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We study how vacuum neutrino oscillations can be affected by a causal, nonlinear and state-dependent
modification of quantum field theory that may be interpreted using the many-worlds formulation of
quantum mechanics. The effect is induced by a Higgs-neutrino Yukawa interaction that causes a nonlinear
interference between the neutrino mass eigenstates. This leads to a tiny change in the oscillation pattern of
light, active neutrinos. At large baselines where the oscillations disappear, the nonlinear effect is also
suppressed and does not source correlations between the mass eigenstates once they are entangled with the
environment. Our example provides a way to compute effects of nonlinear quantum mechanics and field
theory that may probe the possible physical reality of many worlds.
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I. INTRODUCTION

Quantum mechanics is one of the pillars of modern
physics. It provides an unparalleled description of the
microscopic world that has been experimentally tested to
an unprecedented precision. Nonetheless, lurking under-
neath this remarkable success is the tantalizing question of
whether quantum mechanics admits a generalization
extending from its core principles. The answer to this
question is not so straightforward because not only must
any extension preserve the probabilistic interpretation of
squared amplitudes or the Hilbert space structure of states in
a quantum system, but it must also be consistently
embedded into the framework of quantum field theory.
A possible way to modify the linear evolution of a

quantum system is to introduce a small nonlinear term in the
underlying Schrödinger equation [1–3]. In the context of
generalizing quantum mechanics, this modification is not
thought of as induced by the interaction of the system with
the environment; rather it is assumed to be a fundamental
property of the system itself. Nonlinear quantum mechanics
relinquishes the principle of linear time evolution and
requires an adjustment of certain concepts such as meas-
urement [2,3]. In exchange it offers a plethora of possible

tests spanning from measurements of atomic energy-level
splittings to the cosmological history of the Universe [3–8].
Among possible nonlinear modifications of quantum

mechanics, the proposal of Ref. [3] stands out because it
admits a straightforward reformulation in field-theoretic
terms. At the Lagrangian level, the nonlinear correction is
introduced in the form of an interaction between a field and
the expectation value of some bosonic operator. For
example, for a fermion field Ψ coupled to an operator
O, one can schematically write

OΨ̄Ψ ↦ ϵhΦjÔjΦiΨ̄Ψ; ð1Þ

where jΦi represents the combined Ψ, O system and ϵ is a
small dimensionless parameter. This causes a nonlinear
evolution for the field Ψ (or the state vector jΦi), while
retaining causality and unitarity of the original theory [3],
unlike the other proposals [1,2] reviewed in Refs. [3,9,10].
Intriguingly, nonlinear generalizations of quantum

mechanics have a sensible physical interpretation [3,10],
which is revealed using the Everett (or many-world)
formulation of quantum mechanics [11] (see also [12]).
Consider a system consisting of a coherent superposition
jΦi of states (with respect to some basis) that interacts with
the environment. For example, each state can be a Gaussian
wave packet describing a free particle. In the standard
framework, as the system freely evolves, the states interfere
with each other while gradually losing coherence as jΦi
becomes entangled with the environment. Eventually, the
states decohere completely and, in Everett’s interpretation,
become part of distinct “quasiclassical histories” that no
longer interfere with each other. If the nonlinear term (1) is
fundamentally present in the theory, then different states in
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the superposition jΦi become coupled to each other. This
can change the interference pattern if the states constituting
jΦi are coherent; at late times, when the system branches
and quasiclassical histories form, the nonlinear term can
also maintain some degree of coherence between these
histories. In other words, different branches of the system
(consisting of a few particles or, possibly, encompassing the
entire Universe) can, in principle, feel each other’s presence
via the nonlinear term.
Several experimental setups have been proposed [6–8] to

test the modification of Ref. [3]. They deal with non-
relativistic systems and employ the electromagnetic inter-
action as a basis for the nonlinear extension, i.e., the
operator O in Eq. (1) represents the photon field. In this
paper, we consider for the first time an ultrarelativistic
system to test the predictions of nonlinear quantum
mechanics. Furthermore, instead of the photon field, we
employ the massive, scalar (Higgs) field as a messenger
linking the states of the system. Specifically, we study how
the modification of the form (1) affects vacuum oscillations
of the neutrino. One can expect that the correction to the
free neutrino propagation caused by the nonlinear modi-
fication accumulates over the propagation distance. This
could make the nonlinear effect more pronounced than in
systems containing bound states. Besides, a weakly inter-
acting neutrino maintains coherence over macroscopic
distances and therefore the neutrino is a unique system
for testing modifications of quantum mechanics. In par-
ticular, this allows us to place the first bound on the
nonlinearity parameter ϵ resulting from the Higgs-neutrino
Yukawa interaction.
We consider the light, active neutrino produced in flavor

a which propagates some distance (baseline) L before it is
detected in flavor b. At the moment of production, the
neutrino is a superposition of Nf mass eigenstates, where
Nf is the number of active neutrino flavors. We assume that
these mass eigenstates can be modeled by Gaussian wave
packets localized in phase space, which propagate in a given
direction. Initially, the wave packets interfere with each
other giving rise to the standard picture of neutrino
oscillations. These oscillations will end when, due to the
difference in their group velocities, the wave packets no
longer overlap. We assume that the neutrino interaction with
the environment is sufficiently weak and does not disturb
the neutrino propagation. However, the interaction with the
environment may cause decoherence when thewave packets
in the superposition have large spatial separation. In other
words, according to the many-worlds interpretation, the
system branches into distinct quasiclassical histories, each
containing one mass eigenstate. The nonlinear correction to
the neutrino propagation can affect the interference between
the wave packets when they are still coherent, and can also
prevent the quasiclassical histories from completely deco-
hering at late times. The goal of this paper is to study these
effects by computing the correction to the oscillation

probability as a function of L, to first order in the small
nonlinearity parameter ϵ.

