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We construct an extension of the Standard Model with a scalar leptoquark ϕ ∼ ð3; 1;− 1
3
Þ and the discrete

flavor symmetry Gf ¼ D17 × Z17 to explain anomalies observed in charged-current semileptonic B meson
decays and in the muon anomalous magnetic moment, together with the charged fermion masses and quark

mixing. The symmetry Zdiag
17 , contained in Gf, remains preserved by the leptoquark couplings, at leading

order, and efficiently suppresses couplings of the leptoquark to the first generation of quarks and/or
electrons, thus avoiding many stringent experimental bounds. The strongest constraints on the parameter
space are imposed by the radiative charged lepton flavor violating decays τ → μγ and μ → eγ. A detailed
analytical and numerical study demonstrates the feasibility to simultaneously explain the data on the lepton
flavor universality ratios RðDÞ and RðD⋆Þ and the muon anomalous magnetic moment, while passing the
experimental bounds from all other considered flavor observables.
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I. INTRODUCTION

The Standard Model (SM) has been very successful in
describing the gauge interactions involving SM fermions,
the Higgs boson, and gauge bosons. However, the observed
values of fermion masses and mixing can only be accom-
modated with a judicious choice of free parameters,
appearing in the Yukawa matrices, and cannot be predicted.
In particular, the strong hierarchy among charged fermion
masses, the potentially different type of mass spectrum
in the neutrino sector, as well as the fact that only the
Cabibbo angle is sizeable among quarks, while two of the
mixing angles in the lepton sector are large, necessitate a
profound explanation.
Given the success of symmetries in describing the gauge

interactions of the SM particles, it is tempting to also

employ a symmetryGf, acting on the flavor (or generation)
space, in order to explain the features of fermion masses
and mixing. Abelian symmetries, such as a Uð1Þ group [1],
have turned out to be sufficient in order to correctly
accommodate the hierarchy among charged fermion
masses by an appropriate choice of the Uð1Þ charges of
the different generations of the SM fermion species.
However, fermion mixing, especially the striking difference
between the mixing among quarks and leptons as well as
the possibility to predict a certain mixing pattern (e.g.,
tribimaximal mixing among leptons [2–5]), points towards
a non-Abelian, discrete group as flavor symmetry which
can be broken nontrivially. For reviews about the applica-
tion of these groups in high energy particle physics,
see Refs. [6–9].
In recent years, there have been several measurements

in flavor physics which deviate from the SM predictions
and hint at a nontrivial flavor structure. BABAR [10,11],
Belle [12–15], and LHCb [16–18] have measured the
ratios,1

RðDð⋆ÞÞ ¼ ΓðB → Dð⋆ÞτνÞ
ΓðB → Dð⋆ÞlνÞ ; ð1Þ
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1For brevity, we do not indicate antiparticles by overbars
unless required for clarity.
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with l ¼ e, μ, which are sensitive probes of lepton flavor
universality (LFU). The result of the combined fit leads
to larger values for RðDÞ and RðD⋆Þ and exhibits a tension
with the SM prediction at the 3.4σ level [19]. There is also a
long-standing discrepancy between the measured value
[20,21] and the theoretical prediction [22–57] of the
anomalous magnetic moment (AMM) of the muon,
aμ ¼ ðg − 2Þμ=2. The combined fit to the experimental
data shows a 4.2σ tension [21] in Δaμ ¼ aexpμ − aSMμ .2

These three anomalies are summarized in Table I.
In Ref. [65], Bauer and Neubert have proposed a

simultaneous explanation of the flavor anomalies in terms
of the scalar leptoquark (LQ) ϕ transforming as ð3; 1;− 1

3
Þ

under the SM gauge group. The importance of LQ
couplings to right-handed (RH) fermions has been empha-
sized in Refs. [66,67], and it has been demonstrated that the
LQ ϕ cannot explain the discrepancies in b → sμμ which
requires the introduction of additional particles; see, e.g.,
Refs. [68–80]. In the vast majority of these studies, only the
couplings which are needed to explain the flavor anomalies
are introduced, while all other couplings are set to zero
without providing any explanation for the vanishing of
these couplings nor for the size of the nonzero ones.
In this work, we construct a model with a discrete flavor

symmetry to explain the observed flavor anomalies in
RðDÞ, RðD⋆Þ, and in the AMM of the muon. This model is
also capable of correctly describing the strong hierarchy
among charged fermion masses as well as the quark
mixing, leaving aside neutrino masses and lepton mixing.
Given this focus, the three generations of SM fermions are
(mostly) assigned to a doublet and a singlet of Gf. For this
reason, we choose a dihedral group as flavor symmetry.
Both single-valued dihedral groups, Dn, as well as double-
valued dihedral groups, D0

n, form series of groups that
feature one- and two-dimensional irreducible representa-
tions in case the index n of the group Dn (D0

n) is at least
n ¼ 3 (n ¼ 2); see, e.g., Refs. [81–84] for their application

to fermion mixing. A thorough analysis shows that a model
with the flavor group Gf ¼ D17 × Z17 can pass all require-
ments, e.g., coming from the nonobservation of charged
lepton flavor violating (cLFV) decays such as τ → μγ.
The residual symmetry Zdiag

17 , the diagonal subgroup of Gf,
which is preserved by the LQ couplings to the SM
fermions, at leading order, is crucial in order to appropri-
ately suppress those to the first generation of quarks
and/or electrons. The breaking of the flavor symmetry is
achieved with the help of four spurions that acquire a
certain vacuum expectation value (VEV), given in terms of
the expansion parameter λ, λ ≈ 0.22, of the model. For
related studies on the use of flavor symmetries to explain
the anomalies observed in semileptonic B meson decays,
see Refs. [85–90].
The paper is organized as follows. In Sec. II, the model is

introduced, the choice of Gf, its residual symmetry and the
particle assignment are explained as well as the spurions
necessary in order to achieve viable textures for the LQ
couplings, and the charged fermion mass matrices are
specified. The explicit form of the mass matrices and the
LQ couplings in both the interaction basis and the charged
fermion mass basis is derived in Sec. III. Analytical
expressions for charged fermion masses and quark mixing
are also given. Section IV serves as introduction to the
phenomenological study which includes the analytical
estimates, the numerical scan of the primary observables
in Sec. V and the comprehensive numerical analysis of
all observables in Sec. VI. We summarize and give an
outlook in Sec. VII. Technical details and supplementary
material are collected in Appendices A–E.

