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We have performed the study of the phase transition of an effective model of fermions describing
interactions between quarks in D dimensions, taking into account effects induced by the finite size of the
system, with periodic, quasiperiodic, and antiperiodic boundary conditions (PBC, QBC, ABC, respec-
tively), chemical potential, and an external electromagnetic field. This has been done by generalized
Matsubara formalism. Through the proper-time representation, the electric, magnetic, temperature,
chemical potential, and finite size effects are written in terms of well-knowing functions and Jacobi
theta functions. The gap equation of the system is numerically solved and we show the behavior of the
system when the thermodynamic parameters of the model are changed. For fixed finite sizes, one of
the findings is that the broken chiral symmetry is enhanced by the magnetic field increasing, but for the
increasing electric field, we have the restoration of chiral symmetry. In fixed external fields, the influence of
L on the phase transition is not unique: ABC conditions tend to restore chiral symmetry, while PBC
conditions improve the broken phase and the QBC conditions have intermediate behavior, considering the
same range of temperatures and L decreasing. We also observed little influence of finite chemical potential
on the phase structure of the system and a minimal critical size of the system for ABC but not for QBC or

PBC cases.
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I. INTRODUCTION

The quark gluon plasma (QGP) is a strongly interacting
state of matter due to the compression and heating of
hadronic matter. The QGP state arose microseconds after
the big bang and can be observed directly after the heavy ion
collisions [1-3]. Through quantum field theory (QFT), we
can describe this state of matter at a finite temperature and
volume. This description is given by the theory of strong
interactions, quantum chromodynamics (QCD). However,
the degrees of freedom of the gluons practically leave the
theory with little possibility of presenting analytical results at
average temperatures and chemical potentials.

Even though they are not renormalizable in four dimen-
sions, effective models for QCD have been widely applied
in extreme conditions of temperature and chemical poten-
tial, such as in the QGP. This applicability is thanks to the
simpler mathematical structure of these models than QCD
[4-7]. On effective models such as the Gross-Neveu [8]
model and the Nambu-Jona-Lasinio (NJL) [9,10] model,
there are no gluons and the quarks interact like points.
These models present phase diagrams with the transition
order parameter given by the chiral condensate. For this
reason, we can analyze how the phase structure of the
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model is modified when we change some thermodynamic
parameters of the system on chiral condensate [11-16].

Important results arise when we consider effective models
and thermodynamic variables such as temperature, chemical
potential, finite size, and magnetic fields. For example, the
NJL model presents the phenomenon of breaking/restoring
chiral symmetry at finite temperature, in addition to sat-
isfactorily describing mesons [17—19]. The behavior of a
system with a finite size can differ significantly from that
infinite one. Indeed, the GN model shows the occurrence of a
minimum finite size, below which no first- or second-order
phase transitions occur. This minimum finite size seems to be
independent of the chemical potential [20-23]. Other impor-
tant phenomena to consider are magnetic catalysis (i.e., an
improvement in chiral symmetry breaking for an increasing
magnetic field) [24-29] and inverse magnetic catalysis (an
improvement in restoring chiral symmetry, again for an
increasing magnetic field) [30—44].

In Ref. [45], the effects of finite size in a four-fermion
interaction model, defined in dimensions D (D < 3) were
described through the effective potential of the system,
analyzing their phase structure in planes y —7 and L — T
without external fields. As finite size effects can exhibit
significant fluctuations in the physical properties of a system
compared to their bulk form values, in this manuscript we
intend to investigate finite size effects in a four-fermion
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model for some types of boundary conditions in spatial
coordinate z, namely: periodic (PBC), quasiperiodic (QBC),
and antiperiodic (ABC) boundary conditions, under a con-
stant external electromagnetic field at finite temperature and
chemical potential.

Specifically, this paper aims to study the chiral symmetry
breaking restoration of a two-flavor NJL model under
different boundary conditions in the direction parallel to the
external electromagnetic field (z direction). For this, we
will use the generalized Matsubara formalism [21]. The
Matsubara formalism states that the fermionic field
assumes odd frequencies in momentum-energy space.
These odd frequencies come from Kubo-Martin-
Schwinger (KMS) conditions applied to the fermionic
field, which results in antiperiodic boundary conditions
in the imaginary-time coordinate.

