
Detection schemes for quantum vacuum diffraction and birefringence

N. Ahmadiniaz ,1 T. E. Cowan ,1,2 J. Grenzer,1 S. Franchino-Viñas ,1 A. Laso Garcia,1

M. Šmíd,1 T. Toncian ,1 M. A. Trejo ,1 and R. Schützhold1,3
1Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany

2Institut für Kern-und Teilchenphysik, Technische Universität Dresden, 01062 Dresden, Germany
3Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

(Received 26 April 2023; accepted 15 September 2023; published 10 October 2023)

Motivated by recent experimental initiatives, such as at the Helmholtz International Beam line for
Extreme Fields at the European X-ray Free Electron Laser, we calculate the birefringent scattering of x rays
at the combined field of two optical (or near-optical) lasers and compare various scenarios. In order to
facilitate an experimental detection of quantum vacuum diffraction and birefringence, special emphasis is
placed on scenarios where the difference between the initial and final x-ray photons is maximized. Apart
from their polarization, these signal and background photons may differ in propagation direction
(corresponding to scattering angles in the millirad regime) and possibly energy.
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I. INTRODUCTION

The quantum vacuum is not just empty space—as the
ground state of interacting quantum field theories, it dis-
plays a complex structure, entailing many fascinating
phenomena. For example, quantum electrodynamics
(QED) predicts that the quantum vacuum should behave
like a nonlinear medium and, thus, display effects such as
diffraction and refraction as well as birefringence under the
influence of a strong electromagnetic field [1–5].
Related phenomena have already been observed in the

form of Delbrück scattering of γ rays on the Coulomb
fields of nuclei, which can be interpreted as quantum
vacuum refraction [6–16], or the interaction of the
Coulomb fields of two nuclei almost colliding with each
other at ultrahigh energies and the resulting emission of a
pair of γ quanta [17,18].
In contrast, we are mostly interested in scenarios

without additional massive particles (such as nuclei; see
also [19]) and at subcritical scales in the following: First,
the relevant energies and momenta should be well below
the electron mass m ≈ 0.51 MeV=c2 and, thus, the char-
acteristic length and timescales well above the reduced
Compton length ƛ ¼ ℏ=ðmcÞ ≈ 386 fm. Second, the
involved field strengths should be well below the critical
fields of QED, i.e., Ecrit ¼ m2c3=ðℏqÞ ≈ 1.3 × 1018 V=m
as well as Bcrit ¼ Ecrit=c ≈ 4.4 × 109 T.
Many theoretical and several experimental investigation

have been devoted to this subcritical regime. For polarizing
the quantum vacuum, one could use a strong and quasistatic
magnetic field [20–29] or the focus of an optical or near-
optical laser or x-ray free electron laser (XFEL) as the
pump field; see, e.g., [30–51]. For the detection of the
induced vacuum nonlinearity, one could also employ an

optical or near-optical laser or an XFEL as the probe field;
see, e.g., [19,30–38]. Motivated by experimental facilities
such as the Helmholtz International Beam line for Extreme
Fields (HIBEF) and the quest to maximize the signal, we
consider an XFEL probe (whose shorter wavelength yields
a larger interaction probability in a given volume) and an
optical pump field (which facilitates a high intensity).
In spite of the efforts so far, neither quantum vacuum

birefringence [52] nor quantum vacuum diffraction—or,
more generally, quantum vacuum nonlinearity in the
subcritical regime—have been conclusively verified in a
laboratory experiment yet [25–27]. Apart from a pure
verification of this fundamental QED prediction, such an
experiment would also allow us to search for new phenom-
ena beyond the standard model of particle physics, because
they could manifest themselves in measurable deviations
from the QED predictions.
In order to facilitate such an experiment, it is crucial to

distinguish the signal (consisting of one or a few x-ray
photons) from the background, i.e., the XFEL pulse. Since
such a distinction purely based on the photon polarizations
can be quite challenging, it has been suggested to consider
scenarios where the initial (background) and final (signal)
x-ray photons also differ in propagation direction and
possibly energy; see, e.g., [40,53]. Developing these ideas
further, we propose and study scenarios (see Fig. 1) which
maximize this difference, especially the momentum trans-
fer and, thus, the scattering angle.

II. EFFECTIVE LAGRANGIAN

Since all the involved scales are supposed to be sub-
critical, we start from the generalized lowest-order Euler-
Heisenberg Lagrangian (ℏ ¼ c ¼ ϵ0 ¼ μ0 ¼ 1):
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L ¼ 1

2
ðE2 −B2Þ þ aðE2 −B2Þ2 þ bðE ·BÞ2; ð1Þ

in terms of the total electric E and magnetic B fields.
In QED, the two parameters a and b are given by b ¼ 7a
and a ¼ q4=ð360π2m4Þ; for reviews, see Refs. [54–58].
However, in order to accommodate possible deviations
from the standard model, we shall keep them as general.
For example, a coupling to an axion field would typically
manifest itself in a modification of the b parameter while a
remains unchanged; see, e.g., [59–62].
The propagation of the probe field E and B (i.e., the

XFEL) in the presence of a given pump field EL and BL
(i.e., the optical laser) can be studied by inserting the split
E ¼ EL þE and B ¼ BL þB and linearizing the equa-
tions of motion, leading to the effective Lagrangian

Leff ¼
1

2
½E · ð1þδϵÞ ·E−B · ð1−δμÞ ·B�þE ·δΨ ·B; ð2Þ

with the symmetric permittivity and permeability tensors

δϵij ¼ 8aEi
LE

j
L þ 2bBi

LB
j
L þ 4aδijðE2

L − B2
LÞ;

δμij ¼ 2bEi
LE

j
L þ 8aBi

LB
j
L − 4aδijðE2

L −B2
LÞ; ð3Þ

plus the symmetry-breaking contribution

δΨij ¼ −8aEi
LB

j
L þ 2bBi

LE
j
L þ 2bδijðEL ·BLÞ; ð4Þ

which describe the polarizability of the QED vacuum. Note
that the latter tensor is not symmetric δΨij ≠ δΨji.
As is well known, the linearized equations of motion

generated by (2) can be cast into the same form as the
macroscopic Maxwell equations in a medium ∇ · D ¼ 0,
∇ ·B ¼ 0, ∇ ×E ¼ −∂tB, and ∇ ×H ¼ ∂tD, provided
that we introduce the electric D ¼ ð1þ δϵÞ ·Eþ δΨ · B
and magnetic H ¼ ð1 − δμÞ ·B − δΨT ·E displacement
fields.