II. SETUP OF MODEL

In Sec. II A, we first argue for the choice of the flavor
symmetry to be a dihedral group and establish assignments
under this group for the three generations of different
SM fermion species. We continue in Sec. II B with the
introduction of the LQ and its relevant couplings. In
Sec. II C, we focus on particular textures of the LQ
couplings and further specify the transformation properties
of the fields of the model, as well as the employed flavor
symmetry and its breaking. In Sec. II D, we turn to the
Yukawa sector and ensure that the observed charged

TABLE I. Overview of the three anomalies to be addressed in this work and their present significance. The
experimental values for RðDÞ and RðD⋆Þ are quoted from the Heavy Flavor Averaging Group (HFLAV) fit circa
2021, and the combined significance of these two anomalies is 3.4σ, with a correlation of ρ ¼ −0.38 [19].

Anomalies

Observable SM prediction Experiment Significance

RðDÞ 0.297� 0.008 [62–64] 0.340� 0.027� 0.013 [19] 1.4σ
RðD⋆Þ 0.245� 0.008 [62–64] 0.295� 0.010� 0.010 [19] 2.9σ
Δaμ 0 ð2.51� 0.59Þ × 10−9 [21,57] 4.2σ

2There is an ongoing debate about the theoretical prediction of
the hadronic vacuum polarization. While the current determi-
nation of the leading-order hadronic vacuum polarization is
obtained using dispersion relations, cf. Ref. [57], recent lattice
calculations [58–61] predict a value consistent with the exper-
imental result of the AMM of the muon.
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fermion mass hierarchies and the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix are correctly generated.
For convenience, in Sec. II E, we summarize the choice of
the flavor symmetry Gf, all fields, and their transformation
properties under Gf, as well as the employed spurions and
their assumed VEVs.

A. Choice of flavor symmetry and fermion assignment

We choose a member of the series of dihedral groups Dn
with n ≥ 3 as candidate flavor symmetry, as these groups
contain several inequivalent one- and two-dimensional
irreducible representations. This permits two distinct
assignments of the three generations of SM fermions,
either 1þ 1þ 1 or 2þ 1. Both assignments prove to be
useful for our purposes.
For the charged fermions, we are motivated to use the

assignment 2þ 1 as much as possible, since the heaviest
masses are associated with the third generation and the
mixing between the first (second) and third generations of
quarks is small. The doublets and singlets used for the
different SM fermion species, left-handed (LH) quark
doublets Qi, RH down-type quarks dRi, LH lepton doublets
Li, and RH charged leptons eRi, are in general inequivalent.

3

We, consequently, expect that the index n of the dihedral
group should be at least n ¼ 9 in order to offer a minimum
of four inequivalent two-dimensional representations.
For the RH up-type quarks uRi, we choose to assign each

generation to a singlet, 1þ 1þ 1, which may or may not be
inequivalent.4 This can facilitate the accommodation of
the very pronounced mass hierarchy among the up-type
quarks. Such an assignment also simplifies the achievement
of the desired texture of the LQ coupling y to RH charged
leptons eRi and up-type quarks uRi; see Eq. (8). Thus, we
are able to partially unify the three generations of four of
the five different SM fermion species.
We do not discuss neutrino masses nor lepton mixing in

this work, which may otherwise hint at a different
assignment of the three generations of LH leptons under
the flavor symmetry.
Furthermore, we consider a two Higgs Doublet Model

(2HDM) of type-II [91,92], in which one of the Higgs
fields, Hu, is responsible for the masses of up-type quarks,

while the other one, Hd, provides the masses of down-type
quarks and charged leptons. We assume the decoupling
limit, in which the lightest Higgs boson is SM-like and the
further scalars are decoupled. This can be achieved, e.g.,
in case one of the VEVs is induced [93].5 Considering a
2HDM simplifies the search for and, at the same time,
amplifies the choice of a suitable flavor symmetry, as we
see below.
We can thus write the Lagrangian containing the Yukawa

couplings of the charged fermions as follows:

LYuk ¼ −Yu
ijQiHuuRj − Yd

ijQiHddRj

− Ye
ijLiHdeRj þ H:c:; ð2Þ

with the Yukawa coupling matrices Yu, Yd, and Ye being, in
general, complex three-by-three matrices.

B. Leptoquark couplings

The main topic of this study is, however, not the correct
description of charged fermion masses and quark mixing
with the help of a flavor symmetry. Rather, it is exploring
the possibilities of capturing the main features of a
particular flavor structure of the couplings of the LQ, ϕ,
to the SM fermions, which satisfactorily explains (some of)
the present flavor anomalies, while also passing existing
phenomenological constraints.
For this reason, we begin with the Lagrangian containing

the two relevant LQ couplings, before electroweak sym-
metry breaking,

Lint
LQ ¼ x̂ijLc

iϕ
†Qj þ ŷijecRiϕ

†uRj þ H:c:; ð3Þ

where x̂ij and ŷij are, in general, complex numbers. We
define x̂ and ŷ as complex three-by-three matrices whose
elements are denoted as x̂ij and ŷij, respectively. The hatted
notation b is used to indicate that these LQ couplings are
given in the interaction basis of the SM fermions.
The quantum numbers of ϕ† coincide with those of the

scalar LQ conventionally denoted S1 [94], i.e., under the
SM gauge group ϕ ∼ ð3; 1;− 1

3
Þ. In contrast to Ref. [94], we

omit the possible coupling to RH neutrinos that are absent
in this model as well as diquark couplings, since the latter
can induce proton decay if not appropriately constrained.
Imposing baryon number conservation forbids such
diquark couplings. Additionally, we neglect possible cou-
plings between the LQ ϕ and the Higgs doubletsHu andHd
and assume that ϕ does not acquire a nonvanishing VEV.
In this way, the LQ does not impact the potential of Hu
and Hd.

3The fields dLi (uLi) denote the LH down-type (up-type)
quarks that are the lower (upper) component of the LH quark
doublets Qi. Similarly, the fields eLi (νLi) are the LH charged
leptons (neutrinos), being the lower (upper) component of the LH
lepton doublets Li.