Let us focus on the topology of the system. Initially, the
system defined in dimensions D is heated. In this case, we
have the compactification of the imaginary-time coordinate
7, which will belong to a circle such that = € [0, §]. We
represent this compact by S'. Note that the topology of the
system heated to temperature B~! is described by
'L = §' x RP~! If we do another compactification, then
this time in the spatial coordinate j, we will have one more
circle: x; €[0,L;]. After two compactifications, the
topology of the system is described by a torus: I'7 =
ST x S' x RP~2 and we must apply the QFT defined in
spaces with toroidal topologies [20,46—48]. In the present
manuscript, we will use the proper-time representation [49]
to solve the gap equation of the system subject to
Feynman’s rules modified by two compactifications S'.
The reader will find similar approaches in Refs. [16,17,25].

The paper is structured as follows: In Sec. II, we present
the Lagrangian density of the system. By the mean-field
approximation and by Schwinger’s proper-time method in a
toroidal topology, we obtain the system gap equation taking
into account the effects due to temperature, chemical
potential, finite size, and an external electromagnetic field
along the direction z. These effects are embedded into the
system through the order parameter, ¢.

In Sec. III, we define the phenomenological input of
the model and fix some parameters to numerically solve the
gap equation. We also show the phase structure of the
system and compare the results obtained here with the data
on lattice QCD. We make our final remarks in Sec. IV. We
derive the expression for the chiral condensate under an
external electromagnetic field in Appendix A. In
Appendix B, we show that our results are consistent with
findings at the bulk form and with both finite chemical
potential and temperature in Refs. [50,51] for a pure electric
field. To extract finite results from the model, we need to
use a regulator. Therefore, we will use an ultraviolet cutoff
on integral expressions involving the proper time.

Throughout the work, the system of natural units is
assumed and we used a D-dimensional Euclidean space.

II. FORMALISM

A. The NJL model
The NJL-type Lagrangian density is given by [52]

Ly, = w(ig — mo)y + G[(pw)* + (wiystw)*]. (1)

with d = y,0,, being y,, elements of the Clifford algebra in
D dimensions in Euclidean space. The quarks fields v =
(u,d)" carry N, =2 flavors with N. =3 colors. The
matrices 7 are the Pauli matrices that act on isospin space,
G, represents the effective coupling constant in scalar and
pseudoscalar channels, and here it is treated as the input
parameter of the model.

We performed the computations within the mean-field
approach. This methodology inserts in the interaction terms
of Eq. (1), the approximation (yTy) — wT'y + (pTy). In
this case, we have I = (I, iys7). The channel considered
here is scalar. This allows us to obtain an equation for the
constituent mass of the quark M

M =m,— 2Gs¢v (2)
where the quark condensate ¢ is defined by

¢ = (py) = Tr[Sp(p)]. (3)

with the quark-dressed propagator in Euclidean space,
written as

_ (p—-M)
Sr(p) SR MY

The trace on Eq. (3) is over Dirac matrices, flavor, and color
spaces. Recall the trace of an odd number of y, is null.
Accordingly, the chiral condensate becomes

d®p 1

e

¢ =—-2P2MN.N; /

By using the identity

+o0
o1 :/ dsexp (—sO),
0

the chiral condensate can be rewritten as

¢ = —2P2MN_ N, /0 " ds / (‘;'%f;)exp [-S(p> + M?)],
(5)

where S is the proper-time parameter and p? = p? + p? +
P’ being p a (D — 2)-dimensional vector.
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B. Generalized Matsubara prescription

The KMS conditions establish that the fermionic field is
antiperiodic in the imaginary-time coordinate

w(t,2,7) = —w(t + p.2.7).

Correspondingly, the Matsubara prescription introduces the
temperature on the system by replacing on temporal
momenta

T

prawnrzﬁ(ZnT—i—l)—lﬂ, n,=0,+1,4£2,---.
dp, - I & -
[ repei) = 5 3 fonpih) O

where ! is the temperature of the system and yu its
chemical potential.

We emphasize that the KMS conditions for fermions
impose antiperiodic boundary conditions on the y field
only for the imaginary-time coordinate, 7. However, for the
inclusion of finite size effects in the model, we do not need
to use only antiperiodic boundary conditions in the spatial
coordinates.

