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In this paper, we explore the recursive structure of Baikov representations for Feynman integrals. We
demonstrate that the various Baikov representations for all sectors of an integral family can be organized in
a treelike structure. Using this structure, we show that the symbol letters of one-loop Feynman integrals can
be written in terms of minors of a matrix associated with the top sector. Nontrivial relations among these
symbol letters can then be easily discovered using results from linear algebra.
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I. INTRODUCTION

Feynman integrals (FIs) are building blocks of perturbative
scattering amplitudes in quantum field theories. To calculate
these integrals or to study their properties, we usually write
them in a specific representation. In addition to the classical
momentum representation and the Feynman (or Schwinger)
parametric representation, many new representations have
been proposed in the literature. In this work, we focus on the
Baikov representation and its generalizations [1–4]. Because
of the complicated integration boundaries of this representa-
tion, it is not suitable for direct evaluation. However, the
Baikov representations are particularly convenient to study
the properties of FIs under cuts and to study the relations
among them. The Baikov representations have been
employed to study the integration-by-parts (IBP) relations
using methods from algebraic geometry [5–9]. They are also
useful in the development of the intersection theory for
Feynman integrals [10–17], which recast the problem of
IBP reduction to the computation of intersection numbers.
An important concept to organize the calculation of

Feynman integrals is the so-called uniform transcendentality
(UT). UT integrals satisfy ϵ-factorized canonical differential

equations [18]. In the case that only logarithmic singularities
are present, UT integrals can be naturally expressed in terms
of multiple polylogarithms [19,20]. Generic methods to
construct UT integrals in the Baikov representations have
been proposed [4,21,22]. Themethod of symbols [23–25] is
a very powerful tool to study the analytic and algebraic
structures of UT integrals. The symbols contain the infor-
mation of branch cuts of the integrals as functions of external
variables. They also encode various algebraic structures of
Feynman integrals, such as shuffle algebras [26], stuffle
algebras, and Hopf algebras [27–29], as well as cluster
algebras [30–38]. The knowledge of the symbol letters can
be used to bootstrap the analytic expressions of Feynman
integrals (see, for example, [39–45]).
The Baikov representations take the form of generalized

hypergeometric functions

Z
dx uðxÞϕðxÞ; ð1Þ

where x is the collection of integration variables, uðxÞ is a
multivalued function determined by the integral family, and
ϕðxÞ is a rational function representing a specific integral in
this family. In both the reduction procedure and the study of
symbols, it is important to explore the relations among
integrals in all sectors belonging to an integral family.
However, the Baikov representations for different sectors
can have different numbers of x variables and have different
uðxÞ functions. This makes it difficult to establish direct
relations among them. In this paper, we demonstrate that
these different uðxÞ functions can be organized in a
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recursive structure and can be obtained by integrating out
variables from the function in the top sector. We further
study the symbol letters of one-loop integrals using the
canonical differential equations. We find that they can be
written in a simple form that explicitly reflects the recursive
structure. This can be used to study the analytic structure of
one-loop Feynman integrals with arbitrary numbers of
external momenta.
The contents are organized as follows. In Sec. II, we

present the recursive structure of the Baikov representa-
tions. In Sec. III, we show how one-loop symbol letters are
related to this recursive structure and provide expressions
for the symbol letters in a given integral family in terms of
the minors of a single matrix. We also show how to derive
relations among the letters using the recursive structure and
give some examples. We conclude in Sec. IV.

II. THE RECURSIVE STRUCTURE OF BAIKOV
REPRESENTATIONS

A scalar Feynman integral can be generically written in
the momentum representation as

Iða1;a2;…;aN ;dÞ¼
Z

ddl1ddl2 �� �ddlL
ðiπd=2ÞL

1

xa11 xa22 �� �xaNN
; ð2Þ

where L is the number of loops and d ¼ 4 − 2ϵ is the
dimension of spacetime; N ¼ LðLþ 1Þ=2þ LE is the
number of independent scalar products involving loop
momenta, and E is the number of independent external
momenta (the number of external legs is thus Eþ 1). The
variables xi are propagators if ai > 0 and irreducible scalar
products (ISPs) if ai ≤ 0.
The momentum representation can be transformed to the

standard Baikov representation [1,46]. The derivation was
detailed in [4], and we have

Iða1;…;aN ;dÞ¼
πðL−NÞ=2det

�
Aa
ij

�
Q

L
i¼1Γ

�
d−Kþi

2

� �Gðp1;…;pEÞ
�
−ðd−E−1Þ=2

×
Z

dx1 ���dxN
xa11 ���xaNN

�
PL
Nðx1;…;xNÞ

�ðd−K−1Þ=2;
ð3Þ

where K ¼ Lþ E and the polynomial

PL
Nðx1;…; xNÞ ¼ Gðq1; q2;…; qKÞ: ð4Þ

A few symbols in the above expressions need to be
explained. We use fq1; q2;…; qKg to denote fl1;…;
lL; p1;…; pEg. Any propagator or ISP xa can be written
as a combination of scalar products qi · qj (1 ≤ i ≤ L,
i ≤ j) and a term fa independent of the loop momenta. Aa

ij

is then the transformation matrix between the variables
fxag and the scalar products qi · qj,

qi · qj ¼
XN
a¼1

Aa
ijðxa − faÞ: ð5Þ

G represents the Gram determinant and it can be written for
any n momenta fq1;…; qng as

Gðq1; q2;…; qnÞ≡ detM

≡ det

0
BBBBB@

q21 q1 · q2 � � � q1 · qn
q2 · q1 q22 � � � q2 · qn

..

. ..
. . .

. ..
.

qn · q1 qn · q2 � � � q2n

1
CCCCCA:

ð6Þ

The above equation not only defines the Gram determinant,
but also defines a symmetric matrix M that will be of
crucial importance in the following. It is clear from the
definition that if the momenta are redefined by an orthogo-
nal transformation

ðq01; q02;…; q0nÞ ¼ O · ðq1; q2;…; qnÞT; ð7Þ

where O is an orthogonal matrix, the Gram determinant is
invariant,

Gðq01; q02;…; q0nÞ ¼ Gðq1; q2;…; qnÞ: ð8Þ

We will frequently use this property in later discussions.
In addition to the standard Baikov representation shown

above, it is also possible to construct so-called loop-by-
loop (LBL) Baikov representations [3]. The standard way
to derive the LBL representations is to perform the change
of variables for one loop momentum at a time. On the other
hand, it is also possible to derive it from the standard
Baikov representation by integrating out some of the
Baikov variables [3,4]. In this work, we will explore further
this second viewpoint, and show that the various forms of
Baikov representations for a given integral family (includ-
ing all the subsectors) can be cast into a treelike structure
rooted in the standard representation. Such a structure
allows us to find relations between a sector and its
subsectors, which provide important information for inte-
gral reductions and differential equations.
The standard and LBL Baikov representations take the

generic formZ
dx1 � � � dxn
xa11 � � � xann ½P1ðxÞ�γ1 � � � ½PmðxÞ�γm; ð9Þ

where we use x to denote the sequence of variables
x1;…; xn with n ≤ N, and P1;…; Pm are Baikov poly-
nomials that are raised to noninteger powers γ1;…; γm. In
the standard representation, there is of course only one
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polynomial, i.e., m ¼ 1. In the LBL representations, there
can be as many as m ¼ 2L − 1 polynomials for L-loop
integrals (which we will show). We say that the set of
polynomials fP1;…; Pmg defines a Baikov representation.
When integrating out a variable xi from the above, one
arrives at a different set of Baikov polynomials involving
fewer variables. We denote this as a “lower representation.”
The lower representations usually belong to subsectors, but
may also stay at the same sector (in this case, xi is
redundant for this sector). It can also happen that a
subsector shares the same representation as its supersector
(i.e., no variable is integrated out between them).
We can now state the main result of this section: the LBL

representations for all sectors can be reached by recursively
integrating out variables starting from the standard repre-
sentation of the top sector. We will demonstrate this in the
following.

