω2

2k2
κ2; ð11aÞ

jeλ · p0j2 ¼
ω2E0κ0

k2
−

k2

2k2
E02 −

m2

2
−

ω2

2k2
κ02; ð11bÞ

Re½ðeλ · pÞðe�λ · p0Þ� ¼
p · p0

2
−
ðp · kÞðp0 · kÞ

2k2

¼ ω2ðκ0E0 þ κE − κκ0Þ − ωk2ðκ − κ0Þ − k2EE0

2k2
−
m2

2
−
k2 þ q2

4
: ð11cÞ

Equations (11) can then be used to rewrite (7) without
an explicit dependence on the photon-polarization
vectors.

III. REGULATION OF THE RESONANCES

An examination of the fermion and photon propagators
used in the calculation of the differential cross section
reveals divergences in three kinematic regions: q2 ¼ 0,
2ωκ ¼ k2 and 2ωκ0 ¼ −k2. The first one is the familiar
infrared Coulomb pole q2 ¼ 0 which is regulated in the
usual way [22,23],

1

q2
→

1

q2 þ μ2
; ð12Þ

where μ is the Debye mass of the medium. If the scattering
particle mass m is much larger than μ, the minimum
momentum transfer is of the order m. However, the

Debye mass scales with the temperature and becomes
much larger than m in a sufficiently hot medium.1

Therefore, in the following analysis it will be convenient
to consider two limiting cases depending on the relative
magnitude ofm and μ. In the next section we will revisit the
behavior of the photon propagator at small momentum
transfers and show that due to the anomaly, q2 can vanish
at finite m. We will revise the regularization procedure
accordingly.
The other two divergences occur in the fermion propa-

gator and reflect its instability in chiral matter with respect
to spontaneous photon emission [16,18,24–39]. With the
account of the finite width the fermion propagators in (7)
are modified as follows:

1In hot plasmas the long-distance terms neglected in (12), see
e.g., [21], may become important.
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1

2ωκ − k2
→

1

2ωκ − k2 þ iE=τ
;

1

2ωκ0 þ k2
→

1

2ωκ0 þ k2 − iE0=τ
; ð13Þ

where τ is the relaxation time as measured in the medium
rest frame.2 A number of inelastic processes contribute to
the relaxation of the chiral state of the fermion. Among
them is the spontaneous photon emission, also known in the
literature as the vacuum or chiral Cherenkov radiation. Its
rate at the leading order in the perturbation theory is

W¼ e2

8π

Z
dω
ω

�
b0

�
ω2

2E2
−
ω

E
þ1

�
−
m2ω

E2

�
Θðω�−ωÞΘðλb0Þ;

ð14Þ

where the threshold photon energy is

ω� ¼ λb0E2

λb0Eþm2
ð15Þ

and Θ is the step function [18]. In particular, when
m2 ≫ λb0E, the fermion decay rate is W ≈ αb0=2. One
can take this as the low bound of the total relaxation
rate; τ−1 > αb0=2.
We now have all necessary ingredients to complete our

calculation of the differential cross section. Equation (7)
may be integrated over directions term by term while
making the substitutions (13) and (12) in order to obtain
the frequency dependence of the differential cross section.
The result is given by (A1) and (A2) in Appendix A. We
use it for the numerical calculation presented in Fig. 2.

IV. HIGH-ENERGY LIMIT

The exact expression for the cross section (A1) is rather
complicated. In applications one is usually interested in the
high-energy limit E; E0 ≫ m, μ where the expression for
the differential cross section and squared matrix element
significantly simplify. To derive the high-energy limit, it is
convenient to expand the squared amplitude before the
integration over the fermion directions,

1

2

X
s;s0

jMj2≈ 2Z2e6

ω2ðq2þμ2Þ2Re
"
4

���� Ep0 ·eλ
κ0 þ k2

2ωþ i E
0

τω

−
E0p ·eλ

κ− k2
2ωþ i Eτω

����2

þ ω2ðq2−ðκ−κ0− k2
ωÞ2Þ

ðκ− k2
2ωþ i E

τωÞðκ0 þ k2
2ω− i E

0
τωÞ

þk2
 
q2

4

���� 1

κ− k2
2ωþ i Eτω

−
1

κ0 þ k2
2ωþ i E

0
τω

����2

þ jp ·eλ−p0 ·eλj2
ðκ− k2

2ωþ i E
τωÞðκ0 þ k2

2ω− i E
0

τωÞ

−
���� E0

κ− k2
2ωþ i Eτω

−
E

κ0 þ k2
2ωþ i E

0
τω

����2
!#

: ð16Þ

Additionally, we are interested in photon energies ω ≫ b0
which allows us to write the dispersion relation (3) as

jkj ≈ ωþ λb0
2

; ð17Þ

and treat k2=ω2 ≈ −λb0=ω as a small parameter. In this
limit Eq. (11) may be rewritten as