To include several kinds of spatial boundary conditions
on z direction, we define the relation [45-47]

w(r.2.7) = e y(z. 2+ L. F),
where @, = 0 denotes periodic boundary conditions and

a, =1 fix antiperiodic boundary conditions, both in the
|

2PI2ZMN .,

¢(ﬂvﬂsz’/"sz) = _m

2auS
X 6, [%;exp(

z direction. For intervals on which we have 0 < a, < 1 the
system will be subject to the so-called twisted boundary
conditions.

Thus, the spatial momenta are recast by

7
H; =1770Q
L,

T .
bz = Wy = L_(an) — g
z

dp. R 1 & .
/277.' (pT’pZ’p) _)f Z f(p‘wa)nzﬁp)? (7)

in,=—oco
z

where n, = 0, £1,£2, ... and L, is the length of the com-
pactified spatial coordinate z. The generalized Matsubara
prescription are then given by Eqgs. (6) and (7) [17,20,21].

By performing the sum of Matsubara frequencies in
Schwinger’s formalism (for technical details, see
Refs. [15,25]), we obtain the Jacobi theta functions [53,54]

+00
0:(1:9) =2y ¢!/ cos [(2n + 1)ul
n=0
+00
q" cos (2nu). (8)

n=1

O3(usq) =1+2

Now, we will include the thermal and finite size effects in
coordinates z and z, respectively, i.e., 7€ [0,4] and
z € [0,L.]. The shape of the system will be like a film
of thickness L,, maintained at a finite temperature.

By replacing the expressions Egs. (6) and (7) in Eq. (5),
chiral quark condensate gets reduced to

© dS 2_ 2 2
Nf/) WGXP[_S(M -y —uz)

4228\, [2au.S 4728
e ()] 0

Note that we have done (D — 2) Gaussian integrals over the spatial momenta p in Eq. (5).

In bulk form, the quark condensate reads

2P2MN, 0

DB Lo~ 0.D) =~y |

d 27pS 478
WGXP [=S(M? = pi?)]0, [ﬂ;exp <—”—>] . (10)

On the other hand, by computing just finite size effects (in the PBC, QBC, and ABC cases), we have

o dS ) 2mp,S 4r*S
Nf[) Wexp[—S(M —yz)]t%{ 7 iexp (- 2 . (11)

z

2PIZMN,

#B = 00, Loopie D) = = o

The system with no compactifications, i.e., no temperature and with infinite volume, has the following chiral condensate

202N © dS
$(f— 00, L. = 0, D) = — 3 /

an®2 N ), WCXP[—S(MZ)]- (12)

076002-3



EMERSON B.S. CORREA

PHYS. REV. D 108, 076002 (2023)

In the next subsection, we will include the magnetic and
electric effects on the model.

C. Inclusion of magnetic and electric effects

At this moment let us include a constant electromagnetic
field on the system. The electric and magnetic backgrounds
will be implemented by minimal coupling prescription
in Eq. (1), namely: 9, — 9, — iQfAe’“, where A, is the D

|

P(wp, wp) =
[ drctrednedr,
2 2n 2m 2rm

where wp = |Q/|Ey and wsp = |Q/|B,.

eXP{ S{(pﬁp)

potential and Q ¢ is the quark electric charge of flavor f, being
Q, = —20, = (2/3)e. We use the gauge A5 = (izE.0,
xBy,0,0,...,0), which generates the homogeneous and
constants fields, (Ey, By) along the direction z [52,55,56].

In Appendix A, we derived the expression of chiral
condensate under the E, and B, external fields.

Then the chiral condensate under the electromagnetic
background is given by

2D/2MNC d © ds .
_(4,[)<D—4>/2f21 a2 P [=S(M7)]

tan (a)fES)

e |
a)fE

Cl)fBS

Applying the generalized Matsubara prescription over chiral condensate under a pure magnetic background [see Eq. (A7)

in Appendix A], we obtain

2PI2MN,
¢(ﬂ7”7 Lz?/’tzv D7 wB) -

2
X 6, {?;exp(

 4n(4m)0-IpL Z/

47*S
ﬂZ

e
LZ

p [=S(M? 4 = )

o (<223 loppcontons). 04)