A. Behavior of the representation after integrating
out a quadratic variable

We assume that there exists a variable xi that only
appears quadratically in one of the Baikov polynomials
PjðxÞ, but not in the other polynomials (in the following,
we will refer to it as a “quadratic variable”). We regard xi as
an ISP (i.e., the corresponding power ai ≤ 0), either for the
current sector or for a subsector. We integrate xi out to
arrive at a lower representation.
The boundary of the integral domain for xi in Eq. (9) is

determined by PjðxÞ ¼ 0. For simplicity we write z≡ xi
and

PjðxÞ ¼ −ðAz2 þ Bzþ CÞ ¼ −Aðz − c1Þðz − c2Þ; ð10Þ

where A, B, and C are polynomials of the remaining
variables in x. We can then integrate xi out usingZ

c2

c1

zn½−Aðz − c1Þðz − c2Þ�γdz

¼ ð−AÞγcn1ðc2 − c1Þ1þ2γ Γð1þ γÞ2
Γð2ð1þ γÞÞ

× 2F1

�
1þ γ;−n; 2ð1þ γÞ; 1 − c2

c1

�
; ð11Þ

where n is a non-negative integer. By the quadratic trans-
formation and the Pfaff transformation of hypergeometric
functions

2F1ða;b;2a;zÞ¼ð1−zÞ−b
2
2F1

�
b
2
;a−

b
2
;aþ1

2
;

z2

4ðz−1Þ
�
;

ð12Þ

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a2F1

�
a; c − b; c;

z
z − 1

�
; ð13Þ

we can show that

cn12F1

�
1þγ;−n;2ð1þγÞ;1−c2

c1

�

¼
�
c1þc2

2

�
n

2F1

 
−
n
2
;
1−n
2

;
3

2
þγ;

�
c1−c2
c1þc2

�
2
!
: ð14Þ

So in the end, we get the following identity:Z
c2

c1

zn½−Aðz−c1Þðz−c2Þ�γdz

¼ð−AÞγðc2−c1Þ1þ2γ Γð1þγÞ2
Γð2ð1þγÞÞ

×

�
c1þc2

2

�
n

2F1

 
−
n
2
;
1−n
2

;
3

2
þγ;

�
c1−c2
c1þc2

�
2
!
: ð15Þ

We will call this identity the “recursion formula” hereafter
for convenience.
Since n ≥ 0, the hypergeometric function in the

recursion formula is, in fact, a polynomial of
ðc1 − c2Þ=ðc1 þ c2Þ. In particular, if n ¼ 0 or n ¼ 1, the
hypergeometric function just equals 1. We know that c1 and
c2 are the two roots of a quadratic polynomial, which
immediately tells us that c1 þ c2 and ðc1 − c2Þ2 are rational
functions of the remaining integration variables as well as
external variables. Note also that c1 þ c2 always appears
with positive integer powers in the formula, due to the
ðc1 þ c2Þn factor in front of the hypergeometric function.
Therefore, c1 þ c2 simply leads to the polynomial A in
the denominator as well as some Baikov variables in the
numerator. The latter can be combined with the xa11 � � � xann
denominator and do not affect the representation. The other
rational function ðc1 − c2Þ2 is just ðB2 − 4ACÞ=A2. We will
show in the following that B2 − 4AC can always be
factorized into two polynomials. Therefore, the effect of
integrating out xi is to replace the polynomial Pj with three
new polynomials in the lower representation.
To show the factorization property of B2 − 4AC, we start

from the standard representation. In this case, there is just
one Baikov polynomial P1 ¼ detM, where the Gram
matrix M is defined in (6). The variable xi to be integrated
out is quadratic in P1. By exploiting properties of the Gram
determinant, we can always bring it to the form (up to an
overall rational factor)

detM ∝ detM̃≡ det

0
BBBBBBB@

× × × � � � xiþ×

× × × � � � ×

× × × � � � ×

..

. ..
. ..

. . .
. ..

.

xiþ× × × � � � ×

1
CCCCCCCA
; ð16Þ
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where × denotes terms independent of xi. The above
determinant can be expanded into a quadratic polynomial
of the form Eq. (10), with coefficients written in terms of
minors of the matrix M̃. We will write the minors of any
matrix M in the form MI;J, where I and J are ordered
subsequences of the indices 1; 2;…; n. The minor MI;J is
defined to be the determinant of the submatrix of M with
rows listed in I and columns listed in J. For example,
M12;34 is the minor by taking entries in the first or second
row and in the third or fourth column. M1;2 is simply the
(1,2) element of the matrix M.
Noting that the discriminant B2 − 4AC is invariant under

a shift of variable, we have

A ∝ M̃2…n−1;2…n−1;

B2 − 4AC ∝
h
M̃2

2…n;1…n−1 þ M̃2…n−1;2…n−1M̃1…n;1…n

i
xi¼0

¼ M̃1…n−1;1…n−1M̃2…n;2…n: ð17Þ

For the last equal sign, we have applied the following
identity for an arbitrary symmetric matrix M:

M1X;1XMXn;Xn ¼ M2
1X;Xn þMX;XM1Xn;1Xn; ð18Þ

where X denotes the sequence 2…n − 1. This identity is
usually called Sylvester’s identity in the literature [4,22].
It is actually a special case of the more general “Lewis
Carroll identity” that appears in the discussions of cluster
algebras [47]. In our notation, it reads

MX;X0MXab;X0cd ¼ MXa;X0cMXb;X0d −MXa;X0dMXb;X0c; ð19Þ

where X and X0 are arbitrary sequences of indices of the
same length, and a, b, c, d are four indices absent from X
and X0.
From the above, we see that integrating out xi from P1

produces three polynomials in the lower representation, one
being A and the other two from the factorization of
B2 − 4AC. We also note that all the three new polynomials
are written as Gram determinants. Hence, it is straight-
forward to repeat the above procedure for the next quad-
ratic variable, if such a variable exists in the lower
representation.

B. The quadratic variables and the recursive structure

We now analyze how quadratic variables appear in the
Baikov polynomials and how they are related to the
recursive structure of the Baikov representations for
Feynman integrals.
We again start from the standard representation, where

there is only one Baikov polynomial. We will show that
there is always at least one quadratic variable in this
polynomial. It can either be an ISP for the top sector or
a propagator in the top sector (and thus an ISP for a

subsector). If it is an ISP for the top sector, integrating it out
arrives at a new representation for the same sector (quite
often the LBL representation). If it is a propagator in the top
sector, integrating it out gives a representation for a
corresponding subsector.
We now note that the diagrams for all subsectors can be

obtained from that of the top sector by “pinching” some
propagators. These pinched propagators become ISPs for
the subsectors (in the standard representation of the top
sector). If the Baikov variables corresponding to these ISPs
are quadratic, they can be integrated out to arrive at a new
representation. Hence, the recursive structure of the Baikov
representation is naturally related to the sequence of
pinched propagators. The remaining question is then: when
does a pinched propagator correspond to a quadratic
variable? For that, our basic tool is the following Lemma:
Lemma II.1.For an L-loop (Eþ 1)-point integral sector,

if it contains an (L − 1)-loop subdiagram with the number
of external legs less than Eþ 2, then there exists at least
one quadratic ISP variable in the Baikov polynomial of the
standard representation for this sector.
It is best to use some simple examples to illustrate the

content of the above Lemma. The diagram on the left side
of Fig. 1 is a two-loop, four-point integral sector with a one-
loop, four-point subdiagram drawn by blue lines.
According to the Lemma, there exists at least one quadratic
ISP in the Baikov polynomial. Integrating out this ISP leads
to a loop-by-loop representation for this sector. On the other
hand, the diagram on the right side of Fig. 1 is a two-loop,
three-point integral sector, with all its one-loop subdia-
grams being four point. It does not satisfy the Lemma,
hence no quadratic ISP exists. This means that its loop-by-
loop representation is the same as the standard one.
However, if one pinches the red propagator, the diagram
becomes a two-loop, three-point sector with a one-loop,
three-point subdiagram. The pinched propagator now
becomes a quadratic ISP in this subsector and can be
integrated out to arrive at a lower representation.
To show that the Lemma is true, we note that the

Baikov polynomial is given by the determinant of the
Gram matrix,

FIG. 1. Left: a two-loop, four-point diagram with a quadratic
ISP. Right: a two-loop, three-point diagram without quadratic
ISPs, but the red propagator becomes one after pinching.
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M¼

0
BBBBBBBBBBBBB@

l21 � � � l1 · lL l1 ·p1 � � � l1 ·pE

..

