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We investigate a family of four-dimensional quantum field theories with weakly interacting ultraviolet
fixed points up to four-loop order in perturbation theory. Key new ingredients are the three-loop gauge
contributions to quartic scalar beta functions, which we compute in the MS scheme for a template SUðNcÞ
gauge theory coupled to Nf fundamental fermions and elementary scalars. We then determine fixed point
couplings, field and mass anomalous dimensions, and universal scaling exponents up to the first three
nontrivial orders in a small Veneziano parameter. The phase diagram and UV-IR connecting trajectories are
found and contrasted with asymptotic freedom. Further, the size of the conformal window, unitarity, and
mechanisms leading to the loss of conformality are investigated. Our results provide blueprints for concrete
four-dimensional nonsupersymmetric conformal field theories with standard model-like field content and
invite further model building.
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I. INTRODUCTION

Ultraviolet (UV) fixed points play a central role for the
fundamental definition of quantum field theory (QFT).
They ensure that theories are UV-complete, meaning well-
defined and predictive up to highest energies. This is quite
different from effective field theories that tend to break
down above a certain energy. Moreover, and much like
critical points in systems with continuous phase transitions,
fixed points in particle physics also relate to an underlying
conformal field theory (CFT). The existence of free UV
fixed points, known as asymptotic freedom, has been
established long ago [1,2]. The more recent discovery that
high-energy fixed points can also be interacting [3–14],
known as asymptotic safety [15,16], has opened up new
territory to look for UV-complete extensions of the
Standard Model, and for genuinely new phenomena
beyond the paradigms of asymptotic freedom or effective
field theory [17–36].
A role model for an UV-complete particle theory with a

weakly interacting fixed point is given by Nf fermions
coupled to SUðNcÞ gauge fields and elementary scalars
through gauge and Yukawa interactions [3]. Crucially, in
the regime where asymptotic freedom is absent, quantum
fluctuations ensure that the growth of the gauge coupling is

countered by Yukawa couplings, leading to an interacting
fixed point in the UV (see Fig. 1). In the large-N limit, the
fixed point is under strict perturbative control, and specifics
of the theory can be extracted systematically in perturbation
theory by using ϵ ¼ Nf=Nc − 11=2 as a small control
parameter. Thus far, critical couplings, universal exponents,
and the size of the conformal window have been deter-
mined up to the second nontrivial order in ϵ, including
finite N corrections [3,8,13,17].
In this paper, we extend the study of the UV critical

theory to the complete third order in ϵ. The rationale for this
is that while the fixed point occurs for the first time at the
leading order in ϵ [3], a bound on the UV conformal
window ϵ < ϵmax arises for the first time at the complete
second order in ϵ [8,13]. Thereby, it has also been noted
that ϵmax is numerically small, suggesting that the entire
UV conformal window could be within the perturbative
domain.1 The validation of this picture warrants a study
up to the third nontrivial order in ϵ. To achieve this goal,
the four-loop gauge, three-loop Yukawa and quartic β
functions, and three-loop anomalous dimensions are
required as input. Some of these can be extracted from
generic expressions for beta functions of gauge-Yukawa
theories [40,41]. The missing pieces, however, are the
three-loop contributions to scalar β functions containing
gauge interactions, which we compute using standard
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1This state of affairs should be compared with the IR
conformal window of SUðNcÞ gauge theories coupled to Nf
fundamental fermions, where the theory becomes strongly
coupled; see. for instance. [37–39] and references therein.
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techniques in the MS scheme, and which is one of the
central results of this work. In addition, we provide fixed
point couplings and conformal data of the UV critical
theory up to cubic order in ϵ, and look into the loss of
conformality, the range of perturbativity, and UV-IR con-
necting trajectories in comparison with asymptotic
freedom.
The paper is organized as follows. Section II recalls the

basics of asymptotically safe particle theories, introduces
our model, and explains the underlying systematics.
In Sec. III, we detail the computation of β functions. In
Sec. IV, we present our results, which include beta
functions, fixed points, anomalous dimensions and scaling
exponents, bounds on the conformal window, and aspects
of the phase diagram. We conclude in Sec. V and defer
additional material to three appendixes.

II. ASYMPTOTICALLY SAFE GAUGE THEORY

In this section, we recall the basic model and its quantum
critical points, as well as the systematics of the underlying
perturbative and conformal expansions.

A. Model

We consider a four-dimensional, renormalizable QFT
with SUðNcÞ gauge group and an unbroken UðNfÞL ×
UðNfÞR global flavor symmetry. In analogy to massless
QCD, the theory features Nf colored, quarklike fermion as
well as a complex but uncharged meson-matrix scalar, as
listed in Table I. The corresponding Lagrangian

L ¼ −
1

4
FAμνFA

μν þ Lgf þ Lgh þ tr½ψ̄i=Dψ �
− ytr½ψ̄ðϕPR þ ϕ†PLÞψ � þ tr½∂μϕ†

∂μϕ� −m2tr½ϕ†ϕ�
− utr½ϕ†ϕϕ†ϕ� − vtr½ϕ†ϕ�tr½ϕ†ϕ� ð1Þ

consists of a gauge sector with field strength tensor FA
μν,

the usual gauge-fixing and ghost terms Lgf and Lgh, and the
coupling to the fermions via the covariant derivative Dμ

and the gauge coupling g. Traces in (1) run over both
flavor and gauge indices. Crosstalk between the scalar and
gauge sector is mediated via the real Yukawa coupling y.
This interaction is manifestly chiral due to the projectors
PR;L ¼ 1

2
ð1� γ5Þ. In the scalar sector, we observe

real-valued single-trace (u) and double-trace quartic cou-
plings (v). The scalar mass term in (1) is compatible with
the global symmetry of the model. Below, we are mostly
interested in the massless limit.

B. Veneziano limit

In this work, we are interested in the planar (Veneziano)
limit [42], where field multiplicities Nf and Nc are large
and interactions are parametrically weak. The virtue of the
Venziano limit is that it offers rigorous perturbative control,
allowing systematic expansions in a small parameter. To
prepare for the Veneziano limit, we introduce rescaled
couplings [43]

αx ¼
Ncx2

ð4πÞ2 ; αu ¼
Nfu

ð4πÞ2 ; αv ¼
N2

fv

ð4πÞ2 ; ð2Þ

where x ¼ g, y. Notice that the gauge, Yukawa, and single-
trace scalar couplings scale linearly, while the double-trace
scalar couplings scale quadratically with matter field
multiplicity. In the Veneziano limit, any explicit depend-
ence on ðNc;NfÞ drops out after the rescaling (2), and
leaves us with a dependence on ϵ,

ϵ≡ Nf

Nc
−
11

2
: ð3Þ

Moreover, the parameter (3) becomes continuous in this
limit, taking values in the entire range ϵ∈ ½− 11

2
;∞Þ. We are

particularly interested in the regime

FIG. 1. Phase diagram of an asymptotically safe theory in the
gauge-Yukawa plane of couplings ðαg; αyÞ at four-loop. Shown
are the interacting UV and the free IR fixed points (black dots),
and sample trajectories with arrows pointing to the IR. Two
asymptotically safe trajectories are running out of the UV fixed
point (orange) lead either to infrared freedom at weak coupling,
or to confinement or conformality at strong coupling.

TABLE I. Field content and representations under gauge and
global symmetry.

Field SUðNcÞ ULðNfÞ URðNfÞ
Fermion ψL Nc Nf 1

ψR Nc 1 Nf

Scalar ϕ 1 Nf Nf
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jϵj ≪ 1; ð4Þ

where it serves as a small control parameter for perturba-
tivity. The virtue of the parameter (3) is that it is propor-
tional to the one-loop coefficient of the gauge beta
function, which is at the root for perturbatively controlled
fixed points in any four-dimensional (4D) quantum field
theory [4,5].
This last point can be illustrated, exemplarily, by

expanding a gauge beta function to second-loop order,

βgjnull ¼
4

3
ϵα2g þ Cα3g þOðϵα3g; α4gÞ: ð5Þ

If other couplings αi are present, we project them onto their
nullclines (βi ¼ 0). The coefficient C, generically of order
unity, relates to the gauge two-loop coefficient, possibly
modified through Yukawa interactions by the nullcline
projection [4]. Consequently, a nontrivial fixed point arises
from a cancellation between the parametrically suppressed
one-loop term and the two-loop term,

α�g ¼ −
4ϵ

3C
þOðϵ2Þ; ð6Þ

leading to a power series in the control parameter ϵ, with
higher order loop terms leading to subleading corrections
in ϵ.2 If other couplings are present, the nullcline conditions
dictate that their fixed points are α�i ∝ α�g. We conclude
that strict perturbativity of fixed points in non-Abelian
gauge theories can always be guaranteed for sufficiently
small ϵ → 0 [4,5]. For examples of gauge theories
where interacting UV fixed points exist nonperturbatively,
including away from a Veneziano limit and at large ϵ, we
refer to [14].

C. Systematics

A key feature of non-Abelian gauge theories coupled
to matter is that fixed point couplings α�i (2) can be
systematically expanded as a power series in the small
parameter ϵ [8]. For our setting, this implies the “conformal
expansion” in powers of ϵ,

α�i ¼
X∞
n¼1

αðnÞi ϵn ði ¼ g; y; u; vÞ: ð7Þ

The expansion coefficients αðnÞi are determined using
perturbation theory. To obtain all fixed point couplings (7)
accurately up to and including the order ϵn, the perturbative
loop expansion must be performed up to the loop order
nþ 1 in the gauge, and up to order n in the Yukawa and
quartic beta functions, to which we refer as the ðnþ 1Þnn

approximation [8].3 Ultimately, the reason why the sys-
tematics of the perturbatively-controlled expansion requires
one more loop order in the gauge sector is that the one-loop
gauge coefficient is parametrically as large as the gauge
two-loop coefficient. This result establishes a link between
the perturbative loop expansion and the conformal expan-
sion in ϵ. The leading order ϵ0 (LO) relates to the loop order
100, where the running gauge coupling is parametrically
slowed down but a fixed point cannot (yet) arise. The next-
to-leading order ϵ1 (NLO), corresponding to 211, offers the
first nontrivial order where a fixed point materializes [3],
and the next-to-next-to-leading order ϵ2 (2NLO), corre-
sponding to 322, is the first nontrivial order where bounds
on the conformal window arise [8,13]. In this work, we
provide the order ϵ3 (3NLO) corresponding to the 433
approximation.

