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We describe the formalism to analyze the mathematical ambiguities arising in partial-wave analysis of
two spinless mesons produced with a linearly polarized photon beam. We show that partial waves are
uniquely defined when all accessible observables are considered, for a wave set which includes S and D
waves. The inclusion of higher partial waves does not affect our results, and we conclude that there are no
mathematical ambiguities in partial-wave analysis of two mesons produced with a linearly polarized photon
beam. We present Monte Carlo simulations to illustrate our results.
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I. INTRODUCTION

In hadron spectroscopy, the extraction and interpretation
of data from scattering experiments typically employ
partial-wave analyses to isolate resonant contributions.
However, these partial-wave expansions need not be
unique, and, depending on the reaction, one may find
multiple wave sets which produce mathematically equiv-
alent predictions for the observables. This causes signifi-
cant problems in the analysis and interpretation of data.
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These mathematical ambiguities have been extensively
studied for various processes [1–4] and there is no generic
prescription to remedy them. Hence, the issue must be
addressed on a case-by-case basis (see Refs. [5–8] for some
recent examples). To remedy ambiguities, typically one
must generate all possible ambiguous wave sets and select
one of them by enforcing additional constraints like global
continuity [9] or unitarity [10]. Most previous analyses of
mathematical ambiguities for partial-wave analysis exam-
ine nucleon or pion-beam production processes. In this
work, we introduce the formalism for the examination of
mathematical ambiguities in two pseudoscalar meson
photoproduction processes with a linearly polarized photon
beam, such as those present in the GlueX experiment at
Jefferson Lab [11].
The physics program for the GlueX experiment focuses

on the search for light exoticmesons. Some of the final states
under consideration involve the two pseudoscalar mesons
ηð0Þπ, for which odd waves have exotic quantum numbers
incompatible with a qq̄ assignment [12]. The dominant
nonexotic signal in these final states is the a2ð1320Þ
resonance which populates the D waves [13]. It is essential
to first accurately identify all relevant D-wave components
before extracting the weaker exotic signal in the P-waves
[5,14–16]. In this paper, we address the issue of ambiguous
solutions in partial wave analyses which are relevant to the
extraction of the D-wave components, but our work is
applicable to the general case of photoproproduction of any
two spinless mesons. Our methods are based on the concept
of Barrelet zeros, which we review in the Appendix for
completeness. In Sec. II we introduce our notation and
formalism for the photoproduction of two spinless mesons
with a linearly polarized photon beam.We then demonstrate,
using a wave set with two or three D-wave components
accompanied by an S-wave, that there are no mathematical
ambiguities. We also provide arguments supporting the
absence of ambiguous solutions in more general cases. In
Sec. IV we present results of numerical simulations, which
show that there is indeed a unique solution with the highest
likelihood. However, the likelihood function contains many
local maxima that may lead to false solutions if appropriate
care is not taken when performing fits. The summary and
conclusions are given in Sec. V.

II. FORMALISM

We consider the photoproduction on a nucleon target of a
meson resonance decaying into two spinless mesons, e.g.,
γp → pηπ0. We follow Ref. [11], writing

IðΩ;ΦÞ ¼ dσ
dt dmηπ0dΩdΦ

¼ κ
X
λγ λ

0
γ

λ1λ2

Aλγ ;λ1λ2ðΩÞργλγλ0γ ðΦÞA�
λ0γ ;λ1λ2

ðΩÞ; ð1Þ

whereΩ ¼ ðθ;ϕÞ are the decay angles of the resonance in the
Gottfried-Jackson or helicity frame, andΦ is the polarization
angle with respect to the production plane. The spin density
matrix is given by ργðΦÞ¼ 1

2
ð1−Pγ cos2Φσx−Pγ sin2ΦσyÞ,

and Pγ indicates the degree of polarization. Since the
analysis of ambiguities is performed independently in each
bin of t and ηπ0 invariant mass, these dependences are
understood. The phase space factor κ does not depend on
angular variables and will be absorbed into the amplitudes.
We neglect the dependence on the nucleon spin1 and write
for the helicity amplitudes

Aλγ ðΩÞ ¼
X
lm

½l�λγ ;mYm
l ðΩÞ; ð2Þ

where ½l�λγ ;m refers to the partial wave with angular
momentum l, spin projection m produced with photon
helicity λγ.
One can construct partial waves with definite reflectivity

as linear combinations of the partial waves in such a way
that in the high energy limit positive (negative) reflectivity
corresponds to natural (unnatural) parity exchanges in the
Gottfried-Jackson frame represented in Fig. 1 [2,11],