FIG. 2. The bremsstrahlung spectrum at μ ≪ m. The dots represent the exact leading order formula (A1), the solid line is the high-
energy approximation given by the sum of Eqs. (26) and (28), the dotted line is the Bethe-Heitler expression (27), and the dashed line is
the magnetic moment contribution (30). Left panel: b0 ¼ 0.1m, μ ¼ 10−3b0, τ−1 ¼ 0.1b0. Right panel: b0 ¼ 10−2m, μ ¼ 10−3b0,
τ−1 ¼ 0.1b0. Both panels: E ¼ 10m, Z ¼ 33, M ¼ μN , Γ ¼ 0.1b0. The vertical line indicates ω�=E.

2In the fermion rest frame the relaxation rate is ðE=mÞτ−1.
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jeλ · pj2 ≈
�
1 − λ

b0
ω

�
2

Eκ þ
�
λb0
2ω

−
b20
2ω2

�
E2

−
m2 þ ð1 − λ b0

ωÞ2κ2
2

; ð18aÞ

jeλ · p0j2 ≈
�
1 − λ

b0
ω

�
2

E0κ0 þ
�
λb0
2ω

−
b20
2ω2

�
E02

−
m2 þ ð1 − λ b0

ωÞ2κ02
2

; ð18bÞ

Re½ðeλ · pÞðe�λ · p0Þ� ¼
ð1 − λ b0

ωÞ2ðκ0E0 þ κE − κκ0Þ −m2

2

þ
�
λb0
2ω

−
b20
2ω2

�
EE0 þ λb0ω − q2

4
:

ð18cÞ

Employing Eqs. (18) to get rid of the photon-polarization
vectors in favor of the momenta in (16) we derive

1

2

X
s;s0

jMj2≈ 2Z2e6

ω2ðq2þμ2Þ2Re
�ðq2þμ2ÞðE2þE02þ4 λb0

ω EE0Þþ4b20EE
0

ðκ0 þ λb0
2
þ i E

0
τωÞðκ− λb0

2
− i E

τωÞ
−2ω2

�
κ0 þ λb0

2
þ i E

0
τω

κ− λb0
2
− i E

τω

þ κ− λb0
2
− i E

τω

κ0 þ λb0
2
þ i E

0
τω

�

−4

�
m2−

λb0
ω

ðEE0−m2þω2Þ
��

E0

κ− λb0
2
− i E

τω

−
E

κ0 þ λb0
2
þ i E

0
τω

�
2

þλ4b0
ω

� ðEþE0ÞE0

κ− λb0
2
þ i E

τω

−
ðEþE0ÞE
κ0 þ λb0

2
þ i E

0
τω

��
: ð19Þ

The largest contributions come from the resonances at
2ωκ − k2 ¼ 0 and 2ωκ0 þ k2 ¼ 0. In the high-energy
approximation these equations have a solution only for
mω − b0EE0 ≤ 0. This inequality can be equivalently
expressed as the requirements ω ≤ ω� and b0λ > 0 which
is consistent with (14) and (15). Evidently, only one of the
two photon polarizations (the one with b0λ > 0) is reso-
nant. As such, the differing polarization cases must be
treated separately. Consider, for example the pole at

k2 ¼ 2ωκ ¼ 2p · k ≈ ωE

�
m2

E2
þ k2

ω2
þ θ2

�
; ð20Þ

where θ is the angle between k and p. The denominator of
the corresponding fermion propagator is

1

2p · k − k2 þ iE=τ
¼ 1

ωEðm2

Eω
ω−ω�
E−ω� þ θ2 þ i

ωτÞ
; ð21Þ

where we used (15) to eliminate λb0 in favor of ω�,

k2 ≈ −λb0ω ¼ −
ωω�m2

EðE − ω�Þ ; ðλb0 > 0Þ: ð22Þ

Note that (22) makes sense only when λb0 > 0, for
otherwise ω� is negative, indicating that there is no
instability when λb0 < 0. Equation (21) implies that above
the threshold, viz. when ω > ω�, photon is radiated mostly

at angles θ ≲ θ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Eω
ω−ω�
E−ω�

q
. However, at and below

the threshold, the angular distribution diverges at

θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Eω
ω�−ω
E−ω�

q
which is regulated by the cutoff introduced

in the previous section.