D. Fixed points

We briefly recall the weakly interacting fixed points
of the theory (1). For ϵ < 0, the theory is asymptotically
free [1,2], and one finds the seminal Caswell-Banks-Zaks
IR fixed point [44,45] with α�g > 0 and α�y;u;v ¼ 0. The IR
fixed point is known to exist within a conformal window
ϵmin < ϵ < 0, analogous to the conformal window in
QCD with extra fermions. The upper end is determined
by the loss of asymptotic freedom. The fixed point becomes
strongly coupled at the lower end ϵ ¼ ϵmin. The exact value
for ϵmin > − 11

2
, however, is not established with high

accuracy (see, for instance, [38,39] and references therein).
Also, in the regime with asymptotic freedom, the theory
does not exhibit a perturbatively controlled fixed point with
nontrivial Yukawa interactions α�y ≠ 0 [4]. These main
characteristics are illustrated in Fig. 2.
For ϵ > 0, on the other hand, asymptotic freedom is

absent. Then, a UV completion requires the appearance
of an interacting UV fixed point. Most importantly, such
a phenomenon necessitates a delicate interplay of non-
Abelian gauge, Yukawa, and scalar interactions, and cannot
arise from gauge interactions alone [4,5]. It then gives rise
to a fully interacting UV fixed point ðα�g;y;u;v ≠ 0Þ [3,17]
and a conformal window 0 < ϵ < ϵmax.
This UV fixed point and its renormalization group

(RG) flow in the ðαg; αyÞ plane are shown in Fig. 1. In
the vicinity the UV fixed point, the RG flow is power law
rather than logarithmic, with respect to the renormalization
scale μ,

αi ¼ α�i þ
X
j

ci;j

�
μ

μ0

�
ϑj
; ð8Þ

2Physicality of the fixed point requires that ϵ · C < 0.

3For want of terminology, we denote settings which retain the
gauge/Yukawa/quartic beta functions up to the l=m=n loop order
as the “lmn approximation.”
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characterized by universal scaling exponents ϑ. The sign of
the critical exponents ϑi in (8) determines whether an RG
trajectory connects to the fixed point in the UV or IR, in
which case it is called relevant or irrelevant, respectively.
While there are three irrelevant eigendirections, only one
RG trajectory reaches the fixed point in the UV. Thus,
asymptotic safety is established along a one-dimensional
submanifold in parameter space. Emanating from the UV
fixed point, the two outgoing trajectories lead either to IR
freedom or toward a strongly coupled regime with either
confinement or an interacting conformal fixed point. For
ϵ > ϵmax, the UV fixed point disappears and the theory is
described by an effective field theory in the UV, and a free
theory in the IR; see Fig. 2 for an illustration of these
features.

III. COMPUTING BETA FUNCTIONS

It is the central aim of this work to find and study the
renormalization group flow for the theory (1) at the
complete 3NLO order in the conformal expansion, which
corresponds to the 433 approximation. It requires four-loop
MS β functions for the gauge coupling g, as well as the
three-loop ones for the Yukawa coupling y, and the scalar
quartics u and v. Generic β functions for the gauge and
Yukawa couplings have been obtained in Refs. [40,41]
using Weyl consistency conditions at 432 [46],4 while the
fully general quartic β functions are available at two-loop
order [48,49]. These results are conveniently accessible via
software packages such as RGBETA [50] and FORGER [51].
Moreover, quartic and Yukawa contributions to the three-
loop β functions for the single- and double-trace quartic
couplings u and v have been determined in Refs. [52,53].
Therefore, the only missing pieces for a complete 433
analysis are the three-loop contributions to βu and βv
containing gauge interactions. Their computation is the
main task of this section.

A. Computational strategy

We have conducted a complete computation of all scalar,
fermion, vector-boson, and ghost two-point functions, gauge
and Yukawa vertex three-point functions, and scalar four-
point functions up to three-loop order. This allows one to
compute the MS counterterms that determine all γ and β
functions, including the missing three-loop results for the
single- and double-trace quartic scalar couplings βu;v. While
we are ultimately interested in the Veneziano limit, our
computations have been conducted for finite Nf and Nc.
The calculation has been achieved using the framework

MARTIN [54], which has been extended to three-loop order
for this purpose. All Feynman diagrams are generated
using QGRAF [55] and further evaluated in FORM [56].
Overall, almost 33,500 diagrams have been processed.
To distinguish UV and IR poles, we employ the technique
of infrared rearrangement (IRA) [57,58]. For convenience,
we choose the scalar mass in Eq. (1) to be zero and expand
each propagator (with integration momentum p) recur-
sively with a universal mass parameter mIRA,

1

ðp − qÞ2 ¼
1

p2 −m2
IRA

þ 2p · q − p2

p2 −m2
IRA

1

ðp − qÞ2 :

Finite terms with a sufficiently negative degree of divergence
are dropped systematically. To cancel subdivergences in two-
and three-loop diagrams, counterterms for scalar and vector-
boson masses proportional tom2

IRA are introduced, while this
is not necessary for ghosts or fermions [59]. In the end, the γ
matrices along each fermion line either carry Lorentz indices
from the gauge boson propagators, or are contracted with the
third integration momentum exchanged between the loops.
We apply tensor and integration by parts reduction tech-
niques [58], and the program LITERED [60,61] is utilized to
reduce all remaining three-loop scalar vacuum integrals to a
set of masters [62,63].

B. Treatment of γ5
Moreover, we would like to comment on the treatment of

γ5, as its naïve definition

fγ5; γμg ¼ 0; γ5 ¼
i
4!
εμνρσγ

μγνγργσ ð9Þ

with the four-dimensional Levi-Civita symbol ε is in
conflict with the dimensional regularization procedure.
In fact, this treatment is algebraically inconsistent. In our
case, the inconsistencies and ambiguities regarding the γ5
treatment can only arise starting at three-loops when
contracting two different terms ∝ trðγμγνγργσγ5Þ or with
traces of more γ matrices [64], e.g., from diagrams in Fig. 3.
As observed in Ref. [46], such terms are only generated if

for each closed fermion line l with nðlÞg gauge-vertex

insertions and nðlÞy Yukawa-vertex insertions

FIG. 2. Main characteristics of the theory (1) as a function of
the Veneziano parameter ϵ. In the UV, we indicate whether the
theory is asymptotically free, safe, or UV-incomplete and
described by an effective field theory. In the IR, we indicate
whether the theory achieves confinement, IR freedom, or an
interacting conformal fixed point.

4Note that our model (1) is CP-even and cannot generate an
additive β function to its topological angle; thus, the caveat raised
in Ref. [47] regarding the Weyl consistency condition does not
apply.
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2nðlÞg þ nðlÞy ≥ 5: ð10Þ

This constraint cannot be satisfied for scalar two-point
functions at three-loop order. There is a single set of scalar
four-point diagrams at three-loop where Eq. (10) is ful-
filled. These are diagrams containing two fermion loops

with nð1Þy ¼ nð1Þg ¼ nð2Þy ¼ nð2Þg ¼ 2, as depicted in Fig. 3.
Each fermion loop in these diagrams features their own
loop momentum, which can be integrated over independ-
ently from the rest of the diagram. External momenta can
be set to zero as the 1=ε UV pole terms relevant for
computing the β functions are independent of them. In the
end, the γ matrices along the fermion line are contracted
Lorentz indices either from the gauge boson propagators or
with the third integration momentum exchanged between
the loops. In either case, there are insufficient independent
Lorentz indices and momenta feeding into each fermion
trace to form a tensor ∝ trðγμγνγργσγ5Þ [59]. Hence, three-
loop quartic β functions, which represent the main result of
our computation, cannot depend on the γ5 scheme and can
be treated without inconsistencies within the seminaïve γ5
scheme employed in this work and discussed below. We
extract the four-loop gauge and three-loop Yukawa β
functions from literature results [40,41]. In this case it is
known that all potential γ5 ambiguities are fixed due to
Weyl consistency conditions [46,65,66].
To deal with γ5 in our calculation, we employ the

seminaïve scheme [59,67] with

fγ5; γμg ¼ 0; γ5 ¼
i
4!
ε̃μνρσγ

μγνγργσ; ð11Þ

where ε̃ is a ð4 − 2εÞ-dimensional, completely antisym-
metric tensor which satisfies the identity

ε̃μ1ν1ρ1σ1 ε̃μ2ν2ρ2σ2 ¼ −δ½μ1½μ2δ
ν1
ν2δ

ρ1
ρ2δ

σ1�
σ2� þOðεÞ: ð12Þ

In exactly four spacetime dimensions, ε̃ is the Levi-Civita
symbol, and the naïve definition in Eq. (9) is recovered.
Slightly away from the integer dimension at d ¼ 4 − 2ε, ε̃
digresses by terms OðεÞ from the Levi-Civita case. Hence,
the otherwise four-dimensional identity in Eq. (12) picks up
correctionsOðεÞ. The exact shape of theseOðεÞ corrections
is irrelevant for the calculation of counterterms as long as
Eq. (12) is only applied in terms that are already finite or
only contain a single pole 1

ε. We have verified that this is
indeed the case in our calculation. Finally, we would like to
mention that poles due to non-Hermitian field strength

renormalization tensors are absent as the flavor symmetry is
unbroken [68–71].