½l�ðϵÞm ¼ 1

2
ð½l�þ1;m − ϵð−1Þm½l�−1;−mÞ: ð3Þ

In doing so, we have essentially traded the photon helicity
λγ for reflectivity ϵ. For convenience, we define the
amplitudes UðϵÞ and ŨðϵÞ in the reflectivity basis:

UðϵÞðΩÞ ¼
X
lm

½l�ðϵÞm Ym
l ðΩÞ; ð4aÞ

FIG. 1. Definition of the angles in the Gottfried-Jackson frame.
In the two-meson rest frame, the z axis is given by the photon
beam (γ), and the xz reaction plane contains also the nucleon
target (p) and recoiling nucleon (p0) momenta. θ and ϕ are the
polar and azimuthal angles of the η. The polarization vector of the
photon ðϵ⃗γÞ forms an angle Φ with the reaction plane.

1For the complete discussion including nucleon spin, see [11].
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ŨðϵÞðΩÞ ¼
X
lm

½l�ðϵÞm ½Ym
l ðΩÞ��: ð4bÞ

We write the intensity of the final products from Eq. (1),

IðΩ;ΦÞ ¼ I0ðΩÞ − PγI1ðΩÞ cosð2ΦÞ
− PγI2ðΩÞ sinð2ΦÞ; ð5Þ

where I0 is the unpolarized intensity, and I1;2 are polarized
intensities. The intensities are quadratic in the partial waves
and can be expressed in terms of the amplitudes in Eq. (4):

I0ðΩÞ ¼
X
ϵ

n
jUðϵÞðΩÞj2 þ jŨðϵÞðΩÞj2

o
; ð6aÞ

I1ðΩÞ ¼ −2
X
ϵ

ϵRe
n
UðϵÞðΩÞ½ŨðϵÞðΩÞ��

o
; ð6bÞ

I2ðΩÞ ¼ −2
X
ϵ

ϵIm
n
UðϵÞðΩÞ½ŨðϵÞðΩÞ��

o
: ð6cÞ

The dependence on the polar angle θ can be written
explicitly by expanding the intensities in a Fourier series in
the azimuthal decay angle ϕ:

I0ðΩÞ ¼ 1

2π

h
h00ðθÞ þ h01ðθÞ cosðϕÞ þ � � �

i
; ð7aÞ

I1ðΩÞ ¼ −
1

2π

h
h10ðθÞ þ h11ðθÞ cosðϕÞ þ � � �

i
; ð7bÞ

I2ðΩÞ ¼ −
1

2π

h
0þ h21ðθÞ sinðϕÞ þ � � �

i
: ð7cÞ

Here the ellipses denote terms of higher order harmonics
in ϕ.
The functions hαMðθÞ, which we will refer to as (un)

polarized moments, are quadratic in the partial waves
and relate them to the measurable angular distribution
of the two mesons in their center of mass frame. We
note that positive and negative reflectivity contributions
sum up incoherently, and one can decompose hαMðθÞ
into an explicit sum of reflectivity components, i.e.,
hαMðθÞ ¼ ðþÞhαMðθÞ þ ð−ÞhαMðθÞ. The two reflectivities can
be distinguished from each other due to the dependence on
the polarization angle Φ. We can therefore deal with each
reflectivity independently, noting that the mathematical
treatment of ambiguities is identical for each.
To pursue our analysis of Barrelet zeros, we need to

express the observables hαMðθÞ as polynomials of tan θ
2
, and

then extract their roots. We first employ Eqs. (4), (6) and
rewrite Eq. (7) as:

I0ðΩÞ ¼ 1

2π

X
ϵmm0

fðϵÞm ðθÞfðϵÞ�m0 ðθÞ cos½ðm −m0Þϕ�; ð8aÞ

I1ðΩÞ ¼ −1
2π

X
ϵmm0

ϵfðϵÞm ðθÞfðϵÞ�m0 ðθÞ cos½ðmþm0Þϕ�; ð8bÞ

I2ðΩÞ ¼ −1
2π

X
ϵmm0

ϵfðϵÞm ðθÞfðϵÞ�m0 ðθÞ sin½ðmþm0Þϕ�; ð8cÞ

where,

fðϵÞm ðθÞ ¼
X
l

ffiffiffiffiffiffi
4π

p
½l�ðϵÞm Ym

l ðθ; 0Þ

¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ½l�ðϵÞm dlm0ðθÞ: ð9Þ

The Wigner d-function, dlm0ðθÞ,2 is a polynomial in cos θ
only for m ¼ 0. For m ≠ 0 it is a polynomial of cos θ of
order l − jmj multiplied by a factor sinjmjðθÞ. We thus
represent the d-functions in terms of u ¼ tan θ=2 by [2]:

dlm0ðθÞ ¼
�

u
1þ u2

�
l
ð−1ÞmεlmðuÞ; ð10Þ

with the polynomial εlmðuÞ defined as:

εlmðuÞ¼
X
k

ð−1Þk u
2kþm−ll!½ðl−mÞ!ðlþmÞ!�1=2
ðl−m−kÞ!ðl−kÞ!ðmþkÞ!k! : ð11Þ

The summation over k is restricted to the range k ∈
½maxð0;−mÞ;minðl;l −mÞ�.
By matching Eqs. (7) and (8), we obtain a relation

between the observable quantities and the reflectivity
partial waves:

ðϵÞh0M ¼
X
mm0

fðϵÞm fðϵÞ�m0 δM;jm−m0j; ð12aÞ

ðϵÞh1M ¼ ϵ
X
mm0

fðϵÞm fðϵÞ�m0 δM;jmþm0j; ð12bÞ

ðϵÞh2M ¼ ϵ
X
mm0

fðϵÞm fðϵÞ�m0 δM;jmþm0jsignðmþm0Þ: ð12cÞ

Since each fðϵÞm ðθÞ is a complex function, and each hαMðθÞ is
a real observable expressible as a sum of products of
f-functions, one may simplify the problem by expressing
hαMðθÞ as a sum of squares of complex functions,

hαMðuÞ ¼
X
i

jgiðuÞj2: ð13Þ

Here, each giðuÞ is a linear combination of the fðϵÞm ðθÞ, and
therefore is also a rational function in u. Hence,

2We use the Wigner d-function with the convention
djm0mðθÞ ¼ hjm0je−iθJy jjmi.
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conjugation of the roots of each giðuÞ may generate
ambiguities of the partial waves. We note that it is most
convenient to express every moment in terms of a single
basis set of g’s. Equation (12) represent bilinear matrix
equations which connect the coefficients of the intensity
Eq. (7) to the partial wave amplitudes, while Eq. (13)
represents a diagonalization of the same equations. Since
the moments can be extracted directly from experimental
data, the presence of mathematical ambiguities is deter-
mined by whether or not replacing roots of the basis
functions gi with their conjugates provide alternate sol-
utions to these matrix equations. To address this we will
consider a few examples explicitly to show that for a few

sets of partial waves f½l�ðϵÞm g, the relations Eq. (12) are
uniquely determined and no ambiguities exist. In other

words there is no way to construct a different set, f½l̃�ðϵÞm g
which will yield the same moments.

III. CASE STUDIES

Ambiguities in partial wave analysis with a high energy
pion beam were studied in Ref. [2], where several wave sets
with different combinations of waves up to the G wave
were considered. In all cases the spin projections were
limited tom ¼ 0, 1.3 With this restriction, the intensity only
includes three terms in the azimuthal expansion of Eq. (7).
Since for a pion beam there is no S wave with positive
reflectivity, there is one relevant g-function for the positive
reflectivity components, and two for the negative reflec-
tivity components. The polynomials which generate ambi-
guities in the negative reflectivity components are not
independent, so the ambiguities for the waves in each
reflectivity component are obtained using the roots of a
single polynomial. That is, there are ambiguous solutions in
the partial wave extraction because the observable depends
on only two independent polynomials, one for each
reflectivity component, and transformations built from
combinations of conjugations of roots of each polynomial
produce the same intensity profile.
In this section, we will argue that there are no ambi-

guities in the extraction of partial waves from an experi-
ment using a linearly polarized photon beam. First, we note
that any possible ambiguities arising from switching con-
tributions between the two different reflectivity waves may
be resolved by making use of the Φ dependence of the
linearly polarized photon beam. We will thus only consider
one reflectivity component and suppress all reflectivity
superscripts for convenience.
We will consider first the simplest non-trivial case by

including only the waves fS0; D0; D1g. This case is
analogous to Ref. [2], however, as wewill see, the polarized

intensity allows us to determine the partial waves without
ambiguity.
We then will consider the wave set fS0; D−1; D0; D1g.

These D waves dominate the production of the a2ð1320Þ
resonance in the ηπ final state via pion exchange [17].
We will not find any ambiguous solution for the extraction
of this wave set, once the polarized moments are
taken into account. The a2ð1320Þ is also produced by
vector exchanges. In this case, the dominant D waves are
fD0; D1; D2g [17]. We have confirmed that this wave set is
also free of ambiguities, although we omit the calculation
for brevity.
Our key result is that there are at least two unique

g’s which appear in the Fourier series of the polar angle
when two or more spin projections are allowed. These
polynomials are independent and have distinct roots.
Consequently, these Fourier moments are enough to
uniquely determine the partial waves. No transformations
on the partial waves leave every observable invariant, and
the observables uniquely define the partial waves for
linearly polarized meson photoproduction. We illustrate
this fact only with S and D waves, but the addition of other
waves should not change our results. Adding more waves
increases the number of roots of each g-function, and hence
the number of possible ambiguities, but in general we argue
that there is no relation between the roots, and therefore
partial waves can be unambiguously extracted from the
polarized observables.