Let us now examine the photon propagator in the resonant
case λb0 > 0. Writing q2 ¼ ½ðk × qÞ2 þ ðk · qÞ2�=k2 and
expanding at small-photon emission angles we obtain

q2 ¼ −ðkþ p0 − pÞ2 ≈ θ2E2 þ θ02E02 − 2EE0θθ0 cosϕ

þ 1

4

�
m2ðω − ω�Þ
E0ðE − ω�Þ − Eθ2 þ E0θ02

�
2

: ð23Þ

In the nonanomalous case ω� ¼ 0, and the momentum
transfer is bounded from below by m4ω2

4E2E02. In contrast, in the
presence of the anomaly the momentum transfer is allowed
to vanish. We can find the corresponding kinematic region
by first observing that the sum of the first three terms and the
last term in the right-hand side of (23) are non-negative and
therefore have to vanish independently. The sum of the first
three terms vanishes only when ϕ ¼ 0 and Eθ ¼ E0θ0 in
which case the momentum transfer reads

q2jϕ¼0;Eθ¼E0θ0 ≈
1

4

�
m2ðω − ω�Þ
E0ðE − ω�Þ þ ωE

E0 θ
2

�
2

¼ 1

4

ω2E2

E02

�
m2ðω − ω�Þ
ωEðE − ω�Þ þ θ2

�
2

: ð24Þ

This imbues the photon propagator with the same resonant
behavior as the fermion propagator, as can be seen by
comparing with (21). Apparently, we need to regulate the
divergence at q2 ¼ 0 by replacing θ2 → θ2 þ i

ωτ in (24).

This is tantamount to the replacement q2 → q2 þ E2

4E02τ2.
Along with the Debye mass μ introduced in (12) it provides
the regulator of the photon propagator at small-momentum
transfers,
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q2 → q2 þ E2

4E02τ2
þ μ2: ð25Þ

The physics of bremsstrahlung in chiral medium is most
transparent in two limiting cases: (i) low temperaturem ≫ μ;
and (ii) high temperature μ ≫ m. In the anomaly-free
medium b0 ¼ 0, the first case reduces to the scattering off
a single nucleus. In this case themomentum transfer q2 never
vanishes. On the contrary, in the presence of anomaly,
negative k2 can drive the momentum transfer towards zero
for one of the photon polarizations, as we explained.

A. Low temperature: μ ≪ m

We first consider the low-temperature/heavy-fermion
regime. We also assume, for the sake of simplicity,
that μ2 ≪ 1=τ2 so that τ regulates both the fermion and
the photon propagators. In the anomaly-free medium, the
typical momentum transfer is of the order m and therefore
the scattering cross section is insensitive to the cutoffs τ
and μ. This conclusion is upended in the anomalous
medium due to the resonances discussed in Sec. III.
The bremsstrahlung cross section is obtained by sub-

stituting (19) into (1) and integrating over the fermion and
photon directions. The angular integrals are performed in
Appendix B. The results are essentially different for
positive and negative values of the parameter b0λ. For
b0λ < 0 there are no resonances and the angular integrals
simplify greatly. In this case, τ−1 and μ may be neglected
given that all integrals are convergent. In this case the cross
section reads,

dσðb0λ < 0Þ
dω

≈
Z2e6E0

4ð2πÞ3ðm2ω − λb0EE0ÞE
�
E
E0 þ

E0

E
−
2

3

�

×

�
ln

4E2E02

ωðm2ω − λb0EE0Þ − 1

�
: ð26Þ

In the anomaly-free medium b0 ¼ 0 (26) reduces to the
well-known Bethe-Heitler expression for the bremsstrah-
lung cross section on a heavy nucleus [19,40],

dσBH
dω

≈
Z2e6E0

4ð2πÞ3m2ωE

�
E
E0 þ

E0

E
−
2

3

��
ln
2EE0

mω
−
1

2

�
: ð27Þ

The effect of the anomaly on this photon polarization is most
significant in the infrared region ω ≪ b0EE0=m2 where the
cross section scales as logð1=ωÞ. In contrast, without the
anomaly it scales as ð1=ωÞ logð1=ωÞ. Thus, the anomaly
tends to suppress emission of photons with b0λ < 0
polarization.
The situation is essentially different for the b0λ > 0

polarziation since the corresponding cross section diverges
in the limit τ−1 → 0, i.e., at small photon emission angles
when ω ≤ ω�. As we explained in the previous section, this
divergence occurs concurrently in the fermion and the
photon propagators and is regulated by shifting θ2 → θ2 þ
i
ωτ and similarly for θ0. Keeping only the essential terms and
setting μ ¼ 0 we obtain,

dσðb0λ > 0Þ
dω

≈
Z2e6E0

4ð2πÞ3Em2ω

8>>><
>>>:



E
E0 þ E0

E − 2
3

� 
ln 4E2E02

m2ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðω�−ωÞ2
ω2ðE−ω�Þ2þ

4E4E02
m4ω4τ2

q − 1

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðω�−ωÞ2
ω2ðE−ω�Þ2 þ 4E4

m4ω2τ2

q þ 2m4ðω� − ωÞτ3
E3E04ðE − ω�Þ

�
E06 arctan

m2ðω� − ωÞτ
E0ðE − ω�Þ

þ E6 arctan
m2ðω� − ωÞτ
EðE − ω�Þ

�
Θðω� − ωÞ

9>>>=
>>>;
; ð28Þ

whereΘ is the step function and we replaced b0λ in favor of
ω� using (22).
The are two kinds of terms in (28): (i) The first line

of (28) reduces to the anomaly-free result (27) in the limit
b0 → 0 and E=τ → 0. We neglected all terms proportional
to τ−1 with exception of those appearing under the radicals
where their role is to regulate the divergence at the threshold
ω ¼ ω�; (ii) The second and the third lines of (28) represent
the most singular resonance contributions, viz. the terms
that are most divergent at small τ−1. In the limit b0 → 0 the
step function can only be satisfied when ω → 0, hence the
anomalous contribution vanishes.

We stress that the chiral resonance in the fermion
propagator contributes only to one of the photon polar-
izations, namely b0λ > 0. The other polarization b0λ < 0 is
suppressed. This is in contrast to the lack of a distinction
between handedness in the absence of the anomaly. A
remarkable feature of the anomalous contribution, domi-
nated by the second and the third lines of (28), is that at
small ω its spectrum scales as 1=ω, which is the same form
as the soft-photon spectrumwithout the chiral anomaly (27).
The bremsstrahlung photon spectra are plotted in Fig. 2.

Inspection of Fig. 2 reveals two significant features.
Firstly, at ω < ω� the cross section is enhanced as
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compared to the Bethe-Heitler formula. To better under-
stand the parametric dependence of the cross section,
consider the soft photon region ω ≪ ω� ≪ E, in particular
ω� ≈ λb0E2=m2. Equation (28) can be written as

dσðb0λ > 0Þ
dω

≈
3π

2

m2τ3b0
ln 2E2

mω

dσBH
dω

: ð29Þ

Since mτ ≫ b0τ ≫ 1 we indeed observe that the anoma-
lous cross section is strongly enhanced in the soft-photon
region. Secondly, when focusing on the production of the
right-handed photons, we see a sharp cutoff at ω ¼ ω�.
The anomalous contribution vanishes at higher-photon
energies. A similar behavior was discussed in our paper
[15] for the case of magnetic moment contribution.
To complete our discussion, we cite here the magnetic

moment contribution to the bremsstrahlung in the semi-soft
photon limit b0 ≪ ω ≪ E computed in [15]:

dσM
dω

≈
2e4M2

3ð2πÞ3ω
�
3b20
m2

ln

�
4E4

m2ω2

�
þ ln2

4E2

m2

þ 2b40π
m2Γ2

Θðω0 − ωÞ
�
; ð30Þ

where M is the magnetic moment. In Fig. 2 one can see
that it gives a minor correction to the total cross section,
even though it exhibits qualitative features similar to (26)
and (28). Overall the anomaly in the magnetic channel may
amplify photon production over a wider range of frequen-
cies but produces less radiation when compared to the
electric channel.

B. High temperatures: μ ≫ m

We now consider the differential cross section in
the opposite limit where μ ≫ m and μ2 ≫ 1=τ2, so that
τ−1 is neglected in the photon propagator. We assume that
the projectile fermion experiences only a single hard
scattering and therefore its propagator is the same as in a
vacuum [22,23]. The process of computing the differential
cross section and the necessary integrals is similar to the one
outlined in Appendix B, except that m may be taken to zero
in the high-temperature limit. It is well-known that μ not
only regulates the Coulomb pole, but also sets the smallest
photon emission angle θmin ¼ μ=E ≪ 1 [23,41]. In the
previous subsection both roles were played by m. In the
high-energy limit, one can take the integrals Ij;n;l, by
expanding the integrands at small-photon emission angles
θ and θ0,

