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Electric dipole moments of charm baryons using dimension-six operators
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We investigate the CP-odd electric dipole moments (EDMs) of spin-1/2 charm baryons considering
CP-violating dimension-6 operators in the Standard Model effective field theory. In the framework of
heavy-baryon chiral perturbation theory, we calculate the EDMs of single-charm baryons and present the
estimates for beyond-the-standard model physics appearing at the TeV scale.
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I. INTRODUCTION

The CP transformation combines the parity transforma-
tion (P), the inversion of space, and charge conjugation (C)
which interchanges particles with their antiparticles. The
phenomenon of CP violation is the breaking of the combi-
nation of charge-conjugation symmetry and parity sym-
metry. Nature was considered symmetrical under these
transformations until the first evidence of CP violation in
1964 [1]. Even though the SM of particle physics includes
CP Violation, it is widely believed that it does not offer a
valid mechanism for generating the matter-antimatter asym-
metry, the so-called baryon asymmetry of the universe [2,3].
One of the reasons for that is the amount of CP violation
produced in the SM is not large enough to explain the matter-
antimatter imbalance [4]. Searching for signals of CP
violation in many other processes might help thus identify
potential sources of this violation beyond the SM.

Electric dipole moment (EDM) experiments are among
the most sensitive probes of CP violating physics beyond
the standard model. EDMs of stable systems containing
light quarks have been highly considered [5-8]. In recent
years, however, various experimental studies focused on
searching for EDMs of baryons including heavier quarks,
mostly triggered by ongoing plans for dedicated experi-
ments to measure EDMs of heavy baryons [9-14]. Since
there has not been much theoretical work to accompany
these progressive experimental studies, we address the
analysis of heavy charmed baryon EDMs in this article.
Moreover, this work is an extension of the calculation
in [15] to CP-odd sources beyond the QCD 6-term
including charm quarks with dimension-6 CP-violating
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operators in the framework of the Standard Model (SM)
effective field theory (EFT).

The experimental EDM programs are mostly concentrated
on the measurements of the hadrons involving light quarks so
far because the measurements of the heavy quark EDMs are
difficult due to their short lifetimes (see, e.g., Refs. [16-20].
Indirect limits on charm and beauty quark EDM, which
indirectly constrain CP-violating effects, are set from differ-
ent experimental measurements [21-25]. For instance, an
indirect bound on the charm quark EDM is derived from the
experimental limit on the neutron EDM [21]. However, it has
been observed that the experimental limits on EDMs involv-
ing heavier quarks are much stronger than the same experi-
ments containing light quarks. Our goal thus is to obtain
EDMs of charm baryons that could give more direct infor-
mation on CP-violating interactions involving heavy quarks.
For that purpose, we set up an EFT to calculate these
contributions in a systematic fashion combining Chiral
Perturbation Theory (ChPT) and heavy-quark EFT.

The techniques developed in [26] for the calculation of
bottom baryon EDMs have been applied in the present
article to calculate EDMs of charmed baryons. Throughout
this work, we shall very often use the convenient language
of it. The article is organized as follows. In Sec. II, we
introduce dimension-6 CP-violating SMEFT operators
involving charm quarks. In Sec. III, we present these
operators at the hadronic level using chiral perturbation
theory. In Sec. IV, we calculate the EDMs of charm quark
baryons at leading order for each source of CP violation.
Section V contains the discussion of the expected magni-
tudes of EDMs. In Sec. VI, we give the conclusion. Some
technicalities are given in the Appendices.

II. CP-VIOLATING OPERATORS INCLUDING
CHARM QUARKS

In the following, we provide CP-violating operators at
the quark level including light and charm quarks. We stick
to the notation of Ref. [26], where more details can be

Published by the American Physical Society
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found. In terms of the charm quark bilinears, the resulting P- and T-violating effective dimension-6 operators are given by

[6,27,28]

6 _
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EQCEDM =d. coysAtcGyy,

6
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[’E',iqLR = lpllicvdc(CRYﬂdeLyﬂcL) - lptlicvdc(dRyﬂCRCL}/ﬂdL>
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+ ipg Ve (CryuA®sgSLyHA%cr) — ipg° Vi (SRy* A% gLy, A%, ), (1)

where V. and V. are elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, F,,, and Gy, are the electromag-
netic and the gluon field-strength tensors, respectively. It
should be noted here that only one CKM matrix element
contributes to the CP-violating operators in the b-quark
case, while two CKM matrix elements are allowed in the c-
quark sector.

In the SMEFT Lagrangian, the charm-quark EDM
(gEDM) and charm-quark chromo-EDM (qCEDM) opera-
tors are based on the following dimension-six operators:

L4q = C"®(020"cp,)HB,, + C*W (Qy0"1%cg, JHWY,
+ C*%(Qy0t A% cp, ) HGE, + H.c., (2)

where (, denotes a left-doublet of second-generation
quarks, H is the Higgs doublet to preserve gauge invariance,
and B,, and Wy, are the field strength tensors of the
U(1),and SU(2), gauge groups, in order. Below the electro-
weak symmetry-breaking scale of the breakdown SU(2), x
u(l), - U(1),,,, the charm gEDM and the charm qCEDM
result from dimension-six dipole operators. There are many
models for physics beyond-the-Standard-Model (BSM) in
which these dipole operators are generated (See, e.g.,
Refs. [29-31].). It is common to scale the dipoles with the
heavy quark Yukawa in most of these models and thus we
expect d.., EZC ~ m,/A?, where the scale of BSM physics A
lies well above the electroweak scale, v ~ 250 GeV.

The four-quark operators in Ec,4q are generated from the
gauge-invariant operator of the form

Ly = CZSCd(QfMR,,)eu(QidRJ) +He. 4+, (3)

where the ellipses indicate terms with the additional
color structure, and abcd are quark generation indices.