C. Consistency checks

Overall, the computation agrees at finite Nf;c with
generic literature results [40,41,48,49,72–76] at 432 as
well as previous calculations for 433 in the gaugeless
limit [52,53]. To cross-check the gauge contributions, we
have extended the basis of tensor structures for the general
scalar γ and quartic β functions [53] to account for gauge
interactions among fermions (while retaining scalars as
not charged). Details can be found in Appendix A. Each
tensor structure in the general β functions has a universal
coefficient that can be determined by comparing the corre-
sponding renormalization group equations of suitable liter-
ature results. In our case, we have utilized the three-loop data
for the Higgs self-interactions in the SM [59,77–79] with
g1 ¼ g2 ¼ 0, as well as a QED-like gauge-Yukawa theory
with a real scalar singlet [80]. All references employ the
same seminaïve γ5 scheme. The literature models are
compatible with the generalized Lagrangian (A1). All
relevant parts of their scalar quartic β functions, mass,
and field anomalous dimensions can be computed using the
prescription (A4) and (A5), up to a number of model-
independent coefficients. Comparing these results with the
explicit computations of [59,77–80] yields relations of those
coefficients. Although not all coefficients can be fixed, the
data is sufficient to obtain the complete quartic β functions
for the theory (1) by using the formalism of (A4) and (A5).
We find full agreement with our explicit calculation at
finite Nf;c.

D. Higher orders

To advance the conformal expansion to 4NLO (544
approximation), the complete five-loop gauge as well as
four-loop Yukawa and quartic β functions are required.
Partial results are available from QCD-like theories [81–86]
and from purely scalar theories [52,87]. What is missing,
however, are the crucial contributions from Yukawa inter-
actions, the coupling that mediates between the gauge and
scalar sectors. It is well-known that Yukawa interactions are
key for the primary existence of the fixed point [3–5,88],
and their contributions are therefore expected to be equally
important at higher orders.
As 544 requires the computation of four-point functions,

it is prudent to employ infrared rearrangement by massive
propagators as demonstrated in this work. Some tools
for this endeavor have already been developed; see, for
instance, [89–94] and references therein. However, and
given the limitations of the seminaïve algorithm, the main
new complication will be the consistent treatment of γ5.
Notice that up until now this has not been an issue in
QCD-like or purely scalar theories. Also, while at 432 all
γ5-ambiguities have been removed using Weyl consistency

FIG. 3. Scalar four-point diagrams that fulfill Eq. (10), but can
still be treated without inconsistencies within the naïve γ5 scheme
as argued in Ref. [59] and discussed in the main text.
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conditions [46,65], it is far from evident that the same can
be achieved at higher orders. For starters, this would require
the formulation of a basis for generalized 543 and 654 β
functions, which in itself is a massive undertaking. We also
point out that a complete basis for the general quartic β
function at three-loops does not yet exist. These ambitious
endeavors are left for future work.

IV. RESULTS

In this section, we summarize our results for beta
functions and anomalous dimensions, and determine fixed
points and universal scaling dimensions up to the third
nontrivial order in the Veneziano parameter. We also
discuss aspects of unitarity, bounds on the conformal
window, and the phase diagram and UV-IR connecting
trajectories in comparison with asymptotic freedom.

A. Beta functions

In this section we list the β functions in the loop
expansion

βi ≡ dαi
d ln μ

¼
X∞
l¼1

βðlÞi ; ð13Þ

with i ¼ g, y, u, v. The new pieces with respect to the
previous analysis [8] are the four-loop contributions to the

gauge βð4Þg , the three-loop contribution to the Yukawa βð3Þy ,
and the three-loop contributions to the scalar beta functions

βð3Þu;v. Specifically,

βð1Þg ¼ 4

3
ϵα2g;

βð2Þg ¼
�
25þ 26

3
ϵ

�
α3g −

1

2
ð11þ 2ϵÞ2αyα2g;

βð3Þg ¼
�
701

6
þ 53

3
ϵ −

112

27
ϵ2
�
α4g −

27

8
ð11þ 2ϵÞ2αyα3g þ

1

4
ð20þ 3ϵÞð11þ 2ϵÞ2α2yα2g;

βð4Þg ¼ −
�
14731

72
þ 550ζ3 þ

�
123473

324
þ 1808

9
ζ3

�
ϵþ

�
21598

243
þ 56

3
ζ3

�
ϵ2 þ 260

243
ϵ3
�
α5g

þ 1

48
ð11þ 2ϵÞ2

��
−107þ 432ζ3 þ

758

3
ϵ

�
αyα

4
g þ 3ð647 − 48ζ3 þ 92ϵÞα2yα3g

�

þ ð11þ 2ϵÞ2
�
3α2u −

�
875

16
þ 179

12
ϵþ 11

12
ϵ2
�
α2y

�
αyα

2
g −

5

4
ð11þ 2ϵÞ3αuα2yα2g: ð14Þ

We note that irrational coefficients ∝ ζ3 arise for the first time at four-loop. Further, the quartic coupling αu makes its first
appearance at four-loop, as it must.5 This influence of the scalar sector is channeled through the Yukawa sector, which itself
is supplemented by three-loop results

βð1Þy ¼ ð13þ 2ϵÞα2y − 6αgαy;

βð2Þy ¼ −
1

8
ð35þ 2ϵÞð11þ 2ϵÞα3y þ ð49þ 8ϵÞαgα2y − 4ð11þ 2ϵÞαuα2y −

1

6
ð93 − 20ϵÞα2gαy þ 4α2uαy;

βð3Þy ¼
�
17413

64
þ 2595

32
ϵþ 59

16
ϵ2 −

3

8
ϵ3
�
α4y −

1

2
ð118þ 19ϵÞð11þ 2ϵÞαgα3y þ 6ð8þ ϵÞð11þ 2ϵÞαuα3y

−
�
1217

16
þ 198ζ3 þ

1

8
ϵð893þ 288ζ3 þ 136ϵÞ

�
α2gα

2
y þ 2ð11þ 2ϵÞαgαuα2y þ 5

�
5

2
þ ϵ

�
α2uα

2
y − 8α3uαy

þ
�
641

6
þ 132ζ3 þ

ϵ

27
ð1947þ 648ζ3 þ 70ϵÞ

�
α3gαy: ð15Þ

In the quartic sector, the gauge dependent terms∝ αg and∝ α2g are computed here for the first time. These terms must vanish
for αy ¼ 0, which decouples the fermionic from the gauge sector. This is indeed manifest in the evolution of both the single-
and double-trace quartics. The latter reads

5Had the scalars been charged under the gauge symmetry, contributions would have appeared at three-loop.
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βð1Þu ¼ 8α2u þ 4αyαu − ð11þ 2ϵÞα2y;
βð2Þu ¼ −24α3u − 16αyα

2
u − 3ð11þ 2ϵÞα2yαu þ 10αgαyαu þ ð11þ 2ϵÞ2α3y − 2ð11þ 2ϵÞαgα2y;

βð3Þu ¼ 104α4u þ 34α3uαy þ ð889þ 166ϵÞα2uα2y −
1

8

�
11

2
þ ϵ

�
2

ð21 − 26ϵÞα4y −
�
2953

16
þ 315

8
ϵ

�
ð11þ 2ϵÞαuα3y

− ð102 − 96ζ3Þα2uαyαg þ
1

4
ð11þ 2ϵÞð149 − 240ζ3Þαuα2yαg −

1

4
ð11þ 2ϵÞ2ð5 − 24ζ3Þα3yαg

þ
�
13

4
− 8ϵ

�
αuαyα

2
g þ

1

8
ð11þ 2ϵÞð23þ 20ϵÞα2yα2g: ð16Þ

Note the absence of a term ∝ αyα
3
g, which can easily be understood diagrammatically. As expected in the planar large-N

limit [95], the double-trace quartic does not enter other β functions than its own, namely

βð1Þv ¼ 12α2u þ 16αuαv þ 4α2v þ 4αyαv;

βð2Þv ¼ −96α3u − 40α2uαv − 24αyα
2
u − 32αyαuαv − 8αyα

2
v þ 4ð11þ 2ϵÞαuα2y − 3ð11þ 2ϵÞαvα2y þ 10αgαyαv þ ð11þ 2ϵÞ2α3y;

βð3Þv ¼ 12α2vα
2
u þ 480αvα

3
u þ ð772þ 384ζ3Þα4u þ 66αvα

2
uαy þ 192α3uαy þ

�
427

2
þ 41ϵ

�
α2vα

2
y

þ
�
788þ 152ϵþ 96ζ3

�
11

2
þ ϵ

��
αvαuα

2
y þ

�
1985

2
þ 187ϵþ 192ζ3

�
11

2
þ ϵ

��
α2uα

2
y − 4

�
11

2
þ ϵ

�

×

�
105þ 22ϵþ 24ζ3

�
11

2
þ ϵ

��
αuα

3
y −

1

8

�
11

2
þ ϵ

�
ð1545þ 374ϵÞαvα3y −

�
11

2
þ ϵ

�
2

ð73þ 10ϵÞα4y
− 9ð17 − 16ζ3Þα2uαyαg − ð204 − 192ζ3Þαvαuαyαg − ð51 − 48ζ3Þα2vαyαg þ 8ð11þ 2ϵÞð7 − 9ζ3Þαuα2yαg
þ 1

4
ð11þ 2ϵÞð149 − 240ζ3Þαvα2yαg þ

1

2
ð11þ 2ϵÞ2ð−1þ 12ζ3Þα3yαg þ

�
13

4
− 8ϵ

�
αvαyα

2
g þ 6ð11þ 2ϵÞ2α2yα2g;

ð17Þ

where it only appears to order ∝ α2v. This potentially leads
to pair-wise fixed-point solutions that only differ by α�v and
potentially merge at some value of ϵ, disappearing into the
complex plane. Finite-N corrections to (14)–(17) are more
lengthy and can be found in Appendix B.