II. VACUUM NEUTRINO OSCILLATIONS

We first review neutrino oscillations in vacuum. For
illustrative purposes and to make contact with the standard
treatment of neutrino oscillations, we adopt the notation—
time-evolving state vectors and operators acting on them—
from quantum mechanics. The more accurate, field-theoretic
description will only be needed to derive the explicit form of
the nonlinear correction to the neutrino propagation.
We assume that the initial neutrino state is described by a

superposition of wave packets propagating in a particular
direction, which we choose to be along the z axis. Let x⃗ ¼
ðx; y; zÞ ¼ ð0; 0; zpÞ and t ¼ tp be the position and time of
production, respectively, of a particular neutrino flavor state

jνðpÞa ðtpÞi. The normalized flavor neutrino state at t > tp is
then given by

jνðp;0Þa ðtÞi¼
XNf

k¼1

V̄ak

Z
d3p⃗

ð2πÞ3=2fpðp⃗Þe
−iEkðtp−tÞjνkðp⃗Þi: ð2Þ

Here, Vik is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix, the bar notation denotes complex

conjugation, Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

k

q
and νkðp⃗Þ is the kth mass

eigenstate. The wave packet profile is assumed to be the
Gaussian

fpðp⃗Þ ¼
�
2π

σ2

�3
4

exp

�
−

p2
x

4σ2
−

p2
y

4σ2
−
ðpz − ppÞ2

4σ2
þ ipzzp

�
;

ð3Þ

where, for simplicity, the momentum uncertainty σ is
chosen to be equal for all momentum components. The
wave packets in (2) move with average momentum pp up
until they are detected. Let x⃗ ¼ ð0; 0; zdÞ and t ¼ td be the
position and time of detection, respectively. The state
vector of the detector is

jνðdÞb i ¼
XNf

k¼1

V̄bk

Z
d3p⃗

ð2πÞ3=2 fdðp⃗Þjνkðp⃗Þi; ð4Þ

where fdðp⃗Þ is given by Eq. (3) with the replacement
ðpp; zpÞ ↦ ðpd; zdÞ. The amplitude for producing a flavor a
neutrino and detecting a flavor b neutrino at time td is then

given by Að0Þ
ab ¼ hνðdÞb jνðp;0Þa ðtdÞi ¼ hνðdÞb jU0ðtp; tdÞνðpÞa ðtpÞi,

where U0 is the standard linear evolution operator.
Projecting the ket onto the x⃗ basis, the wave function
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ψ ð0Þ
a ðt; x⃗Þ≡ hx⃗jνðp;0Þa ðtÞi satisfies the equation

−i
∂ψ ð0Þ

a ðt; x⃗Þ
∂t

¼ ðH0Þabψ ð0Þ
b ðt; x⃗Þ ð5Þ

with the Hamiltonian H0 ¼ V̄ · diagðE1;…; ENf
Þ · V̄−1.

The state jνðp;0Þa ðtdÞi at the moment of detection can be
found by solving Eq. (5), which accurately describes the
dynamics of the superposition of states in Eq. (2) as long as
mk ≪ Q and σ ≪ m2

k=Q, where Q ¼ ðpp þ pdÞ=2 and

k ¼ 1;…; Nf. Finally, by integrating jAð0Þ
ab j2 over the

a priori unknown production time tp and average momen-
tum pp, we obtain the transition probability

Pð0Þ
ab ¼

Z
∞

−∞

dpp

2π
dtpjAð0Þ

ab j2;

¼
XNf

k;l¼1

VbkV̄akV̄blVale
2πiL=Losc

kl ; ð6Þ

where L≡ zd − zp is the baseline and Losc
kl ¼ 4πQ=Δm2

kl is
the oscillation length, withΔm2

kl ¼ m2
k −m2

l . In Eq. (6), the
effects caused by the dispersion of the wave packets and by
their increasing spatial separation are neglected. This is an
accurate approximation as long as L ≪ Lcoh

kl , where L
coh
kl ¼

Q2=ðσΔm2
klÞ is the baseline at which the distance between

the centers of the wave packets becomes bigger than their
spatial width 1=σ. Furthermore, we neglect the measure-
ment uncertainty of the detector, which is accurate provided
that σ ≳ 1=Losc

kl .

III. NONLINEAR CORRECTION TO NEUTRINO
PROPAGATION

We would like to modify the oscillation amplitude by
introducing a nonlinearity in the neutrino propagation,