Z

For a pure electric field [see Eq. (A8) in Appendix A], we have

202N

¢(ﬁv .u’LZ’ﬂz’D7wE) =

pow fE

27y, t £S
% (93[ 7TH, tan (o g );exp <_

szfE

In bulk form, under thermal and magnetic effects, we get

202N,

dn(4n) - ”%Z/

$P.u.L; > 00,D, wp) =

2748
92[””
p

and for the electric background

2P2 N,
471.(4” D 3/2ﬁ2/

<0 Znytan(a)fES).eX B
2 ,B(UfE s eXp

$(Bon. L, — 0. D, ) =

d
© dS tan (wgS)
- ¢ —lsm? — (42 + 12 f
4n(4ﬂ)<D—4)/zﬂLZ; A §(D-2)2 eXP{ { (W +p2) e

2yt S
x 0, [—fw an (@ );exp <—

47 tan (a)fES)ﬂ
ﬁzwa

477 tan (a)fES)>] ‘

ngfE

(15)

<32 &P [=S(M? = pi?)]

4728

exp (- ﬁ—)} (075 coth(@55)], (16)

47° tan (was)ﬂ |

ﬂ260 fE

(17)

076002-4



PHASE TRANSITION IN A FOUR-FERMION INTERACTION ...

PHYS. REV. D 108, 076002 (2023)

In the limit of zero temperature but with finite size effects and under a magnetic background, we have

2P2MN. ,
¢(ﬂ - OO’LZ’/"Z’DJUB) 4” 471' (D= 3/2L Z/ exp{ S(M _ﬂz)]
2.8 4n’S
@[%emciﬂhmmm%m, (18)
LZ LZ .

for a pure electric field, at zero temperature, we obtain

202N,

~4n(4x)PI2L Z/

¢(ﬁ - OO’LZ’/”Z’Dva)E) =

27, tan S
« 93 |: T, (wa ) . exp <_
szfE

Finally, at limits zero temperature and bulk form, we have, for the pure magnetic field case

202 MmN,
$(f — oo,L, > 00,D, wp) =

477,'477.' 47 (4x) 022

and for the pure electric case, we have the following expression:

202N,
¢ — oo,L, > 00,D,wp) =

(55 cot (waS)
X ex 2 M
ep{ [SM (u ) o ]}
ngfE )] (19)
Z [ e SO g oty @0
Z/ <(D-2)/2 sexp [—S(M )][wsg cot(wpeS)). (21)

As with the last remark, we note that, to regularize the
integrals at proper time, we are adopting the ultraviolet
cutoff A, which is defined as

A ¥ F(S)ds - 1;2 £(S)ds. (22)

In the next section, we perform the analysis of the phase
structure of the system.

III. PHASE STRUCTURE

From now on, we will analyze the phase transition of the
quarks system in interaction. Also, the chiral transition
temperature as a function of finite size, electric, and
magnetic backgrounds is investigated. Let us assume that
L, = L and the parameters were fixed by fitting mass and
pion decay constant in vacuum as m, = 0.138 GeV and
[z =0.092 GeV:

= 0.005 GeV;
G, = 4.730 GeV~2;

A =0.776 GeV;
M, = 0.350 GeV. (23)

47z4ﬂ 47 (4x)(P-2)/2

For the purposes of electromagnetic background, we
use M = (M, + M,)/2. Furthermore, since estimated
magnetic fields created on LHC and RHIC are in the
range m2 < eB < 15m2, where m, is the pion mass, here
we fix three values of the external electromagnetic field for
the plots. Let us fixed the size of the system in the z
direction and investigate its behavior under 7, and the
cyclotron frequencies wp = eE, and wy = eB,.

First of all, we will study the system at bulk form
(L — o). We can see the weak influence of chemical
potential on the system in Fig. 1 for both finite magnetic
and electric fields. We observe that the chemical potential
(for a fixed external field) generates a smaller phase
transition temperature (peak of thermal mass gradient) as
u increases. Also in the beginning and end of the range for
T, the finite chemical potential does not make a difference
with the approximation y = 0.000 GeV, for both magnetic
and electric cases.