4Whether or not all RH up-type quarks can be assigned to
inequivalent one-dimensional representations of the dihedral
group depends on whether the index n of the chosen group is
even or odd, since in the case of even n the group has four
inequivalent singlets, while Dn with n odd only comprises two
inequivalent singlets [83]. One could also consider double-valued
dihedral groupsD0

n, n integer, which all provide four inequivalent
one-dimensional representations [83].

5The potential of the two Higgs doublets Hu and Hd is not
discussed and might require adding further scalar fields and/or
terms, softly breaking the imposed symmetries, in order to
correctly achieve the VEVs of Hu and Hd, shown in Eq. (13).
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In the following, we use the results of Ref. [67] to derive
suitable textures of the LQ couplings as a starting point for
this model. In order to match the convention of Ref. [67],
we change to the charged fermion mass basis,

Lmass
LQ ¼ xijðνmLiÞcϕ†dmLj þ yijðemRiÞcϕ†umRj

− zijðemLiÞcϕ†umLj þ H:c: ð4Þ

The fields with the superscript m, umLi, u
m
Ri, d

m
Li, d

m
Ri, e

m
Li, e

m
Ri,

and νmLi, represent the SM fermion fields in the mass basis.
These are related to the fields, uLi, uRi, dLi, dRi, eLi, eRi,
and νLi, in the interaction basis as follows, formulated in
matrix-vector notation,

uL ¼ LuumL ; uR ¼ RuumR ;

dL ¼ LddmL ; dR ¼ RddmR ;

eL ¼ LeemL ; eR ¼ ReemR and νL ¼ Leν
m
L : ð5Þ

We reiterate that the basis change of LH neutrinos coincides
with the one of LH charged leptons, since neutrinos are
massless in this model, and thus, lepton mixing is unphys-
ical. The couplings xij, yij, and zij in Eq. (4) are, in general,
complex numbers, like x̂ij and ŷij, and we define the LQ
couplings x, y, and z as complex three-by-three matrices
with elements xij, yij, and zij, respectively. The two LQ
couplings x and z in Eq. (4) both stem from the LQ
coupling x̂ in Eq. (3) and are, consequently, related by the
quark mixing matrix VCKM.

C. Viable textures of leptoquark couplings

Possible textures of the LQ couplings x and y that permit
an explanation of the flavor anomalies in RðDÞ, RðD⋆Þ, and
in the AMM of the muon have been proposed and studied
in numerous publications. The study in Ref. [67] has
performed two separate scans of these couplings, each
assuming a slightly different texture for y. We use the
results of the scan in which the form of the LQ couplings x
and y has been fixed to

x¼

0B@0 0 0

0 x22 x23
0 x32 x33

1CA and y¼

0B@0 0 0

0 0 y23
0 y32 0

1CA; ð6Þ

where, a priori, all nonvanishing entries of x and y32 can be
of order one (or even larger), while y23 is bounded as
jy23j ≤ 0.05. A detailed analysis of the results of this scan
shows that for m̂ϕ ≲ 5, where m̂ϕ measures the mass mϕ of
the LQ ϕ in TeV, the textures of x and y can be expressed in
terms of the expansion parameter λ,

λ ≈ 0.2: ð7Þ

One viable set of textures is

x ∼

0B@ 0 0 0

0 λ3 λ

0 λ2 1

1CA and y ∼

0B@ 0 0 0

0 0 λ3

0 1 0

1CA; ð8Þ

where each nonzero element is accompanied by a complex
order-one number.6 In particular, x33 ∼ 1 and y32 ∼ 1
facilitate the explanation of the anomalies in RðDÞ
and RðD⋆Þ, while z23y23 ∼ x23y23 ∼ λ4 helps to achieve
Δaμ ∼ 10−9. We concentrate on achieving these textures of
x and y, with the zeros denoting elements (much) smaller
than λ4 ∼ 10−3.
These couplings are specified in the basis where the

down-type quark mass matrix, Md, and the charged lepton
mass matrix, Me, are (nearly) diagonal, whereas the up-
type quark mass matrix, Mu, is the origin of the CKM
mixing matrix. The unitary transformation associated with
the RH up-type quarks is assumed to be (close to) the
identity matrix in flavor space. Furthermore, all fermion
masses are canonically ordered, so that no additional
permutations of columns and/or rows of the mass matrices
are necessary.
In order to proceed with the assignment of the particles to

representations of the flavor symmetry, we first fix the
transformation properties of the LQ ϕ. We choose it to be in
the trivial singlet of the entire flavor symmetry Gf. The
elements x33 and y32 are both of order one and thus, should
be nonzero in the limit of an unbroken flavor symmetry.
More generally, this should be true for all couplings,
including the Yukawa couplings of the charged fermions
of order one, e.g., the Yukawa coupling that gives rise to the
top quark mass. Otherwise, large flavor symmetry breaking
effects would be needed, which are difficult to control. We
discuss this issue, when addressing the charged fermion
mass matrices in Sec. II D.
To achieve x33 ∼ 1 constrains us to assign the third

generation of LH lepton doublets, L3, and of LH quark
doublets, Q3, to complex conjugated representations of
the flavor symmetry. Furthermore, y32 ∼ 1 requires that the
third generation of RH charged leptons, eR3, and the second
generation of RH up-type quarks, uR2, also transform as
complex conjugated representations. Note that they should
be in complex conjugated representations given the form of
the LQ couplings in Eq. (3). However, as all representations
of (single-valued) dihedral groups are real, complex con-
jugation refers to an external ZN symmetry with N > 2,
whose purpose becomes clear in the following. Indeed, we
can fix, without loss of generality, L3 ∼ 11, Q3 ∼ 11,
eR3 ∼ 11, and uR2 ∼ 11 under the dihedral group.