. . .
. ..

. ..
. . .

. ..
.

lL · l1 � � � l2L lL ·p1 � � � lL ·pE

p1 · l1 � � � p1 · lL p2
1 � � � p1 ·pE

..

. . .
. ..

. ..
. . .

. ..
.

pE · l1 � � � pE · lL pE ·p1 � � � p2
E

1
CCCCCCCCCCCCCA
: ð20Þ

The Baikov variables are linear combinations of the scalar
products involving the loop momenta li. In an (L − 1)-loop
subdiagram, one of the loop momenta is treated as an
external one. Without loss of generality, we label this loop
momentum as lL. In general, this subdiagram can depend
on as many as Eþ 1-independent external momenta (lL
and p1;…; pE). However, if the subdiagram satisfies the
condition of the Lemma, it can only depend on as many as
E-independent external momenta (among which lL must be
included). Again, without loss of generality (i.e., after some
redefinitions of external momenta), we assume the external
momentum dropping out of the subdiagram to be pE, which
only appears in the last row/column of the above Gram
matrix.
Now, all the propagators of the subdiagram cannot

depend on pE, and the remaining propagators of the full
diagram must depend on lL. This shows that the L − 1
scalar products l1 · pE; ...; lL−1 · pE are ISPs of the full
diagram, and they are also quadratic in the Baikov
polynomial.
We now turn to the lower representation after integrating

out a quadratic variable from the standard representation.
As discussed in the last subsection, the Baikov polynomial

in the standard representation is replaced by three new
polynomials,

M1Xn;1Xn → fMX;X;M1X;1X;MXn;Xng; ð21Þ

where n ¼ Lþ E and X ¼ 23…n − 1. All variables con-
tained inMX;X must also appear inM1X;1X andMXn;Xn, and
these cannot be quadratic. However, there are scalar
products appearing only in the first row/column of M
(hence only in M1X;1X) or only in the last row/column
(hence only in MXn;Xn). We can then analyze M1X;1X and
MXn;Xn in the same way as above and locate quadratic ISPs
(for the current sector or a subsector) in them. This leads to
the recursive structure as expected.
The final question concerns the number of Baikov

polynomials in the lower representations. Naively, one
might imagine that each recursion step increases the
number of polynomials by two. However, the number
has an upper bound of 2L − 1. The reason is that, during the
recursion, certain polynomial factors get canceled out,
restricting the number from increasing indefinitely. As a
simple example, suppose that we integrate out l1 · pE−1
from M1X;1X in Eq. (21). This replaces M1X;1X by

M1X;1X → fMX0;X0 ;M1X0;1X0 ;MX;Xg; ð22Þ

where X0 ¼ 23…n − 2. The factor of MX;X from above
exactly cancels that in Eq. (21) and thus drops out of the
lower representation.
We now present a nontrivial example to demonstrate the

recursive structure of Baikov representations and their
correspondence to the subsectors of the integral family.
This three-loop nonplanar triple-box family is defined by
the following propagator denominators:

fk21; ðk1 − p1Þ2; ðk1 − p1 − p2Þ2; k22; ðk1 − k2 − p1 − p2Þ2; ðk1 − k2 − k3Þ2;
ðk2 þ k3Þ2; k23; ðk3 − p1 − p2Þ2; ðk3 − p1 − p2 − p3Þ2 −m2; ðk2 − p1Þ2;
ðk2 − p1 − p2Þ2; ðk2 − p1 − p2 − p3Þ2; ðk3 − p1Þ2; ðk1 − p1 − p2 − p3Þ2g: ð23Þ

The kinematics configuration is

p2
1 ¼ p2

2 ¼ 0; p2
3 ¼ p2

4 ¼ m2; ðp1 þ p2Þ2 ¼ s; ðp2 þ p3Þ2 ¼ t: ð24Þ

The diagram for the top sector is depicted in Fig. 2, where
thick lines represent propagators and external legs with
mass m, and thin lines are propagators or external legs with
zero mass. When picking this integral family, we have in
mind the three-loop amplitude for the process gg → tt̄,
although one may assign arbitrary masses to the internal
lines without spoiling the recursion.
The whole recursive tree of this family is too large to be

shown here. However, we provide a Mathematica package

BaikovAll.wl as SupplementalMaterial [60],which can generate
allBaikov representations for a given integral family using the
recursive structure. In Fig. 3, we show explicitly two paths.
The variables integrated out are listed next to the arrows. The
variables on dashed arrows are ISPs of the current sector.
Integrating them out leads to a lower representation for the
same sector. On the other hand, variables on solid arrows are
propagators of the current sector. Integrating them out arrives
at a representation for a subsector.
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While the recursive structure of loop-by-loop Baikov
representation might already be familiar to experts in this
field, the relations among the various Baikov polynomials
in terms of minors of the Gram matrix are, to the best of our
knowledge, not present in the literature. In the rest of this
paper, we will show that these relations play an important
role in the determination of one-loop symbols, as well as in
the reduction of Feynman integrals.

III. SYMBOL LETTERS FROM THE RECURSIVE
STRUCTURE OF BAIKOV REPRESENTATIONS

Usually, the symbol letters can be read off from the
ϵ-form differential equations satisfied by UT master inte-
grals. On the other hand, it is highly interesting to obtain the
symbol letters without working out the full differential
equations. At one-loop level, this has been studied in the
projective Feynman parameter representation [48,49] and
in the Baikov representation [16,50,51]. In this section, we
revisit this problem from the recursive structure of Baikov
representation.

A. The recursive structure of one-loop Feynman
integrals

The Baikov polynomial for a one-loop (Eþ 1)-point
Feynman integral is given by the Gram determinant

Gðl1;p1;…;pEÞ¼det

0
BBBBB@

l21 l1 ·p1 … l1 ·pE

p1 · l1 p2
1 … p1 ·pE

..

. ..
. . .

. ..
.

pE · l1 pE ·p1 … p2
E

1
CCCCCA:

ð25Þ

We denote the Baikov variables (propagators) by
fx1;…; xEþ1g. They are chosen as

xEþ1 ¼ l21 −m2
1;

xE ¼ ðl1 − p1Þ2 −m2
2;…; x1

¼ ðl1 − p1 − � � � − pEÞ2 −m2
Eþ1: ð26Þ

Note that the choice is completely generic, as one can
always relabel the external momentum and internal masses.
The choice here reflects a particular order of the recursion.
We can invert the above relations to express the scalar
products l21 and fl1 · pjg in terms of fxig. With the above
choice, x1 is only involved in l1 · pE, x2 is involved in
l1 · pE and l1 · pE−1, etc. It is then easy to see that
Gðl1; p1;…; pEÞ is a quadratic polynomial of the Baikov
variables. Hence it can be written in the form

PðxÞ≡Gðl1; p1;…; pEÞ≡ x ·Q · xT; ð27Þ

where Q is a symmetric n × n matrix with n≡ Eþ 2, and
the vector x ¼ ðx1;…; xEþ1; 1Þ. The elements of Q are
functions of pi · pj. In the following, we will again employ

FIG. 3. Two paths in the recursion of Baikov representations for the three-loop nonplanar triple-box family. The variables integrated
out are listed next to the arrows. The variables on dashed arrows are ISPs of the current sector, whereas those on solid arrows are ISPs of
subsectors.

FIG. 2. Nonplanar triple-box family. The number beside the
internal line is the number of propagators in the definition. All
external momenta are assumed incoming and the thick lines are
massive with the same mass m.
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the notation of minors discussed above Eq. (17), i.e.,QI;J is
the minor with the rows in I and the columns in J.
As discussed in the last section, we generate new

polynomials in the lower representations when integrating
out variables one by one. In the following, we will associate
these polynomials to the minors of the Q matrix. The latter
naturally appears in the expressions of symbol letters.
Let us integrate out x1 first. After the integration, the new

Baikov polynomial (at one loop, there is always only one
Baikov polynomial in each representation) is now a
function of xð1Þ ¼ ðx2;…; xEþ1; 1Þ. We can write it (up
to an irrelevant constant factor) as

P1ðxð1ÞÞ≡ xð1Þ ·Qð1Þ · xð1ÞT; ð28Þ

with the matrix Qð1Þ written in terms of minors of Q,

Qð1Þ ¼ −

0
BBBBB@

Q12;12 Q12;13 � � � Q12;1n

Q13;12 Q13;13 � � � Q13;1n

..