Aab ¼ hνðdÞb jUðtp; td; νðpÞÞνðpÞa ðtpÞi. The nonlinearity mani-
fests itself in the explicit dependence of the modified
evolution operator U on the evolving state, represented
by νðpÞ. Assuming the correction to the linear evolution
amplitude accumulated between the moments of production
and detection is small, then one can use perturbation theory
with Uðtp; t; νðpÞÞ ¼ U0ðtp; tÞ þ ϵU1ðtp; t; νðpÞÞ, where ϵ is

a dimensionless expansion parameter. Similarly, jνðpÞa ðtÞi ¼
jνðp;0Þa ðtÞi þ ϵjνðp;1Þa ðtÞi, where

jνðp;1Þa ðtÞi ¼ U1ðtp; t; νðp;0ÞÞjνðpÞa ðtpÞi: ð7Þ

For the correction Pð1Þ
ab to the transition probability (6) this

implies

Pð1Þ
ab ¼ 1

π
Re

Z
∞

−∞
dppdtphνðp;0Þa ðtdÞjνðdÞb ihνðdÞb jνðp;1Þa ðtdÞi: ð8Þ

To explicitly compute the effect of nonlinearity,
we require an equation governing the evolution of the

wave function ψ ð1Þ
a ðt; x⃗Þ ¼ hx⃗jνðp;1Þa ðtÞi. From Eq. (7) we

deduce that

−i
∂ψ ð1Þ

a ðt; x⃗Þ
∂t

¼ ðH0Þabψ ð1Þ
b ðt; x⃗Þ þ Gaðt; x⃗;ψ ð0ÞÞ; ð9Þ

where the inhomogeneous term Gaðt; x⃗;ψ ð0ÞÞ contains
information about ψ ð0Þ at all times between tp and t. To
determine this term, we adopt the framework proposed
in [3] and further studied in [6–8]. The nonlinearity in this
framework arises from promoting interaction terms
(involving the neutrino, in our case) in the Lagrangian
of the relativistic quantum field theory to state-dependent
interactions as in Eq. (1). For concreteness, let us consider
the Yukawa interaction of the form (see Appendix A for
the discussion of the Standard Model neutral current
interaction)

Lint ¼ −
v

2ΛR
Zabφχ

†
aiσ2χ̄b þ H:c: ð10Þ

which can be obtained from the Weinberg operator in the
electroweak symmetry-broken phase, and which describes
the interaction between the Higgs field φ and the left-
handed light active neutrino species at energies much below
ΛR. Here v ≃ 246 GeV is the Higgs vacuum expectation
value, and χa denotes the two-componentWeyl spinor of the
flavor a active neutrino. The complex, symmetric matrix Z
is given by Z ¼ V · diagðm1;…; mNf

Þ · VT · ΛR=v2, where
mi are the neutrino mass eigenstates, and to leading order in
v=ΛR, the matrix V coincides with the PMNS matrix. Next,
we add the following modification of the interaction (10)

δLint ¼ −ϵ
v

2ΛR
ZabhΦjφ̂jΦiχ†aiσ2χ̄b þ H:c:; ð11Þ

where ϵ is a small dimensionless parameter, jΦi is the
normalized state of the system, and φ̂ represents the field
operator in the Heisenberg picture. The term (11) leads to
the nonlinear and nonlocal contribution to the equation of
motion for χa. We write this equation in the form of the
Schrödinger equation describing the dynamics of relativistic
neutrino wave packets, see Appendix B for more details.
Adopting the ansatz χa ¼ ðψa; ψ̄aÞT and expanding in
powers of ϵ, we arrive at Eq. (9) where

Gaðt; x⃗;ψ ð0ÞÞ ¼ −
1

v2

Z
dt0d3x⃗0fGRðt0; x⃗0; t; x⃗Þmimj

× Re½VciVdi�ψ ð0Þ
c ðt0; x⃗0Þψ̄ ð0Þ

d ðt0; x⃗0Þg
× VajVbjψ

ð0Þ
b ðt; x⃗Þ; ð12Þ
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and GR is the relativistic retarded Green’s function of
the massive real scalar field φ. The summation runs over
i, j, b, c, d from 1 to Nf.
To compute the nonlinear correction, we assume that no

knowledge of the system history is required prior to the
moment of neutrino production, ψ ð1Þ

a ðtp; x⃗Þ ¼ 0. Solving
Eqs. (9) and (12) with this initial condition, one obtains the
probability correction (see Appendix C for the details of
this computation)

Pð1Þ
ab ¼ 32π2γEffiffiffi

5
p

v2

XNf

i;j;c¼1

miRefVciVcje
2πiL=Losc

ij g

×
XNf

k;l¼1

mkImfVakVbkValV̄ble
2πiL=Losc

kl g: ð13Þ

This result is derived under the same conditions as the
linear vacuum oscillation probability (6), and is valid for
baselines satisfying L ≪ Lcoh

kl . In particular, the conditions
mk ≪ Q, σ ≪ m2

k=Q, k ¼ 1;…; Nf, allow us to remain
near the simple plane wave picture of neutrino oscillations,
even though the integration in Eq. (12) is performed over
the neutrino worldline and, thus, requires the neutrino to be
localized in space. Furthermore, in deriving Eq. (13) we
assumed that the Higgs mass is much larger than the
momentum uncertainty σ, which simplifies the calculation
of the integrals in Eq. (12).
The nonlinear nature of the correction is manifested in

Eq. (13) as a product of six PMNS mixing matrix elements
as opposed to the four matrix elements in the linear
probability Pð0Þ

ab . The presence of an additional L-dependent,

exponential phase factor in Pð1Þ
ab , as compared to Pð0Þ

ab ,
indicates an enhanced interference between thewave packets

in the neutrino state jνðpÞa i.
Furthermore, the expression (13) separates into

the product of two terms. The first term results from the
spacetime integral in Eq. (12) and does not change the flavor
of the propagating neutrino. In fact, in the absence of CP
violation (when Vai is real), this term simply reduces to the
sum of neutrino masses. The second term reflects oscil-
lations induced by the nonlinear correction. It comes from
the fact that the remaining, nonintegrated part of Eq. (12)
contains the mixture of all neutrino flavors. Importantly, the
linear and nonlinear-induced oscillations have the same
oscillation lengths Losc

ik . This differs from oscillations,
induced, for example, by heavy neutrino states which would
be resolved at much shorter baselines. Note also that the

L-dependence of Pð1Þ
ab is contained in the exponential phase

factors only. This means that when L ≪ Lcoh
kl , the overall

magnitude of the nonlinearity is bounded by a constant. In
other words, the nonlinear interference of mass eigenstates

does not destabilise the neutrino state jνðpÞa i.

