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Héctor Novales-Sánchez 1 and Mónica Salinas 2

1Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla,
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Confirmed by the measurement of neutrino oscillations, neutrino mass is recognized as a genuine
manifestation of physics beyond the Standard Model, while its originating mechanism remains a mystery.
Moreover, the proper field-theory description of neutrinos, whether they areMajorana or Dirac type, must be
linked to such amechanism. The presentwork addresses the calculation, estimation, and analysis of one-loop
contributions from virtual Majorana neutrinos, light and heavy as well, to the neutral gauge boson coupling
ZZZ, which participates in Z-boson pair production from eþe− collisions. This task is carried out in the
framework defined by a seesaw variant in which light neutrinos remain massless at tree level, then becoming
massive radiatively. TheZZZ� coupling,withZ� an off-shellZ boson, is defined by two form factors, namely,
f4, characterizingCP-odd effects, and f5, which isCP-even. Constraints from the LargeHadron Collider on
both of these quantities are currently Oð10−4Þ. Our calculation yields CP-nonpreserving contributions to
ZZZ, which are absent in the framework of the sole Standard Model. Our estimations show that the f4
contributionmight be as large asOð10−7Þ for heavy-neutrino masses∼1 TeV.CP-even contributions f5 are
also generated, which are, in general, larger than theirCP-odd counterparts. We estimate them to be as large
as Oð10−4Þ at a center-of-mass energy of 500 GeV, in eþe− collisions.
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I. INTRODUCTION

So far, the Standard Model [1–3] (SM) is in good
agreement with most experimental data [4]. In fact, the
measurement [5,6], by the ATLAS and CMS experiments,
of its last missing piece, the Higgs boson, has reinforced
our trust in this formulation. Despite the broad success of
the SM, this physical description is not, by any means, the
last word, as experimentally-supported phenomena which
are not properly explained by the SM exist, among which
neutrino mass and mixing, dark matter, and dark energy are
noteworthy. Thus, the intense work on the theoretical,
phenomenological, and experimental fronts, aimed at the
identification and estimation of possible manifestations of
new physics, is well motivated, for it may provide us with
hints about the genuine underlying high-energy formu-
lation. In this context, the pursuit of such fundamental
physical description, presumably governing nature at some
high-energy scale, often relies in the exploration of

observables which are suppressed, or even forbidden, in
the framework established by the SM.
The definition of the SM neutrino sector includes the

assumption that neutrinos are massless, which in several
situations works fine as an approximation, but fails as a
correct description. The phenomenon of neutrino oscilla-
tions has been interpreted as a proof that neutrinos are
massive and mix [7]. The observation of neutrino oscil-
lations, first achieved by the Kamiokande Collaboration [8]
and shortly after confirmed by the SNO Collaboration [9],
played a crucial role in solving the solar-neutrino problem
[10–15]. Since neutrino oscillations require neutrino mix-
ing to happen, experimental efforts were devoted to
determine the corresponding mixing angles, which con-
cluded with the measurement of the last of such angles, θ13,
by the Daya Bay Collaboration [16] and by the RENO
Collaboration [17]. Now that neutrinos are known to have
nonzero masses, a natural next step would be the deter-
mination of the origin of neutrino mass. Moreover, since
neutrinos are electrically neutral and massive, their descrip-
tion corresponds to either Dirac fermions [18] or Majorana
fields [19]. Among the whole set of known elementary
fermions, neutrinos have, by far, the smallest masses,
recently upper-bounded by the KATRIN Collaboration to
be ≲0.8 eV [20], which should be taken into account by
any beyond-Standard-Model (BSM) proposal aiming at a
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sensible description of neutrinos. A nice and elegant
explanation of neutrino mass is given by the seesaw
mechanism [21,22], with neutrinos characterized by
Majorana fields. From the viewpoint of effective theories,
the occurrence of this mechanism is underpinned by the
Weinberg operator [23]. In the context of the seesaw
mechanism, besides the known neutrinos, a set of heavy
partners, which we refer to as heavy neutrinos, arises. It
turns out that the masses of these heavy neutrinos are
restricted to be ∼1013 GeV, in order for the seesaw
mechanism to naturally generate tiny masses for the known
light neutrinos. So, while the seesaw mechanism offers a
pleasing explanation for the generation of neutrino mass,
the presence of huge heavy-neutrino masses largely sup-
presses contributions, thus pushing presumed new-physics
signals well beyond current experimental sensitivity. As a
response, variants of the seesaw mechanism, such as the
inverse seesaw mechanism [24–26], have emerged, in
which the masses of heavy neutrinos are not so large, thus
enhancing the effects of new physics. Another seesaw-
mechanism variant was given by the author of Ref. [27],
who established a condition under which light-neutrino
masses vanish at the tree level, thus weakening the link
connecting light and heavy masses of neutrinos. Then
masses of light neutrinos are properly defined at the loop
level, as long as the spectrum of heavy-neutrino masses is
quasi-degenerate. The theoretical set up of Ref. [27] is the
framework of the present investigation.
Triple gauge couplings (TGCs) are well-established

places to look for traces of new physics. Among them,
the SM W boson electromagnetic and weak interactions
WWγ and WWZ, characterized by well-known general
Lorentz-covariant parametrizations of their corresponding
vertex functions [28,29], have been widely studied in the
SM and in several of its extensions as well. On the other
hand, the gauge couplings ZZZ, ZZγ, and Zγγ, associated
to electromagnetic and weak properties of neutral gauge
bosons,1 bear their own appeal. The gauge structure of the
SM precludes these neutral-gauge-boson interactions from
happening at the tree level, in contraposition with the
charged TGCs WWγ and WWZ. Moreover, as a conse-
quence of Bose symmetry (BS), the neutral TGCs vanish at
the loop level whenever all the external particles are
assumed to be on the mass shell, so, in order to generate
nonzero contributions from the SM or from BSM physics,
the calculation of any of these interactions must be
executed by taking at least one of the external neutral
bosons off the mass shell. Lorentz-covariant parametriza-
tions of neutral TGCs, with the proper implementation of
electromagnetic gauge symmetry and BS, were first given
in Ref. [28], while these parametrizations were afterward
readdressed in Refs. [32,33]. The one-loop contributions

from the SM to the neutral TGCs were calculated and
estimated in Refs. [32,34], finding that such contributions
range from ∼10−4 to ∼10−3. Contributions generated by
SM extensions can be found in the literature [32,34–42].
Within the theoretical framework defined by the neutrino
model of Ref. [27], the present investigation considers the
contributions, at one loop, from Majorana neutrinos, both
light and heavy, to neutral TGCs. Since neutrinos do not
couple to the electromagnetic field at the tree level, only
contributions to ZZZ are generated. Furthermore, our
calculations, estimations and analyses are executed by
thinking of the ZZZ coupling as part of an s-channel
diagram contributing to Z-boson pair production from an
electron-positron collision. Therefore, the neutral TGC to
calculate is ZZZ�, with Z� denoting an off-shell Z boson, in
which case the general parametrization for this coupling is
determined by two form factors, one of which is CP even
whereas the other is CP odd. All the contributing Feynman
diagrams are made of virtual-neutrino closed loops in
which both light and heavy neutrinos participate. Despite
the superficial degree of divergence of these diagrams, from
the onset indicating the presumable presence of ultraviolet
(UV) divergences, the contributions turn out to be finite. As
opposed to the SM, these virtual-neutrino contributions are
able to produce a nonzero CP-violating form factor,
which is partly a consequence of the presence of couplings
Znjnk where the neutrino fields nj and nk do not coincide.
According to our estimations, contributions to the CP-odd
form factor might be as large as ∼10−7, for heavy-neutrino
masses ≈1.2 TeV and ≈1.4 TeV. Physical processes
derived from electron-positron collisions, to take place in
future eþe− colliding machines, have been discussed
by taking the value of 500 GeV for the CME as a
Refs. [43–46]. In particular, Ref. [46] provides estimations
of the sensitivity of a future electron-positron collider to
neutral TGCs. A CP-conserving contribution is also
generated from this neutrino model, which we find to
be, at a CME of 500 GeV, as large as ∼10−4. For the sake of
comparison, notice that the CMS Collaboration has
recently bounded such quantities to lie below ∼10−4 [47].
The paper has been organized as follows: in Sec. II,

the theoretical setup, as defined in Ref. [27], is discussed;
the Lorentz-covariant parametrization of ZZZ�, as well
as the analytic contributions from the neutrino model under
consideration, are addressed in Sec. III; then, Sec. IV is
devoted to numerical estimations and the analysis of the
ZZZ� contributions; in the final part of the paper, Sec. V,
with give our conclusions and a summary.

II. MAJORANA NEUTRINOS IN BSM PHYSICS

For several years, since their introduction in 1930, it was
not certain whether neutrinos were massive or not, as the
electric neutrality that characterizes these particles hindered
a measurement of neutrino masses. Indeed, the neutrino

1Furry’s theorem [30] forbids the occurrence of γγγ as long as
Lorentz symmetry holds [31].
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fields in the SM were assumed to be chiral and massless,
since the Weyl theory of massless fermions is consistent
with nonobservation of right-handed neutrino states. It was
pointed out, in Ref. [19], that fermions which were both
massive and neutral might abide by the Majorana con-
dition, meaning that the involved fermion field, ψ , coin-
cides with its corresponding charge-conjugate field,
ψ c ¼ Cψ̄T, where C is the charge-conjugation matrix.
Later, in the 1950s, the possibility that neutrinos oscillate
was posed [7], which required nonzero neutrino masses and
the occurrence of neutrino mixing. The first experimental
evidence of neutrino oscillations was reported by the
Kamiokande Collaboration [8], in 1998, which would be
corroborated by experiments at the Sudbury Neutrino
Observatory [9], in 2002. Regarding which description
among Dirac and Majorana is the one faithfully character-
izing neutrinos, there is not an answer yet. A number of
experimental facilities have been pursuing the elusive
neutrinoless double beta decay [48–54], which requires
the Majorana description to happen in order to avoid
final state neutrinos in this process. In this sense, a
measurement of the neutrinoless double beta decay would
be considered as definitive evidence in favor of the
Majorana neutrino description. However, the large amount
of experimental work aiming at the observation of this
physical process has not succeeded so far [48], and
meanwhile the restrictive lower bound 1026 yr, on the
neutrinoless double-beta decay half life, has been estab-
lished by the GERDA Collaboration [51] and by the
KamLAND-Zen Collaboration [54].
The so-called minimally extended SM [55], which yields

the simplest approach to neutrino-mass generation, gives
rise to neutrino masses just as the SM does for the rest of
the fermions, that is, through the introduction of right-
handed Dirac-neutrino chiral fields and Yukawa neutrino
terms affected by the Brout-Englert-Higgs mechanism
[56,57], with the values of the masses determined by both
the electroweak scale, v ¼ 246 GeV, and a set of Yukawa
constants. Nevertheless, a quite noticeable feature of
neutrinos, which distinguishes them from every other
known fermion, is the conspicuous smallness of their
masses, currently upper-bounded to be within the sub-eV
scale [20]. Such a characteristic has motivated the search
for a more natural and reasonable explanation for the origin
of neutrino mass. The Weinberg operator [23], LW ¼
− καβ