. ..
. . .

. ..
.

Q1n;12 Q1n;13 � � � Q1n;1n

1
CCCCCA: ð29Þ

The above result can be easily derived by tracing the
quadratic and linear terms of each variable in the original

polynomial (27) and using the results of integration from
the last section.
Following the same spirit, we can then integrate out x2,

and the Baikov polynomial becomes

P2ðxð2ÞÞ≡ xð2Þ ·Qð2Þ · xð2ÞT; ð30Þ

where xð2Þ ¼ ðx3; x4;…; 1Þ and

Qð2Þ ¼ −

0
BBBBB@

Q123;123 Q123;124 � � � Q123;12n

Q123;124 Q124;124 � � � Q124;12n

..

. ..
. . .

. ..
.

Q12n;123 Q12n;124 � � � Q12n;12n

1
CCCCCA: ð31Þ

Note thatQð2Þ is derived fromQð1Þ, but is rewritten in terms
of minors of Q using the exchange relations (18).
The recursion can further proceed and, after integrating

out the first k variables, we arrive at

Pk

�
xðkÞ
�≡ xðkÞ ·QðkÞ · xðkÞT; ð32Þ

where xðkÞ ¼ ðxkþ1; xkþ2;…; 1Þ and

QðkÞ ¼ snðkÞ

0
BBBBB@

QXðkþ1Þ;Xðkþ1Þ QXðkþ1Þ;Xðkþ2Þ � � � QXðkþ1Þ;Xn
QXðkþ2Þ;Xðkþ1Þ QXðkþ2Þ;Xðkþ2Þ � � � QXðkþ2Þ;Xn

..

. ..
. . .

. ..
.

QXn;Xðkþ1Þ QXn;Xðkþ2Þ � � � QXn;Xn

1
CCCCCA; ð33Þ

where X ¼ 12 � � � k, and snðkÞ equals þ1 if k is a multiple of 3, and −1 otherwise. This sign is introduced for later
convenience.
From the above, we see that the Baikov polynomials of all sectors are related to minors of the matrix Q. We now

employ the method of [21,51] to construct the d log integrands for each sector. Setting N ¼ Eþ 1 − k, the integrands
read

N even∶ gk
�
xðkÞ
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

snðkÞQXn;Xn

q
½snðk − 1ÞQX;X�ϵ

�
Pk

�
xðkÞ
��−1=2−ϵ 1

xkþ1xkþ2 � � � xEþ1

;

N odd∶ gk
�
xðkÞ
� ¼ ½snðk − 1ÞQX;X�ϵ

�
Pk

�
xðkÞ
��−ϵ 1

xkþ1xkþ2 � � � xEþ1

; ð34Þ

where we have suppressed irrelevant x-independent
factors. These are our starting point to derive the symbol
letters.

B. Differential equations and symbol letters

To get the symbol letters associated with the (Eþ 1)-
point UT integral g0ðxÞ (which defines the top sector), we

need to study its derivatives with respect to external
kinematic variables. To this end, we simply take Qi;j as
independent variables, and we only need to study Q1;1,
Q1;2, Q1;n, and Qn;n. The symbol letters related to the other
Qi;j’s can be obtained by permuting the indices.
We first consider the derivative with respect toQ1;1. This

gives
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∂

∂Q1;1
½PðxÞ�γ 1

x1x2 � � �xEþ1

¼ ½PðxÞ�γ−1 x21
x1x2 � � �xEþ1

¼ ½PðxÞ�γ−1 x1
x2x3 � � �xEþ1

; ð35Þ

where factors independent of x have been suppressed, and γ
can be ð−1=2 − ϵÞ or −ϵ depending on whether E is even or
odd. Invoking the recursion formula (15) to integrate x1 out,
the integrand in the lower representation becomes

½Q1;1�−γ−1
�
P1

�
xð1Þ
��

γ−1=2Q1;2x2þ���þQ1;Eþ1xEþ1þQ1;n

x2x3 �� �xEþ1

;

ð36Þ

where P1ðxð1ÞÞ has been defined in (28). The above
integrand is a linear combination of Q1;j with j > 1. We
conclude that the symbol letters in the derivative with
respect to Q1;1 are also a linear combination of those
obtained from the derivatives with respect to Q1;j. Hence,
we are left with only Q1;2, Q1;n, and Qn;n to investigate.
Let us start from the case when Eþ 1 is even. Taking the

derivative with respect to Q1;2, we have

∂

∂Q1;2
g0ðxÞ¼ð−1=2−ϵÞ ffiffiffiffiffiffiffiffiffi

Qn;n

p ½PðxÞ�−3=2−ϵ 1

x3x4 � � �xEþ1

→ ð−Q12;12Þ−1þϵ
�
P2

�
xð2Þ
��−1=2−ϵ ffiffiffiffiffiffiffiffiffi

Qn;n
p

Q12;12

x3x4 � � �xEþ1

:

ð37Þ

In the second row, we have integrated out x1 and x2 to arrive
at the lower representation with E − 1 propagators. Here
and in the following, we use arrows to mean that some
variables have been integrated out on the right-hand side.
Hereafter, we will only keep track of factors relevant to the
symbol letters. Comparing with the first equation of (34),
we can easily see that the above integrand is proportional to
the (E − 1)-point UT integrand g2

�
xð2Þ
�
,

∂

∂Q1;2
g0ðxÞ →

ffiffiffiffiffiffiffiffiffi
Qn;n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q12n;12n

p g2
�
xð2Þ
�

→
∂

∂Q1;2
log

Q1n;2n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q12n;12nQn;n

p
Q1n;2n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q12n;12nQn;n

p g2
�
xð2Þ
�
:

ð38Þ

The symbol letter can be read off from the argument of the
logarithm.

Now consider the derivative with respect to Q1;n,

∂

∂Q1;n
g0ðxÞ¼ð−1=2−ϵÞ ffiffiffiffiffiffiffiffiffi

Qn;n

p ½PðxÞ�−3=2−ϵ 1

x2x3 � ��xEþ1

→ ðQ1;1Þ−1=2þϵ
�
P1

�
xð1Þ
��−ϵ

×

ffiffiffiffiffiffiffiffiffi
Qn;n

p
Q1;1

x2x3 � � �xEþ1P1ðxð1ÞÞ
: ð39Þ

Comparing with the second equation of (34), we see that
there is an extra factor of P1 in the denominator. This leads
to additional subsector integrals in the relation,

∂

∂Q1;n
g0ðxÞ→−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1;1Qn;n

p
Q1n;1n

g1
�
xð1Þ
�þsubsector integrands

→
∂

∂Q1;n
log

Q1;nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1;1Qn;n

p
Q1;n−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1;1Qn;n

p g1
�
xð1Þ
�

þsubsector integrands: ð40Þ

The first term can be obtained through maximal cut, and the
argument of the logarithm gives us another symbol letter.
We show in Appendix B how to obtain the subsector terms
by subtraction and that they do not give us new
information.
Finally, we consider the derivative with respect to Qn;n,

∂

∂Qn;n
g0ðxÞ¼


�
−
1

2
−ϵ

� ffiffiffiffiffiffiffiffiffi
Qn;n

p ½PðxÞ�−3=2−ϵ

þ 1

2
ffiffiffiffiffiffiffiffiffi
Qn;n

p ½PðxÞ�−1=2−ϵ
�

1

x1x2 � ��xEþ1

: ð41Þ

This gives the dependence on g0 itself,

∂

∂Qn;n
g0ðxÞ ∝

1

Qn;n
g0ðxÞ þ subsector integrands

∝
∂

∂Qn;n
logQn;ng0ðxÞ þ subsector integrands:

ð42Þ

We can read off a rational letter from the above. Again, the
dependence on subsector integrals does not give new
information here.
We now turn to the case when Eþ 1 is odd. We again

consider the derivatives of g0 with respect toQ1;2,Q1;n, and
Qn;n. We get the same symbol letters as in the even case,
except a new one of the form

log
Q1;2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q12;12

p
Q1;2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q12;12

p : ð43Þ

In the above, we analyzed the derivatives of the top-
sector integral g0ðxÞ. Owing to the recursive structure of
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Baikov representations, the same analysis can be readily
applied to the derivatives of the subsector integrals gkðxðkÞÞ.
We only need to replace the matrixQ byQðkÞ and be careful
about the extra factor of QX;X in Eq. (34). The resulting
symbol letters for all sectors can be summarized in the
following:

(i) Rational letters,

log
QXn;Xn

QX;X
: ð44Þ

(ii) Algebraic letters for even Eþ 1 − k,

log
QXin;Xjnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QXn;XnQXijn;Xijn

p
QXin;Xjn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QXn;XnQXijn;Xijn

p ;

log
QXi;Xnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QXi;XiQXn;Xn

p
QXi;Xn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QXi;XiQXn;Xn

p ; k< i≠ j<n: ð45Þ

(iii) Algebraic letters for odd Eþ 1 − k,

log
QXi;Xjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QX;XQXij;Xij

p
QXi;Xj−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QX;XQXij;Xij

p ; k< i≠ j≤n: ð46Þ

We remind the reader that X ¼ 12 � � � k denotes the
sequence of missing propagators in the subsector. For
the top sector, X is empty and the associated QX;X ¼ 1.
An important feature of the above results is that all

symbol letters are actually determined by the principal
minors of Q, because all nonprincipal minors are related to
principal minors by

Q2
Xa;Xb ¼ QXa;XaQXb;Xb −QX;XQXab;Xab: ð47Þ

This exchange relation has also been related to the
positivity of minors. If both QXa;XaQXb;Xb and
−QX;XQXab;Xab are positive, then QXa;Xb must be a real
quantity.
The symbol letters obtained above can be related to those

written in terms of Gram determinants in [51]. We give the
relations in Appendix A. Finally, we note that in the above
analysis we have implicitly assumed that QX;X ≠ 0 and
QXn;Xn ≠ 0. In practice, the situations where QX;X ¼ 0 or
QXn;Xn ¼ 0 may appear for certain kinematic configura-
tions. The corresponding symbol letters can be obtained
from the above generic results by linear combinations
followed by a limiting procedure. These have been dis-
cussed extensively in [51] and we do not repeat them here.

C. Relations among symbol letters

The set of symbol letters obtained above (as well as those
obtained using other methods) might be redundant. It is
often desirable to find possible relations among the letters

to obtain an independent subset. This helps to construct the
symbols and to bootstrap the analytic expressions of the
integrals. Finding these relations is usually a highly non-
trivial task when algebraic letters are present. One can use
the program package SymBuild [52] for that purpose, but it
becomes extremely slow when the letters involve many
square roots. An advantage of theQ-minor representation is
that relations among various letters can be discovered using
results in linear algebra. We discuss a set of nontrivial
relations in this subsection.
We start from the first letter in Eqs. (45) and the letter

in (46). They can be written in the form

WYij ¼
QYi;Yj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QY;YQYij;Yij

p
QYi;Yj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QY;YQYij;Yij

p ; ð48Þ

where the sequence Y is either X or Xn. The minors ofQ in
the above expression can be reexpressed as minors of the
adjugate matrix of Q. We denote this adjugate matrix as

Q ¼ ðdetQÞQ−1; ð49Þ

and we have

WYij ¼
QY 0i;Y 0j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QY 0;Y 0QY 0ij;Y 0ij

p
QY 0i;Y 0j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QY 0;Y 0QY 0ij;Y 0ij

p ; ð50Þ

where Y 0 is the sequence complementary to the sequence
Yij, i.e.,

Y 0 ¼ f12 � � � ngnfYijg: ð51Þ

The minor QY 0;Y 0 can be viewed as a dual representation
of QYij;Yij.
Now we can consider relations among the following

three letters:

WYij ¼
QZki;Zkj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZk;ZkQZkij;Zkij

p
QZki;Zkj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZk;ZkQZkij;Zkij

p ;

WYjk ¼
QZij;Zik þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZi;ZiQZijk;Zijk

p
QZij;Zik −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZi;ZiQZijk;Zijk

p ;

WYki ¼
QZjk;Zji þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZj;ZjQZjki;Zjki

p
QZjk;Zji −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZj;ZjQZjki;Zjki

p ; ð52Þ

where

Z ¼ f12 � � � ngnfYijkg: ð53Þ

To avoid sign ambiguities, we assume QZi;Zi; QZj;Zj;
QZk;Zk > 0 and QZijk;Zijk < 0. We can rewrite the above
three letters as
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WYij ¼
rij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p
rij −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p ;

WYjk ¼
rjk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p
rjk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p ;

WYki ¼
rki þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p
rki −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZkij;Zkij

p ; ð54Þ

where

rij¼
QZki;Zkjffiffiffiffiffiffiffiffiffiffiffiffiffi
QZk;Zk

p ; rjk¼
QZij;Zikffiffiffiffiffiffiffiffiffiffiffiffi
QZi;Zi

p ; rki¼
QZjk;Zjiffiffiffiffiffiffiffiffiffiffiffiffiffi
QZj;Zj

p : ð55Þ

The product of the first two letters is given by

WYijWYjk ¼
Aþ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZijk;Zijk

p
A − B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−QZijk;Zijk

p ; ð56Þ

where

A ¼ rijrjk −QZkij;Zkij;

B ¼ rij þ rjk: ð57Þ

We will show in the following that, in certain cases, the
product WYijWYjk reduces to the third letter WYki, and
hence the latter is not an independent one.
From the general relations of minors (19), we have the

following six identities for an arbitrary square matrix Δ:

ΔZj;ZkΔZjik;Zkij ¼ ΔZji;ZkiΔZjk;Zkj − ΔZji;ZkjΔZjk;Zki;

ΔZk;ZiΔZkji;Zijk ¼ ΔZkj;ZijΔZki;Zik − ΔZkj;ZikΔZki;Zij;

ΔZi;ZjΔZikj;Zjki ¼ ΔZik;ZjkΔZij;Zji − ΔZik;ZjiΔZij;Zjk;

ΔZi;ZiΔZijk;Zijk ¼ ΔZij;ZijΔZik;Zik − Δ2
Zij;Zik;

ΔZj;ZjΔZjki;Zjki ¼ ΔZjk;ZjkΔZji;Zji − Δ2
Zjk;Zji;

ΔZk;ZkΔZkij;Zkij ¼ ΔZki;ZkiΔZkj;Zkj − Δ2
Zki;Zkj; ð58Þ

where Z is a sequence of indices not including i, j, and k.
Solving the above identities, the following triple product
relation can be derived:

ΔZi;ZjΔZj;ZkΔZijk;Zijk ¼ ΔZi;ZjΔZij;ZjkΔZjk;Zki

þ ΔZj;ZkΔZki;ZijΔZij;Zjk

þ ΔZj;ZjΔZij;ZkiΔZki;Zjk: ð59Þ

Further relations can be obtained by permuting the indices.
These relations are simplified when ΔZ;Z ¼ 0. In this case,
we have the additional relations

ΔZi;ZjΔZj;Zk ¼ ΔZi;ZkΔZj;Zj;

ΔZj;ZkΔZk;Zi ¼ ΔZj;ZiΔZk;Zk;

ΔZk;ZiΔZi;Zj ¼ ΔZk;ZjΔZi;Zi; ð60Þ

from which the following identities can be derived:

Δ2
Zi;Zj ¼ ΔZi;ZiΔZj;Zj; Δ2

Zj;Zk ¼ ΔZj;ZjΔZk;Zk;

Δ2
Zk;Zi ¼ ΔZk;ZkΔZi;Zi: ð61Þ

We now set Δ ¼ Q and assume QZ;Z ¼ 0, so the triple
product relation (59) becomes

QZijk;Zijk ¼
QZij;ZjkQZjk;Zki

QZj;Zk
þQZki;ZijQZij;Zjk

QZi;Zj

þQZjk;ZkiQZki;Zij

QZk;Zi
: ð62Þ

With the sign configuration QZi;Zj < 0 QZj;Zk < 0 and
QZk;Zi > 0, we finally have