6We note that many phenomenological analyses take the
elements of the LQ couplings x and y to be real for simplicity.
We refrain from doing so, since we do not include a CP symmetry
in this model.
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1. Flavor symmetry breaking in leptoquark couplings

The other nonzero elements of the LQ couplings x and y
are achieved by breaking the flavor symmetry with some
spurion, acquiring a suitably aligned VEV. The largest
nonzero element of x and y that is not of order one is of
order λ. This determines the size of the symmetry breaking
parameter, at least for the LQ couplings. We follow a
minimalistic approach by generating all elements, x22, x23,
x32, and y23, with the help of a single spurion, called S.
Since these nonzero elements have different orders of
magnitude in λ, we expect that xij; yij ∼ λk arise from
the insertion of k powers of the spurion.7

The insertion of a single spurion S for x23 ∼ λ forces us to
assign the spurion S to the same (real) two-dimensional
representation of the dihedral group as the first two
generations of LH lepton doublets L. This two-dimensional
representation can be chosen without loss of generality as
21 of the dihedral group. Clearly, the VEV of the spurion
also needs to be aligned in a specific way in order to only
generate the element x23 ∼ λ and not x13 at the same or
similar level. We come back to this point in Sec. II C 2.
Knowing that x32 ∼ λ2 and thus is due to two spurion

insertions, we have to have the first two generations of LH
quark doublets,Q, in a representation different from 21 and,
indeed, a suitable choice is 22, since the product of 21 with
itself contains as two-dimensional irreducible representa-
tion 22; see Appendix A. Choosing L ∼ 21, butQ ∼ 22, also
ensures that no large elements are generated among x11,
x12, x21, and x22.
At the level of three spurion insertions, S3, however,

x22 ∼ λ3 can be generated, as desired, compare Eq. (8). This
is possible, since the product 21 × 21 × 21 can contain the
doublet 23.
Finally, we note that also y23 should be generated at

order λ3. So, the combination of the first two generations of
RH charged leptons, eR, and of the RH up-type quark uR3
should transform as the same two-dimensional representa-
tion 23 (and possibly with an appropriate charge under an
external ZN symmetry). We arrive at the conclusion that eR
has to be in 23. We remind that it remains to be checked
explicitly that only the element y23 ∼ λ3 is generated and
not y13 as well. Whether or not this happens, depends on
the alignment of the VEVof the three spurion insertion and
the relevant Clebsch-Gordan coefficients; see Appendix A.
At the same time, we have to ensure that the elements y21

and y22 (and also y11 and y12) are not generated at order λ3

or larger. The best option in order to achieve this goal is to
assign different charges under an external ZN symmetry to
the RH up-type quarks. This is in general also required in
order to keep y32 ∼ 1 and y31 and y33 (much) suppressed,

since the dihedral group might not offer enough inequiva-
lent one-dimensional representations to achieve this.
In summary, we are able to generate all nonzero elements

of the LQ couplings x and y of their correct order in λ.
Since we are in a nonsupersymmetric context, also the
conjugated spurion S† can couple. Indeed, this cannot be
avoided by the dihedral group as part of the flavor
symmetry, since it only provides real representations.
This is one of the arguments for considering as flavor
symmetry the direct product of a dihedral group Dn and an
external ZN symmetry with N > 2.
Due to the size of the symmetry breaking parameter,

λ ≈ 0.2, the spurion S might not be suitable for generating
charged fermion masses. Since these follow a stronger
hierarchy, this would not be possible unless we could
achieve this by multiple insertions of the spurion. As we
see in Sec. II D, it is necessary to introduce three further
spurions, T, U, and W, with different transformation
properties under the flavor symmetry and with different
VEVs (in size and/or alignment), for correctly describing
the charged fermion masses and quark mixing.

2. Protecting textures of leptoquark couplings
with a residual symmetry

It is well-known that the zero elements in the first
column and row of the LQ couplings x and y should be
preserved to a high degree. As these couplings induce
interactions involving the first generation of leptons and/or
quarks, experimental bounds on them are particularly
strong. In this model, we ensure such a suppression by a
residual symmetry, i.e., the vanishing elements in x and y in
Eq. (6) are protected from becoming nonzero, so long as the
residual symmetry is intact.
This residual symmetry is a subgroup of the flavor

symmetry Dn × ZN of the model. As residual symmetry,
we use an Abelian symmetry because a non-Abelian one
can easily become too constraining. A type of residual
symmetry which has been successfully employed in
approaches with flavor symmetries of the form X × ZN

is Zdiag
N . The symmetry Zdiag

N corresponds to the diagonal
subgroup of a ZN symmetry, contained in the non-Abelian
group X, and the external ZN symmetry [95,96]. We, hence,
choose N ¼ n in the following, i.e.,

Gf ¼ Dn × Zn with a single index n: ð9Þ

Furthermore, we assume that the Zn symmetry contained
in Dn is generated by the generator a of Dn—see
Appendix A for the generators of the dihedral group
D17. Since the residual symmetry Zdiag

n should be pre-
served by the textures of the LQ couplings x and y, all
nonvanishing elements of x and y in Eq. (6) should
correspond to combinations of SM fermions (and the
LQ ϕ) with zero charge under Zdiag

n . At the same time,
7Since we work in a nonsupersymmetric model, it can also be

the conjugated spurion and/or some suitable combination of both.
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the spurion S should acquire a VEV that is compatible
with the preservation of this residual symmetry.
We make the eventual choice,8

n ¼ 17: ð10Þ

It is straightforward to derive a set of charges under the
external Z17 symmetry in order to ensure the preservation
of the residual symmetry in the LQ coupling x, given
that we have already fixed that L3 ∼ 11, Q3 ∼ 11, L ∼ 21,
Q ∼ 22 as well as S ∼ 21.
Let us set the charge of L3 under the external Z17

symmetry to 1.9 Then, we have to have that Q3 carries the
Z17 charge 16. Since L3 andQ3 are both singlets underD17,
their charge under the external Z17 symmetry coincides
with their charge under the residual symmetry Zdiag

17 .
Furthermore, the fact that both x23 and x32 in the LQ
coupling x should be allowed as well, compare Eq. (6),
requires L2 and Q2 to transform in the same way under
the residual symmetry Zdiag

17 as L3 and Q3, respectively.
Knowing this, we can compute the charge of L ∼ 21, whose
second component is L2, under the external Z17 symmetry,
and arrive at 2 as Z17 charge for L. Similarly, we have for
Q ∼ 22, whose second component is Q2, that its charge
under the external Z17 symmetry is 1. Then, automatically
also the element x22 in the LQ coupling x is invariant under
the residual symmetry Zdiag

17 . Additionally, we can check
that L1 and Q1 both have the charge 3 under the residual
symmetry Zdiag

17 , and hence, none of the elements of the first
column and row of the LQ coupling x is allowed in the limit
of the residual symmetry Zdiag

17 being preserved.
In order to couple the spurion S in a Z17-invariant way

to the combination Lcϕ†Q3, we have to assign the Z17

charge 16 to S. For S ∼ 21 thus its first component S1
carries no charge under the residual symmetry Zdiag