Λ ðLc
α;Lϕ̃

�Þðϕ̃†Lβ;LÞ þ H:c:, is an effective-Lagrangian
term with units ðmassÞ5, which is allowed only as long as
lepton-number symmetry is violated. In this equation, Lα;L

is the α-th SUð2ÞL lepton doublet, with left chirality, of the
SM, whereas ϕ is the Higgs doublet, where ϕ̃ ¼ iσ2ϕ�,
with σ2 the imaginary Pauli matrix. Moreover, Λ is
interpreted as a high-energy scale, characterizing some
BSM fundamental description, and καβ are dimensionless
coefficients parametrizing the effects of such a high-energy
formulation at the level of low energies. After electroweak

symmetry breaking, the Weinberg operator engenders
Majorana mass terms for neutrinos, with masses suppressed
by the energy scale Λ. This suggests that some high-energy
scale, at which the BSM fundamental formulation operates
in full, would be responsible for the tininess of neutrino
masses. Left-right symmetric models, based on the gauge
group SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L, are SM
extensions originally meant to address parity violation in
low-energy processes [58–60]. A notorious feature of left-
right models turned out to be the seesaw mechanism
[21,22], by which, after a couple of stages of spontaneous
symmetry breaking, masses can be defined for Majorana
neutrino fields. In general, besides the three known
neutrinos, the seesaw mechanism gives rise to a further
set of neutrinos. The masses of known neutrinos, given by
the seesaw mechanism, are found to follow the Weinberg-
operator profile, since they are given as mν ∼ v2

w , where w is
a high-energy scale, in this case the one at which some
high-energy phase of spontaneous symmetry breaking
takes place. It is worth emphasizing the suppression
induced by the scale w on these masses. The masses of
the new neutrinos, on the other hand, differ dramatically in
the sense that they are not diminished by the high-energy
scale w, but they are rather proportional to it, that is
mN ∼ w. Thus, the larger the masses of new neutrinos, the
smaller the masses of known neutrinos. Keeping this in
mind, in what follows we use the terms “light neutrinos”
and “heavy neutrinos” to distinguish known neutrinos from
new neutrinos, respectively.
While nonzero masses of light neutrinos are nicely

explained by the seesaw mechanism, current upper bounds
on such masses impose very strict constraints on the high-
energy scale w, which goes up to ∼1013 GeV. An energy
scale so large renders heavy-neutrino masses, mN ∼ w,
huge, thus severely attenuating the impact of these particles
on physical processes attainable by current experimental
facilities, then leaving the possibility of measuring their
effects in the near future off the table. Aiming at bettering
scenarios of neutrino mass generation in the presence of
heavy neutrinos, variations of the seesaw mechanism
have been conceived and explored. In the inverse seesaw
[24–26], for instance, besides three heavy neutrinos,
another set of Majorana neutral fermions is introduced,
which, together with assumptions on the couplings of the
neutrino fields, leads to a nondiagonal mass matrix whose
structure matches the one corresponding to type-1 seesaw.
Block matrices nested within such a mass matrix provide
parameters, assumed to be small, which weakens the link
between the high-energy scale w and the neutrino masses.
This framework turns out to be appealing, as more
reasonable heavy-neutrino masses become allowed.
There are further seesaw variations from which flexible
values of heavy-neutrino masses can be defined, as it is the
case of the model given in Ref. [27]. The investigation
discussed throughout the present paper has been carried
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out within the framework of this reference, which we
discuss below.
Think of a BSM high-energy physical description,

distinguished by the Lagrangian density LBSM. Such a
model might be governed by an extended gauge-symmetry
group, as it is the case of left-right models [21,22,59,60],
331 models [61,62], and grand unification models [63,64].
Let us assume that this formulation undergoes two
stages of spontaneous symmetry breaking to finally fall
into the electromagnetic group, Uð1Þe, characterized by
electromagnetic gauge invariance. Imagine that the
first phase of symmetry breaking, taking place at w,
renders LBSM invariant with respect to the SM gauge
symmetry group, SUð3ÞC ⊗ SUð2Þ⊗Uð1ÞY . Then, at v,
the Englert-Brout-Higgs mechanism operates, thus yielding
a Lagrangian

LBSM ¼ Lν
mass þ LW

CC þ LZ
NC þ… ð1Þ

The ellipsis in Eq. (1) represents a set of Lagrangian terms,
which are, in general, distinctive of the SM extension under
consideration, as they may depend on non-SM dynamic
variables or involve couplings dictated by the symmetries
of LBSM at high energies, before the occurrence of any
stage of spontaneous symmetry breaking. The Lagrangian
term Lν

mass, which gathers all the couplings of the theory
that are quadratic in neutrino fields, is assumed to be
given by

Lν
mass ¼ −

X3
j¼1

X3
k¼1

�
ν0j;LðmDÞjkν0k;R þ 1

2
ν0cj;RðmMÞjkν0k;R

�

þ H:c: ð2Þ
This equation involves three left-handed neutrino fields,
ν0j;L, as well as three right-handed neutrino fields, ν0j;R. The

charge-conjugate fields ν0cj;R ¼ Cν0j;R
T, with left-handed

chirality, also appear in Eq. (2), being part of a set of
Majorana-like mass terms, which involve neutrino mix-
ing. The mixing featured in these terms is characterized
by the 3 × 3 matrix mM, which, due to the Majorana
condition ν0cj;R ¼ ν0j;R, is symmetric, while note that this
matrix is general in any other respect. The Majorana
matrix mM is assumed to emerge as a consequence of the
first symmetry breaking, at w. On the other hand, Dirac-
like mass terms, also included in Lν

mass, are given by
neutrino-field mixing through the Dirac-mass matrix mD,
which is 3 × 3 sized and general. We assume the matrix
mD to originate from electroweak symmetry breaking.
The column matrices

fL ¼

0
BB@

ν01;L

ν02;L

ν03;L

1
CCA; FL ¼

0
BB@

ν0c1;R

ν0c2;R

ν0c3;R

1
CCA; ð3Þ

fR ¼

0
BB@

ν0;c1;L

ν0;c2;L

ν0;c3;L

1
CCA; FR ¼

0
BB@

ν01;R

ν02;R

ν03;R

1
CCA; ð4Þ

with fR ¼ fcL and FR ¼ Fc
L, are defined and utilized to

rearrange Lν
mass as

Lν
mass ¼ −

1

2
ðfL FLÞM

�
fR
FR

�
þ H:c: ð5Þ

Here, M is a 6 × 6 matrix, which is conveniently written
in block-matrix form as

M ¼
�

0 mD

mT
D mM

�
: ð6Þ

The structure of the nondiagonal mass matrix M, dis-
played in the last equation, corresponds to the type-1
seesaw mechanism. Since mT

M ¼ mM holds, the matrix M
turns out to be symmetric, which implies that a diago-
nalization 6 × 6 unitary matrix, Uν, yielding

UT
νMUν ¼

�
mν 0

0 mN

�
; ð7Þ

exists [65], where mν and mN are diagonal and real 3 × 3
matrices, with mνj ¼ ðmνÞjj > 0 and mNj

¼ ðmNÞjj > 0,
for j ¼ 1, 2, 3. By means of this diagonalization, the
neutrino mass-eigenfields basis fν1; ν2; ν3; N1; N2; N3g is
defined, in terms of which the neutrino-mass Lagrangian
adopts the form

Lν
mass ¼

X3
j¼1

�
−
1

2
mνjνjνj −

1

2
mNj

NjNj

�
: ð8Þ

Note that these neutrino fields are Majorana spinors, since
they fulfill the Majorana condition, νcj ¼ νj and Nc

j ¼ Nj.
Let us express the 6 × 6 diagonalization matrix Uν as a

block matrix made of 3 × 3 matrix blocks, Ujk, that is,

U ¼
�
U11 U12

U21 U22

�
: ð9Þ

Next, the following quantities are defined:

Bανj ¼
X3
k¼1

Vl
αkðU�

11Þkj; ð10Þ

BαNj
¼

X3
k¼1

Vl
αkðU�

12Þkj: ð11Þ
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In these equations, the greek index α labels SM lepton
flavors, thus meaning that α ¼ e, μ, τ. On the other hand,
Vl is a 3 × 3 matrix, which is a lepton-sector analogue of
the SM Kobayashi-Maskawa quark-mixing matrix [66]. It
is worth keeping in mind, though, that Vl is not necessarily
unitary, which contrasts with the unitarity feature character-
izing the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix [67,68], UPMNS. The PMNS matrix is used
to handle lepton mixing when only the three light neutrinos
participate. Usage of this matrix is suitable for SM
extensions in which the presence of heavy neutrinos can
be disregarded at low energies, which, for instance, is the
case of the Weinberg operator. Equations (10) and (11)
define the matrices Bν and BN , both 3 × 3 sized, through
their entries ðBνÞανj ¼Bανj and ðBNÞαNj

¼ BαNj
. These two

matrices are gathered into the 3 × 6 matrix B ¼ ðBνBNÞ,
whose entries read

Bαj ¼
�
Bανk ; if j ¼ 1; 2; 3;