QZijk;Zijk ¼ −rkirij − rjkrki þ rijrjk: ð63Þ

Plugging the above into Eq. (57), we have A ¼ rkiB, which
leads to

WYijWYjk ¼ WYki; ð64Þ

i.e., the three letters are not independent when QZ;Z ¼ 0.
The situation whereQZ;Z ¼ QYijk;Yijk ¼ 0 can happen in

triangle integrals and lower point integrals. For example,
consider that after pinching a sequence X of propagators we
arrive at a triangle subsector with external momenta q1, q2,
and q3 (they are combinations of the original external
momenta fpig). We have

QXn;Xn ¼ det

0
B@

0 q21 q23
q21 0 q22
q23 q22 0

1
CA: ð65Þ

Apparently, if there exists one q2i ¼ 0, the above determi-
nant vanishes, and the condition QZ;Z ¼ 0 is satisfied. We
show a simple example here. Consider the massless
hexagon integral family (E ¼ 5, n ¼ 7). After pinching
the propagators with indices X ¼ 123, we get a triangle
diagram with a massless external leg. From the above, we
immediately know that Q1237;1237 ¼ Q456;456 ¼ 0. We
hence obtain a relation among the three letters WY12,
WY23, and WY13 according to Eq. (64), with Y ¼ 7 here.
There are more relations when considering different sub-
sectors. The symbol letters logW then form a linear system,
from which we can solve for the independent ones. We will
discuss these more explicitly in the next subsection.

XUHANG JIANG and LI LIN YANG PHYS. REV. D 108, 076004 (2023)

076004-10



D. Examples of one-loop symbol letters

The generic results (44)–(46) of one-loop symbol letters
can be easily applied to an integral family. Because of the
recursive structure, the symbol letters for all sectors can be
computed from the minors of the Q matrix of the top
sector, which can be straightforwardly programmed. In the
following, we give a few examples to demonstrate our
method.
The first example is the four-mass-box integral family,

which has been considered in [53] and we will follow their
notations here. The diagram is depicted in Fig. 4. The
propagator denominators are given by

fl21;ðl1−p1Þ2;ðl1−p1−p2Þ2;ðl1−p1−p2−p3Þ2g; ð66Þ

with the kinematic configuration

p2
i ¼m2

i ði¼1;2;3;4Þ; ðp1þp2Þ2¼ s; ðp2þp3Þ2¼ t:

ð67Þ

The entries of the corresponding 5 × 5Qmatrix are given by

Q1;1 ¼ −2m2
2t − 2m2

3tþm4
2 − 2m2

3m
2
2 þm4

3 þ t2;

Q1;2 ¼ m2
3s −m2

2sþm2
3t −m2

4t −m4
3 − 2m2

1m
2
3 þm2

2m
2
3 þm2

4m
2
3 þm2

2m
2
4 þ st;

Q1;3 ¼ m2
1tþm2

2tþm2
3tþm2

4t −m2
1m

2
2 þm2

1m
2
3 þm2

2m
2
4 −m2

3m
2
4 − 2st − t2;

Q1;4 ¼ m2
2s −m2

3sþm2
2t −m2

1t −m4
2 þm2

1m
2
2 þm2

3m
2
2 − 2m2

4m
2
2 þm2

1m
2
3 þ st;

Q1;5 ¼ m2
2stþm2

3st − 2m2
3m

2
2tþm2

4m
2
2tþm2

1m
2
3t −m2

4m
4
2 þm2

1m
2
3m

2
2 þm2

3m
2
4m

2
2 −m2

1m
4
3 − st2;

Q2;2 ¼ −2m2
3s − 2m2

4sþm4
3 − 2m2

4m
2
3 þm4

4 þ s2;

Q2;3 ¼ m2
4s −m2

1sþm2
4t −m2

3t −m4
4 þm2

1m
2
4 − 2m2

2m
2
4 þm2

3m
2
4 þm2

1m
2
3 þ st;

Q2;4 ¼ m2
1sþm2

2sþm2
3sþm2

4sþm2
1m

2
3 −m2

2m
2
3 −m2

1m
2
4 þm2

2m
2
4 − s2 − 2st;

Q2;5 ¼ m2
3stþm2

4stþm2
1m

2
3s − 2m2

4m
2
3sþm2

2m
2
4s −m2

1m
4
3 þm2

1m
2
4m

2
3 þm2

2m
2
4m

2
3 −m2

2m
4
4 − s2t;

Q3;3 ¼ −2m2
1t − 2m2

4tþm4
1 − 2m2

4m
2
1 þm4

4 þ t2;

Q3;4 ¼ m2
1s −m2

4sþm2
1t −m2

2t −m4
1 þm2

2m
2
1 − 2m2

3m
2
1 þm2

4m
2
1 þm2

2m
2
4 þ st;

Q3;5 ¼ m2
1stþm2

4stþm2
3m

2
1t − 2m2

4m
2
1tþm2

2m
2
4t −m2

3m
4
1 þm2

2m
2
4m

2
1 þm2

3m
2
4m

2
1 −m2

2m
4
4 − st2;

Q4;4 ¼ −2m2
1s − 2m2

2sþm4
1 − 2m2

2m
2
1 þm4

2 þ s2;

Q4;5 ¼ m2
1stþm2

2st − 2m2
2m

2
1sþm2

3m
2
1sþm2

2m
2
4s −m2

3m
4
1 þm2

2m
2
3m

2
1 þm2

2m
2
4m

2
1 −m4

2m
2
4 − s2t;

Q5;5 ¼ −2m2
1m

2
3st − 2m2

2m
2
4stþm4

1m
4
3 − 2m2

1m
2
2m

2
4m

2
3 þm4

2m
4
4 þ s2t2: ð68Þ

We can now apply our method to obtain all possible symbol letters for this family. For the rational letters, we get the same
expressions as W1;…;W10;W13;W18 in [53]. The independent algebraic letters are given by

A1 ¼
h1 þ r1
h1 − r1

; A2 ¼
h2 þ r1
h2 − r1

; A3 ¼
h3 þ r2
h3 − r2

; A4 ¼
h4 þ r2
h4 − r2

;

A5 ¼
h5 þ r3
h5 − r3

; A6 ¼
h6 þ r3
h6 − r3

; A7 ¼
h7 þ r4
h7 − r4

; A8 ¼
h8 þ r4
h8 − r4

;

A9 ¼
h9 þ r5
h9 − r5

; A10 ¼
h10 þ r5
h10 − r5

; A11 ¼
Q4;5 þ r1r2
Q4;5 − r1r2

; A12 ¼
Q3;5 þ r1r3
Q3;5 − r1r3

;

A13 ¼
Q2;5 þ r1r4
Q2;5 − r1r4

; A14 ¼
Q1;5 þ r1r5
Q1;5 − r1r5

; ð69Þ

FIG. 4. The four-mass-box integral family. The masses of the
four external legs are different from each other.
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where the expressions of ri were given in [53], and they are
actually related to minors of the Q matrix,

r21¼Q5;5; r22¼Q4;4; r23¼Q3;3; r24¼Q2;2; r25¼Q1;1:

ð70Þ

The expressions of hi are given by

h1 ¼m2
1m

2
3 −m2

2m
2
4 − st; h2 ¼ −m2

1m
2
3 −m2

2m
2
4 þ st;

h3 ¼m2
1 −m2

2 − s; h4 ¼ −m2
1 −m2

2 þ s;

h5 ¼m2
1 −m2

4 − t; h6 ¼ −m2
1 þm2

4 − t;

h7 ¼m2
3 −m2

4 − s; h8 ¼ −m2
3 þm2

4 − s;

h9 ¼m2
2 −m2

3 − t; h10 ¼ −m2
2 −m2

3 þ t; ð71Þ

and they are all related to the minors of theQmatrix. These
algebraic letters are equivalent to W21;…;W30;W46;W62;
W51;W59 in [53].
The next example is the massless pentagon integral

family depicted in Fig. 5. The canonical differential
equation of this diagram has been well studied in
[54,55]. Here we only discuss the symbol letters arising
from the dependence of the pentagon integral in the top

sector on the box and triangle integrals in the subsectors.
Here and in the following, we use the notation WX to
represent the symbol letter corresponding to the subsector
after pinching the propagators listed in the sequence X.
There are five different box subsectors, and we can easily
get the corresponding symbol letters from our formula (46).
They can be written as