III. SCATTERING THEORY

The scattering of the x-ray photons can be calculated via
various options, e.g., time-dependent perturbation theory of
quantum fields or the photon emission picture (see, e.g.,
[46]). In the following, we shall employ classical scattering
theory [19,32,63] but adapted to the case of oscillating
contributions in δϵ, δμ, and δΨ. To this end, we combine the
above Maxwell equations to

□D¼∇× ½∇× ðD−EÞ�þ∂t½∇× ðH−BÞ� ¼ Jeff ; ð5Þ

where the effective source term Jeff on the right-hand side
encodes the quantum vacuum nonlinearity (see Appendix B
for its explicit expression). Since this term is very small, we
may employ the usual Born approximation. Thus, we split
the XFEL field D into an ingoing plane wave Din with ωin
and kin plus a small scattering contributionDout induced by
vacuum polarizability δϵ, δμ, and δΨ.
These quantities δϵ, δμ, and δΨ depend on the optical laser

(i.e., pump) fields EL and BL and, thus, on time. Here, we
assume that this pump field is generated by the superposition
of two optical lasers, i.e., EL ¼ E1 þE2 and BL ¼ B1 þ
B2 which oscillatewith frequenciesω1 andω2, respectively.
Because of the resulting oscillatory time dependence
of δϵ, δμ, and δΨ, the outgoing field Dout contains various
frequency contributions ωout ¼ ωin � ω1 � ω2 (similar to
Floquet bands). Since the combinations ωout ¼ ωin þ ω1 þ
ω2 and ωout ¼ ωin − ω1 − ω2 are typically not allowed by
energy-momentum conservation (see below), we focus on
ωout ¼ ωin þ ω1 − ω2 and ωout ¼ ωin − ω1 þ ω2 in the
following.
Then, in the frequency domain, Eq. (5) turns into a

Helmholtz equation (more details are included in
Appendix B):

□Dout
ω ¼ −ð∇2 þ ω2

outÞDout
ω ¼ Jeffω ; ð6Þ

which can be solved by the usual Greens function. In the far
field, we thus obtain the scattering amplitude

A ¼ 1

4πjDin
ω j

eout ·
Z

d3r expf−ikout · rgJeffω ; ð7Þ

depending on the momentum kout and polarization eout of
the outgoing x-ray photon. Since ω1 and ω2 are optical or
near-optical frequencies of the order of OðeVÞ while ωout
and ωin are x-ray frequencies on the keV regime, we may
neglect small terms such as ω1=ωout (in comparison to a
nonvanishing leading-order term) in the following and
approximate ωout ≈ ωin.
Furthermore, the integral in Eq. (7) simplifies drastically

if we approximate the two optical (pump) lasers by plane
waves with momenta k1 and k2 and polarizations e1 and
e2. In this case, the d3r integral just corresponds to

FIG. 1. Sketch of the counterpropagating (a), crossed-beam (b),
five-o’clock (c), five-past-five (d), and ten-past-four (e) scenarios
(from left to right). In the bottom row, the XFEL photons are
depicted as horizontal black lines, while the focused optical lasers
are represented by red (ω¼ 1.5 eV) or blue (ω¼ 3 eV) cones.
The top row displays a typical Feynman diagram where the color
coding and the angle indicate which beam the involved photon
lines belong to.
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momentum conservation, and the scattering amplitude
simplifies to

A ≈ 2π2FE1E2ω
2
outδ

3ðkout − kin − k1 þ k2Þ; ð8Þ

where Fðe1; e2; ein; eout;n1;n2;nin;noutÞ is a purely alge-
braic expression of the four polarization vectors eI and
propagation direction unit vectors nI ¼ kI=ωI .
In order to obtain a compact expression for F, we will

make explicit use of its symmetry under permutations of the
indices in the kinematical variables; we will, thus, write a
single contribution, and permutations thereof should be
added. Using this convention, F is given as

F ¼ aFa þ bFb; ð9Þ

where we have defined

Fa ¼ ½ðe2 · einÞ − ðe2 × n2Þ · ðein × ninÞ�
× ½ðeout × noutÞ · ðe1 × ½nout − n1�Þ�
þ permutationsf1; 2; ing;

Fb ¼
1

2
½ðnout × ðe1 × n1Þ − e1Þ × nout� · eout

× ½e2 · ðein × ninÞ� þ permutationsf1; 2; ing: ð10Þ

As explained above, we have to sum over permutations;
i.e., for each expression Fa;bf1; 2; ing, we have to add the
other five combinations Fa;bf1; in; 2g, Fa;bf2; in; 1g,
Fa;bf2; 1; ing, Fa;bfin; 1; 2g, and Fa;bfin; 2; 1g.

IV. COUNTERPROPAGATING CASE

Let us first consider the setup already discussed in the
literature [31,35], where the XFEL interacts with a single
counterpropagating optical laser; see Fig. 1(a). In this
case, the two pump beams coincide and form a single
optical laser which is counterpropagating to the XFEL.
Thus, we set ω1 ¼ ω2 and e1 ¼ e2 as well as n1 ¼ n2,
which implies ωout ¼ ωin and nin ¼ nout. Hence, we have
nin ¼ nout ¼ −n1 ¼ −n2, and F simplifies to

F ¼ 16aðein · e1Þðeout · e1Þ
þ 4bein · ðnin × e1Þeout · ðnin × e1Þ: ð11Þ

For the polarization-conserving signal ein ¼ eout, this
simplifies to Fk ¼ 16aðein · e1Þ2 þ 4b½ein · ðnin × e1Þ�2.
If all polarizations are aligned ein ¼ e1, the a term in
Eq. (1) contributes. In contrast, the b term corresponds to
an interaction between the electric component of the XFEL
and the magnetic component of the optical laser and
vice versa. These two orientations ein ¼ e1 and ein⊥e1
correspond to the major axes of the refractive index [52].
For initial photon polarizations in between, we also get

birefringent scattering ein⊥eout with the amplitude F⊥. For
example, for an orientation at 45°, we find F⊥ ¼ 8a − 2b.
As expected, the birefringent amplitude F⊥ scales with the
difference of the eigenvalues of the refractive index along
its two major axes [52].
In the purely counterpropagating case, the energy-

momentum transfer is exactly zero; i.e., the scattering
angle vanishes. Thus, the signal and background photons
can be distinguished only by their polarization, which is an
experimental challenge. A finite (albeit small) scattering
angle can be induced by the spatial inhomogeneity of laser
focus (i.e., going beyond the plane-wave approximation),
in close analogy to a lens (quantum vacuum refraction); see
also [44,48].