BαNk
; if j ¼ 4; 5; 6;

ð12Þ

with νk ¼ ν1; ν2; ν3 and Nk ¼ N1; N2; N3. Moreover, the
matrix B satisfies the conditions

X6
k¼1

BαkB�
βk ¼ δαβ; ð13Þ

X
α¼e;μ;τ

B�
αjBαk ¼ Cjk; ð14Þ

with δαβ ¼ ð13Þαβ, where 13 is the 3 × 3 identity matrix. In
these equations, Cjk are the entries of a a 6 × 6 matrix, C.
This matrix is conveniently written in block-matrix form as

C ¼
�
Cνν CνN
CNν CNN

�
ð15Þ

with the 3 × 3 matrix blocks given by

ðCννÞil ≡ Cνiνl ¼
X3
j¼1

ðU11ÞjiðU�
11Þjl; ð16Þ

ðCνNÞil ≡ CνiNl
¼

X3
j¼1

ðU11ÞjiðU�
12Þjl; ð17Þ

ðCNνÞil ≡ CNiνl ¼
X3
j¼1

ðU12ÞjiðU�
11Þjl; ð18Þ

ðCNNÞil ≡ CNiNl
¼

X3
j¼1

ðU12ÞjiðU�
12Þjl: ð19Þ

While Eq. (13) resembles a unitarity condition, notice that
Eq. (14) shows that, strictly speaking, this is not the case. In
matrix form, Eqs. (13) and (14) are succinctly expressed as
BB† ¼ 13 and B†B ¼ C, respectively. The matrix C, on the
other hand, fulfills

X6
i¼1

CjiC�ki ¼ Cjk; ð20Þ

also written, in matrix form, as CC† ¼ C.
Besides the neutrino-mass Lagrangian term Lν

mass, the
only other terms explicitly shown by Eq. (1) are LW

CC and
LZ
NC, which are given by

LW
CC ¼

X
α

X3
j¼1

�
gffiffiffi
2

p BανjW
−
ρ lαγρPLνj

þ gffiffiffi
2

p BαNj
W−

ρ lαγρPLNj

�
þ H:c:; ð21Þ

LZ
NC ¼

X3
k¼1

X3
j¼1

�
−

g
4cW

Zρνkγ
ρðiCImνkνj − CReνkνjγ5Þνj

þ
�
−

g
4cW

Zρνkγ
ρðiCImνkNj

− CReνkNj
γ5ÞNj þ H:c:

�

−
g

4cW
ZρNkγ

ρðiCImNkNj
− CReNkNj

γ5ÞNj

�
: ð22Þ

In these equations, g is the SUð2ÞL coupling constant,
whereas cW ¼ cos θW denotes the cosine of the weak
mixing angle, θW. Furthermore, Wρ is the SM W-boson
field and Zρ is the Z-boson field, also of the SM. We
have denoted RefCg ¼ CRe and ImfCg ¼ CIm, so that
C ¼ CRe þ iCIm. Equation (21) comprises all the charged-
current terms which feature the SM W boson. This
Lagrangian term was recently utilized, in Ref. [69], to
calculate and estimate the contributions, at one loop, from
Majorana neutrinos, both light and heavy ones, to the TGC
WWγ, in the context of the neutrino-mass model posed by
the author of Ref. [27]. Neutral currents (NC) involving the
SM Z boson, on the other hand, are given by the couplings
constituting the Lagrangian LZ

NC, displayed in Eq. (22).
Recall the Majorana and Dirac mass matrices mM and

mD, which are part of the nondiagonal mass matrix M, as
shown in Eq. (6). If we assume a scenario in which these
matrices behave asmM ∼ w andmD ∼ v, with the condition
v ≪ w fulfilled, we get the type-1 seesaw mechanism,
which, as discussed before, bears the disadvantage of
marginal impact of the new physics. Aiming at an amelio-
ration of this issue, the author of Ref. [27] considered the
set of conditions ðMUνÞjk ¼ 0, for j ¼ 1, 2, 3, 4, 5, 6,
which eliminate the tree-level mass of the kth light
neutrino. Such a condition was then implemented to cancel
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all light-neutrino mass terms from Lν
mass, thus meaning that

the 3 × 3 diagonal matrix mν, given by Eq. (7), vanishes.
Let us comment that this procedure to render light-neutrino
masses zero does not alter the analytic expressions for the
masses of heavy neutrinos. In other words, the 3 × 3matrix
mN , given by Eq. (7), remains the unchanged. In this
context, light neutrinos become massive by quantum
effects. The author of Ref. [27] calculated such masses
from self-energy Feynman diagrams, at one loop, and
provided the corresponding analytic expressions. The
eradication of light-neutrino masses at the tree level, and
their definition through loop diagrams, attenuates the
connection among light- and heavy-neutrino masses, thus
allowing for quite smaller heavy masses mNk

to occur.
Moreover, in this model, the tininess of light neutrinos is
rather an implication of the occurrence of a quasi-degen-
erate spectrum of heavy-neutrino masses [27].
Let us work, from here on, in the framework discussed in

the previous paragraph. The nondiagonal, though symmet-
ric, mass matrix M can be block-diagonalized by the
unitary matrix [70,71]

Uν ¼
� ð13 þ ξ�ξTÞ−1

2 ξ�ð13 þ ξTξ�Þ−1
2

−ξTð13 þ ξ�ξTÞ−1
2 ð13 þ ξTξ�Þ−1

2

�
; ð23Þ

where ξ is some 3 × 3matrix. Assuming the moduli jξjkj to
be small, the relation

ξ ¼ mDm−1
M ; ð24Þ

distinctive of the ordinary seesaw mechanism, holds.
Furthermore, in this context, the diagonalization matrix
Uν can be approximated as [27]

Uν ≃

0
B@ 13 − 1

2
ξ�ξT ξ�

�
13 − 1

2
ξTξ�

�

−ξT
�
13 − 1

2
ξ�ξT

�
13 − 1

2
ξTξ�

1
CA; ð25Þ

at Oðξ3Þ. Heavy-neutrino masses turn out to be [27]

mN ≃mM

�
13 þ

1

2
m−1

M ðξ†mD þmT
Dξ

�Þ
�
: ð26Þ

Furthermore, the matrix B is given by

B ≃
�
Vl

�
13 −

1

2
ξξ†

�
Vlξ

�
13 −

1

2
ξ†ξ

��
; ð27Þ

whereas C acquires the form

C ≃
�

13 − ξξ† ξð13 − ξ†ξÞ
ðξð13 − ξ†ξÞÞ† ξ†ξ

�
: ð28Þ

III. CONTRIBUTIONS FROM MAJORANA
NEUTRINOS TO ZZZ� AT ONE LOOP

In this section, we carry out a calculation of the
contributions from the neutrino model given in Ref. [27]
to the vertex ZZZ�, which points toward an estimation of
the effects produced by virtual neutrino fields, both light
and heavy, to the TGCs characterizing this interaction. In
general, TGCs also emerge from neutral gauge bosons
interactions in which external photon fields participate, as,
for instance, is the case of ZZA�. Nevertheless, notice that,
in general, virtual-neutrino contributions to such couplings
do not exist at the one-loop level, due to electric neutrality
of neutrinos, while nonzero contributions at higher loop
orders might emerge. Calculations beyond the one-loop
level are not within the scope of the present work, so we
concentrate in the virtual-neutrino contributions to ZZZ�.

A. The vertex ZZZ�

Consider the effective Lagrangian [72]

LZZZ
eff ¼ e

m2
Z
ð−f4ð∂μZμβÞZαð∂αZβÞ

þ f5ð∂αZαμÞZ̃μβZβÞ; ð29Þ

whose mass-dimension is 6. Then notice that the factor
ðm2

ZÞ−1, which is part of its definition, is intended to
corrects units, thus meaning that the form factors f4 and f5
are dimensionless. Moreover, the 2-tensor Zμν ¼ ∂μZν −
∂νZμ is defined, with Z̃μν ¼ 1

2
ϵμνρσZρσ its corresponding

dual tensor. The f4 Lagrangian term violates CP symmetry,
whereas the f5 term preserves it. Assume that the ZZZ�
vertex is part of an s-channel diagram contributing to
Z-boson pair production through a positron-electron colli-
sion. Recall that the symbol Z� indicates that this Z boson is
off the mass shell. In order to derive the vertex function
corresponding to LZZZ

eff , we follow the conventions

ð30Þ

where the ZZZ� vertex is displayed. Keep in mind that the
determination of the vertex function is carried out under
the assumption that two Z bosons are on shell, whereas the
third one, with momentum p ¼ q1 þ q2, is off shell. So,
while q21¼m2

Z and q22¼m2
Z, we denote p

2¼s¼ðq1þq2Þ2.
BS must be taken into account for the vertex function to be
correctly determined. The vertex function is given, under
such circumstances, by
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ΓZZZ�
αβμ ¼ if4

m2
Z
ððs −m2

ZÞðpαgβμ þ pβgαμÞ

þ pμðm2
Zgαβ − 2pαpβÞÞ

−
if5
m2

Z
ððs −m2

ZÞϵμαβρðqρ1 − qρ2Þ

− pμϵαβλρpλpρÞ: ð31Þ

Note that any term in Eq. (31) involve either the factor
s −m2

Z or the 4-momentum component pμ, which in turn
implies that the whole contribution vanishes if the three
external Z bosons are taken on shell, as both s ¼ m2

Z and
the transversality condition pμϵ

μðpÞ ¼ 0, with ϵμðpÞ the
polarization 4-vector, hold in such a context. Let us assume
that this vertex connects with a conserved current jμ, so that
pμjμ ¼ 0 is valid as long as initial-state electron-positron
masses are neglected. This assumption is customarily used
[33]. This then leaves us with

ΓZZZ�
αβμ ¼ iðs −m2

ZÞ
m2

Z
ðf4ðpαgβμ þ pβgαμÞ

− f5ϵμαβρðqρ1 − qρ2ÞÞ: ð32Þ

which is the well-known Lorentz-covariant parametrization
of this vertex [28,32]. As we commented before, the form
factor f4 quantifies CP-odd effects. CP-symmetry non-
preservation bears great relevance, not only because it is
interesting by itself, but also because this phenomenon is,
according to Sakharov criteria [73], a requirement for the
observed baryon asymmetry to be explained. Since not
enough CP violation is provided by the SM, the presence
and exploration of sources of this phenomenon is quite
appealing.