These operators induce Eﬂq for the generation indices

a=b={1,2}andc=d=30ora=d=3andb=c=
{1,2}. The coupling constants are expected to scale as
K‘l‘_cg'dc’“ ~ 1/A?. An example where the CP-odd four-quark
operators are induced can be seen in leptoquark models [31].
The four-quark left-right operators in L’g’iqLR are gen-
erated from the gauge-invariant operator of the form

£4qLR = CZZLR (FITDMH> c_lfey”cfe
+Cbn (FITD,,H) sayhch +He.  (4)

The interactions in ﬁquR are generated at tree level
between quarks after electroweak symmetry breaking.
Integrating out the W bosons and Higgs fields the CKM
elements of V. and V. are obtained. The contribution of

higher-dimensional operators from EfiqLR will be propor-
tional to p{ ~ v*/(my,A?) ~ 1/A*, where ¢ = (d. s). The
CP-odd four-quark operators can appear in the minimal

left-right symmetric model (See, e.g., [32] for a recent
EDM analysis.).

III. CHIRAL PERTURBATION THEORY FOR
CHARM BARYONS

In this section, we list the effective interaction
Lagrangians relevant for the calculation of the EDMs of
the charmed baryons. To include heavy charm quarks into
standard ChPT, we follow the same way which has been
presented in [33,34]. The relevant P- and T-conserving free
and interaction Lagrangians up to the second chiral order in
a covariant formalism are given by [34-37]
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F2 ,
2 7 +
£y = T {Tt[D,UD*U)'| + Tr(y Ut + Uy')},

1 | _—
Lice = 5 (B3 (iP = m3)Bs) + (B (iP = me)Bs).
hy - hy - hy -
L = ) (BgihysBg) + > (BgiysBs +H.c.) + > (BsylysBs),
L) = a(B30" F},Bs) + ay(Beo" F, Bs) + s

where F, is the pion-decay constant in the chiral limit, Bx
and By represent the spin-1/2 antisymmetric triplet and
symmetric sextet charm baryon states in the SU(3) flavor
representation given by the following matrices, respec-
tively:

s+ I ES
0 Af Ef V2 V2
+ =10
Bi=|-Al 0 E|, Be=| % = 5| (6)
_=+ _=0 0 =+ =0
2F -EB C/ARNC N
(4 (4 \/E \/E QC
The Goldstone boson octet is denoted by
%”0_'_%11 ”+ K+
¢ = n —ﬁn0+76;7 K° (7)
_ () 2
K K e

The Lagrangians in Eq. (5) are constructed in terms of the
following building blocks:
D,B =0,B+T,B+ B},
1
Fﬂ - E
Fl, = uTQhFﬂyu + thFWuT,

[u(9, — ir,)u+u(o, —il,)u'],

u, = i[u' (0, —ir,)u—u(d, —il,)u’],
U=u?=exp(ig/F,). (8)

where D, is the covariant derivative introducing external
vector fields and axial-vector fields, u,, is the chiral vielbein
and Q) = ediag(1,0,0) is the charge operator of the
charmed baryon [38].

In the numerical analysis, we take m, = 1.27 GeV,

=924 MeV, Mg =494 MeV, V, =0.221, V,. =
0.987 and the average of the masses for each flavor
multiplet, i.e., m3 = 2407 MeV, mg = 2535 MeV [39].
The mass difference is A = mg—m3 = 128 MeV.
Further, the values of the various low energy constants
(LECs) hy_3 are hy = 0.98 and h, = —0.60 [40]. Due to
heavy quark spin symmetry, we have 43 = 0. The magnetic
moment couplings, a;_s do not contribute to the EDMs at
the order we work here.

Bso"'F,i,By + H.c.) + ay(B30" B3)(F}l,) + as(Bso* Be)(Fp,).  (5)

A. Construction of the effective CP-violating
Lagrangian

The effective Lagrangian at the hadron level arising from
the dimension-6 terms in Eq. (1) is constructed following
the same procedure provided in [26]. The charm-quark-
EDM (qEDM) operator, which already contains the electro-
magnetic field strength tensor F,, directly induces EDMs
of baryons including charm quarks. Only two terms in the
leading-order chiral Lagrangian corresponding to EDMs of
charm quark baryons contribute. As in the case of the
qEDM operator, there is no light quark content in the
charm-quark chromo-EDM (qCEDM) Lagrangian as well.
It contains only the heavy charm quark and the gluon field
strength tensor Gy, which makes it invariant under chiral
SU(3) transformations. However, because standard ChPT
does not contain a fundamental building block that trans-
forms as a chiral singlet, we have to introduce a new
fundamental block ¢ ™. To ensure that the chiral singlet ™
violates P and T one needs to combine ¢* with ChPT
building blocks to construct CP-violating terms at the
hadron level. Further information can be found in e.g.
Refs. [26,28,41].

As for the 4q and 4qLR operators, it can be seen in
Eq. (1) that there are two types of terms, gqgcysc + qysqcc
and ¢ysqqgc + ¢ysqqc, including both the heavy charm
quark and the light quarks ¢ = u, d, s. This is different
from the gEDM and qCEDM operators. Thus the following
matrices can be built up for the transformation properties of

qu and EfﬂqLR under chiral SU(3) transformations as a

new scalar source similar to the quark mass matrix in
ordinary ChPT

K 00 0 0 0
Me=| 0« 0 |. Ne=[0p%v, 0 |. (9
0 0 & 0 0 piev,.

The explicit insertions of the charm quarks allow us to set
up the heavy charm baryon matrices B; and By in the
effective Lagrangian. One can see that the k, kg and p{, pg
are distinguishable on the quark level. At the level of chiral
EFT, however, they have identical chiral symmetry proper-
ties and thus the resulting chiral Lagrangians are identical.
Therefore, the effective Lagrangian from the relevant
operators combines the effects of these terms.
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The effective Lagrangians resulting from the various P- and 7-violating dimension-6 operators are given by

Loy = f1(B36"ysF,,B3) + [2(Bso"ysF,uBe) + -,

‘CqCEDM =" [a16<B§0””75F,TuB§> + ay7(Bsc* ysF,,Bs) + ajo(B3o*ysB3) (F,l,) + ‘120<B66W7536><F;y>} +---, (10)

Eiff ix7(Bgy_Bg) + ixg(Bey_Bs + H.c.) + Kk, (Bsy 0" vsF ., B3)