WX ¼ −
ffiffiffiffi
Δ

p
− RXffiffiffiffi

Δ
p

− RX

; X ¼ 1; 2; 3; 4; 5; ð72Þ

where Δ≡ 16Gðp1; p2; p3; p4Þ and

R1 ¼ s12s15 þ s45s15 − s12s23 þ s23s34 − s34s45;

R2 ¼ s12s15 − s45s15 þ s12s23 − s23s34 þ s34s45;

R3 ¼ s12s15 − s45s15 − s12s23 − s23s34 þ s34s45;

R4 ¼ s12s15 − s45s15 − s12s23 þ s23s34 þ s34s45;

R5 ¼ s12s15 − s45s15 − s12s23 þ s23s34 − s34s45: ð73Þ

The dependence of the pentagon integral on the ten
triangles can be derived from (46) in a similar way. The
corresponding symbol letters are

W12 ¼
−
ffiffiffiffi
Δ

p
− R4 − 2s23s45ffiffiffiffi

Δ
p

− R4 − 2s23s45
; W13 ¼

−
ffiffiffiffi
Δ

p ðs15 − s23Þ − R13ffiffiffiffi
Δ

p ðs15 − s23Þ − R13

;

W14 ¼
−
ffiffiffiffi
Δ

p ðs15 − s34Þ − R14ffiffiffiffi
Δ

p ðs15 − s34Þ − R14

; W15 ¼
−
ffiffiffiffi
Δ

p þ R3 − 2s12s34ffiffiffiffi
Δ

p þ R3 − 2s12s34
;

W23 ¼
−
ffiffiffiffi
Δ

p þ R5 − 2s15s34ffiffiffiffi
Δ

p þ R5 − 2s15s34
; W24 ¼

−
ffiffiffiffi
Δ

p ðs12 − s34Þ − R24ffiffiffiffi
Δ

p ðs12 − s34Þ − R24

;

W25 ¼
−
ffiffiffiffi
Δ

p ðs12 − s45Þ − R25ffiffiffiffi
Δ

p ðs12 − s45Þ − R25

; W34 ¼
−
ffiffiffiffi
Δ

p
− R1 − 2s12s45ffiffiffiffi

Δ
p

− R1 − 2s12s45
;

W35 ¼
−
ffiffiffiffi
Δ

p ðs23 − s45Þ − R35ffiffiffiffi
Δ

p ðs23 − s45Þ − R35

; W45 ¼
−
ffiffiffiffi
Δ

p
− R2 − 2s15s23ffiffiffiffi

Δ
p

− R2 − 2s15s23
; ð74Þ

where

R13 ¼ s12s215 − s45s215 − 2s12s23s15 þ s23s34s15 þ s23s45s15 þ s34s45s15 þ s12s223 − s223s34 þ s23s34s45;

R14 ¼ s12s215 − s45s215 − s12s23s15 − s12s34s15 − s23s34s15 þ 2s34s45s15 þ s23s234 − s12s23s34 − s234s45;

R24 ¼ s15s212 − s23s212 − s15s34s12 þ 2s23s34s12 − s15s45s12 − s34s45s12 − s23s234 þ s234s45 − s15s34s45;

R25 ¼ s15s212 − s23s212 þ s23s34s12 − 2s15s45s12 þ s23s45s12 þ s34s45s12 þ s15s245 − s34s245 þ s23s34s45;

R35 ¼ −s12s223 þ s34s223 þ s12s15s23 þ s12s45s23 þ s15s45s23 − 2s34s45s23 − s15s245 þ s34s245 þ s12s15s45: ð75Þ

One can observe that the above letters involve only one
square root:

ffiffiffiffi
Δ

p
. This indicates that there may exist extra

relations among them. This is indeed the case. When we
pinch two propagators in the massless pentagon diagram,

we always get a triangle diagram with at least one massless
external leg. This satisfies the condition QZ;Z ¼ 0 dis-
cussed in the previous subsection, Sec. III C. As a result, we
find that all the Wij letters in the above can be generated
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from the five letters W1;…;W5, which are the truly
independent ones. For example, W1 and W2 will produce
W12, etc.
Finally, we consider the massless hexagon integral

family depicted in Fig. 6. The hexagon symbol letters in
d ¼ 6 dimensions have been discussed in [48,56]. For d ¼
4 − 2ϵ under dimensional regularization, there are more
letters than the integer-dimension case. They have been
considered in [57]. We will only discuss letters that come
from the dependence of the hexagon integral in the top
sector on the pentagon and box integrals in the subsectors.
In this case, there are 6 pentagons and 15 boxes, and naive
counting indicates that there should be 21 symbol letters.
However, we find that only nine of them are independent.
Among them are the six letters associated with the
dependence on the pentagon integrals,

WX ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
R2SX

p
− TXffiffiffiffiffiffiffiffiffiffiffi

R2SX
p

− TX
; X ¼ 1;…; 6: ð76Þ

The lengthy expressions of SX and TX are given in the
Supplemental Material [60]. Note that the six SX’s are all

different, and there exist no further relations among these
six letters. On the other hand, the 15 letters associated with
the box integrals involve only one square root:

ffiffiffiffiffiffi
R2

p
. This

is, of course, no coincidence and is again related to the
condition QZ;Z ¼ 0 (with many different choices of Z)
discussed in the previous example. This generates a lot of
relations, from which we solve that only 3 out of the 15
letters are independent. They can be chosen as, e.g., W12,
W23, and W34.
We emphasize that the additional relations generated

under the condition QZ;Z ¼ 0 are associated with massless
external legs. When some of the external legs become
massive, fewer relations can exist and there will be more
independent symbol letters.

IV. CONCLUSION AND OUTLOOK

In this paper, we have surveyed the recursive structure
existing in the Baikov representations for the various
sectors of an integral family. Starting from the standard
Baikov representation of an integral family, we can derive
the other Baikov representations for all sectors in this
family by integrating out Baikov variables recursively. This
leads to a treelike structure that allows us to analyze the
relations among integrals in different sectors. We employ
this structure to study the appearance of subsector integrals
in the derivatives of a chosen Feynman integral. We find
that we can reconstruct all the one-loop symbol letters from
the derivatives without performing contour integrals like
in [50,51]. The letters can be written in terms of the minors
of a single matrix, which directly reflects the recursive
structure of the Baikov representations. This unified rep-
resentation of the letters allows us to study the relations
among them in a systematic way, utilizing the algebraic
identities among the minors. These identities can be used to
determine the independent symbol letters in a problem,
which helps bootstrap the analytic solutions for the
integrals.
The most interesting finding in this paper is that the

information of all sectors in an integral family (at arbitrary
loops) is contained in a single matrix. It will be interesting
to investigate whether this structure at higher-loop orders
can also help to reconstruct the symbol letters in a way
similar to the one-loop case. It is not that straightforward
due to the fact that the representations usually involve more
than one Gram determinant and hence cannot always be
written in the form of Eq. (27). Nevertheless, for integral
families admitting d log-form integrands [4,21], it is still
possible to read off the information about the symbol
letters. We have explored several nontrivial examples and
will present the higher-loop extension in a forthcoming
article.
In addition to the symbology, integral reduction can also

benefit from the knowledge about the interconnection
among integrands in different sectors within a family. In
the reduction procedure, one needs to solve a large linear

FIG. 5. The massless pentagon integral family. All the propa-
gators and external legs are massless. The serial numbers of
propagators are labeled aside.