B. One-loop analytical contributions

Throughout this subsection, the analytical calculation of
one-loop contributions to ZZZ� from the neutrino model
discussed in Sec. II is performed. At one loop, all the
contributing Feynman diagrams involve virtual neutrinos,
which combine into closed fermion loops. The necessary
Feynman rules to assemble the contributing ZZZ� diagrams
follow from the NC Lagrangian term LZ

NC, displayed in
Eq. (22). In what follows, neutrino fields, light ones
and heavy ones as well, are generically denoted by ni,
where n1 ¼ ν1, n2 ¼ ν2, n3 ¼ ν3, n4 ¼ N1, n5 ¼ N2, and
n6 ¼ N3. We conveniently express any term of LZ

NC as

LZnknj ¼ −iZμnkΓ
μ
kjnj; ð33Þ

so LZ
NC ¼ P

6
k¼1

P
6
j¼1 LZnknj . By looking at these equa-

tions, note that couplings of the Z boson to neutrino pairs
mix neutrino fields, both light and heavy, so vertices Znn
change neutrino type.

The neutrino model under consideration comes along
with the assumption that all the neutrinos are characterized
by Majorana fields. Differences between the Dirac and
Majorana descriptions manifest at the level of Feynman
diagrams, as the Feynman rules used in these two scenarios
differ fromeach other.Auseful discussion onFeynman rules
in the presence of Majorana fields is given in Ref. [74]. In
particular, the number of diagrams contributing to a given
physical process or observable is usually larger if neutrinos
are Majorana, in comparison with the Dirac treatment.
Consider the Feynman diagrams shown in Fig. 1, which
constitute a subset of the complete collection of contributing
diagrams. To determine these contributing diagrams, use has
beenmade of theWick’s theorem [75]. Even though fermion
number is not preserved by Majorana neutrinos, arrows on
fermion lines have been added, which represent a reference
flux direction, as suggested in Ref. [74]. Curved arrows
lying within loops, off fermion lines, are used to denote the
type of vertex Znn which has to be used to write down the
analytic expression of the diagram. These arrows point in
either the same or in the opposite direction of the reference
flux. If the directions coincide, the vertex Znn is the one
directly obtained from the Lagrangian, which, in accordance
with Eq. (33), is given as

ð34Þ

FIG. 1. A subset of all the Feynman diagrams contributing to
ZZZ� at the one-loop level. The determination of all the missing
diagrams is achieved by implementing BS to each of the diagrams
shown in this figure.
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According to Wick’s theorem, among the curved arrows in
the diagrams of Fig. 1, at most one can point oppositely to
the reference neutrino flux. Vertices Znn with a curved
arrow pointing in the opposite direction of the reference
fermion flux are given by

ð35Þ

whereΓμT
jk is the transpose ofΓμ

jk. To complete the set of one-
loop diagramsZZZ�, BSmust be implemented to each of the
diagrams of Fig. 1, which yields a total of 24 contributing
generic diagrams.
The amplitude to calculate is given by

ieΓν
αβμ ¼

X6
i¼1

X6
j¼1

X6
k¼1

ieΓijk
αβμ; ð36Þ

with the partial-amplitude contribution ieΓijk
αβμ diagram-

matically expressed as

ð37Þ

The superficial degree of divergence of any of the con-
tributing diagrams explicitly shown in Eq. (37), as well as
of those obtained from BS, is 1, so any of them might bear
UV divergences. Keep in mind, however, that, in view of
the absence of a coupling ZZZ at the tree level, the total
contribution Γν

αβμ is expected to be UV finite. In order to
give these latent divergences in the amplitude a proper
treatment, we use the method of dimensional regularization
[76,77], so the amplitude is set in D spacetime dimensions
withD a complex number such thatD → 4. In this context,R

d4k
ð2πÞ4 is replaced by μ4−D

R
dDk
ð2πÞD ¼ i

ð4πÞ2
ð2πμÞ4−D

iπ2
R
dDk,

in loop integrals, where μ is the renormalization scale.
The algebraic procedure to calculate the amplitude is
executed by following the tensor-reduction method
[78,79], which we implement through the software tools

FeynCalc [80–82] and Package-X [83]. After data processing,
we get a vertex-function partial contribution with Lorentz-
covariant structure

Γijk
αβμ ¼ ηijk1 ðpαgβμ þ pβgαμÞ þ ηijk2 ðqρ1 − qρ2Þtrfγμγβγαγργ5g

þ ηijk3 ðqσ1 − qσ2Þpρðtrfγμγαγργσγ5gq1β
− trfγμγβγργσγ5gq2αÞ; ð38Þ

where pμ terms have been disregarded, in conformity with

the discussion of Sec. II. Here, the factors ηijk1 , ηijk2 , and ηijk3
are functions on neutrino masses mnj , the Z-boson mass
mZ, and s ¼ p2. They are given in terms of 1-point,
2-point, and 3-point Passarino-Veltman scalar functions,
which are defined as [78,84]

A0ðm2
0Þ ¼

ð2πμÞ4−D
iπ2

Z
dDk

1

k2 −m2
0

; ð39Þ

B0ðp2
1; m

2
0; m

2
1Þ ¼

ð2πμÞ4−D
iπ2

Z
dDk

1

ðk2 −m2
0Þððkþ p1Þ2 −m2

1Þ
; ð40Þ

C0ðp2
1; ðp1 − p2Þ2; p2

2; m
2
0; m

2
1; m

2
2Þ ¼

ð2πμÞ4−D
iπ2

Z
dDk

1

ðk2 −m2
0Þððkþ p1Þ2 −m2

1Þððkþ p2Þ2 −m2
2Þ
: ð41Þ

The factors ηijkX , with X ¼ 1, 2, 3, depend, in particular,
on scalar functions A0ðmnjÞ, B0ðm2

Z;m
2
nj ; m

2
nkÞ,

B0ðs;m2
nj ; m

2
nkÞ, and C0ðm2

Z;m
2
Z; s;m

2
nj ; m

2
nk ; m

2
niÞ, with

all the scalar functions involving all possible combinations
of neutrino masses mnj; mnk ; mni in their arguments.

Dimensional regularization is the approach most com-
monly used to tackle UV-divergent loop integrals, as this
scheme is suitable for software implementation. Moreover,
preservation of gauge invariance is customarily argued to
be an appealing feature of this regularization method.
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Nonetheless, problems may arise when calculations involve
the chirality matrix γ5, which is incompatible with dimen-
sional regularization, as it has been nicely discussed in
Ref. [85]. In fact, this incompatibility can generate spurious
anomalous contributions, potentially able to spoil Ward
identities. Paths to deal with dimensionally-regularized
chiral amplitudes have been proposed. In the naive dimen-
sional regularization the γ5 is assumed to fulfill fγμ; γ5g ¼ 0,
where γμ is any of theD gammamatrices. In contraposition,
the ‘t Hooft-Veltman approach [77] works under the
assumption that the chirality matrix anticommutes with
γ0, γ1, γ2, γ3, but commutes with the remaining D − 4
Dirac matrices. Variants of the ‘t Hooft-Veltman way can
also be found [86–89]. Amain issue of the occurrence of the
chirality matrix in calculations executed in the dimensional
regularization approach are traces trfγμγνγργλγ5g, which are
inconsistently set to 0 when working in the framework of
naive dimensional regularization. In ’t Hooft-Veltman-like
treatments, these traces are nonzero, but illegitimate terms,
such as the aforementioned fake anomalies, might emerge.
Therefore, calculations of amplitudeswhich involve this sort
of traces must beworked out carefully. With the objective of
sensibly dealing with this issue, we have left such traces
unevaluated, as it can be seen in Eq. (38). According to this
equation, this sort of traces play a role in the partial
amplitude contribution Γijk

αβμ, being part of the terms with

factors ηijk2 and ηijk3 .
Any contribution ηijkX , in Eq. (38), can be expressed as

ηijkX ¼
X
a

η̃aA
ðaÞ
0 þ

X
b

η̂bB
ðbÞ
0 þ

X
c

ηcC
ðcÞ
0 ; ð42Þ

where AðaÞ
0 , BðbÞ

0 , and CðcÞ
0 generically denote the different

1-point, 2-point, and 3-point Passarino-Veltman scalar
functions featured in the contributions. Each sum in each

term of this equation runs over the scalar functions AðaÞ
0 ,

BðbÞ
0 , or CðcÞ

0 found in the factor. The purpose of this
equation is then to sketch the structure of these coefficients,
with respect to their Passarino-Veltman scalar-functions
dependence. Equation (41) shows that the superficial
degree of divergence of 3-point scalar functions is −2
for D ¼ 4, so the C0’s are finite in the UV sense. On the
other hand, inspection of the definitions given in Eqs. (39)
and (40) leads to the conclusion that 1-point and 2-point
Passarino-Veltman scalar functions are UV divergent. In
fact, these functions can be written, in general, as A0ðm2Þ ¼
mðΔdiv: þ log μ2Þ þ Afin:

0 and B0 ¼ Δdiv: þ log μ2 þ Bfin:
0 ,

where m is some mass, Δdiv: is a factor which diverges
asD → 4, and Afin:

0 , Bfin:
0 are both finite contributions in the

limit asD → 4. Note that the divergent factorΔdiv: is shared
by all the 1-point and 2-point scalar functions, no matter
which their momentum and mass arguments are, so a
cancellation of divergences may happen. It turns out that

this indeed the case, so all the factors ηijkX are free of UV
divergences. Therefore, the limit D → 4 can be taken and
the remaining traces in Eq. (38) can be straightforwardly
evaluated. For starters, we have trfγμγβγαγργ5g¼−4iϵμρσλ.
Furthermore, with the aid of the Schouten identity
[90], we find that ðqσ1−qρ2Þpρðtrfγμγαγργσγ5gq1β −
trfγμγβγργσγ5gq2αÞ¼−4iϵμαβρðqρ1−qρ2Þs, which allows us
to cast Eq. (38) into the parametrization given in Eq. (32),
once pμ terms are neglected and transversality conditions
implemented. Then, the identifications

f4 ¼
−im2

Z

s −m2
Z

X6
i¼1

X6
j¼1

X6
k¼1

ηijk1 ; ð43Þ

f5 ¼
−4m2

Z

s −m2
Z

X6
i¼1

X6
j¼1

X6
k¼1

ðηijk2 − sηijk3 Þ; ð44Þ

of the CP-odd form factor f4 and the CP-even form factor
f5, is directly made, in accordance with the ZZZ� para-
metrization shown in Eq. (32).