+ K12<Béﬂ~(+‘7””75F

B6> + Kl4<B§)~(+6ﬂD7/SB§> <F/w>

+ K15(Be7 0" 75Be) (F),) + +K17(B30"ysF},B3) (7+)

(
+ Kk13(Bgo*ysF;
(

wvBe) (T+) + koo (B30"ysB3) (7. Fyl,)
+ K21 (Beo ysBe) (7 F ) + - -

’

L8 ¢ = ipy(Bey-Bg) + ip3(Bey_Bs + H.c.) + pa(Biy 6"ysBs3) (Fyi,)

+ pi5(Bey 0" ysBs)(F,

B)(x+) +

+ p1s(Beo*ysF,

with the definitions

=2Bdiag(m,,my,my),

diag(k",k% k),

5= diag(0.Re(V, ) Re(V,)p*),
(12)

ye=u"yut £uytu,
Fe=u"yu' £uytu,

X
If

Fe=u'put +uytu

where the ellipsis denotes terms that are either of higher
order or irrelevant to the EDM calculations. Here, we give
only relevant terms for our calculation. The complete list of
operators appearing at the same chiral order can be found
in [26]. In principle, the terms
P11 (B3 M+U “SUFB3,).

B LZ + N F B 6,v >
B§ vHS” B§ v><)(+ /u/>

UU”S B6 u><)(+ /w>

P12
P20
P21

(
(
(
(B

) + ﬂ17<E§0'”U75F;TuB§> F+)

(11)

|
in 4qLR Lagrangian also contribute to the EDMs; however,
because (7. Q,) results in zero, we do not display those
terms in Eq. (11). Here, one should notice that the constants
Kiedese and pdese get hold of both the color-singlet and
color-octet terms whose chiral Lagrangians are identical.
Making use of the heavy-baryon (HB) formulation
of baryon ChPT describing systems with a single heavy
quark [42,43] is convenient for the calculation of EDMs.
The CP-violating Lagrangian in the HB limit

n_ 15
‘Cgrge :§<B3

Lin = hy(Bg 1, 5" Bg,,) +hy (B ,u,S"B; , +H.c.),

,L‘(iv 'D)Bﬁ,v> + <B6,v(iv ‘D_A)B6,1;>v

Egy)zszp” ["H(Bi,l” S,F},Bs,) +ax(Bg ,v,S,F;,Bs )
+a3(Bs ,v,S,F,, B3, +H.c.)
+a4<B§,vvpsaB§.v><F;ru> +as <B6,@UpSGB(>,1)><F/4+v>} ’

(13)

‘CZgDM =4 |:fl <B§,1/v”SyFﬂuBg,v> + f2<B6.11UMSDF/wBG.v>i| ’

Lilepm = 4ig* [016<B3 VS F LB ) + ai7(Bg ,v"S"F;, B ) + +a19(B;

+ a20<Be,uU”S”Be,v><Fﬁ>} +e

Eéetf]f = iK7<Bﬁ,1/’)~(—B6,v> + iK8<B6,ﬂZ—B§,v + HC> + 4i[Kll <B§.v)?+vﬂsy
Bﬁ v> + Kl4<B§ L)?+U”SDB§ v> <F;J4ru>

+ K12(Bg o7+ V' SUF,

o0 SB3 ) (Fy)

F.Bs,)

+ Kis B6 1)(+vﬂSDB6 v><F > + K17<B3 v UMSDF;¢UB3,1)><)?+>

(
+ K15(Bs
+ K21 (Bg

‘v”SDF;rI/B6,1/><)(+> + K20<B§,UU”S Bg,v><)?+F;l/>
‘v”SDB6,1;><)?+F;rU>] + e
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‘CifilfLR = ip2<B6.v)?—B(m)> + lp’% <B().1:)?—B§,v + HC> + 4i[:014<B§,v)?+vﬂSyB§.v><F/J4ru>

+p15<B6,U)?+UﬂSbB6,1;><F;—D> +p17<B§.vU”SVF/TVB§,v><)?+> +p18<B6~vUﬂSUF;vB6,v><)?+>] +oe

with the four velocity o*, the Pauli-Lubanski spin
operator S¥ = —ys(y#§ — v*)/2 and the mass difference
A = mg — mj3. Only terms linear in the Goldstone bosons
are sufficient at the order we work on. Higher-order terms
containing more Goldstone bosons are embedded in the
ellipses. The chiral singlet ¢ can be absorbed into the a;
LECs, as it can only contribute as an overall constant.
Figure 1 demonstrates tree level and one-loop Feynman
diagrams that generate a nonvanishing contribution to the
P- and T-violating form factor of the charm baryons up to
the order O(5%), where § is a generic small mass or
momentum. We apply the modified minimal subtraction
scheme of heavy baryon chiral perturbation theory
(HBChPT) (MS) [44-46] and calculate the loop diagrams
in the framework of dimensional regularization at the
renormalization scale 4 = 1 GeV. Tree-level CP-odd dia-
grams at order O(8%) denoted in diagram (a) receive
contributions from all the CP-violating operators. The
diagrams (b)—(g) in Fig. 1 show one-loop diagrams at
leading O(8%). We apply the standard power counting to the
renormalized diagrams (see, e.g., Ref. [47]). In other
words, an interaction vertex obtained from an O(§")
Lagrangian is counted as order 6", a meson propagator
as order 672, a baryon propagator as order 57!, and the

e
Va N
/ \
IS

(a) (b)

é—% w—é—.f
! 1 I
\ / \ /
AN Vi \\ Vi
-

() (f)

(14)

|
integration of a loop as order 5*. For the CP-odd vertices,
the chiral order of the sources is counted as O(8°).

IV. THE P- AND T-VIOLATING FORM FACTOR

In the heavy baryon approach and in the Breit frame the
P- and T-violating form factor D} (¢*) is described
through

(Bi(ps)|Vepm|Bi(pi)) = =2iD (¢*)B,v,(S-q)B,, (15)

where ¢ = py — p; denotes the four-momentum transfer
(see e.g., [37]). The EDM is thus defined by
dy, = Djy (% = 0). (16)
The four-velocity is set v, = (1,0) and v- p; = v - p; in
the Breit frame. The contributions from the contact inter-
actions in Figure 1(a) are presented in Tables I-III.