17 .
Consequently, this has to be the component which
acquires a nonzero VEV, while the VEV of the other
one, S2, has to vanish,

hSi ¼
�
λ

0

�
: ð11Þ

By explicit computation, one can check that the other two
operators, Lc

3ϕ
†QS2 as well as Lcϕ†QS3, generating x32 and

x22 of the appropriate size, are invariant as well.10

In order to protect the vanishing elements in the LQ
coupling y, we appeal to the residual symmetry Zdiag

17 as
well. To do so, we have to assign appropriate charges to the
RH fermions uRi, eR, and eR3. Given that only two elements
are nonzero in the limit of unbroken Zdiag

17 , we can only fix a
certain combination of Z17 charges. Therefore, the Z17

charges of the D17 singlets eR3 and uR2 should be opposite,
e.g., for 9 being the Z17 charge of eR3, that of uR2 should
be 8. Also, the charges of eR2, the second component of
eR ∼ 23, and of the D17 singlet uR3 should be opposite
under the residual symmetry. A possible choice is that eR2
has the Zdiag

17 charge 16, since eR has the charge 2 under
the external Z17 symmetry and thus uR3 carries the Zdiag

17

charge 1—which also corresponds to its charge under the
external Z17 symmetry.
With this Z17 charge assignment, we can check that apart

from the elements y32 and y23 no other element of the
second and third columns of the LQ coupling y is invariant
under the residual symmetry Zdiag

17 . We can, furthermore,
explicitly check that the operator ecRϕ

†uR3S3 is invariant
under the external Z17 symmetry. In order to avoid letting
any element of the first column of y be invariant under
Zdiag
17 , we choose the charge of theD17 singlet uR1 under the

external Z17 symmetry to be 13.
The presented choice of Z17 charge assignments also

takes constraints into account from the requirement of a
correct description of charged fermion masses and quark
mixing. It, furthermore, suppresses flavor violation, in
particular involving the first lepton and/or quark gener-
ation, by limiting the contributions to the LQ coupling y
from operators involving the other spurions T, U, W, and
their conjugated fields.
In Table II, the chosen charges of the different SM

fermions, scalar fields and spurions under the residual
symmetry Zdiag

17 have been collected.

D. Flavor structure of Yukawa couplings

In the next step, we turn to the construction of the
charged fermion mass matrices and complete the assign-
ment of the SM fermions under the flavor symmetry
Gf ¼ D17 × Z17 by also fixing the transformation proper-
ties of the RH down-type quarks. We introduce three
further spurions, T, U, and W, all transforming as doublets

8We do not comment further about this choice. However, we
mention that we have studied different values of the index n of the
dihedral group Dn with regard to the possibility to generate all
operators needed for the LQ couplings x and y and for a valid
description of charged fermion masses and quark mixing and, at
the same time, not to give rise to other contributions to the LQ
couplings and the charged fermion mass matrices, which strongly
perturb the leading-order results.

9Other choices are possible at this point. A valid choice is
determined by the requirement that no contribution to the LQ
couplings x and y nor to the charged fermion mass matrices,
when including the spurions T, U, and W beyond S as well as
their conjugated fields, is generated which perturbs the leading-
order structure of these and thus leads to unacceptably large
flavor violation and/or wrong results for charged fermion masses
and quark mixing. The presented set of charges under the external
Z17 symmetry is such a valid choice.

10The spurions are treated as dimensionless flavor symmetry
breaking fields. Thus, we do not need to introduce a cutoff scale
in order to restore the correct mass dimension of the operators.
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under D17. These are responsible for the generation of the
correct charged fermion mass hierarchy and the Cabibbo
angle θC of the order of λ. By contrasting Eqs. (14)–(16)
with Eq. (11), we note that the size of their VEVs is
(significantly) smaller than that of the spurion S.
We recall that the LQ couplings x and y are given in the

mass basis of charged leptons and down-type quarks. This
means Me and Md should be (almost) diagonal, while the
CKM mixing matrix should arise from the up-type quark
mass matrixMu, and the unitary transformation relating the
interaction and mass bases of the RH up-type quarks should
be (close to) the identity matrix. The approximate form
of the mass matrices Me, Md, and Mu in terms of λ is,
therefore,

Me ∼

0B@ λ4 0 0

0 λ2 0

0 0 1

1CAhH0
di;

Md ∼

0B@ λ4 0 0

0 λ2 0

0 0 1

1CAhH0
di;

and Mu ∼

0B@ λ8 λ5 ≲λ3

0 λ4 λ2

0 0 1

1CAhH0
ui: ð12Þ

In Eq. (12), all nonvanishing elements are accompanied by
complex order-one coefficients, and the vanishing elements
imply that these entries are (strongly) suppressed.
As discussed in Sec. II A, we work in a 2HDM:Hu gives

masses to up-type quarks and Hd to down-type quarks as
well as charged leptons. Therefore, the hierarchy between
the bottom quark (tau lepton) mass and the mass of the top
quark can be generated via an appropriate hierarchy among
the VEVs of the two Higgs doublets Hd and Hu. Typical
values of these VEVs are

hH0
di ¼

vdffiffiffi
2

p ∼ 2.4 GeV; hH0
ui ¼

vuffiffiffi
2

p ∼ 174 GeV; ð13Þ

so that v2d þ v2u ¼ v2 ∼ ð246 GeVÞ2. Both Higgs doublets
transform as trivial singlet 11 under D17 but need to carry
a nontrivial charge under the external Z17 symmetry to
allow for the generation of the top quark and tau lepton
mass at tree level.