IV. ESTIMATIONS AND DISCUSSION
OF RESULTS

The main objective of the present section is the estima-
tion and analysis of the one-loop contributions from
Majorana neutrinos, defined within the framework of
Ref. [27], to the form factors characterizing the vertex
ZZZ�. The one-loop SM contribution to this neutral triple
gauge vertex was calculated a couple decades ago in
Refs. [32,34]. Such calculations where shown to contribute
to the CP-even form factor f5, whereas CP-nonpreserving
contributions, associated to f4, were found to be absent. In
these works, contributions were analyzed for different
values of

ffiffiffi
s

p ¼
ffiffiffiffiffi
p2

p
, showing that the SM yields CP-

even effects within Oð10−4Þ −Oð10−3Þ. BSM physics has
also been considered as a source of ZZZ� contributions. In
fact, the same Refs. [32,34] deal with contributions from
the minimal supersymmetric SM. Moreover, SM exten-
sions with two Higgs doublets defined the scenarios
considered by the authors of Refs. [33,36] to calculate
contributions to CP violation in ZZZ�. As another instance,
nonminimal extended scalar sectors, featuring several
Higgs multiplets characterized by nondiagonal couplings
of the Z boson to charged Higgs fields, were explored by
the authors of Ref. [40], who aimed at the generation of
CP-odd contributions to ZZZ�. In Ref. [37], little-Higgs
models were the framework within which the ZZZ� vertex
was calculated at one loop. The model-independent
approach provided by the formalism of effective
Lagrangians [91–94] can be used to address BSM physics
by assuming the underlying new-physics formulation to
govern nature at an energy scale lying far away from the
electroweak scale. Investigations of the neutral TGC ZZZ,
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carried out in Refs. [35,39,95], have profited from such a
general formalism.
Processes occurring in electron-positron colliders

include eþe− → ZZ, in which the neutral TCG ZZZ�
participates though s-channel loop diagrams with a virtual
Z boson produced by the initial-state electron-positron pair.
The Large Electron-Positron Collider, better known as LEP,
is the most powerful eþe− colliding machine ever been
built. Even though the LEP ceased to operate since 2000, a
subsequent high-precision analysis of TGCs from data
collected at a CME ranging within 130 GeV–209 GeV,
taken by the LEP’s four detectors, ALEPH, DELPHI, L3,
and OPAL, was carried out in Ref. [96]. This study reported
agreement with SM expectations, while it reached com-
bined upper limits, of order 10−1, on both ZZZ form factors
f4 and f5. The construction of more powerful eþe−
colliders, aimed at higher-precision studies, are part
of the experimental agenda. Among the anticipated next-
generation colliders of this kind, we have the International
Linear Collider [43,44] (ILC), the CERN Compact Linear
Collider [97], and the Circular Electron-Positron Collider
[98]. While a number of estimations on the sensitivity of
next-generation electron-positron colliders to the TGCs
WWγ and WWZ are available [43,99–101], not much has
been said regarding the sensitivity of such kind of machines
to neutral gauge couplings. In Ref. [46], Z-boson polari-
zation asymmetries in the processes eþe− → ZZ and
eþe− → Zγ were considered in order to address sensitivity
of some future eþe− collider to neutral TCGs. The authors
of that paper arrived at the conclusion that a next-gen-
eration electron-positron collider working at CME of
500 GeV and with an integrated luminosity of 100 fb−1

would be able to establish upper limits of order ∼10−3 on
all neutral TGCs. Hadron colliders have been also used to
probe neutral TGCs. The D0 experiment, at the Fermilab
Tevaron Collider, was able to give bounds as restrictive as
∼10−1 on the ZZZ and ZZγ couplings by using data taken
from pp̄ collisions at a CME of 1.96 TeV [102].
Nonetheless, the nowadays best limits on the ZZZ coupling
have been given by the CMS Collaboration, of the Large
Hadron Collider, which established, in Ref. [103], the
bounds

−6.6 × 10−4 < f4 < 6.0 × 10−4; ð45Þ

−5.5 × 10−4 < f5 < 7.5 × 10−4; ð46Þ

which were determined from data on pp collisions at a
CME of 13 TeV, with an integrated luminosity of 137 fb−1.
Great relevance is bore by these limits, as they are of the
same order as the SM prediction [32,34].
Recall Eq. (24), which defines the 3 × 3 matrix ξ, and

then note that this matrix is complex and quite general, only
restricted by the conditions jξjkj < 1, fulfilled by all its
components. For the sake of practicality, aiming at an

estimation of the ZZZ� contributions whose analytical
calculation was discussed throughout Sec. III, we follow
Ref. [69], where this matrix was expressed as

ξ ¼ ρ̂X: ð47Þ

Here, ρ̂ is a real and positive number which equals the
modulus of the entry ξjk with the largest magnitude. In this
context, the constraint ρ̂ < 1 holds. Furthermore, X is a
3 × 3 complex matrix whose largest entry has modulus 1.
The matrix C, previously given in terms of ξ in Eq. (28), is
thus written as

C ≃
�

13 − ρ̂2XX† ρ̂Xð13 − ρ̂2X†XÞ
ρ̂ð13 − ρ̂2X†XÞX† ρ̂2X†X

�
: ð48Þ

The investigation performed in Ref. [69], which featured
the authors of the present paper, explored the contributions
fromMajorana neutrinos to the vertexWWγ, at one loop. In
that work, the values ρ̂ ¼ 0.58 and ρ̂ ¼ 0.65 were found to
allow for contributions barely within ILC expected sensi-
tivity at a CME of

ffiffiffi
s

p ¼ 800 GeV. Taking that work as a
reference, in what follows the value ρ̂ ¼ 0.65 is used for the
estimations and analyses of the present paper. At this point,
it should be mentioned that the CMS Collaboration carried
out a remarkable model-independent analysis of heavy-
neutrino masses in which upper limits on jBeNk

j2 and
jBμNk

j2, defined by us in Eqs. (10) and (11), were
determined for different values of some heavy-neutrino
mass mNk

[104]. The results of that paper are displayed in
graphs plotted in the parameter spaces ðmNk

; jBeNk
j2Þ and

ðmNk
; jBμNk

j2Þ. According to the jBeNk
j2 graph, the afore-

mentioned value ρ̂ ¼ 0.65 is consistent with masses
mNk

≳ 850 GeV, whereas the jBμNk
j2 graph allows for this

ρ̂ value if mNk
≳ 1000 GeV holds.

We find it worth emphasizing that one-loop contribu-
tions to f4 and f5 from virtual neutrinos are always
complex valued. To understand this statement, note first
that any vertex in any diagram of Fig. 1 connects a Z-boson
line with a couple of loop neutrino lines. Whenever, for
some j and k, the condition mZ > mnj þmnk , among the
masses of the field lines involved in a vertex, hold, the
resulting analytic expression for the Feynman diagram
turns out to be complex valued. And the same goes for any
vertex with a virtual Z-boson line as long as

ffiffiffi
s

p
> mnj þ

mnk is fulfilled. On the contrary, if all the vertices in some
contributing diagram are such that mZ < mnj þmnk andffiffiffi
s

p
< mnj þmnk , whichever j and k are, the resulting

analytic expression is real. Then observe that the multiple
sums given in Eqs. (43) and (44) always come along with
diagrams involving vertices Zνjνk, coupling a Z boson field
with two light neutrinos, in which case mZ > mνj þmνk

happens, thus yielding imaginary-part contributions.
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A. CP-odd contributions

We start our discussion by considering theCP-odd ZZZ�
contributions, quantified by the form factor f4. We split
each neutrino sum as

P
6
j¼1 ¼

P
νj
þP

Nj
, where νj runs

over light-neutrino fields ν1, ν2, ν3, whereas Nj does it over
the three heavy-neutrino fields N1, N2, N3. Then, the triple
sum in Eq. (43) is written as

X6
i¼1

X6
j¼1

X6
k¼1

¼
X
νi;νj;νk

þ
X

νi;νj;Nk

þ
X

νi;Nj;νk

þ
X

Ni;νj;νk

þ
X

Ni;Nj;νk

þ
X

Ni;νj;Nk

þ
X

νi;Nj;Nk

þ
X

Ni;Nj;Nk

: ð49Þ

We have verified that taking, in a contributing diagram,
the three virtual-neutrino masses the same, that is mni ¼
mnj ¼ mnk , renders the corresponding contribution to f4
zero. This means that CP-odd contributions from diagrams
involving only light neutrinos are expected to be quite
suppressed, and the same goes for diagrams in which only
heavy neutrinos participate, for the neutrino model under
consideration requires the spectrum of heavy-neutrino
masses to be quasidegenerate [27]. In this context, any

CP-odd significant contribution is expected to emerge from
diagrams in which both light and heavy neutrinos partici-
pate, so terms in f4 with triple sums

P
νi

P
νj

P
νk

andP
Ni

P
Nj

P
Nk

are from here on disregarded.
We have found that the occurrence of the CP-odd

contribution, f4, requires the matrix ξ to be complex,
while such an effect vanishes if this matrix is real or
imaginary. Therefore, as inferred from Eq. (47), the matrix
X must be complex, with ReðXÞ ≠ 0 and ImðXÞ ≠ 0.
Taking a pragmatic approach, we use X ¼ eiϕ · 13. Even
though this form of X is by no means a general texture, it
allows us to get an estimation of the CP-violating con-
tributions while avoiding a large number of unknown
parameters. Nonetheless, let us emphatically point out that
we have tried matrix textures other than 13, but found no
significant variations in our numerical estimations. Now
we take the approximation that mν1 ≈ml, mν2 ≈ml,
mν3 ≈ml, with l labeling “light.” Furthermore, in accor-
dance with Ref. [27], the heavy-neutrino mass spectrum is
restricted to be quasidegenerate, so mN1

≈mh, mN2
≈mh,

and mN3
≈mh are assumed, where h stands for “heavy.”