A. S and D waves with m = 0, 1

We start by analyzing the wave set with S and D waves
with m projections 0,1 and positive reflectivities, as this set
has been analyzed explicitly for a pion-beam production
process [2]. Suppose that we have obtained one set of
partial waves, fS0; D0; D1g, from an experiment. We can
then attempt to generate an ambiguous set of partial waves,
fS̃0; D̃0; D̃1g, from the original set. We start by writing the
f’s from Eq. (9):

f0ðuÞ ¼
ffiffiffi
5

p ðu4 − 4u2 þ 1ÞD0

ðu2 þ 1Þ2 þ S0; ð14aÞ

f1ðuÞ ¼
ffiffiffiffiffi
30

p
uðu2 − 1ÞD1

ðu2 þ 1Þ2 : ð14bÞ

With this wave set, there are seven nonzero functions
hαMðθÞ, though they are not all linearly independent. When
the wave set includes only positivem-projections, there is a
simple relation between the polarized moments h2M ¼ h1M
forM > 0 [11]. [ForM ¼ 0, one has h20 ¼ 0, see Eq. (7c)].
In addition, we find the relation h11 ¼ h01 and h12 ¼ h00 − h10
for this particular wave set. So we are left with three
linearly independent hαMðθÞ. We rewrite the conditions
relating the h’s to the f’s in matrix form:

3For pion beams, m ≥ 0 in the reflectivity basis. This does not
hold for photon beams.
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h0MðθÞ ¼ F†H0
MF; h1MðθÞ ¼ F†H1

MF: ð15Þ

Where F ¼ ðf0; f1ÞT . The three matrices are

H0
0¼

�
1 0

0 1

�
; H0

1 ¼
�
0 1

1 0

�
; H1

0 ¼
�
1 0

0 0

�
: ð16Þ

Since the matrices H0
0 and H0

1 commute, we can simulta-
neously diagonalize them and simplify the unpolarized
moments, obtaining:

g0ðuÞ≡ 1ffiffiffi
2

p ½f1ðuÞ þ f0ðuÞ�; ð17aÞ

g1ðuÞ≡ 1ffiffiffi
2

p ½f1ðuÞ − f0ðuÞ�: ð17bÞ

Since f0ðuÞ is even and f1ðuÞ is odd, the new functions
fulfill g1ð−uÞ ¼ −g0ðuÞ. Thus, their roots and ambiguities
from complex conjugation of the roots are related. Any
transformation which generates an ambiguity by conjugat-
ing one root of g0ðuÞmust also conjugate the related root in
g1ðuÞ for consistency, and vice versa. The three indepen-
dent moments read:

h00 ¼ jg0j2 þ jg1j2; ð18aÞ

h01 ¼ jg0j2 − jg1j2; ð18bÞ

h10 ¼
1

2
jg0 − g1j2: ð18cÞ

We note that the moments hαM will simply change by a
sign ð−1ÞM under the substitution g0 → g1. It is necessary
and sufficient to require that any prospective ambiguity
transformation leaves invariant jg0j2 and jg0 − g1j2 inde-
pendently. In terms of the partial waves, these functions can
be written:

g0 ¼
ffiffiffi
5

2

r
1

ðu2 þ 1Þ2
h
D0ðu4 − 4u2 þ 1Þ

þ
ffiffiffi
6

p
D1ðu3 − uÞ

i
þ 1ffiffiffi

2
p S0; ð19aÞ

g0 − g1 ¼
ffiffiffiffiffi
10

p ðu4 − 4u2 þ 1ÞD0

ðu2 þ 1Þ2 þ
ffiffiffi
2

p
S0: ð19bÞ

Which can be simplified defining v¼ u−1=u¼−2cotθ:

g0 ¼
ffiffiffi
5

2

r
1

v2 þ 4

h
Av2 þ

ffiffiffi
6

p
D1v − 2B

i
; ð20aÞ

g0 − g1 ¼
ffiffiffiffiffi
10

p

v2 þ 4

h
Av2 − 2B

i
; ð20bÞ

where A ¼ D0 þ S0=
ffiffiffi
5

p
and B ¼ D0 − 2S0=

ffiffiffi
5

p
.