B. Anomalous dimensions

Next, we provide some results for physical meaningful
anomalous dimensions for mass and field strength renorm-
alization. The scalar squared mass m2 in (1) corresponds
to the only bilinear field operator that does not violate local
or global symmetries. Its gauge-independent anomalous
dimension

γm2 ¼ d lnm2

d ln μ
¼

X∞
l¼1

γðlÞ
m2 ð18Þ

cannot be obtained from our loop computation, since we have
chosen m2 ¼ 0 for convenience. Thus, its counterterm is
tainted by contributions from the gauge boson IRA mass.
Instead, we make use of the general β functions for the
quartic interactions and employ the dummy field trick
[49,76,96] to obtain mass β functions. At three-loops, we
rely on the ansatz detailed in Appendix A of tensor structures
with the incomplete set of coefficients extracted from the
literature (see Sec. III). The information is sufficient to obtain

γð1Þm2 ¼ 8αu þ 4αv þ 2αy;

γð2Þ
m2 ¼ −20α2u − 8αvαy − 16αuαy þ 5αyαg −

3

2
ð11þ 2ϵÞα2y;

γð3Þ
m2 ¼ 240α3u þ 12αvα

2
u þ 33α2uαy þ

1

2
ð427þ 82ϵÞαvα2y þ ð394þ 264ζ3 þ 76ϵþ 48ζ3ϵÞαuα2y þ 3ð16ζ3 − 17Þ

× ð2αu þ αvÞαyαg −
1

32
ð11þ 2ϵÞð1545þ 374ϵÞα3y −

1

8
ð11þ 2ϵÞð240ζ3 − 149Þα2yαg þ

1

8
ð13 − 32ϵÞαyα2g; ð19Þ
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while anomalous dimensions of other scalar bilinear operators violating global symmetries cannot be determined.
As for the fermions, a Dirac mass term mψψψ breaks the global symmetry but leaves the gauge symmetry intact. Its

anomalous dimension can be extracted from the generic Yukawa β function up to three-loops [40,41], again using the
dummy field trick. Employing the notation

γmψ
¼ d lnmψ

d ln μ
¼

X∞
l¼1

γðlÞmψ ; ð20Þ

the results read

γð1Þmψ ¼ 1

2
ð11þ 2ϵÞαy − 3αg;

γð2Þmψ ¼ −
1

16
ð11þ 2ϵÞð23þ 2ϵÞα2y þ 2ð11þ 2ϵÞαyαg −

1

12
ð93 − 20ϵÞα2g;

γð3Þmψ ¼ −
11

4
ð11þ 2ϵÞα2uαy þ ð11þ 2ϵÞ2αuα2y þ

�
13387

128
þ 2119

64
ϵþ 49

32
ϵ2 −

3

16
ϵ3
�
α3y

−
1

8
ð11þ 2ϵÞð477 − 48ζ3 þ 76ϵÞα2yαg −

1

16
ð11þ 2ϵÞð113þ 288ζ3 þ 136ϵÞαyα2g

þ
�
641

12
þ 66ζ3 þ

649

18
ϵþ 12ζ3ϵþ

35

27
ϵ2
�
α3g: ð21Þ

Furthermore, a renormalization procedure of all field X has
been conducted via the substitution

Xbare ¼
ffiffiffiffiffiffi
ZX

p
X: ð22Þ

These field strength renormalization factors ZX contain
counterterms and imply anomalous dimensions

γX ¼ d ln
ffiffiffiffiffiffi
ZX

p
d ln μ

¼
X∞
l¼1

γðlÞX : ð23Þ

Note that all factors ZX are just multiplicative numbers as
the global symmetries remain intact. This excludes any
ambiguities stemming from anti-Hermitian parts of anoma-
lous dimension matrices [68–71]. However, field strength
anomalous dimensions γX are in general gauge dependent
and thus unphysical. The scalar field anomalous dimension
γϕ represents a notable exception, as its fixed point value is
part of the CFT data. Unsurprisingly, we find it to be gauge
independent up to three-loop order

γð1Þϕ ¼ αy;

γð2Þϕ ¼ 2α2u þ
5

2
αyαg −

3

4
ð11þ 2ϵÞα2y;

γð3Þϕ ¼ −4α3u −
15

2
α2uαy þ

5

2
ð11þ 2ϵÞαuα2y þ

1

64
ð183þ 10ϵÞð11þ 2ϵÞα3y −

1

16
ð48ζ3 − 5Þð11þ 2ϵÞα2yαg

þ 1

16
ð13 − 32ϵÞαyα2g: ð24Þ

As for the other fields, anomalous dimensions in Rξ gauge
are collected in Appendix C.

C. Fixed point

With beta functions available at the complete 433 order,
we are now in a position to determine interacting fixed points

accurately up to complete cubic order in the Veneziano
parameter ϵ. Complete sets of coefficients up to quadratic
order have previously been found in [8] (see also [3]).
Using the expansion (7), and solving βiðα�jÞ ¼ 0 sys-

tematically as a power series in ϵ, we find for the gauge
coupling coefficients
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αð1Þg ¼ 26

57
;

αð2Þg ¼ 23
75245 − 13068

ffiffiffiffiffi
23

p

370386
;

αð3Þg ¼ 353747709269

2406768228
−
663922754

22284891

ffiffiffiffiffi
23

p
þ 386672

185193
ζ3:

ð25Þ

Note that ζ3 arises for the first time in the cubic coefficient.
Similarly, for the Yukawa coupling we obtain

αð1Þy ¼ 4

19
;

αð2Þy ¼ 43549

20577
−
2300

6859

ffiffiffiffiffi
23

p
;

αð3Þy ¼ 2893213181

44569782
−
96807908

7428297

ffiffiffiffiffi
23

p
þ 4576

6859
ζ3: ð26Þ

The single- and double-trace quartic scalar couplings give

rise to the coefficients

αð1Þu ¼
ffiffiffiffiffi
23

p
− 1

19
;

αð2Þu ¼ 365825
ffiffiffiffiffi
23

p
− 1476577

631028
;

αð3Þu ¼ −
5173524931447

ffiffiffiffiffi
23

p
− 24197965967251

282928976136
−
416ð ffiffiffiffiffi

23
p

− 12Þ
6859

ζ3 ð27Þ

and

αð1Þv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
− 2

ffiffiffiffiffi
23

p

19
;

αð2Þv ¼ −643330
ffiffiffiffiffi
23

p þ 2506816

631028
þ 452563

ffiffiffiffiffi
23

p
− 1542518

315514
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp ;

αð3Þv ¼ 442552351896048 − 249223363466258
ffiffiffiffiffi
23

p

282928976136ð307þ 60
ffiffiffiffiffi
23

p Þ þ ð122834160737083 − 26761631049822
ffiffiffiffiffi
23

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
282928976136ð307þ 60

ffiffiffiffiffi
23

p Þ

þ
659988864ζ3ð942 − 338

ffiffiffiffiffi
23

p þ 39

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð−529426þ 583581

ffiffiffiffiffi
23

p Þ
q

Þ
282928976136ð307þ 60

ffiffiffiffiffi
23

p Þ ; ð28Þ

respectively. Numerically, the expansions read

α�g ¼ 0.456ϵþ 0.781ϵ2 þ 6.610ϵ3 þ 24.137ϵ4;

α�y ¼ 0.211ϵþ 0.508ϵ2 þ 3.322ϵ3 þ 15.212ϵ4;

α�u ¼ 0.200ϵþ 0.440ϵ2 þ 2.693ϵ3 þ 12.119ϵ4;

α�v ¼ −0.137ϵ − 0.632ϵ2 − 4.313ϵ3 − 24.147ϵ4; ð29Þ

where we have neglected subleading corrections ∝ ϵ5. All
coefficients up to and including ∝ ϵ3 remain unchanged
even if higher loops are included. To indicate the trend
beyond the strict 433 approximation, we also show the
incomplete next-order coefficients ∝ ϵ4 that will receive
as-of-yet unknown corrections at order 544. At the preced-
ing loop order 322, for example, the incomplete contribu-
tions ∝ ϵ3 accounted for 60%–85% of the complete cubic
coefficients at order 433 [8]. We note from (29) that
corrections for all couplings at any order arise with the

same sign, and that the cubic coefficients are almost an
order of magnitude larger than the quadratic ones.
Finally, we note that since βv is quadratic in αv to any

loop order in perturbation theory [95], there also exists a
second fixed point solution in the double-trace sector with
α�v− ≤ α�v and the coordinates for α�g;y;u unchanged [3,17].
This second solution, however, is unphysical in that it leads
to an unstable vacuum [3,17].