V. CROSSED-BEAM CASE

A. Plane-wave approximation

The above difficulty can be avoided by considering a
modified scenario where the pump field is generated by two
optical laser beams with the same frequency ω1 ¼ ω2 and
field strength but different propagation directions n1 ≠ n2.
In Ref. [40], a fully perpendicular setup with n1⊥n2 has
been considered. However, in order to maximize the
momentum transfer (i.e., have a large scattering angle),
we propose the head-on collision of two optical laser beams
where n1 ¼ −n2. This momentum transfer does also mark
the primary distinction to Ref. [32] where an analogous
setup has been considered but focusing on forward scatter-
ing. Since the XFEL beam mainly jitters in horizontal
direction, the crossed-beam geometry has the advantage of
being quite robust if the optical lasers are also oriented in
horizontal direction.
Here, we consider the case e1 ¼ e2 which yields the

maximum electric pump field but other polarizations (e.g.,
maximum magnetic field) would work as well. Since
ω1 ¼ ω2, the energy transfer vanishes again ωout ¼ ωin,
but we get a finite momentum transfer Δk ¼ 2ω1n1. In
order to satisfy ωout ¼ ωin and to transform this momentum
transfer into a maximum scattering angle (in the millirad
regime), we assume sending in the probe beam at a
perpendicular direction nin⊥n1 and nin⊥e1; see Fig. 1(b).
In this case, we find

F ¼ 4aðein · e1Þðeout · e1Þ þ bðein · n1Þðeout · n1Þ: ð12Þ

The polarization-conserving signals F↕
k ¼ 4a for the case

ein ¼ eout ¼ e1 and F↔
k ¼ b for the case ein ¼ eout ¼ n1

(i.e., along the major axes of the refractive index [52])
would allow us to detect the parameters a and b separately.
As before, we also get birefringent scattering ein⊥eout in
the other directions; e.g., F⊥ ¼ 2a − b=2 for the orienta-
tion at 45°.
Note that the polarization conserving signals can also be

distinguished from the background by the momentum
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transfer yielding a scattering angle in the millirad regime.
This scattering angle can be explained in close analogy to
diffraction (as in ordinary Bragg scattering). The spatial
modulation (in the n1 direction) acts like a grating which
generates a Bragg peak at Δk ¼ 2ω1n1.

B. Cross section for a real pulse

The amplitude (7) yields the differential cross section
dσ=dΩ ¼ jAj2. Obviously, inserting the plane-wave result
(8), this quantity would diverge due to the infinite volume.
Thus, let us consider the more realistic case of a finite-size
laser focus. To estimate the cross section, we rewrite the
amplitude (7) by factoring out the frequency, wave number,
and amplitude of the XFEL; summing the amplitudes from
all the available processes as described in Appendix B, we
obtain

A ¼ ω2
out

4π

Z
d3r expfiΔk · rgjeff ; ð13Þ

where Δk ¼ kin − kout is the momentum transfer. The
renormalized source term jeffðrÞ now depends on only
the optical laser and the XFEL polarization vectors. For
example, for the case ein ¼ eout ¼ e1 discussed above, we
find jeffðrÞ ¼ 8ahE2

Lðt; rÞi ¼ 8ah½E1ðt; rÞ þE2ðt; rÞ�2i,
where h� � �i denotes the temporal average (in a first
approximation, the time dependence of the in and out
fields counterbalance each other).
Now let us assume that the spatial dependence of

jeffðrÞ along the XFEL beam direction can be approxi-
mated (at least well inside the Rayleigh length) by a
simple (e.g., Gaussian) envelope function fðrkÞ such that
jeffðrÞ ¼ fðrkÞjeff⊥ ðr⊥Þ. Furthermore, in view of energy
conservation and ωin ¼ ωout ≫ ω1 ¼ ω2, the momentum
transfer Δk is approximately perpendicular to kin. Thus,
we may approximate the integral over the solid angle

R
dΩ

by an integration over the transversal momentum transferR
dΩ ≈ ω−2

out

R
d2Δk⊥. This allows us to approximate the

total cross section via

σ ≈
ω2
outL2

k
4

Z
d2r⊥jjeff⊥ ðr⊥Þj2; ð14Þ

with the interaction length Lk ¼
R
drkfðrkÞ. Note that

this total cross section (14) contains all three Bragg peaks,
the main peak centered at Δk ¼ 0 as well as the two side
peaks centered at Δk ¼ �2k1. This can be understood
by Fourier decomposition of the standing wave pro-
file jeff ∝ cos2ðk1 · rÞ ¼ ½1þ cosð2k1 · rÞ�=2.
The constant term 1=2 stems from the contributions E2

1

and E2
2 where both optical photons belong to the same

beam and results in the central peak at Δk ¼ 0. The
oscillating term ∝ cosð2k1 · rÞ, on the other hand, stems
from the mixed contribution 2E1 ·E2 involving one optical

photon from each beam. This term generates the momen-
tum transfer Δk ¼ �2k1 and results in the side peaks.
Hence, each side peak has roughly half the amplitude of the
main peak at Δk ¼ 0.
Focusing on the experimentally most relevant side peaks

at Δk ¼ �2k1, we find the total cross section for the case
ein ¼ eout ¼ e1 after spatial and temporal average to be
σ� ≈ 4ω2

outL2
kA⊥a2E4

1 for each side peak, where A⊥ is the
effective focus area seen by the XFEL. Roughly speaking,
the ratio σ�=A⊥ determines the probability that an XFEL
photon hitting the optical laser focus will get scattered.
Inserting the QED value for a, we find

σ� ≈ 4A⊥
�
ωoutLk

αQED
90π

E2
1

E2
crit

�
2

; ð15Þ

where αQED ≈ 1=137 is the fine structure constant.
For the XFEL polarization ein ¼ eout ¼ �n1 along the

other major axis of the refractive index [52], the magnetic
field of the XFEL interacts with the electric field of the
optical laser via the b term in Eq. (1). Inserting the QED
prediction b ¼ 7a, the signal would be a factor of ð7=4Þ2 ≈
3 higher, but otherwise the same conclusions as above
apply. Furthermore, this channel would also be sensitive to
potential axion or axionlike particles.