The computation in Appendix C indicates that in the
limit of large spatial separation of the mass eigenstates,
L ≫ Lcoh

kl , the nonlinear interference effect vanishes
(together with the linear one). In Appendix B we argue
that the derivation of the nonlinear correction is unchanged
if the nondisturbing interaction of the neutrino with the
environment is allowed. At L ≫ Lcoh

kl , this interaction may
cause decoherence of the mass eigenstates and the latter
belong to distinct quasiclassical histories. We conclude that
in our setup the nonlinear modification does not engender a
permanent correlation between different branches of the
system. It only manifests itself at distances at which
individual oscillations are resolved, and in the rest of the
paper we focus on this case.

IV. PHYSICAL IMPLICATIONS

Consider first a two-flavor model with mixing angle θ
and no CP-violation. Denote the rescaled dimensionless
nonlinearity parameter ϵ̃ ¼ 32π2γEϵm2

ν;sum=ð
ffiffiffi
5

p
v2Þ, where

mν;sum ¼ PNf

i¼1 mi is the sum of neutrino masses. From
Eqs. (6) and (13) one obtains

Pee ¼ Pμμ ¼ cos4 θ þ sin4 θ þ 1

2
sin2 2θ

×

�
cos

�
2πL
Losc
12

�
−
ϵ̃

2

Δm2
21

m2
ν;sum

sin

�
2πL
Losc
12

��
; ð14aÞ

Peμ ¼ Pμe ¼ sin22θ

×
�
sin2

�
πL
Losc
12

�
þ ϵ̃

4

Δm2
21

m2
ν;sum

sin
�
2πL
Losc
12

��
: ð14bÞ

First, we see that when the neutrino masses are equal, the ϵ
correction to the oscillation probability vanishes, as
expected, since in this case there are no oscillations and
Pab ¼ δab. Second, we observe that the correction changes
the survival probability, Pee by a small factor oscillating
with the baseline Losc

21 , while the transition probability, Peμ

is modified by exactly the opposite factor. Thus, Pee þ
Peμ ¼ 1 (similarly for Pμμ;Pμe), and we conclude that the
nonlinear modification preserves unitarity, in agreement
with Ref. [3]. Due to the same oscillation period, the
correction just shifts the oscillation curve. For example,
the transition probability Peμ now attains its maximum at
the baseline Losc

21 ð1=2 − ϵ̃Δm2
21=ð4πm2

ν;sumÞÞ. The value of

Peμ at this maximum coincides with that of Pð0Þ
eμ , to first

order in ϵ.
Next we discuss how the nonlinear correction can

impact oscillation data. Reactor experiments allow for
an accurate determination of the mixing angle θ13 via
measurements of electron neutrino disappearance. In the
effective two-flavor oscillation scheme, the survival prob-
ability is given by [14,15]

TONY GHERGHETTA and ANDREY SHKERIN PHYS. REV. D 108, 075018 (2023)

075018-4



Pð0Þ
ee ¼ 1 − sin2 2θ13 sin2

�
πL
Losc
ee

�
; ð15Þ

where ðLosc
ee Þ−1 ¼ ðLosc

31 Þ−1 cos2 θ12 þ ðLosc
32 Þ−1 sin2 θ12 þ

OðLosc
31 =L

osc
21 Þ. Further corrections to Lee arise from the

heavy Majorana states and are neglected in (15). From
Eq. (13) we obtain how Eq. (15) changes once the non-
linearity is introduced,

ϵPð1Þ
ee ¼ ϵ̃

sin2θ13
mν;sum

�
−m3 sin

�
2πL
Losc
ee

þ 2δCP

�

þ ðm1cos2θ12 þm2sin2θ12Þ sin
�
2πL
Losc
ee

��
; ð16Þ

where δCP is the CP-violating phase. This expression is
accurate to leading order in Losc

31 =L
osc
21 and sin2 θ13. We see

again that the correction (16) shifts the value of Losc
ee at which

the extremum of Pee is achieved, see Fig. 1 for illustration.
Besides, the correction (16) shifts the measured value θ̃13 of
the mixing angle θ13,

sin2 2θ̃13 ¼ sin2 2θ13

�
1 −

ϵ̃m3

4mν;sum
sin ð2δCPÞ

�
: ð17Þ

This is the value measured by terrestrial neutrino experi-
ments with the baselines small compared to the neutrino
coherence length. On the other hand, the value of
θ13 inferred from solar neutrino data is not subject to
the nonlinear correction, since L ≫ Lcoh

31 for solar neu-
trinos. Taking the experimental values from reactor and
solar measurements [13], we obtain the constraint
jϵ̃j≲ 0.3 eV=m3. Note that this bound is specifically for

the Higgs-neutrino interaction as opposed to bounds on
nonlinearity parameters based on electromagnetic inter-
actions [6–8].