D. Scaling exponents

Universal critical exponents are obtained as the eigen-
values of the stability matrix

Mij ¼
∂βi
∂αj

����
α¼α�

ð30Þ

and can equally be expanded as a power series in the
Veneziano parameter,
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ϑi ¼
X∞
n¼1

ϵnϑðnÞi : ð31Þ

The stability matrix factorizes because the double-trace
coupling does not couple back into the single-trace cou-
plings in the Veneziano limit. Quantitatively, we then find a
single relevant and three irrelevant eigenvalues,

ϑ1 < 0 < ϑ2 < ϑ3 < ϑ4; ð32Þ

and the UV critical surface due to canonically marginal
interactions is one dimensional, with ϑ3 the isolated
eigenvalue for the double-trace quartic.
For ϑ1, the expansion starts out at quadratic order and is

accurate up to and including the fourth order,

ϑð1Þ1 ¼ 0;

ϑð2Þ1 ¼ −
104

171
;

ϑð3Þ1 ¼ 2296

3249
;

ϑð4Þ1 ¼ 1405590649319

15643993482
−
15630102884

869110749

ffiffiffiffiffi
23

p

þ 1546688

555579
ζ3: ð33Þ

The irrelevant directions start out at linear order and are
accurate up to the cubic order in ϵ. We find

ϑð1Þ2 ¼ 52

19
;

ϑð2Þ2 ¼ 136601719 − 22783308
ffiffiffiffiffi
23

p

4094823
;

ϑð3Þ2 ¼ −
119064152144668585

117078859819806
þ 93098590593718400

448802295975923

ffiffiffiffiffi
23

p
; ð34Þ

as well as

ϑð1Þ3 ¼ 8

19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
;

ϑð2Þ3 ¼ 4ð−1682358þ 410611
ffiffiffiffiffi
23

p Þ
157757

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp ;

ϑð3Þ3 ¼ 2
96845792758245

ffiffiffiffiffi
23

p þ 8579855232ð19847þ 6564
ffiffiffiffiffi
23

p Þζ3
35366122017ð307þ 60

ffiffiffiffiffi
23

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp − 2
616512472540856

35366122017ð307þ 60
ffiffiffiffiffi
23

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp ;

ð35Þ

and finally

ϑð1Þ4 ¼ 16

19

ffiffiffiffiffi
23

p
;

ϑð2Þ4 ¼ −
44492672

1364941
þ 272993948

31393643

ffiffiffiffiffi
23

p
;

ϑð3Þ4 ¼ 2ð−174067504271892880236þ 37418532792608300581
ffiffiffiffiffi
23

p Þ
278706225801048183

: ð36Þ

Numerically, the expansion coefficients read

ϑ1 ¼ −0.608ϵ2 þ 0.707ϵ3 þ 6.947ϵ4 þ 4.825ϵ5;

ϑ2 ¼ 2.737ϵþ 6.676ϵ2 þ 22.120ϵ3 þ 102.55ϵ4;

ϑ3 ¼ 2.941ϵþ 1.041ϵ2 þ 5.137ϵ3 − 62.340ϵ4;

ϑ4 ¼ 4.039ϵþ 9.107ϵ2 þ 38.646ϵ3 þ 87.016ϵ4; ð37Þ

up to subleading corrections in ϵ. We recall that all
coefficients up to order ϵ4 for ϑ1 and up to order ϵ3 for
ϑ2;3;4 remain unchanged even if higher loops are included,
and that the new coefficients from the order 433 are about
Oð4–9Þ times larger than those from the preceding order
322. Once more, to indicate the trend beyond 433, we also
show the incomplete next-order coefficient.
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E. Bounds from series expansions

Next, we exploit the expansions of fixed point couplings
and exponents to estimate the size of the conformal window
ϵ ≤ ϵmax, focusing on the coefficients that are unambigu-
ously determined up to order 433.
To satisfy vacuum stability, the quartic couplings must

obey the conditions 0 ≤ αu and 0 ≤ αw ≡ αu þ αv [17,97].
The former is always satisfied, as can be seen from (29).
Using the exact fixed point couplings for the latter, we find
the series expansion

α�w ¼ 0.063ϵ − 0.192ϵ2 − 1.620ϵ3 þOðϵ4Þ: ð38Þ

Corrections arise with a sign opposite to the leading term.
At order ϵ2, this implies ϵ ≤ ϵmax, with ϵmax ≈ 0.327 [8,13].
At order ϵ3, the bound tightens by more than a factor of 2,
ϵmax ≈ 0.147. As an estimate for higher order corrections
in ϵ, we also employ a Padé resummation by writing (38)
as α�w ¼ AϵþBϵ2

1þCϵ (and similarly for other couplings).6 Using
the Padé approximant suggests that higher order effects
tighten the constraint even further, ϵmax ≈ 0.087. Overall,
we conclude that the series expansion (38) indicates a loss
of vacuum stability in the range

ϵmax ≈ 0.087–0.146: ð39Þ

We now turn to the expansion of scaling exponents,
Eq. (37). From the explicit expressions up to order 433, we
notice that the series expansion for exponents ϑ2, ϑ3, and ϑ4
are monotonous, with same-sign corrections to the leading
order, at every order. However, the relevant scaling expo-
nent ϑ1 has all higher-order contributions with a sign
opposite to the leading one. An overall change of sign is
indicative for a collision of the UV fixed point with an IR
fixed point. We estimate ϵmax from solving ϑ1 ¼ 0 and
reproduce the result ϵmax ≈ 0.860 at order ϵ3 [8,13]. The
newly established coefficient at order ϵ4 now tightens the
constraint by roughly a factor of 3, ϵmax ≈ 0.249. Using a
Padé approximant as before, we find an even tighter
estimate ϵmax ≈ 0.091. Overall, the series expansion indi-
cates that the conformal window terminates due to a fixed
point merger in the range

ϵmax ≈ 0.091–0.249: ð40Þ

Next, we ask whether the fixed point can disappear due
to a merger in the double-trace sector, α�v− → α�v [98]. If so,
it implies a double-zero of βv and the corresponding scaling
exponent must vanish, ϑ3 ¼ 0. However, the first three
universal expansion coefficients have all the same sign,
Eq. (37), giving no hints for a zero at 433. Also, computing

the difference between the double-trace quartic couplings
Δαv ≡ α�v − α�v− we find

Δα�v ¼ 0.735ϵþ 0.570ϵ2 þ 0.326ϵ3 þOðϵ4Þ: ð41Þ

The first three expansion coefficients in (41) have all the
same sign, offering no hints for a zero for any ϵ > 0. We
conclude that a merger in the double-trace sector is not
supported by the 433 data.
Finally, we provide a rough estimate for the range in ϵ

with perturbative control. Based on naive dimensional
analysis with couplings scaled in units of natural loop
factors [99], as done here, we take the view that this regime
is characterized by 0 < jα�j≲ 1.7 We note that the expan-
sion coefficients (29) of the single- (double-) trace cou-
plings receive only positive (negative) contributions,
implying α�g;y;u > 0 and α�v < 0, and that the tightest bound
ϵ < ϵstrong arises from the gauge coupling. We find ϵstrong ≈
0.877 at order ϵ2, and ϵstrong ≈ 0.457 at order ϵ3. To estimate
higher order effects in ϵ, we once more use a Padé
approximant for the gauge coupling fixed point and find
the tighter bound ϵstrong ≈ 0.117, suggesting an onset of
strong coupling in the range

ϵstrong ≈ 0.117–0.457: ð42Þ

We notice that regimes with vacuum instability or a fixed
point merger are reached before the theory becomes
strongly coupled. Also, in all cases (39), (40), (42), the
tightest parameter bound arises from the Padé resumma-
tions, giving bounds of the same size as obtained from the
322 beta functions [8].
In summary, the constraints on the conformal window as

derived from series expansions of couplings have become
tighter, owing to the corrections established at order 433
over those at order 322. The overall picture shows that

ϵmax < ϵstrong ð43Þ

for each of the successive approximation orders 322, 433,
and for a Padé approximant of the latter. Results also
indicate that the conformal window is primarily limited by
the onset of vacuum instability and a nearby fixed point
merger, rather than a merger in the double-trace sector
or the onset of strong coupling. Our results are further
illustrated in Fig. 4, including an extrapolation to finite field
multiplicities ðNc; NfÞ. In particular, the smallest set of
integer multiplicities compatible with an interacting UV
fixed point increases from ðNc; NfÞjmin ¼ ð3; 17Þ at order
322 to ðNc; NfÞjmin ¼ ð5; 28Þ at order 433, and to
ðNc; NfÞjmin ¼ ð7; 39Þ if we were to consider the forecast

6Notice that the loop order 433 is the first perturbative order
where resummation techniques can be applied.

7We stress that this criterion is not rigorous and must be
confirmed with higher loops or nonperturbatively.
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from Padé approximants. We defer a more detailed inves-
tigation of the conformal window to a forthcoming pub-
lication [100].

F. Unitarity

In our setting, scale invariance at the weakly interacting
UV fixed point entails full conformal invariance [101], and
the critical theory can be described by a CFT. Accordingly,
the bound on unitarity for a spin-0 operator O

ΔO ¼ dimOþ γ�O ≥ 1 ð44Þ

must be observed [102]. These CFT constraints can be
addressed by exploiting our results for anomalous dimen-
sions (19)–(24) and fixed points (29). We find

γ�ϕ ¼ 0.2105ϵþ 0.4625ϵ2 þ 2.471ϵ3 þOðϵ4Þ;
γ�m2 ¼ 1.470ϵþ 0.5207ϵ2 þ 2.568ϵ3 þOðϵ4Þ;
γ�mψ

¼ −0.2105ϵþ 0.4628ϵ2 þ 0.3669ϵ3 þOðϵ4Þ; ð45Þ

retaining all terms determined unambiguously in the ϵ
expansion at 433. Subleading terms starting at order ϵ4

necessitate the full 544 approximation.
We observe from (45) that the scalar field and mass

anomalous dimensions γ�ϕ and γ�m2 are manifestly positive
and satisfy (44) without further ado. On the other hand,
the fermion mass anomalous dimension γ�mψ

comes out

negative to the leading order. Still, the subleading positive
contributions up to cubic order in ϵ ensure that the
anomalous dimension remains strictly bounded from
below, γ�mψ

≳ −0.02. In consequence, it cannot become
sufficiently negative for Δψ̄ψ to fall below the unitarity
bound (44). Altogether, we conclude that the unitarity
constraints (44) are satisfied nonmarginally in perturbation
theory. Moreover, unitarity does not offer bounds on ϵ
within the conformal window.