VI. “FIVE O’CLOCK” SCENARIO

As a scenario where the final x-ray photon does also
receive an energy shift, we consider the superposition of
two optical lasers with different frequencies, such as ω2 ¼
2ω1 (which could be generated by frequency doubling, for
example). Keeping the XFEL perpendicular to the first
optical laser nin⊥n1, we may satisfy energy and momen-
tum conservation by tilting the second laser by 30° such
that nin · n2 ¼ 1=2. The resulting momentum transfer in the
forward direction is then consistent with the energy shift
ωout ¼ ωin � ω1. To maximize the transversal momentum
transfer (i.e., the scattering angle), we may choose an
orientation where n2 lies in the same plane as n1 and nin but
almost opposite to n1, i.e., n1 · n2 ¼ −

ffiffiffi
3

p
=2. Picturing n1

as vertical and nin as horizontal, n1 and n2 look like the
hands of a clock at five or seven o’clock; see Fig. 1(c).
Naturally, the angular dependence (10) of F is a bit

more involved than in the previous sections, but the
general behavior is quite similar. For example, if all
polarizations ein ¼ eout ¼ e1 ¼ e2 are perpendicular to
the plane spanned by n1 and n2, we find that only the a
term contributes Fk ¼ 2a, analogous to Eq. (12). As
before, there is no polarization flip in this specific and
highly symmetric case n1⊥ein ¼ eout ¼ e1 ¼ e2⊥n2, but,
for most other orientations, we do also obtain a birefringent
signal F⊥; see Appendix A.
Note that the five o’clock scenario considered here is

different from the “y scenario” studied in [40]. Although
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both feature the same energy shift ωout ¼ ωin � ω1, the five
o’clock scenario offers a larger momentum transfer and,
thus, scattering angle.

VII. EXPERIMENTAL PARAMETERS

Let us discuss possible experimental realizations and
estimate the order of magnitude of the expected signal,
where we take the experimental capabilities at HIBEF as an
example. As a high energy density instrument [64], the
European XFEL is combined with the Relax laser [65]
provided by the HIBEF user consortium. We start with a
conservative estimate and insert values which have already
been shown to be reachable experimentally. The optical
laser is characterized by its frequency ωL¼ 1.5 eV and
focus intensity 3.5 × 1020 W=cm2, as well as focus width
2.5 μm and length 9 μm (corresponding to a duration of
30 fs) [65].
For the XFEL, we assume a frequency ωin¼ 6 keV with

1012 photons per pulse (corresponding to an energy of
1 mJ), focused to a width between 4 and 5 μm with a beam
divergence of 80 μrad [64]. A tighter focus is possible with
a different lensing system (e.g., the CRL4 lens [64]), but
then the beam divergence would increase by an order of
magnitude.
However, in view of the scattering angle of 500 μrad (for

ωL¼ 1.5 eV and ωin¼ 6 keV) for the crossed-beam sce-
nario, it is probably better to employ the lower beam
divergence (or use more involved schemes, such as the
dark-field method; see, e.g., [53]). Placing the detector at a
distance of 7 m to the interaction point, the scattering angle
of 500 μrad yields a deflection by 3.5 mm which is
expected to be sufficient for discriminating the scattered
signal from the XFEL beam. For example, for the idealized
case of a Gaussian beam with a beam divergence of
80 μrad, the number of photons outside an angle of
400 μrad is already suppressed by more than 20 orders
of magnitude (for 500 μrad more than 30).
Now we are in the position to provide a rough estimate of

the number of scattered photons in such an experiment. As
already explained in Sec. V B, the finite size of the optical
laser focus leads to a cutoff for the spatial integral in the
amplitude (7) in terms of the effective focus volume Veff .
Thus, the differential cross section scales as (up to
dimensionless kinematical factors like Fa and Fb as well
as spatial and temporal overlap integrals)

dσ
dΩ

¼ O
�

α2QED
ð360π2Þ2

E4
L

E4
crit

ω4
inV

2
eff

�
: ð16Þ

Inserting the values above, this differential cross section
becomes dσ=dΩ¼Oð10−8 μm2Þ. However, as also
explained in Sec. V B, this value is valid only in a
comparably small solid angle of ΔΩ ¼ Oð10−9Þ corre-
sponding to the size of the diffraction peak, which is

determined by the spatial extent of the optical laser focus
[66]. Thus, the total cross section for this Bragg peak reads
σ ¼ Oð10−17 μm2Þ, which corresponds to Eq. (15).
As a result, one obtains Oð10−6Þ signal photons per shot

or one signal photon per Oð106Þ shots. Even with a
repetition rate of 5 Hz, 106 shots correspond to more than
two days of continuous measurements. While not impos-
sible, such an experiment would certainly be extremely
challenging. The smallness of the signal again demon-
strates the paramount importance of suppressing the back-
ground as much as possible.
Thus, let us discuss options to enhance the signal. The

most obvious possibility is to increase the optical laser
intensity, since the signal scales with the square of that
quantity. An intensity of 1021 W=cm2 is already technically
available and shall be provided in the near future. This
would enhance the signal by one order of magnitude.
Further upgrades should enable us to reach 1022 W=cm2,
yielding another increase of the signal by 2 additional
orders of magnitude.
In principle, increasing the XFEL frequency (to 12 keV,

for example) also enhances the cross section but, on the
other hand, reduces the scattering angle (if the optical laser
frequency is kept constant) and typically lowers the number
of XFEL photons. Thus, balancing the advantages and
drawbacks should determine the optimum XFEL fre-
quency. Of course, increasing the number of XFEL photons
(with all other relevant quantities staying the same) would
be advantageous. Similarly, a larger volume Veff of the
optical laser focus, as long as it is not at the expense of the
intensity, would increase the scattering yield.
One way to realize the collision of the two optical pulses

could be the setup already proposed in [31], for example,
where each laser pulse, after the collision at the focus, hits
the parabolic mirror used to focus the other laser pulse—
and, thus, retraces its optical path. In this scenario, the two
laser pulses are basically the time reversals of each other,
which requires some fine-tuning of the optical paths. Away
to avoid this fine-tuning and potential damage is to tilt
both optical axes a bit [corresponding to a “five-past-five”
geometry; see Fig. 1(d)] such that the optical paths of the
two pulses overlap only at the focus. This five-past-five
geometry would reduce the momentum transfer and, thus,
scattering angle a bit but might be easier to realize
experimentally.
Developing this idea further, one could also imagine

tilting the optical axes even more, e.g., in the form of a “ten-
past-four” geometry; see Fig. 1(e). In this way, one could
interpolate between the crossed-beam case in Sec. V and
the counterpropagating scenario in Sec. IV. Going from
the crossed-beam to the counterpropagating case has
two main advantages. First, the amplitude increases;
compare Eqs. (11) and (12) and Appendix A. Second,
the interacting length is enlarged. Both would enhance the
signal strength. As a drawback, the momentum transfer

DETECTION SCHEMES FOR QUANTUM VACUUM DIFFRACTION … PHYS. REV. D 108, 076005 (2023)

076005-5



and, thus, scattering angle is reduced. Hence, an optimum
tilt angle is determined by the trade-off between signal
strength and background suppression (as well as exper-
imental constraints).
As in many of the other proposals for detecting vacuum

birefringence, the polarization of the x-ray photons can be
distinguished via Bragg reflection crystals. Those can be
designed to also provide the energy resolution which would
allow us to detect the energy shift in the five-o’clock
scenario. The required frequency doubling of one of the
laser pulses could be achieved with nonlinear crystals. So
far, this process has been demonstrated with an efficiency
above 10%, which should be increased in the future.
Having achieved a sufficient efficiency (or initial laser
power), one could also imagine realizing the crossed-beam
scenario with two frequency-doubled pulses, which would
imply doubling the momentum transfer and, thus, scatter-
ing angle.