1. Generation of down-type quark
and charged lepton masses

The invariance of the operator L3HdeR3 under the
external Z17 symmetry requires that the charge of Hd
is 9.11 Since the size of the bottom quark mass is similar to
that of the tau lepton, we also require that the operator
Q3HddR3 is invariant. This fixes the transformation proper-
ties of dR3 to dR3 ∼ 11 under D17, and the charge of dR3
under the external Z17 symmetry to be 7.
In order to generate the mass of the muon and of the

strange quark, we invoke a further spurion, T. One relevant
operator is thus L̄HdeRT, requiring that the spurion T
carries the charge 8 under the external Z17 symmetry. We
can determine the transformation properties of T underD17

to be T ∼ 22 by noting that the second component of the
covariant in 22 is L2HdeR2. Furthermore, we know then
also that the first component of T should acquire a nonzero
VEV of order λ2,

hTi ¼
�
λ2

0

�
: ð14Þ

For details about the necessary Clebsch-Gordan coeffi-
cients, see Appendix A. We can check that this VEV breaks
the residual symmetry Zdiag

17 , invoked to protect the form
of the LQ couplings x and y. This is not unexpected
but indicates that couplings of this spurion to the LQ ϕ
should be appropriately suppressed by the flavor sym-
metry Gf ¼ D17 × Z17.
At the same time, the spurion T should generate the

strange quark mass; i.e., the operator Q̄HddRT should be
invariant under Gf. For this to work, we have to fix the
transformation properties of dR accordingly. Its charge
under the external Z17 symmetry should be 1, and dR ∼ 24
under D17 such that the second component of the covariant
in 22 reads Q2HddR2. This completes the fixing of the
transformation properties of the three generations of all SM
fermion species.
The simplest way to generate the mass of the electron

and of the down quark would be to modify the VEVof the

TABLE II. Charge under residual symmetry Zdiag
17 . We list the

charge of the different SM fermions, scalar fields, and spurions
under the residual symmetry Zdiag

17 , preserved by the leading-order
structure of the LQ couplings x and y; see Eq. (8). This residual
symmetry Zdiag

17 is the diagonal subgroup of the Z17 symmetry,
contained in D17 and generated by the generator a, compare
Appendix A, and the external Z17 symmetry.

Field Zdiag
17 Field Zdiag

17 Field Zdiag
17 Field Zdiag

17 Field Zdiag
17

Q1 3 dR1 5 eR1 5 S1 0 W1 14
Q2 16 dR2 14 eR2 16 S2 15 W2 10
Q3 16 dR3 7 eR3 9 T1 10
uR1 13 L1 3 Hu 15 T2 6
uR2 8 L2 1 Hd 9 U1 10
uR3 1 L3 1 ϕ 0 U2 6

11We do not consider it an issue that the VEVof Hd (and also
of Hu) spontaneously breaks the external Z17 symmetry, because
it is broken anyway (at a higher scale) by the VEVs of the
spurions S, T, U, and W.
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spurion T so that its second component acquires a VEVof
order λ4. We do not pursue this possibility and instead
introduce a further spurion, U, which transforms in the
same way under Gf as T, but acquires a VEVof the form,

hUi ¼
�

0

λ4

�
: ð15Þ

Similar to the VEV of T, this VEV does not preserve the
residual symmetry Zdiag

17 , maintained in the LQ couplings x
and y (at leading order). The two relevant operators for the
mass of the electron and of the down quark are L̄HdeRU
and Q̄HddRU, respectively.
The reason for employing the further spurion U is

twofold. Firstly, it allows the undetermined order-one
coefficients accompanying the aforementioned operators
to be used to correctly achieve the masses of both the
electron and the down quark. This would not be possible
with only the spurion T. Secondly, in this way, the
computation of higher-order operators with several inser-
tions of the spurions T and U is simplified, and their
number can be controlled better.
This concludes the discussion of the generation of the

charged lepton and the down-type quark mass matrices. In
the end, both mass matrices are not exactly diagonal, since
further operators are always induced.12 We show in the next
section that this neither poses a problem for the charged
fermion mass matrices nor for achieving the textures of the
LQ couplings x and y.

2. Generation of up-type quark masses
and quark mixing matrix

The invariance of the operator Q3HuuR3 under the
external Z17 symmetry requires that the charge of Hu is 15.
In the limit of unbroken flavor symmetry, the only up-type
quark mass generated is the one of the top quark.
In order to arrive at a nonzero mass for the charm quark,
and to generate the Cabibbo angle of the correct order
of magnitude, we introduce a last spurion, W. It should
couple to Q̄HuuR2, and, hence,W has to carry the charge 12
under the external Z17 symmetry and transform like Q
under D17, W ∼ 22. Since the purpose of introducing W is
to generate the charm quark mass as well as the Cabibbo
angle, both its components should acquire a nonvanishing
VEV, i.e.,

hWi ¼
�
λ5

λ4

�
: ð16Þ

Indeed, given the structure of the covariant Q̄HuuR2, the
lower component of the VEV of W generates the charm
quark mass, while the upper one is responsible for the size
of the Cabibbo angle, which is θC ≈ λ. As can be shown,
the VEV of the spurion W also breaks the residual
symmetry Zdiag

17 . This completes the set of spurions we
use in this model.
Two points still need to be addressed, namely the

generation of the two smaller quark mixing angles and
of the mass of the up quark. The former issue can be solved
by noting that in this nonsupersymmetric model also the
conjugated spurions contribute to the charged fermion mass
matrices and LQ couplings x and y. Indeed, one can check
that with the assigned transformation properties the oper-
ator Q̄HuuR3ðS†Þ2 leads to an elementMu;23 in the up-type
quark mass matrix, which is of the order λ2hH0

ui and thus,
can correctly generate θ23 ∼ λ2.13 At the same time, this
induces θ13 ∼ λ3, where the additional suppression factor λ
arises from the Cabibbo angle.14

The correct order of the up quark mass arises from the
operator Q̄HuuR1T2U, which is automatically invariant
under the flavor symmetry Gf and leads to the term
uL1hH0

uiuR1λ8, after flavor and electroweak symmetry
breaking.

E. Summary of flavor symmetry,
particle content, and spurions

In this section, we briefly summarize the essential
information about the model. The flavor symmetry is

12One example is the operator L̄HdeR3S†. It is invariant
because L3HdeR3 is generated at tree level, L transforms as
the same doublet of D17 as the spurion Sð†Þ, and the piece
L2HdeR3 is like L3HdeR3 invariant under the residual symmetry
Zdiag
17 , which is also left unbroken by the VEVof the spurion Sð†Þ.

We, hence, already know that the element Me;23 of the charged
lepton mass matrix must arise at the order λhH0

di from the
operator L̄HdeR3S†.