G. Scales and phase diagram

We are now in a position to revisit the phase diagram of
the theory. Figure 1 illustrates the phase diagram in the 433
approximation. Trajectories are shown in the ðαg; αyÞ plane,
with arrows pointing from the UV to the IR. Evidently,
asymptotic freedom is absent and the Gaussian fixed
point is an IR attractive fixed point for all couplings.
Nevertheless, the theory is UV complete and remains
predictive up to the highest energies, courtesy of the
interacting UV fixed point. It displays a single relevant
direction among the classically marginal interactions.
Without loss of generality, we take

δαg ¼ αg − α�g ð46Þ

as the fundamentally free parameter at the high scale μ0.
The running of the Yukawa and quartic couplings αiðμÞ
with i ¼ y, u, v is entirely dictated by the running of αgðμÞ,
and they can be expressed in terms of the gauge coupling as
αiðμÞ ¼ Fi½αgðμÞ� for suitable functions Fi. The IR fate of
trajectories emanating from the fixed point is determined by
whether δαg < 0 or δαg > 0 at the high scale. In the former
case, the theory becomes free in the infrared. In the latter
case, the theory becomes strongly coupled and displays
either confinement (such as in QCD) or IR conformality
such as at an interacting IR fixed point. Our results are
illustrated in Fig. 5, where sample trajectories connecting
the UV fixed point with the IR are shown, also contrasting
settings for initial conditions δαgðμ0Þ < 0 (left panel)
leading to IR freedom, with initial conditions δαgðμ0Þ > 0

(right panel).
The transition from the UV to the IR is characterized by

an RG-invariant scale Λc, analogous to ΛQCD in QCD. It
arises through dimensional transmutation from the dimen-
sionless fundamental parameter δαg ≪ jα�gj at the high
scale μ, and reads

Λc ∝ μ · jδαðμÞjν; ð47Þ

where ν ¼ −1=ϑ1 with ϑ1 the relevant scaling exponent
(37). One readily confirms that dΛc=d ln μ ¼ 0. The pro-
portionality constant c can be determined from a crossover
condition. For δαg > 0, strong coupling sets in as soon as
δαg is of order unity; hence c ≈ 1. For negative δαg, the

FIG. 4. The size of the UV conformal window (yellow band)
from series expansions, comparing the new upper bound on ϵ
at order 433 and the Padé approximant bound (dashed line)
[see (39)] with the previous upper bounds at order 322 [8]. Also
shown are regimes with asymptotic freedom (green) and effective
theories (gray). Dots indicate integer values for ðNc;NfÞ in the
ðϵ; NcÞ plane.
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Gaussian fixed point takes over as soon as δαg ≈ −α�g=3
[17], giving c ¼ ð3=α�Þν instead.
We briefly compare this with asymptotically free theo-

ries by taking ϵ < 0. In this case, the UV critical surface is
now two-dimensional with both the gauge and the Yukawa
coupling being marginally relevant. We then find a range
of asymptotically free trajectories emanating from the
Gaussian fixed point and characterized by

δαg ¼ αg − α�g;

δαy ¼ αy − α�y: ð48Þ

For sufficiently small 0 < −ϵ ≪ 1 and αy ¼ 0, the theory
also displays a Banks-Zaks fixed point α�g of order jϵj and
α�i ¼ 0ði ¼ y; u; vÞ. In either case, we find the transition
scale Λc as

Λc ∝ μ · exp
�

1

βð1Þg δαðμÞ

�
; ð49Þ

characteristic for asymptotic freedom, with a negative one-

loop gauge coefficient βð1Þg < 0. All trajectories run toward
strong coupling where either confinement or conformality
take over, except for the trajectory that terminates at the
Banks-Zaks fixed point.
Even though the UV critical surface is two-dimensional,

it is interesting to note that the Yukawa nullcline is an IR
attractor and all outgoing trajectories collapse onto it.
Hence, as soon as the gauge coupling becomes of the
order of the one-loop gauge coefficient, αðμÞ≳ jϵj, out-
going trajectories along the nullcline of the asymptotically
free theory (with 0 < −ϵ ≪ 1) become indistinguishable
from the outgoing trajectory of the asymptotically safe
theory (with 0 < ϵ ≪ 1).

V. DISCUSSION AND OUTLOOK

The quantum field theory (1) provides an important
template for an asymptotically safe 4D particle theory with
an interacting and perturbatively controlled fixed point
at highest energies. We have extended the investigation
of the UV theory up to four-loops in perturbation theory,
a prerequisite to achieve the complete cubic order in the
underlying conformal expansion in terms of a small
Veneziano parameter ϵ. The central input for this is the
four-loop gauge, three-loop Yukawa and quartic β func-
tions, and three-loop anomalous dimensions. We have
computed the previously missing pieces that are the
three-loop contributions to scalar β functions containing
gauge interactions (Sec. III).
With these results at hand, we have determined all fixed

point couplings, critical exponents, and anomalous dimen-
sions up to the third nontrivial order in ϵ, also investigating
the phase diagram and UV-IR connecting trajectories
(Sec. IV). Findings are in accord with unitarity, as they
must. Most notably, bounds on the conformal window of
(39) and (40) have become tighter in comparison with the
preceding order, and they strengthen the view that the upper
boundary remains under perturbative control. Our work
further substantiates the existence of the fixed point at
finite values of the Veneziano parameter and at finite N.
Ultimately, conformality is lost due to the onset of vacuum
instability and a nearby fixed point merger, Eq. (43), rather
than through a merger in the double-trace sector or strong
coupling phenomena.
While our results have been achieved specifically for

Dirac fermions coupled to SU gauge fields and complex
scalars ϕij (see Table I), they equally hold true for theories
with Majorana fermions coupled to either SO gauge fields
with symmetric complex scalars ϕðijÞ or to Sp gauge fields

FIG. 5. Running couplings along UV-IR connecting trajectories emanating out of the interacting UV fixed point, corresponding to the
(orange) separatrices highlighted in Fig. 1. Trajectories with UV initial condition δαgðμ0Þ < 0 approach a free theory in the IR (left
panel), while those with δαgðμ0Þ > 0 enter a strongly coupled regime with either confinement or conformality in the IR (right panel).
Here, tc ¼ lnΛc=μ0 with Λc as in (47) and (49), respectively, and ϵ ¼ 0.06.
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with antisymmetric scalars ϕ½ij� [11]. The reason for this is
that these three types of matter-gauge theories are mutually
equivalent to each other in the Veneziano limit, even though
field content, gauge symmetries, and global symmetries are
different [11]. In particular, and modulo the normalization
of couplings, their beta functions are identical to any loop
order, and results of this work are equally valid for the
partner theories.
We close with a few comments from the viewpoints of

lattice Monte Carlo simulations, conformal field theory,
and model building. It would be valuable to explore the
UV conformal window using complementary tools such
as the lattice, taking advantage of the vast body of works
on IR fixed points in 4D matter-gauge theories [103]. In
a related vein, in our QFT setting, scale invariance at the
UV fixed point entails full conformal invariance [101].
Hence, our renormalization group results offer direct
access to conformal data characterizing an interacting
4D CFT [104,105]. It would then be equally important
to investigate the 4D UV critical theory using first-principle
CFT methods such as the bootstrap [106], or other. Finally,
we emphasize that our setting provides a blueprint for
concrete 4D nonsupersymmetric CFTs with standard
model-like field content in the UV, which invites further
model building.
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APPENDIX A: TENSOR STRUCTURES FOR
THREE-LOOP QUARTIC RGES

In this appendix, we detail the general structure for three-
loop scalar field anomalous dimensions and quartic β
functions of any renormalizable QFT with uncharged
scalars. We closely follow the notation of [53] with the
Lagrangian

L ¼ 1

2
∂
μϕa∂μϕa þ

i
2
ψ jσ̃μDμψ j −

1

4
g−2ABF

A
μνFBμν

−
1

2
yajkϕaðψ jεψkÞ −

1

24
λabcdϕaϕbϕcϕd

−
1

2
mjkðψ jεψkÞ −

1

2
m2

abϕaϕb −
1

6
habcϕaϕbϕc

þ Lgauge-fix þ Lghost; ðA1Þ

featuring real scalar field components ϕa, vectors of
fermionic Weyl components as well as their conjugates
ψ i ¼ ðψ iÞ� whose spinor indices are contracted by the two-
dimensional Levi-Civita ε, as well as gauge fields with
the field strength tensors FA

μν and covariant derivative Dμ.
Note the latter do not couple to scalars in accord with our
model. Moreover, only the gauge coupling square g2AB,
Yukawa interaction yaij, and scalar quartic coupling λabcd
are relevant, while we will neglect fermionic mij and scalar
masses m2

ab and cubic terms habc. In the same manner,
details of the gauge fixing and Fadeev-Popov ghosts do
not play a role. We will make fermionic indices implicit
wherever appropriate. Moreover, tAij is introduced as the
fermionic generator and ðCG

2 ÞAB as the Casimir invariant of
the gauge interaction. Moreover, the fermion Casimir and
Dynkin index are given by

ðCF
2 Þij ¼ g2ABðtAtBÞij; ðSF2 ÞAB ¼ trðtAtBÞ: ðA2Þ

The quartic β function is composed of external leg and
vertex corrections

βabcdλ;3l ¼ γeðaϕ;3lλ
bcdÞe þ βðabcdÞ

ϕ4;3l : ðA3Þ

The gaugeless part of both quantities are given in [53].
In this limit, the leg corrections coincide with the scalar
anomalous dimension. For gauge dependent terms, the
bases agree only structurally. The reason is that each
coefficient may also contain vertex corrections that can
be brought to the shape of leg corrections using gauge
transformations of tensor structures. For instance, this
cancels all gauge dependence of the anomalous dimen-
sions. The gauge interaction terms missing in [53] are of
order ∝ y4g2 and ∝ y2g4 and read