As in the case of the b-baryons [26], the EDMs of the
c-baryons also receive contributions from the Goldstone
bosons. For the gEDM and qCEDM operators, we observe
that the meson-loops appear at a higher order and only the
tree-level diagrams provide the contributions at the order

- ~
s N
/ \
—— % —

1

\ /
N\ 7
~ -

() (d)

FIG. 1. Diagrams that contribute to the EDMs of the spin-1/2 antitriplet and sextet c-baryons after renormalization. The solid, dashed,
and wavy lines depict the baryons, mesons, and photons, respectively. The filled circles, diamonds, and squares are the first-order
vertices generated by the meson-baryon Lagrangian and second-order mesonic vertices, in order. CP-violating vertices at O(6°) and
O(8%) are represented by ® and X, respectively.
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TABLE 1. Tree-level contributions from the qEDM and TABLE III.  Tree-level contributions from the 4qLR operator of
qCEDM operators of the charm baryons. the charm baryons.
Baryons qEDM qCEDM Baryons 4qLR
AE 4fy de(ajs +2a19) AL 8e[Re(V4e)(p1a + p17)p™ + Re(Ve)pi7p*]
Eg 4fl 866119 E? Se[Re(Vdc)/)dc + RG(VSC)/)‘YC}/)M
B 4f1 4e(as + 2ay) EY 8e[Re(V ) (p1a +pi7)p* +Re(Vae)p17p™]
=0 2 4 c
Zﬁr 2];2 e(a ej22a ) z"(c) 8eRe(Vdc )plspd v
S 2 de(an +2a9) [Re(Vdc)(pls +p1g)p™ + Re(Vo)pigp™]
’:;‘0 2f§ 4117ea2 0 szL [ e(Vdc)pdC + Re(Vsc)psC}/)IS
;f+ ’ Y EZO [Re(Vdc)/)dC + Re(Vsc )/)SC}/)IS
2 2f> e(ay; + 4ay) =t sc Je
Qo 21, deay, Zc 4e[Re(V)(pis + pis)p™ + Re(Vae)pisp™]
< Qg 8eRe(vsc )pISpSC
TABLE II.  Tree-level contributions from the 4q operator of the of them mutually cancel each other. After an explicit
charm baryons. calculation in HBChPT, it has been seen that only the
Baryons 1q dlagrams (b) gnd .(c) are nonvanishing and yield the
following contributions:
AL 8e[(kyy + 2K20)K" + K14(K" + k%) + K17 (K" + K% + £°¢)]
Eg 8eliyq (K% + K°) + 2ip0k"] A 1 x 9 ~
Ec 8Be(kiy + 2Kp0)K" + Kk1a (K" + k%) + k7 (K + k% + %)) D, (b>(q2) :% dx———J(W.M;),
h» .
Zg 8€(K15Kdr +K21K'MC) 0 Mla !

bng de[(kyp + 21 )K" + Ky5 (K 4 K9) + kg (K1 + k% 4 K5)]

It 8e((kiy + ks 4 Koy )K" + kg (K" 4 k% 4 K5)]

Ei() 4€[K15(ch + KSC) + ZKZIKMC]

B def(kip + 2K )K"+ K5 (K4 4 K5¢) 4 kg (KM€ + k9 + k5]
Q0 Be (k15K + K1)

we work. The loop contributions at the second chiral order
are obtained from the 4q- and 4qLR operators and the LECs
of those tree-level contributions absorb the relevant loop

divergences.
Most of the diagrams depicted in Figure 1 are either
proportional to S - v = 0, or v - ¢ = 0. Furthermore, some
|

A, [t x—1 0 _
4 2\ __ ¢ ~ ) .
DBh’(C)(q )_ 2 /(; d‘x Mi aMiJI(W7Ml>7 1—172,3,47
(17)

where w = —A, for a sextet particle, w = 0 for an antitriplet
particle inside the loop, M;(x) = \/x(x — 1)g?> + M?, with
M, being charged meson masses, and J; is the loop
function (see Appendix C). As many of the A, and A,
coefficients are identical to each other except for their sign,
the remaining terms including these coefficients are given
in Appendix A. The results for the 4q operator are

egakg (K" + k%) (2)

d§\+ 4o = 8e|(Kyy 4 2h00)K" 4 Ky4 (K 4 K9) iy (K4 + K%+ KSC)} + 72 My
q L 3277 F7;
_ c dc uc sc
B 4 egakg (K" + k%) (2) egarky (k" + &%) )
dyE?Aq = 8e _K14(K ‘4 K'SC) + 2K20K'uc:| 3271’2F721 M 327_[2};% Mg
Y [ uc uc SC uc dc SC egng (Kuc + KdL) (2)
dﬁ+4 = 8e| (k11 + 2K90)K" + Kk14(K" 4 K5¢) + K17 (K" + K% + Kk )} +——57—Fu,
. i 3242 F2
uc dc uc dc
d egik7 (K" + k%) _0)  egorg(K"C + k%) (1)
Apaq = Belask™ b i) == o P = gz T
4 J egiir (K" + &%) 2y | egakg(K" + &%) 1)
d;+ 4q =4e |:(K'12 + 2K21)K'MC + LSE (K'MC + K C) + K'lg(K'uc + K ¢ + K'SC):| + —647[2F72r FMK 432”21772[ Mg>
eqy iy (K" + xde
dgf+,4q = 8¢ |:(K'12 + LS T + KQ])KMC + K'lg(KuC + K'dc + K'SC)1| + —gl ;(271'21:‘72[ ) ](éj)[
egikr (K +1%) ) | egakg(K +x%) 1) | egaks(K“ + 1) )
BT My

3272 F2 M 1672 F2 M

162%F2
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uc dc
Aan g =4 [KIS(K"C + k%) + 2K21K“C:| _egika (k" 1) Lo