On the other hand, for fixed chemical potential
(u = 0.000 GeV), we observe the increase of constituent
quark mass and also the transition temperature, when the
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FIG. 3. Constituent quark mass as a function of temperature for several values of finite size and antiperiodic boundary conditions
under magnetic and electric field strength with their respective mass gradient.
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Constituent quark mass as functions of temperature for several values of finite size and periodic boundary conditions under

magnetic and electric field strength with their respective mass gradient.

magnetic field gets increases, i.e., we have the magnetic
catalysis phenomena, as can be seen at the top plot of
Fig. 2. Still, Fig. 2 (bottom plot), shows the behavior of the
system under external electric fields. In this case, the
transition temperature decreases for increases of wg. It is
a kind of inverse electric catalysis.

The finite size effects are taken into account in Fig. 3.
In that figure, we used antiperiodic boundary conditions
and notice that ABC tend to restore the chiral symmetry
when finite size gets decreased. Furthermore, the tran-
sition temperature assumes smaller values as finite size
decrease. But, there is a L, below that no chiral transition
taking place. With the input given by Eq. (23), we
find L. = 0.5 fm.

In Fig. 4 we have the same as Fig. 3 but for
quasiperiodic boundary conditions. The QBC case reveals
that the bulk form has a good description by the finite
size L =2 fm. We notice that the quasiperiodic boundary
condition effect on the system is lower transition temper-
atures as L decreases. But, the critical finite size is no
anymore L. = 0.5 fm. Actually, for L =0.5 fm and
QBC, we have chiral transition around 7 = 0.150 GeV
for both wg = wp = 7.5m2.

The periodic boundary conditions effects are considered
on the system at Fig. 5. We notice the opposite behavior
than in the ABC and QBC cases, namely as the finite
size decrease, the constituent quark mass get increasing.

Thus, the PBC case reinforces the broken phase. Besides
that, the transition temperatures assume higher values as the
finite size of the system diminishes.

In Fig. 6, we fix L = 1 fm and L = 0.5 fm for the three
different kinds of boundary conditions under the external
fields wp and wg. This figure shows again the opposite
behavior of the system under magnetic and electric external
fields, i.e., magnetic catalysis and inverse electric catalysis,
respectively. Also, we see that the critical finite size
L. = 0.5 fm, which does not allow the chiral transition
for the ABC case, does not present any restriction for QBC
and PBC cases.

Now, let us study the behavior of the system for a
continuum range of finite sizes. This can be seen in Figs. 7
and 8 for fixed temperatures and fields.

We see from Figs. 7 and 8, that there is a (1/L),,,, (or
equivalently L,;,) above which (below which) cases
ABC, QBC, and PBC get divergent values for M and
drM. In other words, there is no difference in the
constituent quark mass and in their respective thermal
gradients for the cases ABC, QBC, or PBC in the interval
from L — oo to L,;,. The differences between the three
types of boundary conditions imposed on the system
arise for finite sizes smaller than L_;,. We show in
Tables I and II, some theoretical values for L, obtained
from solutions of gap equation (2). In Table I we present
values of L,;, when the system is under a pure magnetic
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FIG. 6. Constituent quark mass as functions of temperature for three different boundary conditions under magnetic and electric fields
for fixed finite sizes L = 1 fm and L = 0.5 fm.
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FIG. 7. Constituent quark mass as a function of the inverse of length for three different boundary conditions under magnetic fields for
fixed temperatures 7 — 0 GeV, T = 0.150 GeV, and T = 0.300 GeV.

field. Table II are show the minimum thickness for a pure
electric field.

To finish our analysis, let us compare our results with
lattice QCD (LQCD) at finite temperature and magnetic
fields (continuum extrapolated results) [57]. In Figs. 9 and
10, we show the values of constituent quark mass normal-
ized by My in the bulk form with no chemical potential
obtained here for several values of temperature and the
corresponding ones in LQCD.

From the analysis of Figs. 9 and 10, we infer that the
model considered in this work obtained a reasonable
description for an effective model when compared with
lattice QCD data for temperatures until 0.130 GeV. From
this temperature value, we see discrepancies between
LQCD and the four-fermion model considered here. The
LQCD results close to the pseudocritical temperature
(around 0.153 GeV in Fig. 10), show inverse magnetic
catalysis.
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Constituent quark mass as functions of the inverse of length for three different boundary conditions under electric fields for

fixed temperatures 7 — 0 GeV, T = 0.150 GeV, and T = 0.300 GeV.