γabϕ;3l ¼ γabϕ;3ljg2¼0 þG1trðyaCF
2 y

cybyc þ ybCF
2 y

cyaycÞ þG2trðyaycCF
2 y

cybÞ þ G3trðyaybycycCF
2 þ ybyaycycCF

2 Þ
þ G4trðyaCF

2 y
bycycÞ þG5trðyatAybyctBycÞg2AB þ G6trðyaCF

2 y
bCF

2 Þ þ G7trðyaCF
2C

F
2 y

bÞ
þ G8trðyaybtAtBÞðg2SF2 g2ÞAB þ G9trðyaybtAtBÞðg2CG

2 g
2ÞAB: ðA4Þ

Here G1..9 are a priori unknown coefficients that can be fixed by an actual loop computation. Note that this parametrization
assumes γϕ;3l to be symmetric, as there is no explicitly broken flavor symmetry in our model.
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As for the vertex corrections, we again refer to [53] for the gaugeless tensor structures, and provide the missing ones:

βabcd
ϕ4;3l ¼ βabcd

ϕ4;3ljg2¼0 þQ1λ
abefλcdegtrðyfygCF

2 Þ þQ2λ
abeftrðycyeyfydCF

2 Þ þQ3λ
abeftrðycyetAydyftBÞg2AB

þQ4λ
abeftrðycyetAyfydtBÞg2AB þQ5λ

abeftrðyctAyeyftBydÞg2AB þQ6λ
abeftrðycyeCF

2 y
fydÞg2AB

þQ7λ
abeftrðycyeCF

2 y
dyfÞg2AB þQ8λ

abeftrðycyeyfCF
2 y

dÞg2AB þQ9trðyaybycydCF
2C

F
2 Þ þQ10trðyaybycCF

2 y
dCF

2 Þ
þQ11trðyaybCF

2 y
cydCF

2 Þ þQ12trðyaybtAycCF
2 y

dtBÞg2AB þQ13trðyatACF
2 y

byctBydÞg2AB
þQ14trðyatAyctCybtBydÞg2ABg2CD þQ15trðyatAtCybtByctDydÞg2ABg2CD þQ16trðyaybtAtCycydtBtDÞg2ABg2CD
þQ17trðyaybtAtCÞtrðycydtBtDÞg2ABg2CD þQ18trðyatAybtCÞtrðyctBydtDÞg2ABg2CD þQ19trðyatAybtCÞtrðycydtBtDÞg2ABg2CD
þQ20trðyaybtAycydtBÞðg2SF2 g2ÞAB þQ21trðyaybtAycydtBÞðg2CG

2 g
2ÞAB þQ22trðyaybyctAydtBÞðg2SF2 g2ÞAB

þQ23trðyaybyctAydtBÞðg2CG
2 g

2ÞAB þQ24trðyaybycydtAtBÞðg2SF2 g2ÞAB þQ25trðyaybycydtAtBÞðg2CG
2 g

2ÞAB
þQ26trðyatAybyeyctBydyeÞg2AB þQ27trðyaybCF

2 y
cyeydyeÞ þQ28trðyaybyetAycyeydtBÞg2AB

þQ29trðyaybtAyeyctBydyeÞg2AB þQ30trðyaybyeyeycydCF
2 Þ þQ31trðyaybycyeyeydCF

2 Þ
þQ32trðyatAyeybtBycydyeÞg2AB þQ33trðyaybycyeydyeCF

2 Þ þQ34trðyaybyeycydyeCF
2 Þ þQ35trðyaybyeycCF

2 y
dyeÞ

þQ36trðyaybtAycyeyeydtBÞg2AB þQ37trðyatAyeybyctByeydÞg2AB þQ38trðyatAybycyetByeydÞg2AB
þQ39trðyatAyeyeybyctBydÞg2AB þQ40trðyaybycyeCF

2 y
dyeÞ þQ41trðyaybyctAydyetByeÞg2AB

þQ42trðyaybycydCF
2 y

eyeÞ þQ43trðyaybycydyeCF
2 y

eÞ; ðA5Þ

where Q1���43 are again open coefficients. Note that we do
not need to account for any non-naïve influence of γ5 at this
loop order as discussed in Sec. III.

APPENDIX B: FINITE-N BETA FUNCTIONS

Here we present the finite-N corrections to the β
functions (14)–(17). Apart from the Veneziano parameter

ϵ, these also retain an explicit dependence on inverse
powers of the parameter Nc. An extensive analysis of
the finite-N conformal window at 2NLO was conducted in
[13] (see there for explicit expressions up to 322). In the
following, we make use of the abbreviations rc ≡ N−2

c and
rf ≡ ½ð11

2
þ ϵÞNc�−2 and provide the four-loop gauge beta

function

α−2g βð4Þg ¼
��

−
260

243
ϵ3 þ

�
−
56ζ3
3

−
21598

243

�
ϵ2 þ

�
−
1808ζ3

9
−
123473

324

�
ϵ − 550ζ3 −

14731

72

�
þ rc

��
128ζ3
9

þ 7495

243

�
ϵ2

þ
�
2504ζ3

9
þ 71765

324

�
ϵþ 396ζ3 þ

154ϵ3

243
þ 30047

72

�
þ r2c

��
623

27
−
488ζ3
9

�
ϵ2 þ

�
29753

108
−
5456ζ3

9

�
ϵ

− 1694ζ3 þ
19613

24

�
þ r3c

�
23ϵ

4
þ 253

8

�	
α3g þ

���
36ζ3 þ

8017

36

�
ϵ2 þ

�
396ζ3 þ

38797

72

�
ϵþ 1089ζ3

þ 379ϵ3

18
−
12947

48

�
þ rc

��
−54ζ3 −

1184

9

�
ϵ2 þ

�
−594ζ3 −

45749

72

�
ϵ −

3267ζ3
2

−
161ϵ3

18
−
24079

24

�

þ r2c

��
18ζ3 −

3

4

�
ϵ2 þ

�
198ζ3 −

33

4

�
ϵþ 1089ζ3

2
−
363

16

�	
α2gαy þ

���
1659

4
− 12ζ3

�
ϵ2 þ ð2475 − 132ζ3

�
ϵ

− 363ζ3 þ 23ϵ3 þ 78287

16

�
þ rc

��
12ζ3 þ

89

4

�
ϵ2 þ ð132ζ3 þ 154Þϵþ 363ζ3 þ ϵ3 þ 5445

16

�	
αgα

2
y

þ
��

−
11ϵ4

3
− 100ϵ3 − 986ϵ2 −

25267ϵ

6
−
105875

16

�
þ rc

��
7

3
− 6ζ3

�
ϵ2 þ

�
77

3
− 66ζ3

�
ϵ −

363ζ3
2

þ 847

12

�	
α3y

þ
��

−10ϵ3 − 165ϵ2 −
1815ϵ

2
−
6655

4

�
− rc½55þ 10ϵ�

	
α2yαu − rc½20ϵþ 110�α2yαv

þ f½12ϵ2 þ 132ϵþ 363� þ 12rcgαyα2u þ 48rcαyαuαv þ 12rc½1þ rf�αyα2v: ðB1Þ
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Because of subleading corrections absent in the large-N limit, the double-trace quartic αv makes a direct appearance in the
gauge four-loop β function. The same happens for the three-loop expressions of the Yukawa

α−1y βð3Þy ¼
��

−
3ϵ3

8
þ 59ϵ2

16
þ 2595ϵ

32
þ 17413

64

�
þ rc½ð6ζ3 − 28Þϵþ 39ζ3 − 162�

	
α3y þ

��
−19ϵ2 −

445ϵ

2
− 649

�

þ rc

�
19ϵ2 þ 445ϵ

2
þ 633

�
þ 16r2c

	
αgα

2
y þ

���
−36ζ3 −

893

8

�
ϵ − 198ζ3 − 17ϵ2 −

1217

16

�
þ rc½ð54ζ3 þ 92Þϵ

þ 279ζ3 þ 17ϵ2 þ 31� þ r2c

��
157

8
− 18ζ3

�
ϵ − 81ζ3 þ

721

16

�	
α2gαy þ

���
24ζ3 þ

649

9

�
ϵþ 132ζ3 þ

70ϵ2

27

þ 641

6

�
þ rc

�
−
70ϵ2

27
−
856ϵ

9
−
2413

12

�
þ r2c½ð23 − 24ζ3Þϵ − 132ζ3 þ 62� þ 129

4
r3c

	
α3g þ

�
½12ϵ2 þ 162ϵþ 528�

þ 60rc þ 30

�
11

2
þ ϵ

�
rf

	
α2yαu þ

�
48rc þ 60

�
11

2
þ ϵ

�
rf þ 24rcrf

	
α2yαv þ

��
5ϵþ 25

2

�

þ rf

�
85ϵþ 905

2

�	
αyα

2
u þ frf½100ϵþ 490� þ r2f½80ϵþ 440�gαyαuαv þ

�
rf

�
5ϵþ 25

2

�
þ r2f

�
85ϵþ 905

2

�	
αyα

2
v

− f8þ 32rfgα3u − f84rf þ 36r2fgα2uαv − f24rf þ 96r2fgαuα2v − f4rf þ 20r2f þ 16r3fgα3v
þ
�
4

�
11

2
þ ϵ

�
½1 − rc�½1þ rf�

	
αgαyαu þ

�
8

�
11

2
þ ϵ

�
½rf − rcrf�

	
αgαyαv; ðB2Þ

as well as the single-trace coupling

βð3Þu ¼ f104þ rf½1152ζ3 þ 2360�gα4u þ frf½1536ζ3 þ 2912� þ r2f½6144ζ3 þ 6752�gα3uαv − f280rf − r2f½9216ζ3
þ 12728�gα2uα2v − f104rf − r2f½768ζ3 þ 1472� − r3f½5376ζ3 þ 6568�gαuα3v þ f34þ 226rfgαyα3u þ 648rfαyα2uαv