In this context, the CP-odd form-factor contribution f4 is
expressed as

f4 ≈
9αmlmhρ̂

2ðρ̂2 − 1Þ2 sin 2ϕ
πsðs −m2

ZÞðs − 4m2
ZÞsin32θW

�
2m2

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

l − 2ðm2
h þ sÞm2

l þ ðm2
h − sÞ2

q
ð2ρ̂2 − 1Þ log

�
gðs;m2

l; m
2
hÞ

mlmh

	

− 2m2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

lÞ
q �

ðρ̂2 − 1Þ log
�
gðs;m2

l; m
2
lÞ

m2
l

	
þ ρ̂2 log

�
gðs;m2

h; m
2
hÞ

m2
h

	�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

l − 2ðm2
h þm2

ZÞm2
l þ ðm2

h −m2
ZÞ2

q
ð2m2

Z − sÞð2ρ̂2 − 1Þ log
�
gðm2

Z;m
2
l; m

2
hÞ

mlmh

	

þ 2mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z − 4m2
l

q
ð2m2

Z − sÞ
�
ðρ̂2 − 1Þ log

�
gðm2

Z;m
2
l; m

2
lÞ

m2
l

	
þ ρ̂2 log

�
gðm2

Z;m
2
h;m

2
hÞ

m2
h

	�

−
ð4m4

Z − 5m2
Zsþ s2Þðð2ρ̂2 − 1Þðm2

l −m2
hÞ þ 2m2

ZÞ
s − 4m2

Z
log

�
m2

l

m2
h

	

þm2
Zsð2m2

l − 2m2
h þ 2m2

Z − sÞðρ̂2 − 1ÞCðl;h;lÞ
0 −m2

Zð2m2
Z − sÞð2m2

l − 2m2
h þ sÞðρ̂2 − 1ÞCðh;l;lÞ

0

þm2
Zsð−2m2

l þ 2m2
h þ 2m2

Z − sÞρ̂2Cðh;l;hÞ
0 −m2

Zð2m2
Z − sÞð−2m2

l þ 2m2
h þ sÞρ̂2Cðh;h;lÞ

0



; ð50Þ

where

gðm2;m2
1;m

2
2Þ¼

1

2

�
m2

1þm2
2−m2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

1−2m2
1ðm2þm2

2Þþðm2
2−m2Þ2

q �

ð51Þ

has been defined. Moreover, α is the fine structure constant.
We have also used the notation

Cðn1;n2;n3Þ
0 ¼ C0ðm2

Z;m
2
Z; s; m

2
n1 ; m

2
n2 ; m

2
n3Þ; ð52Þ

for 3-point scalar functions, with the sole purpose of getting
a more compact expression. To write down Eq. (50), the
1-point and 2-point scalar functions, the A0’s and the B0’s,
have been solved explicitly. In the process, all UV
divergences have been canceled and the limit as D → 4
has been taken. While 3-point functions C0 remain in-
dicated in this equation, keep in mind that they are UV
finite. Note that the whole expression for f4 is proportional
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to sin 2ϕ, with ϕ the phase earlier introduced in the
considered texture for the matrix X. Then, Eq. (50)
illustrates how rendering the X matrix real or imaginary,
by taking ϕ ¼ 0; π

2
; π; 3π

4
, yields the complete elimination of

f4. On the other hand, optimal values for this phase, in the
sense that they do not introduce any suppression to the
contribution f4, are ϕ ¼ π

4
; 3π
4
; 5π
4
; 7π
4
, since in such cases

sin 2ϕ ¼ �1.
As we just discussed, a few paragraphs ago, f4 is a

complex quantity. In this context, we consider, for our
forthcoming discussion, the modulus jf4j. We refer the
reader to the graph in Fig. 2, which displays disjoint regions
corresponding to different values of jf4j, plotted in the
ðmh;

ffiffiffi
s

p Þ parameter space. Considered values of the heavy-
neutrino massmh and the CME

ffiffiffi
s

p
range within 10 GeV ≤

mh ≤ 1500 GeV and 10 GeV ≤
ffiffiffi
s

p
≤ 1500 GeV. The

CP-violation phase ϕ ¼ π
4
has been taken because this

pick yields optimal contributions, so the values reported
here should be rather understood as upper bounds in the
sense that different choices for the CP phase ϕ would
introduce a suppression on the f4 contribution. The jf4j
values plotted in Fig. 2 are given in base 10 logarithmic

scale, so that this graph allows one to better appreciate the
orders of magnitude of the contributions corresponding to
each one of the regions shown. The color scheme of the
graph has been set in such a way that the lighter the tone of
the region, the larger the jf4j contribution, which is
indicated by the labeling bar below the graph. The lightest
tone comprehends contributions of order ≳10−5. With this
mind, notice that the largest contributions to jf4j gather
within the region defined by 10 GeV≲mN ≲ 250 GeV
and 10 GeV≲ ffiffiffi

s
p ≲ 400 GeV, though be aware that most

of this region corresponds to a CME
ffiffiffi
s

p
below the Z-pair

production threshold, which has been indicated in the graph
of Fig. 2 by a horizontal dashed line at

ffiffiffi
s

p ¼ 2mZ.
A vertical dashed line, at mh ¼ 850 GeV, has also been
added to the graph to specify which values of the heavy-
neutrino mass are in conformity with the value ρ̂ ¼ 0.65,
considered for our estimations. With this in mind, notice
that the relevant region within the graph of Fig. 2 is the
upper-right one, beyond these dashed lines.
A complementary viewpoint is provided by the graphs of

Fig. 3. The upper graph of this figure shows plots of jf4j, in
base 10 logarithmic scale, with respect to the heavy-neutrino
massmh, for a variety of fixed values of

ffiffiffi
s

p
. In this graph,mh

ranges from 10 to 1500 GeV, whereas for the CME
ffiffiffi
s

p
the

following values were considered:
ffiffiffi
s

p ¼ 183 GeV, which
corresponds to the solid curve;

ffiffiffi
s

p ¼ 500 GeV, represented
by the dashed plot;

ffiffiffi
s

p ¼ 900 GeV, used to get the dot-
dashed curve; and

ffiffiffi
s

p ¼ 1200 GeV, for the dotted curve.
Furthermore, a vertical solid straight line has been added to
represent the valuemh ¼ mZ, at which jf4j has a maximum
no matter what the value of

ffiffiffi
s

p
is. Besides this maximum-

valued jf4j contribution, each curve displays another local
maximum, which varies depending on

ffiffiffi
s

p
. Note, however,

that suchmaximaof jf4j do not necessarily correspond to the
relevant largest contributions. For instance, the CMEffiffiffi
s

p ¼ 183 GeV, just next to the Z-pair production thresh-
old, was explored for illustrative purposes and because,
according to Fig. 2, values close to

ffiffiffi
s

p ¼ 2mZ yield the
largest contributions to jf4j, for certain heavy-neutrinomass
values. In fact, for

ffiffiffi
s

p ¼ 183 GeV a contribution of order
10−4, of the same order of magnitude as current LHC limits
on f4 [103], is produced at mN ¼ mZ. However, keep in
mind that the results reported in Ref. [104] do not allow for a
heavy-neutrino mass so small, due to our choice of the ρ̂
parameter. The second maximum for this curve also corre-
sponds to a heavy-neutrino mass value mh < 850 GeV.
Within the allowed-mh region, on the other hand, this
curve reaches its maximum contribution precisely at
mh ¼ 850 GeV, which is Oð10−8Þ. The set of relevant
maxima for the curves in the upper graph of Fig. 3, for
mh ≥ 850 GeV, is shown in Table I, where the possibility of
having CP-odd contributions as large as Oð10−7Þ can be
appreciated. Such largest contributions correspond to the
largest CMEs considered for the graph. At

ffiffiffi
s

p ¼ 500 GeV

FIG. 2. Majorana-neutrino contributions to log10 jf4j in the
region defined by 10 GeV ≤ mh ≤ 1500 GeV and 10 GeV ≤ffiffiffi
s

p
≤ 1500 GeV, within the parameter space ðmh;

ffiffiffi
s

p Þ. The
horizontal dashed line, at

ffiffiffi
s

p ¼ 2mZ, represents the threshold
for production of Z pairs by eþe− → ZZ. The dashed vertical line
indicates the heavy-neutrino mass value mh ¼ 850 GeV, beyond
which our choice ρ̂ ¼ 0.65 is consistent, in accordance with
Ref. [104].
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(dashed curve), the relevant maxima, corresponding to
mh ¼ 850 GeV, is Oð10−8Þ, which lies about 5 orders of
magnitude below the expected experimental sensitivity
estimated in Ref. [46] for ILC at the same CME.
The lower graph of Fig. 3 displays the jf4j contribution

for five selected fixed values of heavy-neutrino massmh, as
a function on the CME

ffiffiffi
s

p
, which has been varied within

10 GeV ≤
ffiffiffi
s

p
≤ 1500 GeV. Again, this graph is given in

base 10 logarithmic scale. Regarding our choice of heavy-
neutrino masses, we used: mh ¼ mZ to get the solid plot;
the long-dashes curve was carried out by usage of
mh ¼ 2mZ; the heavy-neutrino mass value mh ¼
900 GeV yielded the short-dashes plot; for the dot-dashed
curve, mh ¼ 1200 GeV has been utilized; and mh ¼
1400 GeV corresponds to the dotted plot. The curves
corresponding to mh ¼ mZ and mh ¼ 2mZ have been
included for the sole purpose of illustration, as such
heavy-neutrino masses are not consistent with ρ̂ ¼ 0.65,
used for our estimations. The graph also includes two
vertical lines, of which the solid one refers to the threshold
for Z-pair production, at

ffiffiffi
s

p ¼ 2mZ. The vertical
dashed line, on the other hand, represents the CMEffiffiffi
s

p ¼ 500 GeV, used in Ref. [46] to estimate sensitivity
of ILC to neutral TGCs. The maxima associated to the jf4j
contributions for the aforementionedmh choices, as well as
the heavy-neutrino masses yielding such maxima, are
displayed in Table II. At

ffiffiffi
s

p ¼ 500 GeV, the curve given
by the choice mh ¼ 900 GeV dominates, though notice
that larger masses play the main role at higher CMSs,
where contributions of order 10−7 are generated.