Recalling that the ambiguous waves should be generated
by conjugating roots of these polynomials, we start by
considering the first polynomial in Eq. (20a), and factorize
it into its Barrelet zeros r1;2:

g0 ∝ ðv − r1Þðv − r2Þ; ð21Þ
where we have dropped the irrelevant factors. The roots
read:

r1;2 ¼
−

ffiffiffi
3

p
D1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ABþ 3D2

1

p
ffiffiffi
2

p
A

: ð22Þ

In this case, there are only two Barrelet zeros and there is
thus only one nontrivial independent solution given by the
substitution of one root by its complex conjugate. We invert
Eq. (20a) and replace r1 with its conjugate to obtain:

S̃0 ¼
ffiffiffi
5

p A
6
ð2þ r�1r2Þ; ð23aÞ

D̃0 ¼
A
6
ð4 − r�1r2Þ; ð23bÞ

D̃1 ¼ −
Affiffiffi
6

p ðr�1 þ r2Þ: ð23cÞ

We note that the new waves obtained by the complex
conjugation of r1 and r2 simultaneously lead to the set
fS�0; D�

0; D
�
1g, the complex conjugate of the original wave

set. For a given wave set fS0; D0; D1g, the set in Eq. (23)
produces the same unpolarized moments h00;1ðθÞ. In the
absence of information on the polarized moments, the
above wave set would constitute an ambiguous solution.
In this example, the use of observables only accessible

via a polarized beam are essential to ensure that no
mathematical ambiguities can occur. In particular, we must
consider the constraints implied by the polarized moment
h10 ¼ 1

2
jg0 − g1j2. The combination g0 − g1 only has one

Barrelet zero, i.e., g0 − g1 ∝ ðv − r3Þðvþ r3Þ, where
r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2B=A

p
. This is independent of r1;2, and the only

transformation that leaves h10ðθÞ invariant is the one that
replaces each wave by its complex conjugate, since all the
waves are defined up to a global phase. Therefore, there is
no nontrivial transformation of the partial waves which
leaves both the unpolarized moments h00;1ðθÞ and the
polarized moment h10ðθÞ invariant, and thus there are no
ambiguous solutions for this wave set.
We illustrate this case for one single energybin by choosing

three random complex numbers for the original waves
fS0; D0; D1g,4 compute the associated ambiguous solutions
fS̃0; D̃0; D̃1g and display the three moments in Fig. 2.
The numerical values of the waves are specified in Table I.

4We choose S0 to be real positive without loss of generality and
rotate the ambiguous solution to bring S̃0 also to the positive real
axis, i.e., its phase is zero.
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Here again, we see the value of incorporating polarized
observables. While the two wave sets produce degenerate
solutions for the two unpolarizedmoments, the incorporation
of the polarized moment h10 breaks the degeneracy.
The inclusion of more waves with only the projections

m ¼ 0, 1 will not change our results. Adding more waves
with different m projections could potentially produce
ambiguous solutions, each of which leave invariant one
single moment hαMðθÞ, but it would also generate additional
nonzero hαMðθÞ which must remain invariant under each of
the ambiguity transformations. One can try to generate
other prospective ambiguities, but each potentially ambigu-
ous wave set will be subject to an increasing number of
constraints. Hence, we argue that, for most sensible wave
sets, the intersection between all these sets of potentially
ambiguous waves will be empty.

B. S and D waves with m= − 1, 0, 1
We now consider the previous example in Sec. III Awith

the addition of the m ¼ −1 projection. The presence of
three different m projections raises the number of inde-
pendent cosMϕ moments to three (M ¼ 0, 1, 2 in this
case), each of them being a function of the polar angle. As
we will see, it is impossible to find an ambiguous set
leaving all the polar angle distributions simultaneously
invariant. We only consider here the m ¼ −1, 0, 1 compo-
nents for the D wave but our conclusions can be

generalized to any wave set with three (or more) spin
projections. It was already noticed by the COMPASS
collaboration that no ambiguities are found in the ηπ
system once the m ¼ 2 component is included in the
partial wave analysis [18].
We again start with a set of partial waves, fS0; D0;

D1; D−1g, and attempt to generate an ambiguous set
fS̃0; D̃0; D̃1; D̃−1g. The f’s are:

f0ðuÞ ¼
ffiffiffi
5

p ðu4 − 4u2 þ 1Þ
ðu2 þ 1Þ2 D0 þ S0; ð24aÞ

f�1ðuÞ ¼ ∓ ffiffiffiffiffi
30

p uð1 − u2Þ
ðu2 þ 1Þ2 D�1: ð24bÞ

Our wave set for this example contains all jmj ≤ 1 but only
positive reflectivity components. The structure of the
moments in Eq. (12) tells us that, when only one reflectivity
component is included but all m projections are allowed,
the polarized moments h1M are not independent of the
unpolarized moments h0M. It suffices to study the ambi-
guities which leave only h0M and h2M invariant.
Let us first investigate only the unpolarized moments.