VIII. CONCLUSIONS

As an example of light-by-light scattering, we study the
interaction of x-ray photons with ultrastrong optical lasers
and compare different scenarios. Apart from the counter-
propagating case already discussed in the literature, we
consider the crossed-beam case and the five-o’clock sce-
nario, as well as interpolating cases such as the five-past-
five and the ten-past-four scenarios; see Fig. 1. All cases
yield scattering amplitudes of comparable order of magni-
tude, facilitate birefringent scattering, and allow us to
address the a and b parameters in the effective Euler-
Heisenberg Lagrangian separately via adjusting the polari-
zation vectors accordingly.
As a difference, the interaction length is set by the pulse

length of the optical laser focus in the first (counter-
propagating) case, while it is mainly determined by the
focal width in the crossed-beam case (and accordingly for
the other scenarios). More important, however, is the
distinction between the initial and final x-ray photons,
which allows us to discriminate them from the background.
In the first (counterpropagating) case, the only measurable
difference is their polarization—at least in the plane-wave
approximation. A finite scattering angle (corresponding to
a nonzero momentum transfer) can be induced only by the
spatial inhomogeneity of the laser focus, which makes it a
comparably small effect; see also [48]. In contrast, the other
scenarios lead to a significantly larger momentum transfer.
For example, taking an optical laser with ω1 ¼ 1.5 eV and
an XFEL with 6 keV, we find scattering angles of around
half a millirad, which helps us to separate the signal
photons from the background (i.e., the main XFEL beam).
Furthermore, the five-o’clock scenario—while a bit more

challenging to set up experimentally—would also yield an
energy shift (of 1.5 eV in our example) of the final photons,
which provides yet another important channel for separat-
ing signal and background. These findings motivate further

studies and give rise to the hope for observing this
fundamental QED phenomenon at experimental facilities
such as HIBEF.
Our results are based on the lowest-order Euler-

Heisenberg Lagrangian in combination with scattering
theory. This approach is justified because all involved
fields, i.e., the optical laser and the XFEL, are well below
the Schwinger critical fields Ecrit and Bcrit while all
involved frequencies and momenta are well below the
electron mass; see also [67–70]. In this limit, our results
coincide with the locally constant field approximation; see,
e.g., [71]. Note, however, that one should not employ the
locally constant field approximation on the level of ray
optics—because this would not reproduce the diffraction
properties (Bragg peaks) which are important for the
scattering angle—but on the level of wave optics.
There are several ways to go beyond this lowest-order

approach. If the optical laser fields are even stronger
(approaching the Schwinger critical fields) while the
XFEL fields remain much smaller, we may still employ
scattering theory but now based on the full Euler-
Heisenberg Lagrangian (including higher-order terms in
the field strengths). For higher frequency and momentum
scales, the situation becomes more difficult. One way could
be to include higher-order derivative terms in the Euler-
Heisenberg Lagrangian or to employ the worldline repre-
sentation [72,73]. For the special case of plane-wave fields,
one can employ the well-known Volkov solutions; see, e.g.,
[69,70]. Note, however, that such plane-wave fields (which
approach the constant-crossed-field case for slowly varying
fields) describe the counterpropagating case (a) in Fig. 1
but not the other cases (b)–(e).
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APPENDIX A: PLANAR CONFIGURATION

In this section, we present a formula for the most general
planar case where all the wave vectors (momenta) of the
pump as well as the probe laser lie on a plane, which for
simplicity can be taken to be the xy plane.We further express

n1 → cos θ1ex þ sin θ1ey; nin → ey;

n2 → cos θ2ex þ sin θ2ey; ω2 ¼ lω1; ðA1Þ

where θi is the angle that the unit vector ni makes with the x
axis while l > 0 denotes the ratio of the two optical laser
frequencies. Up to the order of Oðω−1

in Þ, the following
relation is, thus, to be satisfied if one desires to stay in
the kinematically allowed region:
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sin θ2 ¼
sin θ1 þ l − 1

l
: ðA2Þ

We choose the following parametrization of the laser’s and
XFEL’s polarizations:

e1 ¼ ðsin α1 sin θ1;− sin α1 cos θ1; cos α1Þ;
e2 ¼ ð− sin α2 sin θ2; sin α2 cos θ2; cos α2Þ;
ein ¼ ðsin αin; 0; cos αinÞ;
eout ¼ ðsin αout; 0; cos αoutÞ; ðA3Þ

where αi ði ¼ 1; 2; in; outÞ is the angle formed by the
polarization vector ei with respect to ez. Inserting this
parametrization into Eqs. (9) and (10) and summing over
the permutations, the functionF in this fully planar scenario
is finally given by

F ¼ 1

2
ð1 − sin θ1Þð1 − sin θ2Þ

× ½ð4aþ bÞ cosðα1 þ α2Þ cosðαin − αoutÞ
þ ð4a − bÞ cosðα1 − α2 þ αin þ αoutÞ�: ðA4Þ

For the birefringent case ein⊥eout, the angles satisfy
αin − αout ¼ �π=2, and, thus, only the term ∝ ð4a − bÞ in
the last line survives [52]. Recall that θ2 is fixed by Eq. (A2)
if one desires to obtain a nonvanishing amplitude.