B. CP-even contributions

By contrast with the contribution f4, discussed in the
previous subsection, the CP-preserving contribution f5
does not require the matrix X to be complex in order be
nonzero. As we did before, for f4, we take the approx-
imations mνk ≈ml and mNk

≈mh, for all k ¼ 1, 2, 3, in
which case we are led to the expression

f5 ≈
9α

2πsðs −m2
ZÞðs − 4m2

ZÞ2sin32θW

�
ξ1 log

�
gðm2

Z;m
2
h; m

2
hÞ

m2
h

	
þ ξ2 log

�
gðs;m2

h; m
2
hÞ

m2
h

	
þ ξ3 log

�
m2

l

m2
h

	

þ ξ4 log

�
gðm2

Z;m
2
l; m

2
hÞ

mlmh

	
þ ξ5 log

�
gðs;m2

l; m
2
hÞ

mlmh

	
þ ξ6 log

�
gðm2

Z;m
2
l; m

2
lÞ

m2
l

	
þ ξ7 log

�
gðs;m2

l; m
2
lÞ

m2
l

	

þ ξ8C
ðl;l;lÞ
0 þ ξ9C

ðh;h;hÞ
0 þ ξ10C

ðh;l;hÞ
0 þ ξ11C

ðh;h;lÞ
0 þ ξ12C

ðl;h;lÞ
0 þ ξ13C

ðh;l;lÞ
0 þ ξ14



: ð53Þ

FIG. 3. Upper graph: contributions from Majorana neutrinos to
log10 jf4j, as a function on the heavy-neutrino mass mh, for fixed
CME values, with the vertical dashed line representing the heavy-
neutrino mass value mh ¼ 850 GeV. Lower graph: contributions
from Majorana neutrinos to log10 jf4j, as a function on the CMEffiffiffi
s

p
, for fixed values of the heavy-neutrino mass, with the vertical

solid line representing the Z-pair production threshold and the
vertical dashed line indicating the value

ffiffiffi
s

p ¼ 500 GeV.

TABLE I. Maximum values of the jf4j contribution for the
curves shown in the upper graph of Fig. 3, with the heavy
neutrino mass constrained as mh ≥ 850 GeV, as dictated by
Ref. [104].
ffiffiffi
s

p
[GeV] mh [GeV] jf4jmax

183 850 6.46 × 10−8

500 850 6.62 × 10−8

900 850 2.71 × 10−7

900 898.92 3.60 × 10−7

1200 850 9.54 × 10−8

1200 1198.94 1.86 × 10−7
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This equation displays the expression of f5, once the
1-point and the 2-point Passarino-Veltman scalar functions
have been solved, all UV divergencies have been elimi-
nated, and the limit as D → 4 has been taken. The
expression of the f5 contribution is lengthy, so we present
it in a concise manner, in terms of coefficients ξn, which
appear in each term of the equation. The explicit definitions
of the coefficients ξn can be found in the Appendix. These
quantities depend on the mass of the Z boson and on the
neutrino masses,ml andmh, as well. The squared CME s is
also a variable determining the ξn coefficients. Finally, note
that the ξn’s are also functions on the parameter ρ̂ and on
the phase ϕ. Note that the ϕ-phase dependence does not
factorize in f5, as opposite to the CP-odd contribution f4,
Eq. (50). Moreover, notice that usage of the value ϕ ¼ 0,
which renders X real, does not eliminate the CP-even
contribution, that is, f5jϕ¼0 ≠ 0.
For our upcoming discussion, we fix the complex phase

by ϕ ¼ π
4
, which previously yielded an optimal CP-

nonconserving contribution f4. This choice has the effect
of eliminating a few f5 terms, as they involve the factor
cos 2ϕ. A panorama of the resulting CP-even contribution
f5, in the ðmh;

ffiffiffi
s

p Þ parameter space, is given by the graph
in Fig. 4, which has been effectuated within the region
defined by 10 GeV ≤ mh ≤ 1500 GeV and 10 GeV ≤ffiffiffi
s

p
≤ 1500 GeV. Again, the norm jf5j has been used.

Furthermore, the graph has been plotted in base 10
logarithmic scale, so the different regions comprising it
are colored in accordance with the sizes of log10 jf5j, which
depict orders of magnitude of the contributions correspond-
ing to the different points of the parameter space. A labeling
bar, beneath the graph, has been added to Fig. 4 for
reference. It shows that lighter tones correspond to larger
jf5j, with the largest contributions lying around the
Z-boson pole

ffiffiffi
s

p ¼ mZ. Nevertheless, such sizable con-
tributions are within a region in which the CME is below
the threshold for Z-boson pair production. Such a threshold
has been represented in the graph by a dashed horizontal
line, at

ffiffiffi
s

p ¼ 2mZ. This region has to be disregarded from
our discussion, as it plays no role in the physical process
under consideration. The vertical straight dashed line, at
mh ¼ 850 GeV, shows the smallest value of the heavy-
neutrino mass mh which is compatible with ρ̂ ¼ 0.65, as
established by Ref. [104]. Then notice that the region

corresponding to mh ≤ 850 GeV has to be overlooked as
well. The resulting relevant region in the ðmh;

ffiffiffi
s

p Þ plane
turns out to be the one beyond both the Z-pair production
threshold and mh ≥ 850 GeV.
The Majorana-neutrinos contribution to f5 is illustrated

by the graphs displayed in Fig. 5, in which either mh or
ffiffiffi
s

p
is fixed at selected values. The upper graph of this figure
shows the behavior of the modulus jf5j, for fixed CME

ffiffiffi
s

p
values, as a function on the heavy-neutrino mass mh. Here,ffiffiffi
s

p ¼ 183 GeV, just next to the Z-pair production thresh-
old, is represented by the solid plot, whereas the dashed
curve corresponds to a CME

ffiffiffi
s

p ¼ 500 GeV. The dot-
dashed and the dotted curves stand for

ffiffiffi
s

p ¼ 900 GeV andffiffiffi
s

p ¼ 1200 GeV, respectively. Keep in mind that all the
plots have been carried out in base 10 logarithmic scale.
A pattern, which can be observed in the region graph of
Fig. 4 but which is more clearly appreciated in the upper
graph of Fig. 5, is an attenuation of contributions as larger
CMEs

ffiffiffi
s

p
are considered. The investigation carried out in

Ref. [46] yielded an estimation of constraints, from the
ILC, on f5, at a CME of 500 GeV. The authors of that work
established the restriction −2.3×10−3≤fILC5 ≤8.8×10−3,

TABLE II. Maximum values of the jf4j contribution for the
curves shown in the lower graph of Fig. 3.

mh
ffiffiffi
s

p jf4jmax

mZ 2mZ 7.68 × 10−4

2mZ 183.48 GeV 1.04 × 10−5

900 GeV 901.08 GeV 3.59 × 10−7

1200 GeV 1201.06 GeV 1.86 × 10−7

1400 GeV 1401.05 GeV 1.30 × 10−7

FIG. 4. Majorana-neutrino contributions to log10 jf5j in the
region defined by 10 GeV ≤ mh ≤ 1200 GeV and 10 GeV ≤ffiffiffi
s

p
≤ 1500 GeV, within the parameter space ðmh;

ffiffiffi
s

p Þ. The
horizontal dashed line, at

ffiffiffi
s

p ¼ 2mZ, represents the threshold
for production of Z pairs by eþe− → ZZ. The dashed vertical line
indicates the heavy-neutrino mass value mh ¼ 850 GeV, beyond
which our choice ρ̂ ¼ 0.65 is consistent, in accordance with
Ref. [104].
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based upon which we take jfILC5 j ≤ 2.3 × 10−3 for refer-
ence. Regarding our calculation, at a CME of

ffiffiffi
s

p ¼
500 GeV the contribution (dashed plot, upper graph,
Fig. 5) varies from jf5jmin¼4.90×10−5, at mh ¼
48.53 GeV, to jf5jmax¼2.99×10−4, at mh¼461.58GeV.
Nonetheless, this curve reaches its relevant maximum value
at mh ¼ 850 GeV, with the corresponding contribution
amounting to jf5j ¼ 2.40 × 10−4. Thus, the largest con-
tribution at this choice for the CME lies about one order of
magnitude below projected ILC sensitivity. Moreover,
according to Ref. [34], the SM contribution is jfSM5 j ≈
2.34 × 10−3 at

ffiffiffi
s

p ¼ 500 GeV, so our contribution would
be also one order of magnitude below that from the SM.
Also recall that the CMS Collaboration has established an
upper bound of order 10−4 on f5 [103].
Another perspective is furnished by the lower graph of

Fig. 5, where five curves, representing the CP-conserving
contribution jf5j, have been plotted in base 10 logarithmic
scale, with each one of them determined by a fixed value of

the heavy-neutrino mass mh. To this aim, we have chosen
the following masses: the solid plot emerges from
mh ¼ mZ; the value mh ¼ 2mZ has been utilized to gen-
erate the long-dashes curve; the heavy-neutrino massmh ¼
900 GeV yielded the short-dashes curve; the dot-dashed
plot follows from the choice mh ¼ 1200 GeV; and, finally,
the heavy-neutrino mass mh ¼ 1400 GeV corresponds to
the dotted curve. Besides these mh-fixed plots, a horizontal
dashed line has been added to the graph to indicate the
estimation given by Ref. [46] of ILC sensitivity to f5. Thus,
such a line is given at jfILC5 j ¼ 2.3 × 10−3. We have also
included two vertical lines in this graph, one solid and the
other dashed. The solid vertical line represents the thresh-
old for Z-pair production, at

ffiffiffi
s

p ¼ 2mZ. Meanwhile, the
dashed vertical line represents the CME value

ffiffiffi
s

p ¼
500 GeV. Table III displays jf5j contributions, for the
variety of considered values of the heavy-neutrino mass,
near the threshold (we use

ffiffiffi
s

p ¼ 183 GeV) and at the
reference value

ffiffiffi
s

p ¼ 500 GeV, for the CME, as well. The
largest jf5j contributions, for all mh, correspond to CMEs
next to

ffiffiffi
s

p ¼ 2mZ threshold. For CMEs
ffiffiffi
s

p ≳ 500 GeV,
on the other hand, the curves corresponding to mh ¼
900; 1200; 1400 GeV seem to dominate within theffiffiffi
s

p
-range considered for the graph. Note that, as we pointed

out in the previous paragraph, the largest contributions at
this CME are smaller, by about one order of magnitude,
than projected ILC sensitivity to f5, as estimated in
Ref. [46].