We rewrite the conditions relating the h’s to the f’s in
matrix form:

h0MðθÞ ¼ F†H0
MF; ð25Þ

where, F ¼ ðf−1; f0; f1ÞT and

H0
0 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; H0

1 ¼

0
B@

0 1 0

1 0 1

0 1 0

1
CA;

H0
2 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA: ð26Þ

FIG. 2. Solid blue lines, moments obtained from the original waves of Table I; dotted red lines, moments obtained from the ambiguous
solution of Table I. The polarized moment h10 breaks the ambiguity between the two solutions.

TABLE I. Numerical values of our example wave set and the
potentially ambiguous wave set generated by the unpolarized
moments.

½l�m Original Potentially ambiguous

S0 0.229 0.630
D0 −0.217þ 0.310i 0.043þ 0.056i
D1 0.770þ 0.448i 0.280 − 0.713i
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Notice here that H0
0, H

0
1 and H0

2 are all not simultaneously
diagonalizable. Nevertheless, as before, we diagonalizeH0

1,
defining g0, g1, and g−1 as

g�1ðuÞ≡ 1

2

h
f1ðuÞ �

ffiffiffi
2

p
f0ðuÞ þ f−1ðuÞ

i
; ð27aÞ

g0ðuÞ≡ −1ffiffiffi
2

p ½f1ðuÞ − f−1ðuÞ�: ð27bÞ

Again, the parity of the f’s functions indicates that
g�1ð−uÞ ¼ −g∓1ðuÞ and g0ð−uÞ ¼ −g0ðuÞ. The two func-
tions g1 and g−1 possess related Barrelet zeros, and there-
fore the same potential ambiguities
As in the previous example, the moments are even

functions of the polar angles and read, in the g basis,

h00 ¼ ðjg−1j2 þ jg0j2 þ jg1j2Þ; ð28aÞ
h01 ¼

ffiffiffi
2

p
ðjg1j2 − jg−1j2Þ; ð28bÞ

h02 ¼
1

2
jg−1 þ g1j2 − jg0j2: ð28cÞ

Again, any transformation on the partial waves which
leaves each term above independently unchanged will
produce a mathematically ambiguous set of waves.
Introducing the change of variables v ¼ u − 1=u as before,
the relevant rational fractions are

g�1 ¼ �
ffiffiffi
5

2

r
1

v2 þ 4

h
Av2 �

ffiffiffi
6

p
vD− − 2B

i
; ð29aÞ

g0 ¼ −
ffiffiffiffiffi
30

p v
v2 þ 4

Dþ; ð29bÞ

where A, B are defined as in the previous subsection
and D� ¼ ðD1 �D−1Þ=

ffiffiffi
2

p
. With these definitions, the

roots of g�1ðvÞ are given by Eq. (22) with the substitu-
tion D1 → �D−.
As already noted, the same ambiguous solution will

simultaneously leave invariant jg1j2 and jg−1j2. The new
wave set fS̃0; D̃0; D̃−g is easily obtained from Eq. (23) with
the substitution D1 → D−. There is, in addition, a con-
tinuous transformation Dþ → expðiαþÞDþ leaving jg0j2
invariant. Since this transformation is independent from the
set fS̃0; D̃0; D̃−g, we have, so far, found an ambiguous
solution, parametrized with a continuous parameter, leav-
ing the moments h00 and h01 invariant. However, the
invariance of h02 requires a continuous transformation of
the typeD− → expðiα−ÞD−, which contradicts the ambigu-
ous solution fS̃0; D̃0; D̃−g. Therefore the unpolarized
moments h00;1;2 are left invariant only by the 1-parameter
continuous transformation

fS0; D0; D−; Dþg → fS0; D0; D−; eiα
þ
Dþg: ð30Þ

Since the polarized moments h10;1;2 are related to the
unpolarized ones, we only need to consider the moments

h21;2. Their respective matrices, in the form analogous to
Eq. (25), are

H2
1¼

0
B@

0 −1 0

−1 0 1

0 1 0

1
CA; H2

2¼

0
B@
−1 0 0

0 0 0

0 0 1

1
CA: ð31Þ

TABLE II. Numerical values of our “true” wave set for the
simulation studies.