6472 F2 M
_eqiky (K + 1) o) eqakg (K" + k%) 1) egarg (k" + &%) )
6472 F2 Mg 3272 F2 M 3272 F2 Mg
. egiky (K4 + xde) egoig (K 4+ x9)
d(yE’qu = 4e [(K‘]z + 2K21)Kuc + K'15(K.'Mc + K.'SC) + K.'lg(K'u + K.'dc + K'SC>:| + I;I-T 1(‘41 Z;TFE\/[,),’
o g1k (K" K)oy egokg (KM H+KC) (1
g aq = Bellrse™ 4 k") == = Pty = o - (18)
For the 4qRL operator, the results are
I eRe(Vye)gap3p™ 2
di,\quLR = 8e _Re(Vdc)(pM +p17)p% + Re(Vsc)Pnﬂsc} + WFEBF%’
ol J eRe(Vi)apap™ o) eRe(Va)gapsp®™ o)
dyE?AqLR = 8e _Re(Vdc)p ‘+ Re(Vsc)PSC}PM - TQF%FMK - 3272 F2 M,>
I eRe(V ) 903" (2
dZi yar = 8¢ |Re(Vie)(p1a + p17)p* + Re(Vdc)PnPdC} + s g 22 : 1(w)v
e L 327°F7; .
dc dc
_ o  eRe(Vy)gipp™ o)  eRe(Vy)gopsp® 1)
dé?AqLR = 8eRe(V 4. )pisp® — 3242 F2 Fy, - 1672 F2 Fy,»
eRe(Vi)gip2p* L) | eRe(Vie)gap3p™
dngqLR =4e [Re(vdc)(pIS + pig)p™ + Re("n)ﬂlS/’“} + TQF%FSWL 32;[—21;727 1(141
eRe(V ) 91920™
d§j+,4qLR = 8e {Re(vdc)PdC + Re(Vsc)pSC}pIS + S 2 12 : Fz(wi
3277 F%
eRe(Vie)gip2p* o) | eRe(Vae)gopsp™ ) | eRe(Vie)gap3p™ L1
3272 F2 M 1672 F2 Mz 1672 F2 M
dc
_ d sc eRe(Vyc)g1p20% (2)
dyE/(oAqLR =de [Re(vdc‘)p ‘+ Re(vsc)pT }pIS - 647Z2F,2[ FM,r
_eRe(Vie)g1p2p™ L0) _ eRe(Vae)gap3p™ 1) _ eRe(Vie)gap3p™ i)
6472 F2 Mi 3272 F2 M 3272 F2 My
dc dc
_ sc dc eRe(Vy)g1p20" 2) | eRe(Vye)gap3p™ 1)
dééquLR =4de [Re(vsc)(pIS + p1g)p* + Re(Vye)pisp } + 647;2]7,2, FM,, 32;'2F72[ FM”9
o €Re(Vi)gipap*® o)  eRe(Vi)gpsp™ 1)
Ao 4qr = BeRe(Vi)pisp™ = 32S7€T—2F,2TFM" - W My (19)
where the loop functions are defined as
(M
Fy) =1+327°L +2In 7”}
r 2
o) _ > M, 24 AL A
Fy =1+327°L +2In A}—I— = 2ln M,,+ Ve 1],
L p 7
(M
Fy) =1+3222L +2In TK]
M 2AArccos|37-]
F? =1+3222L +2In —K] M (20)
K e
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V. PATTERNS AND SIZES OF CHARM
BARYON EDMS

Some of the patterns that allow the determination of the
relative sizes of the different EDMs can also be determined
for the charm baryons. For the charm-quark qEDM at
(&%), the EDM of all baryons in the triplet and the sextet
are described only by f; or f,. For the qCEDM, dx is

different from df\: = dyaj in the triplet. On the other hand,
dyy = dp = dgy.
sextet. It appears that the neutral states differ from the
charged states due to an insertion of the quark charge
matrix which generates the EDM for the qCEDM. While
the EDMs of singly charmed baryons with different charges
differ for the qCEDM, this is not valid for the qEDM,
because it already has photons.

For the 4qLR operator, while the tree-level contributions
to the triplet and sextet EDMs display identical patterns as
that of the qCEDM, the loop contributions trigger
differences. In the triplet, loop contributions to the
EDMs include two different CKM matrix elements and
different Goldstone bosons, resulting in the EDMs of the
charged baryons to differ. The difference of the charged
states in the triplet takes the form as given below in

and df, =df, are obtained in the

d’

A} AgLR

=8epyy [Re(vdc)pdc - RC(VSL.)pSC}

_ EPaps
327%F2

g
dsj AgLR

(Re(Vae)pFiy) = Re(Vi)pFi7) ). (21)

which disappears when considering only qcEDM.
Degeneracies that are seen in the qCEDM for the charged
and the neutral sextet baryons are not valid anymore
because of the difference in the flavor structures of the
underlying operator.

As with the b-baryons EDM calculation, the 4q operators
exhibit a different pattern of EDMs, which are strictly
dependent on their flavor structure. Here, we see from
Eq. (9) that the chiral symmetry properties of ¥ and x*¢
are identical to the 4qLR operator p? and p*°. Therefore,
for the k% and x*¢ sources, the same pattern of EDMs
appears as for the 4qLR as well.

To determine the absolute sizes of the EDMs of charm
baryons, we need to estimate the various LECs in EDM
expressions. In order to get an estimate of the LECs
and shape the theoretical results, we employ naive dimen-
sional analysis (NDA) [48,49]. This technique does not
give an accurate prediction, but it provides order-of-
magnitude estimates identifying each source of P and T
violation.