FIG. 6. The massless hexagon integral family. All the external
legs and propagators are massless. The serial numbers of
propagators are labeled aside.
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system involving integrals in all sectors. This may require
an extreme amount of computational resources for com-
plicated problems. Alternatively, one may employ the
top-down approach, where one first performs the reduction
under maximal cut and then moves to the subsectors
with the top-sector subtracted integrands. In a forth-
coming article, we will demonstrate how the recursive
structure can help the top-down reduction of Feynman
integrals.
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APPENDIX A: RELATIONS BETWEEN Q
MINORS AND GRAM DETERMINANTS

In this work, we have written the one-loop symbol letters
in terms of minors of the Q matrix. On the other hand,
in [51] they are written in terms of Gram determinants of
external momenta. In this appendix, we discuss the
relations between the two representations.
First of all, from Eqs. (25) and (27), one can easily see

that

Q1;1 ¼ −
1

4
Gðp1; p2;…; pE−1Þ: ðA1Þ

The other Qi;i for i < n ¼ Eþ 2 can be obtained by
permuting and relabeling the external momenta. As for
Qn;n, it simply equals PðxÞ in Eq. (27) with all xi ¼ 0.
Using Eq. (8), we can reorganize the entries in the
determinant to obtain

Qn;n ¼ det

0
BBBBBB@

m2
Eþ1 ðm2

E −m2
Eþ1 − p2

1Þ=2 � � � ðm2
1 −m2

Eþ1 − p2
12���EÞ=2

ðm2
E −m2

Eþ1 − p2
1Þ=2 p2

1 � � � p1 · p12���E

..

. ..
. . .

. ..
.

ðm2
1 −m2

Eþ1 − p2
12���EÞ=2 p12���E · p1 � � � p2

12���E

1
CCCCCCA
; ðA2Þ

where pX ≡Pi∈X pi for the sequence X of indices. When all propagators are massless, i.e., mi ¼ 0, Eq. (A2)
reduces to

Qn;n ¼ det

0
BBBBB@

0 −p2
1=2 � � � −p2

12���E=2

−p2
1=2 p2

1 � � � p1 · p12���E

..

. ..
. . .

. ..
.

−p2
12���E=2 p12���E · p1 � � � p2

12���E

1
CCCCCA

¼
�
−
1

2

�
Eþ1

det

0
BBBBBBBB@

0 p2
1 p2

12 � � � p2
1���E

p2
1 0 p2

2 � � � p2
2���E

p2
12 p2

2 0 � � � p2
3���E

..

. ..
. ..

. . .
. ..

.

p2
1���E p2

2���E p2
3���E � � � 0

1
CCCCCCCCA

¼ Gðl1; p1;…; pEÞjmaximal cut: ðA3Þ

Note that the second line in the above equation is particularly useful in the momentum-twistor representation.
We now turn to the principal minors QX;X and QXn;Xn with more rows/columns. Recall that X is the sequence of indices

corresponding to the integrated-out variables. The resulting minors appear as entries of the matrixQðkÞ in Eq. (33). To relate
them to Gram determinants, we can follow the recursion presented in Sec. II. According to the discussions around Eq. (17),
after integrating out x1 from the top sector, we arrive at the factors Gðp1;…; pE−1Þ and
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Gðp1;…; pEÞGðl1; p1;…; pE−1Þ ¼ Gðp1;…; pEÞ det

0
BB@

l21 l1 · p1 … l1 · pE−1

p1 · l1 p2
1 … p1 · pE−1

..

. ..
. . .

. ..
.

pE−1 · l1 pE−1 · p1 … p2
E−1

1
CCA: ðA4Þ

Integrating out x2 from the above cancels the
Gðp1;…; pE−1Þ factor and modifies the second factor in
Eq. (A4) to Gðl1; p1;…; pE−2Þ. Similar behavior occurs
when integrating out further variables. Therefore, taking
into account the correct prefactors, we have the relations

QX;X ¼
�
−
1

4

�
dimX GðpXÞ

Gðp1;…; pEÞ
;

QXn;Xn ¼
�
−
1

4

�
dimX GðqXÞjmaximal cut

Gðp1;…; pEÞ
; ðA5Þ

where pX denotes the set of independent external momenta
after pinching the propagators in X, and qX contains in
addition the loop momentum. Apparently, the above results
agree with Eq. (A1) for X ¼ 1 and with Eq. (A3) for X ¼ ∅
[58]. We have checked that our results of one-loop symbol
letters agree with those in [51] using the above relations.
As a simple example, take X ¼ 2, Eþ 1, and after

pinching (see Fig. 7 for reference), the momenta configu-
rations become

pX ¼ fp2;…; pE−2; pE−1 þ pEg;
qX ¼ fl1 þ p1; p2;…; pE−2; pE−1 þ pEg: ðA6Þ

Note that since xEþ1 ¼ l21 is pinched, we need to use l1 þ p1

as loop momentum.

APPENDIX B: SUBSECTOR INTEGRANDS
IN EQ. (40)

In this appendix, we explicitly show that the subsector
integrands in Eq. (40) do not generate new symbol letters.
The subsector terms are given by

subsector integrands¼ ðQ1;1Þ−1=2þϵ
�
P1

�
xð1Þ
��−ϵ

×

ffiffiffiffiffiffiffiffiffi
Qn;n

p
Q1;1

Q1n;1nP1

�
xð1Þ
�P1

�
xð1Þ
�þQ1n;1n

x2x3 � � �xEþ1

;

ðB1Þ

where the numerator can be written as

P1ðxð1ÞÞ þQ1n;1n ¼ −
Xn−1
i;j¼2

Q1i;1jxixj − 2
Xn−1
i¼2

Q1i;1nxi:

ðB2Þ

The terms linear in xi will generate dependence on some
g2ðxð2ÞÞ, which is already covered in Eq. (38) [59]. The
quadratic terms will generate dependence on some g3ðxð3ÞÞ,
which seems to be new. In the following, we show that
these new contributions actually vanish.
Without loss of generality, we consider the dependence

of ∂Q1;n
g0ðxÞ on the g3ðxð3ÞÞ with x1, x2, and x3 integrated

out,

g3ðxð3ÞÞ ¼ ½−Q123;123�ϵ
�
P3

�
xð3Þ
��−ϵ 1

x4 � � � xEþ1

: ðB3Þ

The relevant terms in (B2) are

−Q12;12x22 −Q13;13x23 − 2Q12;13x2x3: ðB4Þ

Let us begin with the first term −Q12;12x22. After canceling
x2 in the denominator, we integrate x2 out using the
recursion formula. We then get

½−Q12;12�ϵ
�
P2

�
xð2Þ
�−ϵ−1=2 ffiffiffiffiffiffiffiffiffi

Qn;n
p
Q1n;1n

Q12;13x3 þ � � �
x3x4 � � � xEþ1

: ðB5Þ

The ellipsis represents terms independent of x3. They are
irrelevant to our discussion here. Taking the first term
Q12;13x3 and integrating out x3, we arrive at

FIG. 7. The momenta configuration of a one-loop (Eþ 1)-point
diagram. It helps to figure out the momenta configurations after
pinching x2 and xEþ1.
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½−Q123;123�ϵ−1=2
�
P3

�
xð3Þ
�−ϵ ffiffiffiffiffiffiffiffiffi

Qn;n
p

Q12;13

Q1n;1n
: ðB6Þ

Comparing with Eq. (B3), we see that the above expression
is just c1g3ðxð3ÞÞ, with the coefficient

c1 ¼
Q12;13

ffiffiffiffiffiffiffiffiffi
Qn;n

p
Q1n;1n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q123;123

p : ðB7Þ

Because of the symmetry between x2 and x3 in the above
analysis, the second term −Q13;13x23 in Eq. (B4) generates
the same coefficient c2 ¼ c1. Finally, for the last term
−2Q12;13x2x3, we can directly integrate out x2 and x3 to get

½−Q123;123�ϵ−1=2
�
P3ðxð3Þ

�−ϵ −2 ffiffiffiffiffiffiffiffiffi
Qn;n

p
Q12;13

Q1n;1n
≡ c3g3ðxÞ;

ðB8Þ

with the coefficient

c3 ¼ −2
Q12;13

ffiffiffiffiffiffiffiffiffi
Qn;n

p
Q1n;1n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q123;123

p : ðB9Þ

Therefore, we have

c1 þ c2 þ c3 ¼ 0: ðB10Þ

Hence, we conclude that the subsector integrands in
Eq. (40) do not lead to new symbol letters.
The above conclusion can be made more generic, that the

derivatives of g0ðxÞ, in general, do not depend on g3ðxÞ.
Exceptions can happen when some g2ðxÞ is reducible and
hence is not a true master integral. In these cases, the
dependence on this g2ðxÞ is carried over to lower-point
integrals. This has also been discussed in [51].
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