½l�m Magnitude Phase

S0 0.499 0°
D−1 0.201 15.4°
D0 0.567 174°
D1 0.624 −81.6°

FIG. 3. Results of the 5 best (highest likelihood) fits from 50, to
100 events generated with the partial waves given in Table II
showing the likelihood versus the amplitude magnitude (upper)
and phase (lower), the dashed lines show the true values. The
wave is indicated by the marker shape (see legend) while the
color represents different solutions. The highest likelihood is at
the bottom of the plots. The phase for the D−1 (D1) wave is not
shown for the red and orange (purple) fits, as associated
magnitude is zero and, hence, the phase is undetermined. Fits
and uncertainties are computed using the HESSE option of
MINUIT [19].
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Their expressions in the g’s basis are

h21 ¼ 2Re½ðg1 − g−1Þg�0�; ð32aÞ

h22 ¼ −
ffiffiffi
2

p
Re½ðg1 þ g−1Þg�0�: ð32bÞ

The continuous transformation in Eq. (30) changes the
phase of g0 and does not leave the polarized moments
Eq. (32) invariant.
We thus conclude that there is no ambiguity associated

with the extraction of partial waves with a linearly

polarized beam for this wave set, other than the trivial
ambiguities given by the rotation of all waves by a common
phase, or by the complex conjugation of all waves.

IV. SIMULATIONS

While in the previous sections we have provided argu-
ments that nomathematical ambiguities exist in partial-wave
analysis of two mesons produced with a linearly polarized
photon beam, the complicated multidimensional shape of
likelihood functions or other functions used for fitting can
present themselves as false solutions, which one might
naively label as mathematically ambiguous. In this section,
wepresent someMonteCarlo studies showing this effect.We
wish to emphasize that here we only investigate the depend-
ence on statistics of a perfect model. Other factors such as
acceptance corrections, resolutions, and other systematic
effects are experiment-dependent and may qualitatively alter
the results. Studies based on pseudodata or studies involving
full experiment simulations will be an important part of
subsequent analyses, and might be employed to help discard
false solutions or assess the impact of limited statistics.
First, pseudodata was generated following the angular

intensity given by Eqs. (8) and (9). We used the wave set

FIG. 4. Projections of the angular distributions (upper: cos θ,
center: ϕ, lower: Φ) as defined in Eqs. (5) and (8). Shown are the
data (black circles), the true solution (dashed black), and the
different solutions (colored lines), with colors matching the plots
in Fig. 3. Bin widths are Δ cos θ ¼ 0.1 and Δϕ ¼ ΔΦ ¼ 18°.

FIG. 5. As Fig. 3 for fits to 104 events. The phase for the D−1
wave is not shown for the red and orange fits, as associated
magnitude is zero and, hence, the phase is undetermined.
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from Sec. III B, and generated the pseudodata using the
fixed “true solution” wave set, with nonzero, positive
reflectivity partial waves shown in Table II and a mean
linear polarization degree of Pγ ¼ 0.85.
We then performed event-by-event fits to extract these four

waves. We used MINUIT [19] with random initial conditions
to minimize the negative log likelihood (−2 logL). To
explore the effect of differing statistical information on fit
results, we examined three different cases with generated
datasets of 102, 104, and 106 events.
In Fig. 3 we show the resulting negative log likelihood

and amplitude components from 50 fits to the pseudodata

with 100 events. In Fig. 4 shows the projections of the
intensity onto the polarization angle Φ, and the decay
angles ϕ, θ for the best five solutions, compared to the
distributions generated from the true amplitudes. Similar
results are shown for 104 events in Figs. 5 and 6, and
results for 106 events are shown in Figs. 7 and 8. For
clarity, in these plots we show only a single complex
conjugate solution set, though the fitting procedure did
also identify trivial ambiguities, the set with all phases
simultaneously flipped in sign. Similar results are shown
for 104 events in Fig. 5 and 106 events in Fig. 7. For
clarity, in these plots we show only a single complex
conjugate solution set, though the fitting procedure did
also identify trivial ambiguities, i.e., the set with all phases
simultaneously flipped in sign.
In Figs. 4, 6, and 8 we show the projections of the

intensity onto the polarization angle Φ, and the decay
angles ϕ, θ for the best five solutions, compared to the
distributions generated from the true amplitudes.
We observe in the case of the second best solution for

each simulation (shown in red), the cos θ distribution is
almost identical to the best fit’s distribution (blue).
However the second best ϕ distribution is flat (red),
while the true distribution has a cosð2ϕÞ component.
The reason for the flat distribution is that the magnitude

FIG. 6. As Fig. 4 for fits to 104 events with colors matching the
plots in Fig. 5.