V. DISCUSSION

The idea that a fundamental nonlinearity exists in the
time evolution of an isolated quantum system remains an
intriguing possibility. The proposal in Ref. [3] provides a
prescription to compute the effects of such a nonlinearity.
In this paper, we have calculated the correction to the
oscillation probability that arises from the state-dependent
extension of the Yukawa interaction between the light,
active neutrino and the Higgs field. This interaction is
proportional to the ratio v2=Λ2

R ∼m2
ν;sum=v2, which addi-

tionally suppresses the correction (13) and makes the
resulting bound on the nonlinearity parameter ϵ not
currently relevant for experiment. Nevertheless, we dem-
onstrated the very existence of the effect induced by the
nonlinearity and discussed its general properties following
from Eq. (13).
The Weinberg operator is used as a source of the

neutrino-neutrino interaction mediated by the Higgs field.
However, it is straightforward to repeat our analysis for
other possible neutrino couplings that would also contribute
to the nonlinear interference of the neutrino mass eigen-
states and enhance the effect. For example, in Eq. (10) one
can replace v=ΛR ↦ y and treat φ as a new scalar field
coupled to the neutrino current with the (small) coupling y
and the nondiagonal flavor matrix Zab which is assumed to
have order one matrix elements (see, e.g., [16]). The size of
the nonlinear correction to the oscillation probability is then
proportional to ϵy2. Depending on the nature of the field φ,
this can be much larger than (13). Note also that loop effects
can potentially transfer the nonlinearity from the scalar-
neutrino coupling to different sectors of the Standard
Model. However, we expect such loop-induced contribu-
tions to be subdominant.
How is the form of Eq. (13) different from corrections

induced by the standard neutrino interactions? One source
of correction is the same Yukawa coupling term (10) which,
upon integrating out the Higgs field, results in a four-
fermion interaction that renormalises the neutrino propa-
gator. It is easy to see that this correction scales as Q2=Λ2

R,
which differs from the overall scaling v2=Λ2

R in Eq. (13).
The latter scaling can be reproduced by the one-loop
sunrise diagram with the Higgs field. However, it does
not result in the nonlinear interference pattern obtained
from the correction (13).
Our results are obtained under the assumption of an

initial localized neutrino state which may not be possible
with realistic mechanisms of neutrino production and will
likely require going beyond the wave packet treatment of
neutrino propagation. Nevertheless, the method employed
in the neutrino oscillation calculation is quite general and
can be used to compute possible consequences of other

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

FIG. 1. The effect of the nonlinear state-dependent modifica-
tion due to the Higgs-neutrino interaction on the νe oscillation
probability Pee, assuming an effective two-flavor oscillation
scheme. The oscillation parameters are taken from [13], and

ϵ̃ ¼ 0.2. The gray solid line shows the original probability Pð0Þ
ee .

The red solid band depicts Pee with δCP ¼ 0 where the thickness
represents the uncertainty from higher powers of ϵ̃. The correc-
tion induces a shift in the value of L at which the extremum of

Pee is attained. The new value can be fit by shifting Losc
ee in Pð0Þ

ee

(the blue dashed line). For δCP ≠ 0, the value of the maximum
changes as well, see Eq. (17).
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state-dependent nonlinear interactions in quantum field
theory. Further exploring these fundamental nonlinear
effects in particle physics and cosmology opens a way
to possibly experimentally probe the many-worlds inter-
pretation of quantum mechanics. There should be a world
where this is possible, and perhaps even our own.
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APPENDIX A: NONLINEAR CORRECTION
FROM THE STANDARD MODEL NEUTRAL

CURRENT INTERACTION

The correction to the oscillation probability studied
above is due to the Yukawa interaction (10). Here we
consider the nonlinear correction from the neutral current
interaction in the Standard Model,

g
2 cos θW

Zμ

X3
a¼1

χ†aσ̄μχa; ðA1Þ

where g is the SUð2Þ gauge coupling and θW is the weak
mixing angle. To determine whether the interaction (A1)
gives a nonlinear correction to the oscillation probability
we notice that, since the interaction is flavor diagonal, it
does not change the oscillation pattern. Hence, it could
only contribute to the total normalization of the oscillation
probability. This can be checked straightforwardly by
repeating the steps described in the Appendix C. However,
unitarity requires the partial probabilities to always sum
up to one. Thus, at least to first order in ϵ, the correction
due to the neutral current interaction must vanish. To see
this more explicitly, consider the relativistic retarded
Green’s function of the massive vector boson,

Gμν
R ðt0; x⃗0; t; x⃗Þ¼

�
gμνþ 1

M2
Z

∂
2

∂xμ∂xν

�
GRðt0; x⃗0; t; x⃗Þ; ðA2Þ

where MZ is the Z-boson mass, gμν is the Minkowski
metric tensor and GRðt0; x⃗0; t; x⃗Þ is the scalar Green’s
function. The corresponding inhomogeneous term is sim-

ilar to that of Eq. (12), and one can write Gaðt; x⃗;ψ ð0ÞÞ≡
G̃ðt; x⃗;ψ ð0ÞÞψ ð0Þ

a ðt; x⃗Þ with G̃ðt; x⃗;ψ ð0ÞÞ denoting the part in
the spacetime integral. ContractingGμν

R in this integral with
σ̄μ and σ̄ν from Eq. (A1) leads to the manifestly real
G̃ðt; x⃗;ψ ð0ÞÞ. Given that the linear in ϵ correction to the
oscillation probability is proportional to the imaginary part

of G̃ðt; x⃗;ψ ð0ÞÞ [see Eq. (B2) below], we conclude that to
first order in ϵ, the contribution from the Standard Model
neutral current interaction vanishes.