Ij;n;l ≈
Z

dΩ0dΩk

½ðE2θ2 − 2EEθθ0 cosϕþ E02θ02Þ þ 1
4
ðEθ2 − E0θ02 þ λb0Þ2�j

×
1

½ðEωθ2 − λb0E0Þn − ð−i EτÞn�½ðE0ωθ02 − λb0EÞl − ði E0
τ Þl�

; ð31Þ

where ϕ is the azimuthal angle which may be integrated over directly. As an example consider I1;1;1. Integrating of
ϕ yields,

I1;1;1 ≈
Z

∞

μ2

E2

Z
∞

μ2

E02

π2dθ02dθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððE2θ2 þ E02θ02Þ þ 1

4
ðEθ2 − E0θ02 þ λb0Þ2Þ2 − 4E2E02θ2θ02

q
×

1

ððEωθ2 − λb0E0Þ þ i EτÞððE0ωθ02 − λb0EÞ − i E
0
τ Þ

; ð32Þ

where we replaced the upper integration limits by infinities thanks to the fast convergence of the integrals. Taking the
remaining integrals we find that I1;1;1 gives the following contribution to the differential cross section:

I1;1;1 ≈

4π2 ln 4E2E02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2ω2−λb0ωEE0Þ2þ4E

4E02
τ2

q
ωEE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2ω − λb0EE0Þ2 þ 4 E3E0

τ2

q : ð33Þ

The other terms may be computed in a similar fashion. In those integrals where the integral over θ (or θ0) is not convergent at
large angles, one needs to first integrate over the region θ < θ0 (or θ0 < θ); the remaining integral then converges well. The
result of the calculation is different for the two photon polarziations and reads

dσðb0λ < 0Þ
dω

≈
Z2e6E0

4ð2πÞ3ðμ2ω − λb0EE0ÞE
�
E
E0 þ

E0

E

��
ln

4E2E02

μ2ω2 − λb0ωEE0 − 1

�
; ð34Þ
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dσðb0λ > 0Þ
dω

≈
Z2E0e6

4ð2πÞ3Eμ2ω

8>>><
>>>:
μ2ωðEE0 þ E0

EÞ½ln 4E2E02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2ω2−λb0ωEE0Þ2þ4E

4E02
τ2

q − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2ω − λb0EE0Þ2 þ E3E0

τ2

q

þ λb0μτ
E

arctan

�ðλb0EE0 − μ2ωÞτ
EE0

�
Θðω� − ωÞ

9>>>=
>>>;
; ð35Þ

where ω� is given by (15) and E0; E ≫ μ.
Consider the soft-photon limit in a medium such that

μ ≫ m ≫ τ−1. The soft-photons region corresponds to
ω ≪ E and ω ≪ ω�, the latter condition implying
ω ≪ b0E2=m2. Then (35) reduces to

dσðb0λ > 0Þ
dω

≈
π

2

μ

E
b0τ

ln 2E2

μω

dσBH
dω

; ð36Þ

where the Bethe-Heitler cross section in this case is
obtained by setting b0 ¼ 0 in (34). One observes only a
modest enhancement, if any, as compared to (29).

V. ENERGY LOSS

A fast particle moving across a medium loses energy.
There are two main mechanisms for energy loss at suffi-
ciently high energies. The collisional energy loss occurs
due to momentum transfer in the course of elastic collisions.
The radiative energy loss is caused by the bremsstrahlung.
Comprehensive discussions of the energy-loss regimes and
phenomenological applications can be found in [42,43]. In
chiral media there are additional contributions to the energy
loss driven by the chiral anomaly. The results of the previous
section allow us to compute the amount of energy lost due to
the bremsstrahlung in a scattering off a single source of
electric charge eZ.
Throughout this paper we neglected the quantum inter-

ference effects assuming that the photon formation time tf
is much shorter than the mean-free-path l. In this approxi-
mation the energy loss per unit length is

−
dE
dz

¼ n
Z

E

0

ω
dσeZ→eZγ

dω
dω; ð37Þ

where n is number of scatterers per unit volume which can
be expressed in terms of the elastic scattering cross section
n ¼ 1=lσeZ→eZ. At high energies,

σeZ→eZ ¼ αðeZÞ2
maxfμ2; m2g þOðMÞ; ð38Þ

where α ¼ e2=4π. The omitted term in (38) is proportional
to the small magnetic moment M of the source. Actually,
this term is affected by the anomaly and can become

essential at very high energies [44]. However, in the present
calculation it can be neglected.
As in the previous section we will be concerned with the

two limits.