V. SUMMARY AND CONCLUSIONS

Since the measurement of neutrino oscillations, which
incarnates sound evidence supporting massiveness of
neutrinos, the mechanism behind neutrino-mass generation
has become a priority in the agenda of theoretical and
experimental research. The seesaw mechanism and its
variants are means to define massive neutrinos, so the
exploration of their phenomenology bears great relevance.
Furthermore, the genuine neutrino-mass mechanism is

FIG. 5. Upper graph: contributions from Majorana neutrinos to
log10 jf5j, as a function on the heavy-neutrino mass mh, for fixed
CME values, with the vertical dashed line representing the heavy-
neutrino mass value mh ¼ 850 GeV. Lower graph: contributions
from Majorana neutrinos to log10 jf5j, as a function on the CMEffiffiffi
s

p
, for fixed values of the heavy-neutrino mass, with the vertical

solid line representing the Z-pair production threshold and the
vertical dashed line indicating the value

ffiffiffi
s

p ¼ 500 GeV.

TABLE III. Values of the jf5j contribution for the curves shown
in the lower graph of Fig. 5, at

ffiffiffi
s

p ¼ 183 GeV andffiffiffi
s

p ¼ 500 GeV.

mh
ffiffiffi
s

p
[GeV] jf5j

mz 183 5.28 × 10−3

mz 500 7.95 × 10−5

2mZ 183 2.87 × 10−3

2mZ 500 1.82 × 10−4

900 GeV 183 2.51 × 10−3

900 GeV 500 2.39 × 10−4

1200 GeV 183 2.50 × 10−3

1200 GeV 500 2.35 × 10−4

1400 GeV 183 2.50 × 10−3

1400 GeV 500 2.33 × 10−4
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linked to the nature of these particles, which, being both
electrically neutral and massive, are described by either
Dirac or Majorana fields. The present investigation has
been developed within the framework of a seesaw variant in
which light neutrinos remain massless at the tree level,
while getting their masses radiatively, which enables
avoiding huge heavy-neutrino masses, thus opening the
possibility of measuring new-physics effects within the
reach of sensitivity of future or, perhaps, even current
experimental facilities. In the context defined by the
neutrino model under consideration, the masses of the
heavy neutrinos are restricted to be quasi-degenerate to
ensure tininess of light-neutrino masses, which nowadays
abide by the stringent constraint mνk ≲ 0.8 eV.
The neutrino model considered for this work comes

along with Znjnk couplings, of the Standard-Model Z
boson with mass-eigenspinor neutrinos nj and nk, which
can be light or heavy. Therefore, one-loop contributions to
the vertex ZZZ, characterized by virtual-neutrino triangle
diagrams, exist, which we addressed in the present paper.
While absent at the tree level, the ZZZ coupling is
generated at the loop level as long as at least one of the
external Z-boson fields is assumed to be off the mass shell.
Conversely, if the three external Z bosons are taken on
shell, this coupling is rendered zero, which is a conse-
quence of Bose symmetry. With this in mind, we explored
the one-loop Majorana-neutrino contributions to ZZZ�,
where Z� denotes an off-shell virtual Z boson. This vertex
is assumed to be a part of the Z-pair production process
eþe− → ZZ, which takes place in machines such as the
currently inoperative Large Electron Positron collider and
the future International Linear Collider. The general para-
metrization of the vertex function for the ZZZ� coupling
comprises two form factors, namely, the factor f4, linked to
CP violation, and the f5 factor, which preserves CP
symmetry. On the grounds of their superficial degree of
divergence, the contributing diagrams were expected to
generate ultraviolet divergences, which called for usage of a
regularization method. To this aim, we followed the
dimensional regularization approach to deal with the
calculation, finding both the CP-even and the CP-odd
contributions, f4 and f5, from each of the involved
Feynman diagrams to be ultraviolet finite and renormali-
zation-scale independent. An aspect of the calculation,
worth of comment, is that the Majorana nature of the
neutrinos increased the number of contributing Feynman
diagrams, in comparison with those diagrams to be con-
sidered in the case of Dirac neutrinos, by a factor of 4.
The last part of the paper was devoted to estimate the

resulting contributions to the triple gauge coupling ZZZ�
and then discuss them. Our analytic results for the con-
tributions f4 and f5 are functions on neutrino masses, on
the Z-boson mass, and on the center-of-mass energyffiffiffiffiffi
p2

p
¼ ffiffiffi

s
p

, with p the momentum of the off-shell
Z boson. These contributions also bear dependence on

the 3 × 3 complex matrix mDm−1
M , emerged from the

neutrino-mass mechanism. In the case of the CP-non-
preserving contributions, given by the factor f4, they were
found to emerge as long as the matrix mDm−1

M is complex.
Otherwise, the contribution vanishes. Note that the
Standard Model does not produce such CP-violating
effects. For heavy-neutrino masses, mh, within 10 GeV ≤
mh ≤ 1500 GeV and center-of-mass energies

ffiffiffi
s

p
ranging

from 10 to 1500 GeV, the contributions to the modulus jf4j
were estimated. Taking into account that the center of mass
energy is restricted to be larger than 2mZ, the threshold
below which Z-pair production is forbidden, and imple-
menting restrictions by the CMS Collaboration on heavy-
neutrino mass, we find that contributions might be as large
as ∼10−7, which is 3 orders of magnitude below the current
best constraint, by the CMS Collaboration. Regarding the
CP-even contribution, characterized by the factor f5, in the
general parametrization of the vertex function ZZZ�, it
exists no matter whether the matrix mDm−1

M is complex.
Again, heavy-neutrino masses running within 10 GeV ≤
mh ≤ 1500 GeV and CMEs

ffiffiffi
s

p
running from 10 to

1500 GeV were considered. For reference, the one-loop
Standard-Model contribution, which is CP conserving, has
been reported to vary, with the center of mass energy, from
∼10−4 to ∼10−3. CP-even contributions from Majorana
neutrinos to jf5j were found to be larger than those which
violate CP symmetry. We estimated jf5j contributions as
large as ∼10−4, at

ffiffiffi
s

p ¼ 500 GeV, which is comparable to
current bounds by the CMS Collaboration. It is also
one order of magnitude below the Standard-Model
Contribution at

ffiffiffi
s

p ¼ 500 GeV and one order of magni-
tude smaller than projected f5-sensitivity of the
International Linear Collider at

ffiffiffi
s

p ¼ 500 GeV.
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APPENDIX: THE COEFFICIENTS ξn

The definitions of the ξn’s, utilized to write down
Eq. (53), are given below:

ξ1 ¼ −2ρ̂4mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z − 4m2
h

q �
ð4ðρ̂2 − 1Þ2m4

Z

þ 4sðρ̂2 þ 1Þ2m2
Z − 2s2ðρ̂4 þ 1ÞÞm2

h

þ 2mhmlð4m2
Z − sÞsðρ̂2 − 1Þ2 cos 2ϕ

− 4m2
lm

2
Zðm2

Z − sÞðρ̂2 − 1Þ2

−m2
Zsð2m2

Z þ sÞðρ̂4 − ρ̂2 þ 1Þ
�
; ðA1Þ
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ξ2 ¼ −2ρ̂4m2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

hÞ
q �

−2ðm2
Zð3ρ̂4 þ 2ρ̂2 þ 3Þ

− 2sρ̂2Þm2
h − 2mhmlð4m2

Z − sÞðρ̂2 − 1Þ2 cos 2ϕ
− 2m2

lðm2
Z − sÞðρ̂2 − 1Þ2

þm2
Zð2m2

Z þ sÞðρ̂4 − ρ̂2 þ 1Þ
�
; ðA2Þ

ξ3 ¼ −ρ̂2ðρ̂2 − 1Þ2ðs −m2
ZÞðm2

l −m2
hÞ

× ðð2ð10ρ̂2 − 9Þm2
Z þ sð3 − 2ρ̂2ÞÞm2

l

þ 4mhmlðs − 4m2
ZÞ cos 2ϕþ 2m2

hðs − 10m2
ZÞρ̂2

þ ðm2
h þ 4m2

ZÞð2m2
Z þ sÞÞ; ðA3Þ

ξ4 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

l − ðmh þmZÞ2Þðm2
l − ðmh −mZÞ2Þ

q

× 2ρ̂2ðρ̂2 − 1Þ2ð−4m2
lm

4
Z þ 4m2

hm
4
Z − 4sm4

Z

− 2s2m2
Z þ 16m2

lsm
2
Z − 3m2

ls
2 −m2

hs
2

þ 2ðm2
l −m2

hÞð4m4
Z − 8sm2

Z þ s2Þρ̂2
þ 4mlmhð4m2

Z − sÞs cos 2ϕÞ; ðA4Þ

ξ5 ¼ 2m2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4
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h þ sÞm2

l þ ðm2
h − sÞ2

q
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h − 2m2

ZÞð2m2
Z þ sÞÞ; ðA5Þ

ξ6 ¼ 2ðρ̂2 − 1Þ3mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z − 4m2
l

q
ð−2ðð2m2
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ξ7 ¼ 2ðρ̂2 − 1Þ3m2
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Zsðs −m2

ZÞðm4
Z þm2

lðs − 4m2
ZÞÞ; ðA8Þ

ξ9 ¼ −4ρ̂6m2
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