NDA estimates are made analogously to [26].
Accordingly, all LECs arising from qEDM and qCEDM

are as follows:

me.
f12=0(d.) = O(P)
~ F, F.m,
al6-20 — (’)(edC A_> = O(e m) s (22)
V4 V4

with 4zF, ~ A,. For the 4q and 4qLR operators, LECs
emerge from both the tree-level and the CP-odd inter-
actions at the one-loop level and their NDA representations
are

A, F2
Ko 10k% = O(K1°A, F3) = (’)< S ”),

AZ
F?2 F?2
K”,ZIKqC = O(ech—”> = O(e z >’
A, AN
A, F2
pispic = O(pT°A F7) = 0( o >
, F2 F2

with ¢ = {u,d, s}. In this way, all EDMs are scaled to A~>
so that the sizes of EDMs can be easily obtained for other
BSM scales. For a BSM physics scale A =1 TeV, and
considering only the tree-level expressions, the order-of-
magnitude estimates of EDMs are

dgh _ {10—19’ 10—20’ 10—21’ 10—21} ecm, (24)

respectively, for the qEDM, qCEDM, 4q, and 4qLR
operators. The reasoning behind choosing this scale is
explained in [26]. Contrary to the b-baryon EDMs calcu-
lation, the values of the CKM matrix elements Re(V ) and
Re(V,,.) are of order one in the c-baryon case. One can thus
immediately notice that the contributions of the 4qLR
operator are improved by about three orders of magnitude.
These predictions contain a sizeable uncertainty, and thus
to get an idea of this sizeable uncertainty determining
roughly a range at a given scale A, we employ a
Monte Carlo (MC) sampling of the LECs. In other words,
the LECs for all operators are rescaled and vary the relevant

TABLE IV. Contributions to the EDMs of the antitriplet
baryons for A =1 TeV. The results are given in 107! ecm
and 1072° ¢ cm for the qEDM and qCEDM operators, respec-
tively, and 1072 ecm for the 4q and 4qLR operators.

Contribution A =0 =F
qEDM —-0.14 £ 1.79 —-0.14+1.79 -0.14+£1.79
qCEDM —0.10 £ 3.10 +0.12 £ 2.7 —0.10 + 3.10
4q +0.17 £ 5.3 +0.17 £ 4.4 +0.13 +3.9
4gLR +0.12 £ 2.6 —-0.15£25 —0.11 +24
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TABLE V. Contributions to the EDM:s of the sextet baryons for A = 1 TeV. The results are given in 107* ¢ cm and 1072° ¢ cm for the
gqEDM and qCEDM operators, respectively, and 107! e cm for the 4q and 4qLR operators.

Contribution 0 =F it =Y =t Q0

qEDM +0.06 + 0.86 +0.06 £ 0.86 +0.06 £ 0.86 +0.06 + 0.86 +0.06 £ 0.86 +0.06 £ 0.86
qCEDM +0.10 + 1.37 +0.07 £ 1.37 —-0.13 £ 1.51 +0.10 + 1.37 +0.07 £ 1.37 +0.10 £ 1.37
4q +0.10 + 2.90 +0.14 £2.76 +0.28 £4.17 —0.10 £ 2.32 —-0.13 +£2.72 +0.19 £2.99
4gLR +0.01 + 0.49 +0.02 £+ 1.37 +0.04 + 1.10 +0.03 +1.33 —0.14 + 1.58 +0.13 +2.31

dimensionless constants between [—3,+3]. For the 4q
operator, for instance, K;(k" +K*) = (A, F%/A*)k;,
where &, are the dimensionless constants. This procedure
has been done for all LECs appearing in the EDM
expression and obtained the ranges for the various
EDMs for each CP-odd source. The results can be read
from Tables IV and V. While the operator gEDM gives the
dominant contribution, 4q and 4qLR terms have the same
order of magnitude. As can be seen from the Tables, the
EDM predictions for each source are diverse around zero.
On the other hand, the standard deviations are relatively
large because of the wide range of the dimensionless
constants which were used in the MC sampling. One
can take a look at the resulting size of the EDM by adding
up the single contributions. These values, however, provide
an estimate rather than a precise prediction for the range
where the EDM of the charmed baryons can be found by
future experiments. For instance, the total EDM of
the A} from the antitriplet and Q0 from the sextet baryons
would be

_ —19
d, = (=0.14+£2.18) x 107 ecm,

dgp = (0.07 & 1.04) x 1071 ecm. (25)
The EDM sensitivity of charmed baryons is estimated to be
of the order of 107'7 ecm following an experimental
scenario considered at the LHC [10,11]. Recently, another
experiment at the LHC was presented to directly measure
the magnetic and electric dipole moments of charmed
baryons. In this work, a new setup was proposed to
overcome the difficulties in measuring EDMs with short
lifetimes. The expected sensitivity for the EDM of charmed
baryons in this ongoing experimental program is of the
order of 1071 e¢cm [12].

VI. CONCLUSION

We have analyzed the EDMs of spin-1/2 single-charm
baryons using the techniques developed in [26] where a
similar calculation has been performed for the bottom
baryons. CP-violating effective dimension-6 operators

which consist of the so-called quark EDM, the
quark-chromo EDM, the 4q operator, and the 4q left-right
operator have been compiled in terms of charm and lighter
quark bilinears. The resulting CP-violating hadronic inter-
actions have been constructed between charm baryons,
Goldstone bosons, and photons employing the low-energy
effective field theory of QCD, HBChPT. The EDMs of the
charm baryons have been calculated up to the first non-
vanishing order for each source of CP violation.

Concerning the gEDM and qCEDM operators, it turns
out that patterns of charm baryon EDMs display similar
properties with the bottom baryons. However, four-quark
operators (4q and 4qLR) display different relations of the
EDMs. These patterns can provide the identification of the
dominant source of CP violation. Moreover, contributions
from the 4qLR operator are larger than the b-baryon case,
as two CKM matrix elements Re(V,.) and Re(V,.) are
three orders of magnitude larger than Re(V ;). However, as
already pointed out in [26] and refined further above, the
absolute sizes of the EDMs are significantly uncertain
because of very little information on the LECs in the CP-
odd chiral effective Lagrangian. Therefore, with the con-
tributions for BSM scales of 1 TeV using NDA assessment,
it has been concluded that EDMs are expected in the range
of 1071°-1072! ecm, which are strongly dependent on
chiral- and isospin-symmetry properties of the underlying
sources of the dimension-6 operators. It is to be emphasized
here again that our calculation represents an estimate rather
than an accurate prediction for the EDM of the charmed
baryons. These results and their interpretation call for
further studies on both the theoretical and experimen-
tal sides.
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APPENDIX A: FORM FACTORS

Including the tree-level contributions, the full form factor
expressions for the c-baryons up to the order O(5) are
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D\ (q%) = 4f1 +4e (am + 2a19 + 2(kyy + 2kp0)K"C 4 2k14 (K4 4 k%)

+ 2iy7 (K4 4 K% 4 15) + 2Re(Ve ) (P14 + p17)p™ + ZRG(VSC>P17PSC>
1 1 0 .