A. Low temperatures: μ ≪ m

Substituting (26) or (28) into (37) and integrating
over ω gives the energy loss for two photon polarizations.
For brevity we will record these expressions in the limit
m2 ≫ b0E,

−
dEðb0λ< 0Þ

dz
≈

e2E
16π2l

�
ln
2E
m

−
1

3
−
2b0E
9m2

�
πþ 2 ln

E
b0

��
;

ð39Þ

−
dEðb0λ> 0Þ

dz
≈

e2E
16π2l

�
ln
2E
m

−
1

3
þ 2b0E

9m2

�
πþ 2 ln

E
b0

�

þ 2τðE−ω�Þ arctan 2m2ω�τ
EðE−ω�Þ

�
: ð40Þ

Equation (39) agrees with Eq. (93.24) in [40] when
b0 ¼ 0. We observe that the anomaly slightly reduces
the amount of energy lost due to the bremsstrahlung of
b0λ < 0 photons. This is consistent with our discussion in
the previous section that the bremsstrahlung cross section
is reduced in this case.
As far as the b0λ > 0 polarization is concerned, we

consider again the soft photon region ω ≪ ω� ≪ E were
λb0 ≪ m so that the last term on the right-hand side of (40)
is dominant. This allows us to cast the energy loss (40) in a
convenient form,

−
dEðb0λ > 0Þ

dz
≈
πτE
ln 2E

m

�
−
dE
dz

�
BH

: ð41Þ

Thus, the energy loss due to the chiral anomaly is driven by
the b0λ > 0 photon polarization and is enhanced by the
large factor τE over the Bethe-Heitler result.

B. High temperature: μ ≫ m

The rate of energy loss in the high-temperature limit is
computed similarly. Plugging (35) and (37) into (37)wederive
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−
dEðb0λ< 0Þ

dz
≈

e2E
16π2l

�
ln
2E
μ
−
6b0E
7μ2

ln
E
b0

ln
4E2

μ2

�
; ð42Þ

−
dEðb0λ>0Þ

dz
≈

e2E
16π2l

�
ln
2E
μ
þ6b0E

7μ2
ln
E
b0

ln
4E2

μ2
þ2b0μτ

3E

�
:

ð43Þ

Equation (42) agrees with [41] when b0 ¼ 0. As in the
low-temperature case, the energy loss is mostly driven by
b0λ > 0 polarization. However, the overall magnitude of
the lost energy sensitively depends on the actual values of
the parameters.
The total energy loss is given by the sum of (39) and (39)

(when μ ≪ m) and of (42) and (43) (when μ ≫ m). We
observe that the chirality dependent nonresonant contribu-
tions cancel out, while the resonant terms proportional to τ
remain. Thus the total energy loss is also chirality dependent
which may facilitate its experimental observation.

VI. SUMMARY

In this paper we computed and analyzed the spectrum of
electromagnetic radiation emitted by a fast particle travel-
ing in the chiral medium supporting the chiral magnetic
current with constant chiral conductivity b0. We observed
in Fig. 2 that at low temperatures μ ≪ m the anomalous
contribution to bremsstrahlung, stemming from one of the
photon polarizations, is several orders of magnitude larger
than the nonanomalous one. We also computed the corre-
sponding enhancement of the energy loss. If confirmed by
experimental observation, it can serve as an effective tool to
study the chiral anomaly in the materials. It can also be used
to search for the new forms of the chiral matter. In
particular, a cosmic ray moving through the chiral domain
generated by an axion field would radiate and lose energy
in a peculiar way described in this paper. In the opposite

limit of very high temperatures, μ ≫ m, the effect of the
anomaly is much smaller as seen in Fig. 3.
In arriving at our conclusions we made a number of

assumptions. First of all, we treated the chiral conductivity
b0 as a constant. However, it does evolve in time albeit
slowly. Its temporal evolution is characterized by the
relaxation time τ, which we assumed to be the large
parameter in our calculation. The spatial extent of the
domain can be neglected as long as it is larger than photon
formation time tf which is a very good approximation
considering that the formation time must be shorter than the
mean free path l in the Bethe-Heitler limit. Also, for the
sake of simplicity we neglected the chiral displacement b.
The electric current j ¼ b × E is induced at finite b and is
responsible for the anomalous Hall effect. At b0 ¼ 0 it
induces the radiative instability of the chiral matter which is
similar in many ways to the homogeneous and isotropic
case b0 ≠ 0, b ¼ 0, especially at high energies [45,46]. In
fact, one can obtain the rate of the Cherenkov radiation by
simply replacing b0 → jbj cos β, where β is the angle
between b and k. The relationship between the two cases
is more delicate for bremmstrahlung. The photon propaga-
tor takes now the following form, in place of (5):