FIG. 7. As Fig. 3 for fits to 106 events. Uncertainties are
negligible and not shown.
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of the D−1 amplitude is zero for this solution (first red
triangle in the plots of Figs. 3, 5, and 7). The h02 moment,
which contributes to the cosð2ϕÞ amplitude, requires an
interference between D−1 and D1, which is obviously zero
when either of these waves has zero magnitude. Note that
this solution is found despite MINUIT finishing with
successful status.
The other solutions do not agree well with the data and

therefore clearly do not represent real solutions, but rather
represent artifacts of local maxima in the likelihood. We
also note that, for each level of statistics, we observe a
similar behavior in the projection of the intensity onto Φ

for all solutions. The best (blue) and second-best (red)
solutions closely match the true solution (dashed black)
for each case, while the less-favored solutions cannot be
immediately discarded from this projection even at high
statistics.
We should emphasize here that although we have shown

explicitly that there are no mathematical ambiguities
present, the false solutions found in fits to data or
pseudodata must still be addressed. In fits to real data
one may not always be able to extract the most favored
solution from a fitting procedure and claim that it is the
true, mathematically unique, solution due to detector
effects and other systematics. In practice, each solution
could be shifted up or down in likelihood, and the “true”
solution could correspond to a local minimum rather than
the global one. We do note that, in an environment with no
systematics or detector effects, higher statistics allows one
to make qualitative judgments about which solution best
fits the data by considering projections of the intensity onto
the scattering angles. We also note that in these simulations
we have relatively few waves. In larger wave sets, the
probability of finding the global minima from fifty random
starting points reduces drastically. These issues are outside
the scope of this paper, and we leave methods to address
them for future work.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented our formalism for the
analysis of mathematical ambiguities for linearly polarized
photoproduction of two spinless particles. We demon-
strated for two wave sets that, even with a small number
of constraints on the partial waves, the partial waves are
over-specified by experimental data. We illustrated our
results by generating pseudodata and extracting back the
partial waves. We found that the best solution matches the
input waves. We do not expect larger wave sets to exhibit
root-conjugation ambiguities, as the number of constraints
increases rapidly with the size of the fitted wave set. Rather,
we expect that false solutions which appear in fits to real
data come about as artifacts of complicated multidimen-
sional properties of log-likelihood functions. These may be
identified through examination of the angular dependence
of the polarized observables.
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APPENDIX: BARRELET ZEROS FOR SPINLESS
MESON SCATTERING

We consider the elastic scattering of two spinless mesons
[1]. Lorentz invariance allows us to choose the scattering
plane as the xz plane, and to write the intensity as a real
positive function of the scattering angle z ¼ cos θ. The
differential cross section,

dσ
dΩ

¼ jfðs; zÞj2; ðA1Þ

is decomposed into partial waves of the decaying reso-
nance, with angular momentum l as

fðs; zÞ ¼
X
l

ð2lþ 1ÞalðsÞPlðzÞ: ðA2Þ

The center-of-mass energy s is a fixed variable in our
treatment. In practice, for each bin in s, the sum in Eq. (A2)
is truncated to lM and the differential cross section is thus a
polynomial of order 2lM in the cosine of the scattering
angle, z. The lM þ 1 partial waves are in general complex
numbers, but since the intensity is positive, the cross
section can be factorized into its roots, also denoted
Barrelet zeros [1], in the following way

dσ
dΩ

¼ C
YlM
i¼0

ðz − ziÞðz − z�i Þ; ðA3Þ

where the s dependence of the normalization factor C and
the Barrelet zeros zi have been omitted.
Clearly, the knowledge of a set of partial waves falg

determines the Barrelet zeros fzig, and vice versa. However,
the differential cross section includes both the roots zi and
their conjugates z�i while only one of fzi; z�i g is used to
generate the partial waves; there is no physical distinction
between a zero and its complex conjugate, which can lead to
ambiguities in the values of the partial waves in Eq. (A2). To
see this, suppose we know lM þ 1 Barrelet zeros fzig from
which we reconstruct the partial waves:

al ¼ Flðz0; z1;…; zlM−1; zlMÞ; ðA4Þ

where the functions Fl are known for a given lM.
Alternatively one could choose to use the complex conjugate
of any of the lM þ 1 Barrelet zeros. For instance by
choosing

a0l ¼ Flðz�0; z1;…; z�lM−1; zlMÞ: ðA5Þ

There are 2lMþ1 sets of potentially ambiguous partial waves
fa0lg which lead to the same differential cross section. One
can always rotate all thewaveswith a constant phase (in each
bin of energy) such that the S-wave is real and positive. We
are nevertheless left with 2lM possibilities for the partial
waves in the case of spinless meson scattering.
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