13We note that also Q̄HddR3ðS†Þ2 is invariant, since the
combinations HuuR3 and HddR3 transform in the same way.
This is due to the fact that both operatorsQ3HuuR3 andQ3HddR3
are generated at tree level. As we show in the analysis of quark
masses and mixing, this does not pose a problem. It is also not an
obstacle for achieving the texture of the LQ coupling x, as shown
in Eq. (8). From the viewpoint of the residual symmetry Zdiag

17 ,
one can argue that not only the mass of the top and of the bottom
quark are invariant under Zdiag

17 , but also the elements Mu;23
and Md;23 of the up-type and down-type quark mass matrix.

14This leads to issues with generating a large enough value for
Vtd and for the Jarlskog invariant JCP [97] as well as to a too tight
relation between the CKM mixing matrix elements Vus, Vub, and
Vcb, as we comment in Sec. III A 4. However, generating θ13
directly through an element Mu;13 of the up-type quark mass
matrix of the order λ3hH0

uiwould have as immediate consequence
that also an element Md;13 of the order λ3hH0

di is produced in the
down-type quark mass matrix, since the combination of fields
Q̄HuuR3 and Q̄HddR3 transforms in the same way. Such a large
element in the down-type quark mass matrix leads, upon
rediagonalization of the latter, to rather large elements in the
first column of the LQ coupling x. For this reason, we prefer to
neither generate the element Mu;13 nor Md;13 through operators,
respecting all symmetries of the model.
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Gf ¼ D17 × Z17; ð17Þ
and the particle content is given in Table III. The VEVs of
the spurions are

hSi ¼
�
λ

0

�
; hTi ¼

�
λ2

0

�
;

hUi ¼
�

0

λ4

�
; hWi ¼

�
λ5

λ4

�
: ð18Þ

Since we do not address the potential of these spurions and
thus, also not how their VEVs can be correctly aligned, we
also do not discuss possible perturbations of these VEVs
and their potential impact on the results for charged fermion
masses, quark mixing, and the form of the LQ couplings
x and y in terms of the symmetry breaking parameter λ.

III. MASS MATRICES AND LEPTOQUARK
COUPLINGS

In this section, we list the operators contributing to the
charged fermion mass matricesMu,Md, andMe, and to the

LQ couplings x̂ and ŷ from Eq. (3). We do so for operators
that contribute up to and including order λ12 in the
symmetry breaking parameter, and assume that the
VEVs of the spurions S, T, U, and W are of the form
given in Eq. (18). Each operator is accompanied by a
complex order-one coefficient. The lists of operators are
usually ordered according to the number of spurion
insertions. We further emphasize that the spurions are
treated as dimensionless flavor symmetry breaking fields.
Thus, no cutoff scale needs to be introduced to achieve the
correct mass dimension of the operators.
In the lists, the operators stand for all possible

combinations of the involved fields, which lead to an
invariant of the flavor symmetry Gf. Thus, they can
correspond to more than one independent contribution to
the charged fermion mass matricesMu,Md, andMe or the
LQ couplings x̂ and ŷ. We take this into account in the
computation, and signal them by using primed coeffi-
cients in those instances, e.g., αd8 , ðαd8Þ0—see Eq. (B2) in
Appendix B.
We generally omit all operators with insertions of powers

of SS†, TT†, UU†, and WW†, and products thereof.
Typically, these duplicate the contribution from the oper-
ator without this insertion, but have at least an additional
suppression of order λ2, λ4, and≲λ8, respectively. There are
two exceptions to this rule: (a) the subleading-order (in λ,
SLO) contribution to the elements Mu;12 and Mu;22 of the
up-type quark mass matrix involving SS†, and (b) operators
involving the insertion WW†. For exception (a), the
elements Mu;12 and Mu;22 carry the same parameter
dependence at leading order (in λ, LO), generated by the
second operator in Eq. (19), but they receive partially
different SLO corrections at relative order λ2 from the first
and second operators in Eq. (20), seen explicitly in Eq. (B1)
in Appendix B. For exception (b), WW† also contains a
covariant in 24 with a nonvanishing VEV, so some
operators with this insertion can lead to nonredundant
contributions—although they are always suppressed by at
least λ8 with respect to contributions from operators with-
out this insertion.
After listing the operators, we present the form of

the charged fermion mass matrices Mu, Md, and Me,
analytic formulas for charged fermion masses, and the
unitary matrices for LH and RH fermions, needed in
order to arrive at the charged fermion mass basis. The
latter are necessary to compute the LQ couplings x and y
in Eq. (4) from x̂ and ŷ, respectively, in Eq. (3). We also
explicitly detail the form of the LQ coupling z, appear-
ing in Eq. (4).
All matrices, Mu, Md, Me, x̂, ŷ, x, y, and z, are given in

an effective parametrization, where the parameters are
related to the coefficients of the contributing operators.
For completeness, these relations can be found in
Appendix B. For the analytic computations in this section,
we assume all parameters to be real but note that they are

TABLE III. Particle content of the model. The SM fermions,
scalar fields, and spurions (flavor symmetry breaking fields), and
their transformation properties under the SM gauge group
SUð3Þ × SUð2Þ × Uð1Þ as well as the flavor symmetry Gf ¼
D17 × Z17 are given. Particles in a two-dimensional irreducible
representation of D17 are evidenced as two-component vector.

Field SU(3) SU(2) U(1) D17 Z17

Q ¼
�
Q1

Q2

�
3 2 1

6
22 1

Q3 3 2 1
6

11 16
uR1 3 1 2

3
12 13

uR2 3 1 2
3

11 8
uR3 3 1 2

3
11 1

dR ¼
�
dR1
dR2

�
3 1 − 1

3
24 1

dR3 3 1 − 1
3

11 7

L ¼
�
L1

L2

�
1 2 − 1

2
21 2

L3 1 2 − 1
2

11 1

eR ¼
�
eR1
eR2

�
1 1 −1 23 2

eR3 1 1 −1 11 9

Hu 1 2 − 1
2

11 15
Hd 1 2 1

2
11 9

ϕ 3 1 − 1
3

11 0

S ¼
�
S1
S2

�
1 1 0 21 16

T ¼
�
T1

T2

�
1 1 0 22 8

U ¼
�
U1

U2

�
1 1 0 22 8

W ¼
�
W1

W2

�
1 1 0 22 12
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taken to be complex-valued in subsequent phenomenologi-
cal studies.
When computing the CKM mixing matrix VCKM, we

find analytically and numerically that this model (as out-
lined so far) cannot be in full agreement with experimental
data. Specifically, we find that a large enough value for Vtd
and for the Jarlskog invariant JCP, as well as a correct
value of Vub (with Vus and Vcb already fixed) cannot be
produced. We comment on this in Sec. III A and point out
how this issue can be solved with a slight change in the
form of the up-type quark mass matrix Mu, i.e., by
enhancing the element Mu;13 to be of the order λ3hH0

ui.
We call the results obtained in this model without modi-
fication ofMu “scenario A” and those with the modification
ofMu “scenario B.” The form of the LQ couplings x, y, and
z is computed in both scenarios.
The quark sector is discussed in Sec. III A, while

the charged lepton sector is addressed in Sec. III B.
Section III C is dedicated to the LQ couplings.