D00 ¼
iq2

q4 þ ðb × qÞ2 ; ð44Þ

D0i ¼
ðb × qÞi

q4 þ ðb × qÞ2 ; ð45Þ

Dij ¼ −
i

q4 þ ðb × qÞ2
�
q2δij þ bibj −

½q4 − ðb · qÞ2�qiqj
q4

−
b · q
q2

ðbiqj þ bjqiÞ
�
: ð46Þ

FIG. 3. The bremsstrahlung spectrum at μ ≫ m. The solid line is the high-energy approximation given by the sum of Eqs. (34) and
(35), the dotted line is the Bethe-Heitler limit b0 ¼ 0, and the dashed line is the magnetic moment contribution (30). Left panel:
b0 ¼ 10−1m, right panel: b0 ¼ 10−2m, both panels: E ¼ 102m, μ ¼ 10m, τ−1 ¼ Γ ¼ 0.1b0, Z ¼ 33. The vertical line indicates ω�=E.
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The denominator of the D00 component that drives the
electric channel is merely shifted μ2 → μ2 þ ðb × q̂Þ2. The
corresponding energy loss is anisotropic as it depends on
the angle between the incident fermion momentum and the
displacement vector. Otherwise, we believe that the quali-
tative similarity will persist. The magnetic channel is quite
different, but its contribution to the overall energy loss is
not significant. Clearly, due to possible applications to
Weyl and Dirac semi-metals, the case of finite b deserves a
dedicated study.
Another critical assumption we made is that photon

formation time tf is much shorter than the mean-free path
l. As argued in [41], the condition tf ≪ l translates into the

requirement that m; μ ≪ E ≪ μ
ffiffiffiffiffiffiffi
ωl

p
. Since tf is propor-

tional toω, this approximation breaks down at high energies
where one must take account of the multiple scatterings of
the projectile in the medium. The resulting Landau-
Pomeranchuk-Migdal quantum interference effect [47,48]
is an important feature of the bremsstrahlung spectrum and
must certainly be taken into account at higher energies.

Throughout this paper, we have treated the chiral
anomaly as it pertains to QED. The non-Abelian version
of the chiral anomaly has a similar effect in QCD
generating contributions to gluon and photon bremsstrah-
lung. Calculation of bremsstrahlung and energy loss in
QCD in the presence of the chiral magnetic current is
relevant to the quark-gluon plasma phenomenology. We
plan to address this elsewhere.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Energy Grants No. DE-FG02-87ER40371 and No.
DE-SC0023692.

APPENDIX A: THE BREMSSTRAHLUNG CROSS
SECTION AT THE LEADING ORDER

The bremsstrahlung cross section corresponding to
Fig. 1 including the cutoffs reads,

dσ ¼
X
λ

Z2ωe6dω
16ð2πÞ5

jp0j
jpj Re

8<
:ð2E2 þ 2E02 þ k2ÞI1;1;1 −

ω2 þ k2

4k2
ðI2;1;−1 þ I2;−1;1Þ þ ðI1;0;1 − I1;1;0Þ

þ 2m2ðω2 þ k2Þ þ 4EE0k2 þ k4

4k2
ðI1;2;0 − 2I1;1;1 þ I1;0;2Þ−

4

k2

�
m2k2ðE02I2;2;0 − 2EE0I2;1;1 þE2I2;0;2Þ

þ k2k2

2
ðE2I2;0;2 þE02I2;2;0Þ þE02E02k2ðI2;2;0 − 2I2;1;1 þ I2;0;2Þ−EE0k2ðI2;0;1 þ I2;1;0Þ

�

þ 4π2
arctanh



2jkjjpj

2ωE−k2þiEτ

�
arctanh



2jkjjp0j

2ωE0þk2−iE0τ

�
k2jpjjp0j − k2ð4πÞ2

arctanh


2ωEþ2jpjjkj−k2þμ2

μjp0j
�
− arctanh



2ωEþ2jpjjkj−k2þμ2

μjp0j
�

k3jpjjp0jμ

9=
;;

ðA1Þ

where the angular integrals Ij;n;l are defined as

Ij;n;l ¼
Z

dΩ0dΩk

ðq2 þ μ2Þj½ð2ωκ − k2Þn − ð−i EτÞn�½ð2ωκ0 þ k2Þl − ði E0
τ Þl�

; ðA2Þ

where j, n, l are integers, k2 ¼ −λb0jkj. When any of these integers is negative the corresponding cutoffs can be set to zero.