APPENDIX B: DERIVATION OF THE
EQUATION OF MOTION

Here we fill the gaps in the derivation of Eq. (12). To
determine how the active neutrino states respond to the
background classical field created by the expectation value
hΦjφ̂jΦi, we first solve the Klein-Gordon equation for
the Higgs field φ supplemented with the inhomogeneous
term (11) arising from the interaction (10).1 The solution
can be written as

φðt; x⃗Þ ¼ −
v

2ΛR

Z
dt0dx⃗0GRðt0; x⃗0; t; x⃗Þ

× Zabχ
†
aðt0; x⃗0Þiσ2χ̄bðt0; x⃗0Þ þ H:c:: ðB1Þ

By using the retarded Green’s function GR, the modified
theory remains causal [3].2 Next, we promote the fields in
Eq. (B1) to operators, evaluate the corresponding expect-
ation value in the state jΦi, and substitute the result into
Eq. (11). Including the standard spinor kinetic term in
the mass basis, Lkin ¼ iχ†i σ̄

μ
∂μχi where σ̄μ ¼ ð1;−σiÞ, the

combined Lagrangian Lkin þ Lint þ δLint, leads to the
modified Dirac equation for the flavor neutrino states
χa. We are interested in the solutions to this equation which
are of the form of the linear superposition of narrow
(in momentum space) Gaussian wave packets propagating
in vacuum, see Eq. (2). For these configurations, the
modified Dirac equation reads

−i
∂χaðt; x⃗Þ

∂t
¼ ðH0Þabχbðt; x⃗Þþ ϵ

v2

4Λ2
R

Z
dt0dx⃗0GRðt0; x⃗0; t; x⃗Þ

× hΦjZcdχ̂
†
cðt0; x⃗0Þiσ2 ˆ̄χdðt0; x⃗0Þ

− Z̄dcχ̂
T
c ðt0; x⃗0Þiσ2χ̂dðt0; x⃗0ÞjΦiZabiσ2χ̄bðt; x⃗Þ;

ðB2Þ

whereH0 ¼ V̄ · diagðE1;…; ENf
Þ · V̄−1 and the interaction

term (10) gives zero contribution for a classical vacuum
background.
For a freely propagating neutrino, the state vector of the

system is simply jΦi ¼ jχai where the one-particle state
jχai is the eigenvector of χ̂a. Hence, we can evaluate the
expectation value in the state jΦi and replace the operator

1We assume that a proper normalization procedure has been
applied that removed any vacuum divergences in the expectation
values.

2Note that this choice of the Green’s function leads to the
presence of T-violating terms in the correction to the oscillation
probability.

TONY GHERGHETTA and ANDREY SHKERIN PHYS. REV. D 108, 075018 (2023)

075018-6



notation with the wave function χ. This is a good approxi-
mation for short enough baselines. For long distances
(e.g., for solar or supernova neutrinos), when the wave
packets associated with the neutrino mass eigenstates are
widely separated, the interaction with the environment
destroys the coherence between the wave packets, and the
latter belong to distinct quasiclassical histories. Assuming
that the interaction does not change appreciably the dynam-
ics of the propagating neutrino, we can account for this
decoherence effect by writing jΦi ¼ V̄aijχii ⊗ jξii where
jξii is the state of the environment (represented, e.g., by a
probe particle scattering off one of the wave packets). Given
that in the decoherence limit jξii, jξji are orthogonal for
i ≠ j, we can evaluate the expectation value in Eq. (B2) as in
the one-particle case.
We apply the ansatz χa ¼ ðψa; ψ̄aÞT , which represents

equal probabilities for the polarization of the spinor state
(appropriately normalized), where ψaðψ̄aÞ are anticom-
muting variables. Finally, we expand the wave function

ψa as ψa ¼ ψ ð0Þ
a þ ϵψ ð1Þ

a . The expansion of Eq. (B2) to
zeroth order in ϵ is simply the Schrödinger equation (5).
The expansion to first order in ϵ gives Eq. (9) with the
inhomogeneous term

ϵGaðt; x⃗;ψ ð0ÞÞ≡ −ϵ
v2

Λ2
R

Z
dt0dx⃗0GRðt0; x⃗0; t; x⃗Þ

× Re½Zfcdg�ψ ð0Þ
c ðt0; x⃗0Þψ̄ ð0Þ

d ðt0; x⃗0Þ
× Zabψ

ð0Þ
b ðt; x⃗Þ; ðB3Þ

where Zfcdg ¼ ðZcd þ ZdcÞ=2. Using that Z ¼ V ·
diagðm1;…; mNf

Þ · VT · ΛR=v2, we obtain the result (12).

APPENDIX C: DERIVATION OF THE
OSCILLATION PROBABILITY

Here we derive the nonlinear correction to the neutrino
oscillation probability (13). Our conventions are as follows.
The delta function in momentum space satisfies

Z
d3p⃗δð3Þðp⃗Þ ¼ 1: ðC1Þ

The completeness of the coordinate eigenstates reads

Z
d3x⃗jx⃗ihx⃗j ¼ 1: ðC2Þ

Finally, the neutrino-mass eigenstates are normalized as

hνjðp⃗Þjνkðq⃗Þi ¼ δjkδ
ð3Þðp⃗ − q⃗Þ; ðC3Þ

where δjk is the Kronecker delta.
As explained in the main text, we work under the

condition

σ ≪
m2

k

Q
; mk ≪ Q; k ¼ 1;…; Nf; ðC4Þ

where Q ¼ ðpp þ pdÞ=2. This condition ensures the appli-
cability of Eq. (5) to describe the propagation of the
superposition of wave packets (2). Next, we require