APPENDIX B: EXPLICIT EXPRESSIONS FOR
THE CURRENTS

The explicit expression for the effective source in
Eq. (5) is

Jeff ¼ ∇ × f∇ × ½δϵ ·Eþ δΨ ·B�g þ ∂tf∇ × ½−δμ ·B − δΨT ·E�g
¼ ∇ × f∇ × ½ð8aEi

LE
j
L þ 2bBi

LB
j
L þ 4aδijðE2

L − B2
LÞÞEj þ ð−8aEi

LB
j
L þ 2bBi

LE
j
L þ 2bδijðEL ·BLÞÞBj�g

þ ∂tf∇ × ½−ð2bEi
LE

j
L þ 8aBi

LB
j
L − 4aδijðE2

L −B2
LÞÞBj − ð−8aEj

LB
i
L þ 2bBj

LE
i
L þ 2bδijðEL ·BLÞÞEj�g; ðB1Þ

where we have employed the effective permittivity, per-
meability, and symmetry-breaking tensors inEqs. (3) and (4).
In going from Eq. (5) to (6), the time Fourier transform

of the effective source is needed:

JeffðtÞ ¼
Z

∞

−∞

dω
ð2πÞ e

−iωtJ̃effω : ðB2Þ

Since we are employing the Born approximation, energy
conservation implies that the only contributions are those
that satisfy ωout ¼ ωin � ω1 � ω2. Hence, we can strip the
delta functions from the effective source defining

J̃effω ¼
X

ωout¼ωin�ω1�ω2

δðω − ωoutÞJeffω : ðB3Þ

An analogous definition applies to Dout
ω . Notice that in

Eq. (6), to simplify the reading, we are writing Jω instead
of Jωout

.
Lastly, in Eq. (13), we Fourier transform back to the time

domain and afterward perform a time average:

jeff ¼ 1

ω2
outjDin

ω j
e−ikin·r lim

T→∞

1

T

Z
T

−T
dteout · JeffðtÞ

¼ 1

ω2
outjDin

ω j
e−ikin·r

× lim
T→∞

1

T

Z
T

−T
dt

Z
∞

−∞

dω
2π

e−iωteout · J̃
eff
ω : ðB4Þ

[1] H. Euler and B. Kockel, Über die Streuung von Licht an
Licht nach der Diracschen Theorie, Naturwissensechaften
23, 246 (1935).

[2] W. Heisenberg and H. Euler, Folgerungen aus der
Diracschen Theorie des Positrons, Z. Phys. 98, 714
(1936).

[3] R. Karplus and M. Neuman, The scattering of light by light,
Phys. Rev. 83, 776 (1951).

[4] F. Sauter, Über das Verhalten eines Elektrons im homogenen
elektrischen Feld nach der relativistischen Theorie Diracs,
Z. Phys. 69, 742 (1931).

[5] J. Schwinger, On gauge invariance and vacuum polarization,
Phys. Rev. 82, 664 (1951).

[6] L. Meitner and H. Kösters (with addition from M.
Delbrück), Über die Streuung kurzwelliger γ-Strahlen,
Z. Phys. 84, 137 (1933).

DETECTION SCHEMES FOR QUANTUM VACUUM DIFFRACTION … PHYS. REV. D 108, 076005 (2023)

076005-7

https://doi.org/10.1007/BF01493898
https://doi.org/10.1007/BF01493898
https://doi.org/10.1007/BF01343663
https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1007/BF01339461
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF01333827


[7] H. A. Bethe and F. Rohrlich, Small angle scattering of light
by a Coulomb field, Phys. Rev. 86, 10 (1952).

[8] V. Costantini, B. De Tollis, and G. Pistoni, Nonlinear effects
in quantum electrodynamics, Nuovo Cimento Soc. Ital.
Fis. A 2, 733 (1971).

[9] G. Jarlskog, L. Jönsson, S. Prünster, H. D. Schulz, H. J.
Willutzki, and G. G. Winter, Measurement of Delbrück
scattering and observation of photon splitting at high
energies, Phys. Rev. D 8, 3813 (1973).

[10] A. I. Milstein and V. M. Strakhovneko, Quasiclassical ap-
proach to the high-energy Delbrück scattering, Phys. Rev. A
95, 135 (1983).

[11] A. I. Milstein and V. M. Strakhovneko, Coherent scattering
of high-energy photons in a Coulomb field, Sov. Phys. JETP
58, 8 (1983).

[12] Sh. Zh. Akhmadaliev et al., Delbrück scattering at energies
of 140–450 MeV, Phys. Rev. C 58, 2844 (1998).

[13] A. I. Milstein and M. Schumacher, Present status of Del-
brück scattering, Phys. Rep. 243, 183 (1994).

[14] M. Schumacher, Delbrück scattering, Radiat. Phys. Chem.
56, 101 (1999).

[15] P. Papatzacos and K. Mork, Delbrück scattering calcula-
tions, Phys. Rev. D 12, 206 (1975).

[16] P. Papatzacos and K. Mork, Delbrück scattering, Phys. Rep.
21, 81 (1975).

[17] ATLAS Collaboration, Evidence for light-by-light scatter-
ing in heavy-ion collisions with the ATLAS detector at the
LHC, Nat. Phys. 13, 852 (2017).

[18] D. d’Enterria and G. G. da Silveira, Observing Light-by-
Light Scattering at the Large Hadron Collider, Phys. Rev.
Lett. 111, 080405 (2013).

[19] N. Ahmadiniaz, M. Bussmann, T. E. Cowan, A. Debus, T.
Kluge, and R. Schützhold, Observability of Coulomb-
assisted quantum vacuum birefringence, Phys. Rev. D
104, L011902 (2021).

[20] D. Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R.
Pengo, G. Ruoso, and G. Zavattini, The PVLAS experiment:
Measuring vacuum birefringence and dichroism with a
birefringent Fabry Perot cavity, Eur. Phys. J. C 76, 24 (2016).

[21] E. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. Della
Valle, and E. Milotti, Measuring the magnetic birefringence
of vacuum: The PVLAS experiment, Int. J. Mod. Phys. A
27, 1260017 (2012).

[22] D. Valle, G. Di Domenico, U. Gastaldi, E. Milotti, R. Pengo,
G. Ruoso, and G. Zavattini, Towards a direct measurement
of vacuum magnetic birefringence: PVLAS achievements,
Opt. Commun. 283, 4194 (2010).

[23] E. Zavattini et al., New PVLAS results and limits on
magnetically induced optical rotation and ellipticity in
vacuum, Phys. Rev. D 77, 032006 (2008).

[24] E. Zavattini et al., Experimental Observation of Optical
Rotation Generated in Vacuum by a Magnetic Field, Phys.
Rev. Lett. 96, 110406 (2006).

[25] A. Ejlli, F. Della Valle, U. Gastaldi, G. Messineo, R. Pengo,
G. Ruoso, and G. Zavattini, The PVLAS experiment: A
25 year effort to measure vacuummagnetic birefringence,
Phys. Rep. 871, 1 (2020).

[26] X. Fan et al., The OVAL experiment: A new experiment to
measure vacuum magnetic birefringence using high repeti-
tion pulsed magnets, Eur. Phys. J. D 71, 308 (2017).

[27] M. T. Hartman, R. Battesti, and C. Rizzo, Characterization
of the vacuum birefringence polarimeter at BMV: Dynami-
cal cavity mirror birefringence, IEEE Trans. Instrum. Meas.
68, 2268 (2019).