IV. CONCLUSIONS

In this paper, we have applied QFT in a toroidal topology
for studied finite size, chemical potential, and electromag-
netic effects on the phase structure of the NJL model with

TABLE 1. For L > L, there are no differences between the
ABC, QBC, and PBC cases under a magnetic field applied.

two flavors and three colors. The little influence of
chemical potential on the system is realized just for
intermediate temperatures. At the beginning and at the
end of the range for temperatures [0, 0.350 GeV] there is no

TABLE 1. For L > L, there are no differences between the
ABC, QBC, and PBC cases under an electric field applied.

No electric No magnetic
field T—-0GeV T=0.150GeV T =0.300GeV  field T —-0GeV T =0.150GeV T =0.300 GeV
wg = 0m2  Lpyn =298 fm Ly, =243 fm Ly, = 1.71 fm wp = 0m2  Lpiyn =3.79 fm L, =339 fm Ly, = 1.95 fm

wp = 15m72[ Lmin =3.13 fm Lmin = 2.66 fm Lmin =1.74 fm

wp = 15m2 Ly = 3.95 fm Ly, = 3.45 fm Ly, = 2.01 fm
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FIG. 9. Results obtained here and the data from lattice QCD
taken from Ref. [57] at vanishing magnetic field.

difference in the values of constituent quark mass and their
respective thermal gradient when we considered finite or
zero chemical potential.

We have found the magnetic catalysis phenomenon
for antiperiodic, quasiperiodic, and periodic boundary
conditions at spatial coordinate z in a continuum range
of L (see Fig. 7). Under a pure electric field, we have found
the inverse electric catalysis, i.e., the decrease of effective
quark mass for an electric field increasing, again for the
three types of boundary conditions in a continuum range of
finite size (see Fig. 8).

From a physical point of view, the chiral condensate is
enhanced by the magnetic field, since the pair quark-
antiquark has opposite spins, which tend to get alignment to
the magnetic field. On the other hand, for an electric
external field, the different electric charges of the pair tend
to separate the chiral condensate in virtue of electric
force [5].

Furthermore, for T or fixed external fields, decreasing L
tends to restore chiral symmetry, for ABC. But, taking into
account the PBC case, for smaller L, we have that the chiral
symmetry breaking is reinforced. For the QBC case, we
observe an intermediate behavior between the ABC and
PBC cases such that M ypc < M ppc < M ppc for the same
set of thermodynamic parameters (wg, wg, T, u, L).

The findings in this manuscript and the lattice QCD data
were compared in Figs. 9 and 10 for the cases of null and
non-null magnetic fields, respectively. Our results showed

|

1.4—0 

1.2t 0\0\0

=
N
+
3>
W
3| 06 < LQCD (wg=0.2GeV?)
~ 2
0.4L Paper (wg = 0.3 GeV*)
< LQCD (wg = 0.4 GeV?)
0.2p N
0.0 . . .
0.00 0.05 0.10 0.15
T[GeV]

FIG. 10. Results obtained here for wz = 15m2 and the data
from lattice QCD taken from Ref. [57] at the finite magnetic field.

reasonable agreement with LQCD for a temperature from
zero to 0.130 GeV. Above this temperature, the effective
model treated here and the LQCD data started to drift apart.

The thermodynamic description of a system taking into
account its finite size, temperature, chemical potential, and
an external electromagnetic field, reveals important effects
such as restoration/breaking of chiral symmetry, magnetic
catalysis, and inverse electric catalysis. We will continue
studying these interesting effects on other models and
backgrounds.
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APPENDIX A: CHIRAL CONDENSATE UNDER
AN ELECTROMAGNETIC EXTERNAL FIELD

In this Appendix, we shall calculate the chiral conden-
sate in the gauge A = (izE,,0,xB,,0,0,...,0). It is
defined by

¢ = Tr[Sr(p. A™)].

being the propagator on the momentum space given
by [58,59]

(A1)

(F—M)

i dD—4P + o

Xty
Sp(p,A™) = 16”2/W0’1'wa8 >
f,f/:()UE,UB

~ w20+ 1+ 0p) + 020 + 1+ 0p) + p> + M*’

(A2)

where # and ¢ are the Landau levels, o5 and o are the spin variables, besides that w/r = |Qf|E; and w5 = |Qf|By.
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Taking the trace and considering the representation of proper time, we get

2D/2MN .
P(wp, wp) = Z/ dS/ = 4a)fEa)fBexp[ S(p* + M?)]