L ≪ Lcoh
kl ; ðC5Þ

where Lcoh
kl ¼ Q2=ðσΔm2

klÞ is the baseline at which the
distance between the centers of the wave packets becomes
bigger than their spatial width 1=σ.3 Finally, we assume that

σ ≳ 1=Losc
kl ; ðC6Þ

where Losc
kl ¼ 4πQ=Δm2

kl is the oscillation length. Note that
the condition (C6) is compatible with the condition (C4)
provided m2

k ≳ 10−3 eV2.
Now we specify the relativistic retarded Green’s function

of the massive scalar field. Assuming t − t0 > jx⃗ − x⃗0j ≥ 0,
it is given by

GRðt0; x⃗0; t; x⃗Þ ¼ −
1

2π
δð2Þðs2Þ þ θðs2Þ M

4πs
J1ðMsÞ; ðC7Þ

and vanishes otherwise. HereM is the mass of the scalar, s2

is the spacetime interval

s2 ¼ ðt0 − tÞ2 − jx⃗0 − x⃗j2; ðC8Þ

θ is the Heaviside step-function and J1 is the Bessel
function of the first kind.
Next, the solution of Eq. (9) can be written as

ψ ð1Þ
a ðt; x⃗Þ ¼

Z
td

tp

dt00Kabðt00; tÞGbðt00; x⃗Þ; ðC9Þ

where Kabðt00; tÞ is the Green’s function of the Schrödinger
equation,

�
−iδab

d
dt

− ðH0Þab
�
Kbcðt00; tÞ ¼ δacδðt00 − tÞ: ðC10Þ

The boundary condition ψ ð1Þ
a ðtp; x⃗Þ ¼ 0 suggests that one

should take the retarded Green’s function which is given by

Kðt00; tÞ ¼ iV̄ · diagðe−iE1ðt00−tÞ;…Þ · V̄−1 · θðt− t00Þ; ðC11Þ

as can be checked by substituting (C11) into (C10).

3The latter effect is often referred to as “decoherence” in the
neutrino literature. We avoid this terminology in order to prevent
confusion with the notion of decoherence as maximal entangle-
ment with the environment.
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All the necessary ingredients are now in place to
compute the correction to the amplitude,

Að1Þ
ab ¼ hνðdÞb jψ ð1Þ

a ðtdÞi ¼
Z

d3x⃗ψ ðdÞ†
b ðx⃗Þψ ð1Þ

a ðtd; x⃗Þ; ðC12Þ

where ψ ðdÞ
b ðx⃗Þ≡ hx⃗jνðdÞb i. Consider first the wave function

squared in the integrand of (12), which we quote here again
for convenience,

Gaðt; x⃗;ψ ð0ÞÞ ¼ −
1

v2

Z
dt0d3x⃗0fGRðt0; x⃗0; t; x⃗Þmimj

× Re½VciVdi�ψ ð0Þ
c ðt0; x⃗0Þψ̄ ð0Þ

d ðt0; x⃗0Þg
× VajVbjψ

ð0Þ
b ðt; x⃗Þ: ðC13Þ

Under the conditions (C4) and (C5) we obtain

XNf

i;c;d¼1

miReðVciVdiÞψ ð0Þ
c ðt0; x⃗0Þψ̄ ð0Þ

d ðt0; x⃗0Þ

¼ 16
ffiffiffi
2

p
π3=2σ3

XNf

i;j;k;c;d¼1

miReðVciVdiÞV̄ckVdj

× exp

�
−
iΔm2

kj

2pp
ðtp − t0Þ

�

× exp ½−2σ2ððtp − t0 − zp þ z0Þ2 þ x02 þ y02Þ�: ðC14Þ

The result (C14) is then substituted into Eq. (C13) where it
is convenient to keep the coordinate and momentum

integrals in the expression for ψ ð0Þ
b ðt; x⃗Þ. This is followed

by substituting Eqs. (C13) and (C11) into Eq. (C9), and
finally substituting Eq. (C9) into Eq. (C12). The resulting
multiple integrals are then successively evaluated.
First, we integrate over t0 in Eq. (C13) and assume that

M ≫ σ and M ≫ Δm2
ij=pp for any i; j ¼ 1;…; Nf. This

allows the t0-dependence of the exponent in Eq. (C14) to be
neglected and t0 ¼ tþ jx⃗0 − x⃗j to be substituted for the
lower bound of the integral. The first term in Eq. (C7) gives
zero upon integrating over t0 and subsequently over jx⃗0 − x⃗j.
The second term can be evaluated as follows:

Z
∞

tþjx⃗0−x⃗j
dt0

1

s
J1ðMsÞ ¼ 1

Mjx⃗0 − x⃗j ; ðC15Þ

assuming that Mjx⃗0 − x⃗j ≫ 1. This assumption is valid
provided the subsequent integration over jx⃗0 − x⃗j is satu-
rated at values much larger than M−1. Next, we change to
cylindrical coordinates,

x0 − x¼ rcosθ; y0 − y¼ rsinθ; z0− z¼ z̄; ðC16Þ

so that jx⃗0 − x⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2 þ r2

p
. One can immediately integrate

over θ,

Z
2π

0

dθ e−4σ
2ðxrcosθþyrsinθÞ ¼2πI0

�
4rσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q �
; ðC17Þ

where I0 is the modified Bessel function of the first kind.
Next, we integrate over t00 in Eq. (C9) and define