[28] M. T. Hartman, A. Rivère, R. Battesti, and C. Rizzo,
Noise characterization for resonantly-enhanced polarimetric
vacuummagnetic-birefringence experiments, Rev. Sci. Ins-
trum. 88, 123114 (2017).

[29] R. Battesti et al., High magnetic fields for fundamental
physics, Phys. Rep. 765, 1 (2018).

[30] N. Ahmadiniaz, T. E. Cowan, R. Sauerbrey, U. Schramm,
H.-P. Schlenvoigt, and R. Schützhold, On the Heisenberg
limit for detecting vacuum birefringence, Phys. Rev. D 101,
116019 (2020).

[31] T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R.
Sauerbrey, and A. Wipf, On the observation of vacuum
birefringence, Opt. Commun. 267, 318 (2006).

[32] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Light
Diffraction by a Strong Standing Electromagnetic Wave,
Phys. Rev. Lett. 97, 083603 (2006).

[33] T. Inada et al., Search for photon-photon elastic scattering in
the x-ray region, Phys. Lett. B 732, 356 (2014).

[34] T. Yamaji et al., An experiment of x-ray photon-photon
elastic scattering with a Laue-case beam collider, Phys. Lett.
B 763, 454 (2016).

[35] H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T. Cowan, and R.
Sauerbrey, Detecting vacuum birefringence with X-ray free
electron lasers and high-power optical lasers: A feasibility
study, Phys. Scr. 91, 023010 (2016).

[36] F. Karbstein and C. Sundqvist, Probing vacuum birefrin-
gence using x-ray free electron and optical high-intensity
lasers, Phys. Rev. D 94, 013004 (2016).

[37] E. Lundström, G. Brodin, J. Lundin, M. Marklund, R.
Bingham, J. Collier, J. T. Mendonça, and P. Norreys, Using
High-Power Laser for Detection of Elastic Photon-Photon
Scattering, Phys. Rev. Lett. 96, 083602 (2006).

[38] T. Inada, T. Yamazaki, T. Yamaji, Y. Seino, X. Fan, S.
Kamioka, T. Namba, and S. Asai, Probing physics in
vacuum using an x-ray free-electron laser, a high-power
laser, and a high-field magnet, Appl. Sci. 7, 671 (2017).

[39] A. Di Piazza, A. I. Milstein, and C. H. Keitel, Photon
splitting in a laser field, Phys. Rev. A 76, 032103
(2007).

[40] B. King, H. Hu, and B. Shen, Three-pulse photon-photon
scattering, Phys. Rev. A 98, 023817 (2018).

[41] D. Tommasini, A. Ferrando, H. Michinel, and M. Seco,
Precision tests of QED and non-standard models by search-
ing photon-photon scattering in vacuum with high power
lasers, J. High Energy Phys. 11 (2009) 043.

[42] D. Tommasini and H. Michinel, Light by light diffraction in
vacuum, Phys. Rev. A 82, 011803 (2010).

[43] B. King and Ch. Keitel, Photon-photon scattering in
collisions of intense laser pulses, New J. Phys. 14, 103002
(2012).

[44] H. Gies, F. Karbstein, and N. Seegert, Quantum reflection as
a new signature of quantum vacuum nonlinearity, New J.
Phys. 15, 083002 (2013).

[45] H. Gies, F. Karbstein, and C. Kohlfürst, Photon-photon
scattering at the high-intensity frontier, Phys. Rev. D 97,
076002 (2018).

N. AHMADINIAZ et al. PHYS. REV. D 108, 076005 (2023)

076005-8

https://doi.org/10.1103/PhysRev.86.10
https://doi.org/10.1007/BF02736745
https://doi.org/10.1007/BF02736745
https://doi.org/10.1103/PhysRevD.8.3813
https://doi.org/10.1016/0375-9601(83)90816-2
https://doi.org/10.1016/0375-9601(83)90816-2
https://doi.org/10.1103/PhysRevC.58.2844
https://doi.org/10.1016/0370-1573(94)00058-1
https://doi.org/10.1016/S0969-806X(99)00289-3
https://doi.org/10.1016/S0969-806X(99)00289-3
https://doi.org/10.1103/PhysRevD.12.206
https://doi.org/10.1016/0370-1573(75)90048-4
https://doi.org/10.1016/0370-1573(75)90048-4
https://doi.org/10.1038/nphys4208
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevD.104.L011902
https://doi.org/10.1103/PhysRevD.104.L011902
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1016/j.optcom.2010.06.065
https://doi.org/10.1103/PhysRevD.77.032006
https://doi.org/10.1103/PhysRevLett.96.110406
https://doi.org/10.1103/PhysRevLett.96.110406
https://doi.org/10.1016/j.physrep.2020.06.001
https://doi.org/10.1140/epjd/e2017-80290-7
https://doi.org/10.1109/TIM.2018.2890183
https://doi.org/10.1109/TIM.2018.2890183
https://doi.org/10.1063/1.4986871
https://doi.org/10.1063/1.4986871
https://doi.org/10.1016/j.physrep.2018.07.005
https://doi.org/10.1103/PhysRevD.101.116019
https://doi.org/10.1103/PhysRevD.101.116019
https://doi.org/10.1016/j.optcom.2006.06.053
https://doi.org/10.1103/PhysRevLett.97.083603
https://doi.org/10.1016/j.physletb.2014.03.054
https://doi.org/10.1016/j.physletb.2016.11.003
https://doi.org/10.1016/j.physletb.2016.11.003
https://doi.org/10.1088/0031-8949/91/2/023010
https://doi.org/10.1103/PhysRevD.94.013004
https://doi.org/10.1103/PhysRevLett.96.083602
https://doi.org/10.3390/app7070671
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1103/PhysRevA.98.023817
https://doi.org/10.1088/1126-6708/2009/11/043
https://doi.org/10.1103/PhysRevA.82.011803
https://doi.org/10.1088/1367-2630/14/10/103002
https://doi.org/10.1088/1367-2630/14/10/103002
https://doi.org/10.1088/1367-2630/15/8/083002
https://doi.org/10.1088/1367-2630/15/8/083002
https://doi.org/10.1103/PhysRevD.97.076002
https://doi.org/10.1103/PhysRevD.97.076002


[46] H. Gies, F. Karbstein, and C. Kohlfürst, All-optical sig-
natures of strong-field QED in the vacuum emission picture,
Phys. Rev. D 97, 036022 (2018).

[47] B. Döbrich and H. Gies, Interferometry of light propagation
in pulsed fields, Europhys. Lett. 87, 21002 (2009).

[48] H. Gies, F. Karbstein, and N. Seegert, Quantum reflection of
photons off spatio-temporal electromagnetic field inhomo-
geneities, New J. Phys. 17, 043060 (2015).