+o0

X Z Z exp {—=Sliw (20 + 1 + o) + wsp (20 + 1+ 0p)]}. (A3)
.0 =00p,0p==%1

Performing the geometrical sums on the Landau levels and on the spin variables, we have

12D/2MN .
P(wp, wp) = Z/ / = 4wawaeXP[ S(p* + M?)]

g { [— leipefpl(agi)sfls)} " {—1 n expl(zimesJ }
§ { [— leipefpaazild " {-1 T exll)(2a)fBS)] } (A4)

Finally, after some simple steps, we can write Eq. (A4) as

dP- p rp @ .
d(wp, wg) = —2P2MN, Z / ds / 27D 4f: 4f3 exp [-S(p* + M?)] cot (w/zS) coth (wpS). (A5)

The vector p is a (D — 4)-dimensional vector. This dimensional reduction takes place due to including the external fields
parallel to the z direction. The electric field couples the 7 and z coordinates (in the momenta space, p, and p,) while the
magnetic field couples the x and y coordinates (in the momenta space, p, and p,). Notwithstanding, we can recompose the
D dimensions of the propagator using the well-known relations

oo +°°dprdpz 2 2 tan(waS) 7wa
/ / 2 2 P =Pz +p3) Py s cot (w;ES),

and

+oo fHoodp d tanh S
/ / Px pvexp{ (p:+ )an (wa )} C: coth (wpS).

Therefore, the chiral condensate at zero temperature under magnetic and electric backgrounds reads

¢(op, wg) = —2P2MN, Z/ dS/ exp [—S(p? + M?)]

dp.dp.dp,dp, tan (wgS) 5 ,, tanh (@ ¢5S)
e Yexp { S e e,

after (D — 4) Gaussian integrals, we have
2D/2MN
¢(a)E’wB) = D 4 /QZ/ exp[ S(M2)]

dp,dpZ dp,dp, tan (wgS) 5 ,, tanh (@ ¢5S)
S EP TP T exp d -8 e ——
x / e e e 8|92 p2) T g )

(A6)
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Let us take the limit of Eq. (A6) for pure magnetic field (wy = eEj — 0). In this case, the factor [tan (w/£S) /@S] — 1
allows us to write

D/2
#0.00) =~ ”fﬁQQZEIJ/ B sexp [-S(M2)]

dp‘r dpz dpx dpv 2 2 2 ) tanh (a)fBS)
- - -S ) ————=| ¢. A7
X/zﬂ > 2m 2 SXP (pz + p2) + (px + py) P (A7)
In the same way, the limit of Eq. (A6) for pure electric field (wg = eBy, — 0) gives
_ 2PPMN,
¢(wg,0) = 47z (D— 4/22/ (D-4)/ exp[ S(M?)]
dp.dp, dp, dp, tan (wgS)
f 2 -2 -S —_— 2 1 5. A8
[ e (8|03 ) (4 ) (A8)

APPENDIX B: CONSISTENCY WITH LITERATURE RESULTS

In this appendix, we will recover the findings in the Refs. [50,51] for a pure external electric field at finite chemical
potential and temperature in an infinite volume.

To obtain the effective Lagrangian of the model under finite temperature and density taking into account the electric field
in bulk form, we start from

aﬁeff —
oM

Tr[Sr(p, A™M)] = Loy = /(;S(ﬁ,,u,LZ — 00, D, wg)dM + const, (B1)

where const is independent of M and will be chosen appropriately at the end of the computation.
Using the Eq. (17) in D = 4, we have

, tan (a) £S)
L / —\/@se cot (w;pS) exp (—SM?) ex { / }
eff — 87z\/4_7rﬂ fE fE P p

<0 [271/4 tan (o gS) exp (_ 472 tan (a)fES))]
? Porp ’ ﬂzwa

2

We can write Jacobi’s theta function 6,[(a - ¢ - ¢);exp(—a“ - ¢)] as

0,[(atc);exp(—a’c)] = \|/|_c"/2 exp (— {1 + ZZ " exp [ (:202>] co h<27;m> }

For a = 2x/p, t = u, and ¢ = tan (wseS)/wyg, the effective Lagrangian write on Eq. (B2) becomes

d . +00 2,2
'Ceff = NZ/ gwa cot (waS) exp (—SMZ){I + 22(—1)” exp |:_ (ﬂ n"wyg Zot (waS)>:| cosh (n/lﬂ)}, (B3)
f=u 0 n=1

where A is a constant positive numerical factor irrelevant to the discussions below.
Now, we can use Poisson’s summation formula to show