þ f66rf þ 642r2fgαyαuα2v þ f½166ϵþ 889� þ rf½ð216ζ3 þ 156Þϵþ 1188ζ3 þ 858�gα2yα2u þ frf½ð192ζ3 þ 734Þϵ

þ 1056ζ3 þ 3965�gα2yαuαv þ frf½64ϵþ 352� þ r2f½ð216ζ3 þ 136Þϵþ 1188ζ3 þ 748�gα2yα2v þ
��

−
315ϵ2

4
−
3209ϵ

4

−
32483

16

�
þ rc½12ζ3 − 168�

	
α3yαu −

�
rc½152þ 96ζ3� − 64

�
11

2
þ ϵ

�
rf

	
α3yαv þ

��
13ϵ3

4
þ 265ϵ2

8
þ 1111ϵ

16
−
2541

32

�

þ rc½ð20 − 24ζ3Þϵ − 132ζ3 þ 110�
	
α4y þ

��
ð24ζ3 − 5Þϵ2 þ ð264ζ3 − 55Þϵþ 726ζ3 −

605

4

�
þ rc

�
ð5 − 24ζ3Þϵ2

þ ð55 − 264ζ3Þϵ − 726ζ3 þ
605

4

�	
αgα

3
y þ

���
149

2
− 120ζ3

�
ϵ − 660ζ3 þ

1639

4

�
þ rc

��
120ζ3 −

149

2

�
ϵþ 660ζ3

−
1639

4

�	
αgα

2
yαu þ frf½ð112 − 144ζ3Þϵ − 792ζ3 þ 616� þ rcrf½ð144ζ3 − 112Þϵþ 792ζ3 − 616�gαgα2yαv

þ f½96ζ3 − 102�½1 − rc�gαgαyα2u þ
�
rf½288ζ3 − 306� þ r2f

�
ð306 − 288ζ3Þϵ2 þ ð3366 − 3168ζ3Þϵ − 8712ζ3

þ 18513

2

�	
αgαyαuαv þ

��
5ϵ2 þ 133ϵ

4
þ 253

8

�
þ rc

�
ð24ζ3 − 66Þϵþ 132ζ3 − 5ϵ2 −

847

4

�
þ r2c

��
131

4
− 24ζ3

�
ϵ

− 132ζ3 þ
1441

8

�	
α2gα

2
y þ

��
13

4
− 8ϵ

�
þ rc

�
−36ζ3 þ 8ϵþ 53

2

�
þ r2c

�
36ζ3 −

119

4

�	
α2gαyαu: ðB3Þ

LITIM, RIYAZ, STAMOU, and STEUDTNER PHYS. REV. D 108, 076006 (2023)

076006-16



Moreover, the three-loop β function

βð3Þv ¼ f½384ζ3 þ 772� þ rf½1536ζ3 þ 1700�gα4u þ f480þ rf½4608ζ3 þ 9600�gα3uαv
þ f12þ rf½1152ζ3 þ 6680� þ r2f½8064ζ3 þ 10476�gα2uα2v þ f1264rf þ r2f½6144ζ3 þ 10544�gαuα3v
þ f132rf þ r2f½960ζ3 þ 1844� þ r3f½2112ζ3 þ 2960�gα4v þ 192αyα

3
u þ f66þ 642rfgαyα2uαv

þ 648rfαyαuα2v þ f130rf þ 322r2fgαyα3v þ
�
ð192ζ3 þ 187Þϵþ 1056ζ3 þ

1985

2

�
α2yα

2
u

þ f½ð96ζ3 þ 152Þϵþ 528ζ3 þ 788� þ rf½ð528ζ3 þ 132Þϵþ 2904ζ3 þ 726�gα2yαuαv
þ
��

41ϵþ 427

2

�
þ rf½ð192ζ3 þ 268Þϵþ 1056ζ3 þ 1426�

	
α2yα

2
v þ ½ð−96ζ3 − 88Þϵ2

þ ð−1056ζ3 − 904Þϵ − 2904ζ3 − 2310�α3yαu þ
��

−
187ϵ2

4
−
1801ϵ

4
−
16995

16

�
þ rc½12ζ3 − 136�

	
α3yαv

þ
�
−10ϵ3 − 183ϵ2 −

2211ϵ

2
−
8833

4

�
α4y þ

��
ð24ζ3 − 2Þϵ2 þ ð264ζ3 − 22Þϵþ 726ζ3 −

121

2

�

þ rc

�
ð2 − 24ζ3Þϵ2 þ ð22 − 264ζ3Þϵ − 726ζ3 þ

121

2

�	
αgα

3
y þ f½ð112 − 144ζ3Þϵ

− 792ζ3 þ 616�½1 − rc�gαgα2yαu þ
���

149

2
− 120ζ3

�
ϵ − 660ζ3 þ

1639

4

�
½1 − rc�

	
αgα

2
yαv

þ f½144ζ3 − 153�½1 − rc�gαgαyα2u þ
�
½48ζ3 − 51� þ rf

�
ð51 − 48ζ3Þϵ2 þ ð561 − 528ζ3Þϵ

− 1260ζ3 þ
5355

4

�
þ r2f½ð204 − 192ζ3Þϵ2 þ ð2244 − 2112ζ3Þϵ − 5808ζ3 þ 6171�

	
αgαyα

2
v

þ f½192ζ3 − 204�½1 − rc�gαgαyαuαv þ f½24ϵ2 þ 264ϵþ 726�½1 − rc�gα2gα2y
þ
��

13

4
− 8ϵ

�
þ rc

�
−36ζ3 þ 8ϵþ 53

2

�
þ r2c

�
36ζ3 −

119

4

�	
α2gαyαv ðB4Þ

ceases to be just quadratic in αv due to a subleading correction in N.

APPENDIX C: GAUGE-DEPENDENT ANOMALOUS DIMENSIONS

In this appendix, we provide results for the gauge-dependent field strength anomalous dimensions of fermions ψ , gauge
fields Aμ, as well as their ghosts c, using the definition (23). We have computed these explicitly with Rξ gauge fixing, such
that ξ ¼ 1 corresponds to the ’t Hooft–Feynman gauge. The scalar field anomalous dimension is gauge independent and
provided in (24). The fermionic field anomalous dimension reads

γð1Þψ ¼ 1

2
ξαg þ

1

4
ð11þ 2ϵÞαy;

γð2Þψ ¼ 1

8
ðξ2 þ 8ξ − 4ϵÞα2g −

1

2
ð11þ 2ϵÞαyαg −

1

32
ð23þ 2ϵÞð11þ 2ϵÞα2y;

γð3Þψ ¼ −
11

8
ð11þ 2ϵÞα2uαy þ

1

2
ð11þ 2ϵÞ2αuα2y þ

�
13387

256
þ 2119

128
ϵþ 49

64
ϵ2 −

3

32
ϵ3
�
α3y

þ 1

32
ð11þ 2ϵÞð137þ 48ζ3 þ 24ϵÞα2yαg þ

1

64
ð11þ 2ϵÞð77 − 192ζ3 þ 12ϵÞαyα2g

þ
�
−
331

32
−
21

16
ζ3 −

�
111

64
−
3

8
ζ3

�
ξþ

�
39

64
þ 3

16
ζ3

�
ξ2 þ 5

32
ξ3 −

�
109

24
þ 17

16
ξ

�
ϵþ 5

18
ϵ2
�
α3g: ðC1Þ
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The gauge field anomalous dimension is

γð1ÞA ¼ 1

6
ð9þ 3ξþ 4ϵÞαg;

γð2ÞA ¼ 1

8
ð95þ 11ξþ 2ξ2 þ 28ϵÞα2g −

1

4
ð11þ 2ϵÞ2αyαg;

γð3ÞA ¼ 1

8
ð11þ 2ϵÞ2ð20þ 3ϵÞα2yαg −

31

32
ð11þ 2ϵÞ2α2gαy

þ
�
2039

96
−
255

16
ζ3 −

�
9

32
−
3

4
ζ3

�
ξþ

�
33

32
þ 3

16
ζ3

�
ξ2

þ 7

32
ξ3 −

�
347

72
þ 3ζ3 þ ξ

�
ϵ−

49

18
ϵ2
�
α3g; ðC2Þ

and the corresponding ghost has

γð1Þc ¼ −
1

4
ð3− ξÞαg;

γð2Þc ¼ 1

48
ð15− 3ξþ 20ϵÞα2g;

γð3Þc ¼ −
23

64
ð11þ 2ϵÞ2α2gαy

þ
�
3569

192
þ 255

32
ζ3 −

1

8
ð15þ 3ζ3Þξþ

3

32
ð1− ζ3Þξ2

þ 3

64
ξ3 þ

�
983

144
þ 3

2
ζ3 −

7

16
ξ

�
ϵþ 35

108
ϵ2
�
α3g: ðC3Þ

As the overall renormalization of the gauge-fixing term
cancels, the β function of the gauge parameter reads

βξ ¼ −2ξγA: ðC4Þ

We observe that (C4) has two types of fixed points due to
either the Landau gauge ðξ� ¼ 0Þ or the vanishing of the
gauge field anomalous dimension ðγA ¼ 0Þ. The latter
happens at

ξ� ¼ −3þ 2.28ϵþ 10.19ϵ2 þ 21.92ϵ3 þOðϵ4Þ: ðC5Þ

Moreover, we note that the critical exponent of the flow
(C4) at the fixed point (C5)

∂βξ
∂ξ

����
ξ¼ξ�

¼ 1.368ϵþ 1.146ϵ2 þ 13.83ϵ3 þOðϵ4Þ ðC6Þ

is manifestly positive. Hence, we conclude that the Landau
gauge corresponds to an UV fixed point of the flow (C4),
whereas a vanishing gauge field anomalous dimension
corresponds to an IR attractive fixed point.
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