APPENDIX B: INTEGRALS Ij;n;l IN THE ULTRARELATIVISTIC HEAVY FERMION LIMIT

An analysis of (19) reveals several dominant contributions to the differential ultrarelativistic cross section in terms of
Ij;n;l. We consider these contributions under two different regimes. In the first, we consider the case of heavy fermions
relative to the Debye mass such that μ ≪ m, μ2 ≪ E=τ, and in the second we consider the case of high temperature which
takes on the opposite limit m ≪ μ. We focus on the first case in this appendix, however in both cases we take the high-
energy limit μ; m ≪ E;E0 and ω ≫ b0. Additionally, the dominance of small emission angles allows us to neglect the
contribution due to large angles. Letting θ and θ0 be the angles between k and p, and k and p0 leads to the following
approximation:
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Ij;n;l ≈
Z

dΩ0dΩkh

E2θ2 − 2E0Eθθ0 cosϕþ E02θ02

�
þ 1

4



m2ω
EE0 − Eθ2 þ E0θ02 − λb0 þ 2i

ωτ

�
2
i
j

×
1h


Eωθ2 þ m2ω−λb0E0E
E

�
n
−


−i 2Eτ

�
n
ih


E0ωθ02 þ m2ω−λb0E0E
E0

�
l
−


i 2E

0
τ

�
l
i ; ðB1Þ

where ϕ is the azimuthal angle ranging from 0 to 2π. Integrating up to emission angles for the two possible cases j ¼ 1, 2

I1;n;l ≈
Z

π2dθ02dθ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
E2θ2 þ E02θ02 þ 1

4



m2ω
EE0 − Eθ2 þ E0θ02 − λb0 þ 2i

ωτ

�
2
i
2
− 4E02E2θ2θ02

r

×
1h


Eωθ2 þ m2ω−λb0E0E
E

�
n
−


−i 2Eτ

�
n
ih


E0ωθ02 þ m2ω−λb0E0E
E0

�
l
−


i 2E

0
τ

�
l
i ; ðB2Þ

I2;n;l ≈
Z h

E2θ2 þ E02θ02 þ 1
4



m2ω
EE0 − Eθ2 þ E0θ02 − λb0

�
2 þ μ2

i
π2dθ02dθ2nh

E2θ2 þ E02θ02 þ 1
4



m2ω
EE0 − Eθ2 þ E0θ02 − λb0 þ 2i

ωτ

�
2
i
2
− 4E02E2θ2θ02

o3
2

×
1h


Eωθ2 þ m2ω−λb0E0E
E

�
n
−


−i 2Eτ

�
n
ih


E0ωθ02 þ m2ω−λb0E0E
E0

�
l
−


i 2E

0
τ

�
l
i : ðB3Þ

These integrals may then be taken for the relevant
factors of n and l, noting the dominance of the

regions ωE2θ2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2ω − λb0E0EÞ2 þ E4

τ2

q
and ωE02θ02 <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2ω − λb0E0EÞ2 þ E04
τ2

q
, acting as effective bounds for

the integration. It is convenient to replace the integrals over
emission angles with the difference Δ ¼ jEθ − E0θ0j given
that the integrands are largest at Δ ¼ 0. The results for
various relevant integrals for the differential cross section
are given. For instances

I1;1;1 ≈

4π2 ln 4E2E02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2ω2−λb0ωEE0Þ2þ16E4E02

τ2

q
ωEE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2ω − λb0EE0Þ2 þ 16E3E0

τ

q ðB4Þ

and

I1;−1;1þ I1;1;−1 ≈
4π2

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2ω− λb0EE0Þ2þ 16E3E0

τ2

q �
E0

E
þ E
E0

�
:

ðB5Þ

Other integrals are more easily taken together, such as

E02I2;2;0 − 2EE0I2;1;1 þ E2I2;0;2 ≈

8π2 ln 4E2E02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2ω2−λb0ωEE0Þ2þ16E4E02

τ2

q
3½ðm2ω − λb0EE0Þ2 þ 16E3E0

τ2
�

π2τ3

4E4E04ω

�
E06 arctan

m2ðω� − ωÞτ
E0ðE − ω�Þ

þ E6 arctan
m2ðω� − ωÞτ
2EðE − ω�Þ

�
Θðω� − ωÞ; ðB6Þ

where ω� is given by (15). The remaining integrals may be computed similarly, or related using the symmetry p → −p0
such that

2ωκ − k2 → −ð2ωκ0 þ k2Þ; q2 ¼ −ðp0 − pþ kÞ2 → −ð−pþ p0 þ kÞ2 ¼ q2: ðB7Þ
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