{ 1+2 :i?(—l)” exp [— (ﬁ KRS Z"t (@ ES))} cosh (n,uﬂ)}
Van - exp {_ tan (w;£S)

B/ @gE cot (wspS) =%,

(@, — i//t)2:| ,being o, :% <2n 4 1) (B4)

a)fE
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Thus, Eq. (B3) is recasted by

e = tan (wxS) ,
‘Ceff = NZ/ S2 wa COt a)/ES eXp SM2 Z exXp |:—a)f£E ((I)n — lﬂ)2:| . (BS)
f= n*—oo
Going to Minkowski space (S — iS), we have
d +0o0
0 dS 1 tanh (w¢gS
Lo = —N’\ﬁZ/O 2\ [ @ coth (wES) exp (—iSMz)ﬁ Z exp { aEfEfE)(ia)n +,u)2]. (B6)
f=u y

n=—oo

Using the expression (3.71), page 50 from Ref. [60], namely

1 &2 1 [Hicotute 1
- f(po =iw, +p) = —5— dpof(p
52 S P B LA gy Tpn,
1 “+icotpu—e 1
- d
270 oot pe Pof(po) 1 exp [B(=po + u)]

1 1 +ico
+ —]{ dpof(po) +—./ dpof(po),
2ri C 27i —ico
we see that in the present case

tanh (waS)

f(po = iw, + u) = exp [ (Po)z] :

a)fE
which is analytic in the whole complex plane. Therefore, Eq. (B6) is reformulated to

Ficotp tanh (@ /£S)
Lo = —NIZ/ <5 \/ @sE coth (wsES)exp (= iSM?) exp (“T/4) / dpofr(pos u) exp [ TM(PO)Z}
' fE

—ico+u

+ico t h S
+Ni2/ @ \/ @ coth (w£S) exp (—iSM?) exp(m'/4) / dpgexp [ M(po)z}, (B7)
; ®
f=u

fE

where we used v/i = exp(iz/4) and

1 1
T+ expBlpo—p)] 1+ expfl-po + )]

fr(posp) =

After performing a Gaussian integral on the zero temperature term and defining
h(S) = a)fE coth (waS),
we obtain from Eq. (B7)

“+ico+

Lo = _NiZ/ < Vh S) exp (=iSM?) exp (lﬂ/4)2—”/ ’ dpofr(pos p) exp [iP(z)/h(S)]

—i00+p

—NZ/ T (w;ES) coth (w£S) exp (—iSM?) + const. (B8)
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In short, we have

E2
'Ceff = Evac (E’ 0) + 'Cﬁ’ﬂ (E’ 0) - 7 ’ (B9)

where we renormalized “a la Schwinger” the vacuum term,
that is

Ly(E,0) = —de:/ooﬁex (—iSM?)
vac\ &, V) = = Jy s3 p

S 2
x [(waS) coth (a5S) — 1 —% .
(B10)
Also, we choose const = —E?/2.
The Eq. (B10) corresponds to Eq. (2.6) of

Ref. [51] for a pure external electric field (written in
Minkowski space).

The temperature-dependent term is given by

“+icotu de

d
LPHE,0) =N (Poin)

f=u

© dS
x Imy< i ; E\/h(S)exp(—iSMz)

F
—ioo+;¢ 277:

x exp(ir/4) exp[ip%/h(S)]}. (B11)

Equation (B11) corresponds to Eq. (2.1) of Ref. [51] for
a pure external electric field (without the convergence term
—ie). To see this, let us calculate the limit in cited Eq. (2.1):

1 ¢ h
e a-b-cot (esa) - coth (€Sb) = z(S) g
h(s) s ’

lim
a—0(B—0)

where the term \/h(s)/s? is exactly the one in the integrand
of Eq. (B11).

Thus, our chiral condensate, when replaced with
Eq. (B1), leads to Eq. (B9), which is essentially the
effective Lagrangian computed in Refs. [50,51].
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