Re(V,, ¥¢ + kg (K" + k¢ )/ dx—=——=—J(-A, Mg),

z (Re(Vadpsp™ 4 e 1)) | o1 (=0 )

Dyag(qz) =4f +8e <a19 + K14 (K9 4 K5¢) + 2ip0k + (Re(V 4o )p% + Re(Vsc)/)SC)/’m)

4F2

1 ~
92 (Re(Vadpsp™ + ks +x4)) | dv=— 21, (<A, B1,)

4F2 o M,oM,

€92 ( sc uc sC ) ! 4 T
- Re(V dx———J(—A, Mg),
4F,21 6( sc)p3p +K8(K + K ) /0 XMK aM” 1( K)

DL (q*) =4f, +4e (al6 +2a19 + 2Ky + 2K00)K"C + 2k14 (K1 + K5€)

+ 2k17 (K + k% 4 15) + 2Re(V o) (P14 + p17)p™ + 2R3(Vsc),017ﬂsc)

1 0

1
Re Vtc de + K KHie +K'dc ) dx~—f./ —A,M s
(Re(Vacdosp + sl +5%)) |~ dvgmo o1 (=4, 01)

€g

T 4F2

DY, ( 2) =2f,+4e <a20 + 2(ky569° + K1 K“C) 4 2Re(V 4 )p15p” )

1 ~
4F2 (Re(Vdc)/’z/) +K7(K””+ch)> A dxM—ﬂa—szl(—A,Mn)
1 0 ~
Re(Ve ue dC) dx———27,(0, 1),
iz (Re(Vadosp™ (e +x%)) [ Vdvg o1 (0. 81,)

2F2
DL, (¢*) =2f> + 6(017 + 4an + 4k + 2iey) )K"+ 45 (k4 4 k)

iy (K + K9 4 k) + 4Re(V ) (015 + plg)pd" +4Re(V,)p1s" )

eq 0

R ch sc uc sc ) —J —A,M
+8F2 ( e(Vye)pap®® + K7 (K" 4 &*¢) ; MI(aMK 1 ( )
€9 ( se we | se )/1 1 0 -
Re(V dx—=——=—J1(0,Mg),
+ 7 4F2 e( sc)/)S/) =+ KS(K + K ) 0 XMK OMK 1( K)

Dy (q%) = 2f, +2e (017 + 2a50 + 4(Kpy + Kys ko )k + dicyg (K4 4 k% 4 1) + 4(Re(V g )p ™ + Re(Vsc)P“)ﬂls)

€g uc c 1 a 1/
0 (RelVadpar™ -+ +)) / s g e 01,)
€9 ( sc uc sc ) ? \/

Re(V,, ——J M
4F2 e(Vie)pap®® + 17 (k" + &%) ; MK oMl (= )
€92 ( uc dc ) /1 1 ?

Re(V dx— J(0,M

+2F2 e(Vae)p3p™ + kg (k" 4 k%) A xM,[aM,[ 1(0,M,)
egz ( SC uc SC ) 1 a
Re(V dx— J1(0, M
2F72r e( sc)/)S/) +K8(K + K ) 0 XMKOMK 1( K)
DLy(q%) = 2f, +2e (2020 + 2k (K9 4 K5) + dicy 4 + 2(Re(V e )p® + RC(V‘YL-)P‘W)Pls)
€91 ue . 1 1 o _
T8F2 (Re(Vdc)ﬂzp + 17 (K + K4 )) A dxM_”a—M[‘ll(_A’Mn)
Ty (Re(Vie)pap' + x5k 4+ ) ) a0 g (et
s 17 (K + K X —— ,
T8F2 se/P2p KT o My oty K
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9 (Re(V 3P + kg (K" —l—KdC)) /1 dxiij (0,M,)
4F2 dc ,03,0 g\K 0 Mﬂ 0M,, 1\Ms Mg
1 o0 .

€9 ( sc uc sc ) /1
- Re(V + + dx— — J (0, Mg),
4F% e( sc>p3p KS(K K ) 0 XMK 0MK 1( K)

DL.(q%) =2f>+ 6(017 +day + 4(kip + 21 )K" 4 diys (K" + %)

+ dicig (K 4 K9 4 k) 4+ 4Re (V) (15 + p15)p* + 4R6(Vdc)P18/’dc>

eg uc c 1 J 1/
+8F]2 (Re(vdc)ﬂzﬂ + Ko7 (k" + x4 )) A dxM oi. ——Ji (A, M,)
€9 e . ' 1 0
4 (Re(Vadoup™ + wslie ) [ s n(0.51,)

Dgg(qz) =2fy+4e (Clzo + 2K K" + 2Ky5K7 + 2Re(VSC)p15pSC)

€91 ( sc uc SC ) 1 a v
- Re(V dx— Ji(—A,M
4F2 C( sc>p2p + K7(K + K ) 0 xMK aMK 1( K)
1 0

e‘gz < SC uc SC ) 1
Re(V P3P =+ Kg(K —+ K dx =——= 0 M Al
2F2 ( sc) 3 8( ) 0 M 3M ( K) ( )

APPENDIX B: EDM ESTIMATES WITH NAIVE DIMENSIONAL ANALYSIS

In this appendix, we give ¢ baryon EDMs with the NDA estimate. Replacement of the unknown low energy constants
with their NDA correspondence yields