[49] H. Grote, On the possibility of vacuum QED measurements
with gravitational wave detectors, Phys. Rev. D 91, 022002
(2015).

[50] H. Gies, F. Karbstein, and L. Klar, All-optical quantum
vacuum signals in two-beam collision, Phys. Rev. D 106,
116005 (2022).

[51] F. Karbstein, C. Sundqvist, K. S. Schulze, I. Uschmann, H.
Gies, and G. G. Paulus, Vacuum birefringence at x-ray free-
electron lasers, New J. Phys. 23, 095001 (2021).

[52] In a calcite crystal, birefringence can manifest itself as a
doubly refracted image of the same object, caused by the
different refractive indexes of the two polarizations. Apart
from such a double image, the difference in the refractive
indexes can also induce a relative phase shift between the
photon amplitudes of the two polarizations. If the incident
photon polarization is not oriented along the major axes of
the index of refraction, this phase shift will induce a rotation
in polarization—which is the signal considered here.

[53] F. Karbstein, D. Ullmann, E. A. Mosman, and M. Zepf,
Direct Accessibility of the Fundamental Constants Gov-
erning Light-by-Light Scattering, Phys. Rev. Lett. 129,
061802 (2022).

[54] F. Karbstein, Probing vacuum polarization effects with high-
intensity lasers, Particles 3, 39 (2020).

[55] B. King and T. Heinzl, Measuring vacuum polarisation with
high power lasers, High Power Laser Sci. Eng. 4 (2016).

[56] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.
Keitel, Extremely high-intensity laser interactions with
fundamental quantum systems, Rev. Mod. Phys. 84, 1177
(2012).

[57] G. V. Dunne, The Heisenberg-Euler effective action:
75 years on, Int. J. Mod. Phys. A 27, 1260004 (2012).

[58] J. S. Toll, The dispersion relation for light and its application
to problems involving electron pairs, Ph.D. thesis, Princeton
University, Princeton, NJ, USA, 1952.

[59] P. Sikivie, D. B. Tanner, and K. van Bibber, Resonantly
Enhanced Axion-Photon Regeneration, Phys. Rev. Lett. 98,
172002 (2007).

[60] P. Sikivie, Experimental Tests of the “Invisible” Axion,
Phys. Rev. Lett. 51, 1415 (1984).

[61] G. Raffelt and L. Stodolsky, Mixing of the photon with low-
mass particles, Phys. Rev. D 37, 1237 (1988).

[62] P. A. Zyla et al. (Particle Data Group), Axions and other
similar particles, Prog. Theor. Exp. Phys. 2020, 083C01
(2020).

[63] J. D. Jackson, Classical Electrodynamics (John Wiley &
Sons, New York, 2007).

[64] U. Zastrau et al., The high energy density scientific instru-
ment at the European XFEL, J. Synchrotron Radiat. 28,
1393 (2021).

[65] A. Laso Garcia et al., ReLaX: The Helmholtz International
Beamline for Extreme Fields high-intensity short-pulse laser
driver for relativistic laser–matter interaction and strong-
field science using the high energy density instrument at the
European x-ray free electron laser facility, High Power
Laser Sci. Eng. 9, E59 (2021).

[66] Taking into account the space-time distribution of the
optical laser focus (modeled as a Gaussian beam) as well
as the associated energy and momentum spread, the varia-
tions of the scattering angle (i.e., the size of the Bragg peak)
are below 90 μrad, i.e., comparable to the initial beam
divergence.

[67] I. A. Aleksandrov and V. M. Shabaev, Vacuum birefringence
and dichroism in a strong plane-wave background,
arXiv:2303.16273.

[68] I. A. Aleksandrov, G. Plunien, and V. M. Shabaev, Photon
emission in strong fields beyond the locally-constant field
approximation, Phys. Rev. D 100, 116003 (2019).

[69] S. Bargin, S. Meuren, C. H. Keitel, and A. Di Piazza,
High-Energy Vacuum Birefringence and Dichroism in
an Ultrastrong Laser Field, Phys. Rev. Lett. 119, 250403
(2017).

[70] S. Meuren, C. H. Keitel, and A. Di Piazza, Polarization
operator for plane-wave background fields, Phys. Rev. D 88,
013007 (2013).

[71] F. Karbstein and R. Shaisultanov, Photon propagation in
slowly varying inhomogeneous fields, Phys. Rev. D 91,
085027 (2015).

[72] N. Ahmadiniaz, C. Lopez-Arcos, M. A. Lopez-Lopez, and
C. Schubert, The QED four-photon amplitudes off-shell:
Part 1, Nucl. Phys. B991, 116216 (2023).

[73] N. Ahmadiniaz, C. Lopez-Arcos, M. A. Lopez-Lopez, and
C. Schubert, The QED four-photon amplitudes off-shell:
Part 2, Nucl. Phys. B991, 116217 (2023).

DETECTION SCHEMES FOR QUANTUM VACUUM DIFFRACTION … PHYS. REV. D 108, 076005 (2023)

076005-9

https://doi.org/10.1103/PhysRevD.97.036022
https://doi.org/10.1209/0295-5075/87/21002
https://doi.org/10.1088/1367-2630/17/4/043060
https://doi.org/10.1103/PhysRevD.91.022002
https://doi.org/10.1103/PhysRevD.91.022002
https://doi.org/10.1103/PhysRevD.106.116005
https://doi.org/10.1103/PhysRevD.106.116005
https://doi.org/10.1088/1367-2630/ac1df4
https://doi.org/10.1103/PhysRevLett.129.061802
https://doi.org/10.1103/PhysRevLett.129.061802
https://doi.org/10.3390/particles3010005
https://doi.org/10.1017/hpl.2016.1
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1142/S0217751X12600044
https://doi.org/10.1103/PhysRevLett.98.172002
https://doi.org/10.1103/PhysRevLett.98.172002
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1107/S1600577521007335
https://doi.org/10.1107/S1600577521007335
https://doi.org/10.1017/hpl.2021.47
https://doi.org/10.1017/hpl.2021.47
https://arXiv.org/abs/2303.16273
https://doi.org/10.1103/PhysRevD.100.116003
https://doi.org/10.1103/PhysRevLett.119.250403
https://doi.org/10.1103/PhysRevLett.119.250403
https://doi.org/10.1103/PhysRevD.88.013007
https://doi.org/10.1103/PhysRevD.88.013007
https://doi.org/10.1103/PhysRevD.91.085027
https://doi.org/10.1103/PhysRevD.91.085027
https://doi.org/10.1016/j.nuclphysb.2023.116216
https://doi.org/10.1016/j.nuclphysb.2023.116217