I t ¼
Z

td

tp

dt00eiBt00−2σ2ðA−t00Þ2 ; ðC18Þ

where

A ¼ tp þ z̄þ z − zp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2 þ r2

p
; ðC19Þ

B ¼ EnðpÞ − EiðQÞ þ Δm2
kj

2pp
: ðC20Þ

Denote T ≡ td − tp and assume that T ≫ pp=Δm2
kj for any

k; j ¼ 1;…; Nf and T ≫ σ−1. The first assumption is
justified in view of the condition (C6) and the fact that
the integral over pp in Eq. (C32) is saturated at pp ≈Q. The
second assumption is justified for T ≫ Losc

kj and given
Eq. (C6), i.e., for baseline distances large compared to the
shortest oscillation length. The limits of integration in I t,
can then be extended to tp → −∞, td → þ∞, provided that
the maximum of the exponent, where the integral is
saturated, is located between tp and td, namely

tp < A < td: ðC21Þ

Evaluating the integral, we obtain

I t ¼
ffiffiffiffiffiffiffi
π

2σ2

r
eiAB−

B2

8σ2 : ðC22Þ

Next, we integrate over z̄ and define

Iz ¼
Z

z̄d

z̄p

dz̄
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z̄2 þ r2
p e

iΔm2
kj

2pp

ffiffiffiffiffiffiffiffiffi
z̄2þr2

p
þiBðz̄−

ffiffiffiffiffiffiffiffiffi
z̄2þr2

p
Þ; ðC23Þ

where the limits of integration must obey the condition
(C21). It is easy to see that if z < zp, Eq. (C21) is never
satisfied, hence the integral is zero. Next, if zp < z <
zp þ T, the lower limit is finite but the upper limit is infinite,

z̄p ¼
ðzp − zÞ2 − r2

2ðzp − zÞ ; z̄d ¼ ∞: ðC24Þ

Finally, if z > zp þ T, both limits are finite. Let us focus on
the second case as the physical one. Note that the integral
over z in Eq. (C12) is saturated around zd ≈ zp þ T, since the
detector wave packet is concentrated around z ¼ zd. Hence,
one can substitute z ¼ zd in Eq. (C24). Assuming that the
integral over r is saturated at r ≪ L, this gives z̄p ≈ −L=2,
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which, in turn, can be safely replaced by z̄p → −∞. Thus,
we obtain

Iz ¼
Z

∞

−∞
dz̄

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2 þ r2

p eiCð
ffiffiffiffiffiffiffiffiffi
z̄2þr2

p
−z̄ÞþiDz̄; ðC25Þ

where

C ¼ EiðQÞ − EnðpÞ; D ¼ Δm2
kj

2pp
: ðC26Þ

Assuming that the integral over r is saturated at
r ≪ C−1, gives

Iz ¼ −2γE − log

�
D
4
ð2C −DÞr2

�
; ðC27Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. Next,
we integrate over r,

Z
∞

0

dr re−2σ
2r2IzI0

�
4rσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �
¼ −

γE
2σ2

e2σ
2ðx2þy2Þ;

ðC28Þ

where the logarithm in Eq. (C27) is neglected, since under
the assumptions C;D ≪ σ, it never becomes significant.
The latter assumptions are equivalent to the condition (C6)
given that the subsequent integration over p picks up the
value p ≈ pp and the integration over pp in Eq. (C32) picks
up the value pp ≈Q. We also see that the integral (C28) is
saturated at r ∼ σ−1, justifying the assumptions made in
evaluating Iz [provided the condition (C6) is valid].
It remains to integrate over x⃗ in Eq. (C12) using the

explicit expression (2) for the wave packets. The integral
over x⃗ then produces a delta function that removes one of
the momentum integrals. The remaining momentum inte-
gral is straightforward. Assuming that

Lσ2

Q
≪ 1; ðC29Þ

gives the expression

Að1Þ
ab ¼ i

8π2γEffiffiffi
3

p
v2

XNf

c;k;j¼1

mkRe

�
VckVcj exp

�
iΔm2

kjL

2Q

��

×
XNf

d;i;n¼1

mnV̄aiVdiVdnVbn exp

�
im2

i T
2Q

�

×exp

�
−
iΔm2

inL
2Q

−
ðpp−pdÞ2

12σ2
þ iQðT−LÞ

�
: ðC30Þ

The correction to the transition probability is given by

Pð1Þ
ab ¼ 1

π
Re

Z
∞

−∞
dppdtpA

ð0Þ
ab Ā

ð1Þ
ab ; ðC31Þ

and the integration is straightforward. The final result is

Pð1Þ
ab ¼ 32π2γEffiffiffi

5
p

v2

XNf

c;k;j¼1

mkRe

�
VckVcj exp

�
2πiL
Losc
kj

��

×
XNf

d;i;n;l¼1

mnIm

�
V̄aiVdiVdnVbnValV̄bl exp

�
2πiL
Losc
nl

��

× exp

�
−

2π2

ðσLosc
il Þ2

�
: ðC32Þ

The expression simplifies in the regime (C6), and we
obtain (13).
Under the condition (C6), the assumption (C29) leads to

(C5). Thus, Eq. (C32) [or (13)] describes the nonlinear
interference between the mass eigenstates of the propagat-
ing neutrino. The opposite limit, Lσ2=Q ≫ 1, follows
again from Eq. (C6) and L ≫ Lcoh

kl . In this case the wave
packets in the superposition (2) are widely separated and, as
discussed in Appendix B of the main text, can be assumed
to have been decohered. Evaluating the momentum integral
in this regime, one finds that the resulting amplitude is
suppressed relative to (C30) by the factor Q=ðLσ2Þ. Thus,
we conclude that at large baselines the nonlinear effect is
gradually washed out.
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