4mcf1
d% = A2 + A2 5 (@16 + 2ay9)
2eF, /. . - - o ~ ~
+ A2 <K11 + Ry +Ki7 + 28y + Re(Vye ) (Pra + P17) + Re(Vsc)Pn)
A
eq, o My| 2AArccos[;r]
Re(V 1+2In|— _— &
32”2/\2( ( sc)p3+K8)< + n|: ) :| + \/m
dm.f, 2em, . 2eF, . - ~
dygg = A2 L+ A2 o + A2 (Ri4 + 2820 + (Re(Vye) +Re(Vi))p14)
epA, M, 2A A A?
Re(V 142In|— ———In|— — -1
3277.'2/\2( e( dc)p3+K8)< + Il|:/1 :| + AZ—M% n M,z_i— M]z[
A
egA, o My| 2AArccos[;r]
Ve 1+21 _— K
3271.2/\2( ( sc)p3+K8)< + n|: 2 :| + \/m
4m6]~‘ em, ,_ 5
dg, = . 1 Py (@16 + 2a19)
2eF -
(Kn + R4 +&y7 + Ky + Re(Vige) (Pra + P17) + Re(Vie)p17)
692/\;( L M, 2A A A?
——(Re(V 1+2In|— ——In|— — =111,
+3a2 R "”)p3+’<8>< * H{X]Jr Az_MgnMﬁ+ M2
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B 2m.f, em, _ 2eF

dy, A2 Tzt ETQE (Ris + &a1 + Re(Vae)pis)

eg A, M, 2A A2
32 A2 (RC(VdC)ﬂQ + K'7) (1 + 21In |:7:| + Az—_mll’l E + V,% -1
eqgy A 5 B M,
~Tor zA—}z’(Re(Vdc)m + &) (1 +2In {7} )
v 2m.f, em, ~
dy, = A2 t A2 (@17 +4ay) + T 5 (Ria +Rys + Rig + 28y + Re(Vae) (P15 + Pig) + Re(V)pis)
egr A, L M|  2AArccos[]
—2 (Re(V,, 14+2In|— e
+64ﬂ'2 A2( e( sc)p2+K7)( + 1’1|: ) :| + \/m
egy A,
32922 N £ (Re(V,.)p3 + &g ( + ZIH{ }),
v 2mcf2 m. ~
dy = A2 + 20 AN (@17 + 2ay) + (Klz + &5 + Rig + Ka1 + (Re(Vye) +Re(V))Pis)
egr A, 2A A A?
32 AZ(Re Vdc p2+K7 <1+2ln 7 +mln M—ﬂ+ M_,2,_1
A
eq A, © 2AArccos[M—K]
— (Re( I1+2In|—| + ——%
+32 A( e S‘Lp2+K7( + n|:l_+ /M%(—Az
eqg A M, egs A B . My
o2 A2 2 (Re(Vye)ps +’<8)< +2In [7) Tl A2 2 (Re(V,e)ps3 +K8)(1 +2In {T})
chf el ,
dygip = A2 2, e A2 ayy +—5 A2 7 (Ri5 + 28y + (Re(Vye) + Re(Ve))P1s)
eg A, o M,] 2A A A2
_64 A—( C(Vdc)ﬂ2+K7) <1+21n[7_ +mh’l E+ E—l
eqi A

M 2AArccos A,
(Re(vsc)ﬁZ + k7) (1 + 21In |: [MK]> %)

M
Re(V 142In| =%
T 64n7 A2 =) 7z (Rel dc)”3+’<8)< - H[AD

K
A
eqy A L Mg
BET A7)2( (Re(Vye)ps +&s) (1 +21In {/I_ >

2m.f, em
d, ¢ <
= T TN daAl

~ - eF, _ N ~ ~ . - -
(@17 + 4ay) + ”—AZ (K1 + Rys + Rig + 2851 + (Re(Vi ) (P15 + Pis) + Re(Vye)pig))

24 A A2
9 |4 |51
A —MZ2 (M, M;

A o M
+ 64ﬂ2A_}2{(Re(Vdc),02 +&7)) (1 +2In [T} +

€ A _ » Mﬂ
* 647> A2 (Re(vsc)p3 + KS) (1 +21n |:7:| > ,

2m. 2eF, i
dg(cl = A2 2 + A2 20 +— A (K15 + K21 + Re(vsc)pIS)
A
eg A, o My]  2AArccos[;7]
32 2A2 (Re(vsc)p2 + K7) (1 + 2111|: y :| +W
egr Ny s My
- 16ﬂ2P(Re(Vsc)p3 +K8) (1 +21In |:T:|>’ (Bl)
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where the estimation 47F, ~ A, has been utilized, and the dimensionless constants f:, a;, &;, and p; are varied from —3
to +3.
APPENDIX C: LOOP FUNCTIONS

In the heavy-baryon formulation [50], the loop functions which were used in the calculation of the diagrams in Fig. 1 are
given as

1 M
_ 2 —
Ay =2M [L+16ﬂ21n</1>]+0(n 4),

] o = (00, 5,010, 50) + 50 )
ot e = (Golw) 1,61 (). o) + 1,60 (©)
1 [ dk 1 I N R
?/ @) [v-k—w)[w—k21[<k+q>2—M21:A zan M) (C4)
1 d"k k” _ : &i . M _ﬂi . M
?/@n)"[v-k—wnMZ—kZJka)z—MZ]‘A ""(zmﬂ“ M= o™ ’M)>’ (©5)
1 d'k k,k, ! %i o i vﬂvbi o i
i Gy e e e, dx(zmﬂjz( M5 oM
O S T v /X R M)) (C6)
o+ Q) o 18 M) + = 2 Jo(. M) )

where W(x) = w + xv - ¢, and M*(x) = x(x — 1)¢> + M. In dimensional regularization, the analytical expressions for the
loop functions are

Jow) = 4w+ |1 =2 (M) | =L V2 w2 ArcCos () + O(n - 4), (C7)
81’ A 4x? M

for M? > w?,

_ Yoz M A A 1/W_z_ -
Jo(w) = 4Lw—|—8ﬂ2{1 2ln(l)]+4ﬂ2 w M1n<M+ e 1| +0(n-4). (C8)

for w? > M2, and
1

Ji(w) = wlo(w) + Ay, Jo(w) = P [(M? = w?)Jo(w) = wAy], (C9)
J3(w) = wly(w) = Jo(w), (C10)
G,-(w)z%]i(w), i=0,1,2,3. (C11)
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