A. Quark sector

Here, we discuss the results for the up-type quark mass
matrix Mu and the down-type quark mass matrix Md. We
then move on to address the CKM mixing matrix in the
aforementioned scenarios A and B.

1. Up quark sector

In the up quark sector, we consider four operators at LO
that generate the up-type quark masses and the three quark
mixing angles. These four operators read

Lu
Yuk;LO ¼ αu1Q3HuuR3 þ αu2Q̄HuuR2W

þ αu3Q̄HuuR3ðS†Þ2 þ αu4Q̄HuuR1T2U: ð19Þ

At SLO, the following operators give contributions up to
and including λ12 to the up-type quark mass matrix,

Lu
Yuk;SLO ¼ αu5Q̄HuuR2SS†W þ αu6Q̄HuuR2ðS†Þ4T þ αu7Q3HuuR2ðS†Þ2T þ αu8Q3HuuR2ðW†Þ2 þ αu9Q̄HuuR2W2W†

þ αu10Q̄HuuR1TU2 þ αu11Q3HuuR2S2W þ αu12Q̄HuuR2T†UW þ αu13Q̄HuuR2TU†W þ αu14Q̄HuuR3T†ðW†Þ2
þ αu15Q̄HuuR3ðS†Þ2TU† þ αu16Q̄HuuR3S2T†W þ αu17Q̄HuuR3S2U†W þ αu18Q̄HuuR2S2T†W†

þ αu19Q̄HuuR2S2U†W† þ αu20Q̄HuuR2ðS†Þ2ðW†Þ2 þ αu21Q̄HuuR3ðS†Þ2WW† þ αu22Q3HuuR1S2TU2

þ αu23Q3HuuR1ðS†Þ4ðU†Þ2 þ αu24Q3HuuR3S4T†W þ αu25Q3HuuR3ðS†Þ4TW† þ αu26Q3HuuR2S4T†W†

þ αu27Q̄HuuR2ðS†Þ4T2U† þ αu28Q̄HuuR3S4ðT†Þ2W† þ αu29Q̄HuuR2S6ðT†Þ2 þ αu30Q̄HuuR3ðS†Þ6TW†: ð20Þ

Of the operators in Eq. (20), the first two are the most
important, since they contribute at relative order λ2 to the
elements Mu;12 and Mu;22. The operators with the coef-
ficients αu6 and αu7 are examples of operators that appear
automatically once the field content of the LO operators is
determined. We note that several of these operators lead to
two independent contributions to the up-type quark mass
matrix Mu. The operator with the coefficient αu5 induces
contributions of order λ6 to the elementMu;22 and of λ7 to the
elementMu;12, but with a different relative sign; the one with
αu14 gives contributions of order λ

10 and λ11; the one with αu16
yields contributions of order λ8 and λ9; the onewith αu18 leads
to contributions of order λ8 and λ9; finally, the operator with
the coefficient αu20 gives rise to two independent contribu-
tions of order λ10 and λ11, respectively.
The up-type quark mass matrix can thus be effectively

parametrized, up to and including order λ12, as

Mu ¼

0BB@
f11λ8 f12λ5 f13λ8

f21λ10 f22λ4 f23λ2

f31λ12 f32λ4 f33

1CCAhH0
ui; ð21Þ

where fij are generally independent, complex order-one
numbers, apart from f12 and f22. The latter fulfil the
relation,

f12 − f22 ∼ cλ2; ð22Þ

with c being complex.15 As mentioned above, the first two
operators in Eq. (20), with the coefficients αu5 and αu6 ,
are the source of this difference—see also Eq. (B1) in
Appendix B. The expressions for the other parameters fij
in terms of the coefficients αui are given in Eq. (B1) in
Appendix B as well.
From the effective parametrization of Mu, we can derive

expressions for the up-type quark masses. Note that in order
to clearly show these results here (and in the following), we
only explicitly mention the most relevant terms. Thus, the
quark masses can be expressed as

15In order to reflect this relation better in the effective
parametrization of Mu, one can express the element Mu;12 as
ðf22 þ f̃12λ2Þλ5hH0

ui instead, where f̃12 is a complex order-one
number.

BIGARAN, FELKL, HAGEDORN, and SCHMIDT PHYS. REV. D 108, 075014 (2023)

075014-10



mu ¼ jf11λ8 þOðλ10ÞjhH0
ui;

mc ¼
����f22λ4 þ � f212

2f22
−
f23f32
f33

�
λ6 þOðλ8Þ

����hH0
ui;

mt ¼
����f33 þ f223

2f33
λ4 þOðλ8Þ

����hH0
ui: ð23Þ

We confirm that the dominant contributions to the three different masses come from the first, second, and fourth operator in
Eq. (19), as expected from the construction of the model. The matrices Lu and Ru transforming LH and RH up-type quarks
from the interaction to the mass basis read, up to and including order λ12,

Lu ¼

0BBBBB@
1 − f2

12

2f2
22

λ2 þOðλ4Þ f12
f22

λþOðλ3Þ f13
f33

λ8 þOðλ9Þ

− f12
f22

λþOðλ3Þ 1 − f2
12

2f2
22

λ2 þOðλ4Þ f23
f33

λ2 þOðλ6Þ
f12f23
f22f33

λ3 þOðλ5Þ − f23
f33

λ2 þOðλ4Þ 1 − f2
23

2f2
33

λ4 þOðλ8Þ

1CCCCCA ð24Þ

and

Ru ¼

0BBBBB@
1þOðλ10Þ f11f12

f2
22

λ5 þOðλ6Þ f21f23þf31f33
f2
33

λ12 þ oðλ12Þ
− f11f12

f2
22

λ5 þOðλ6Þ 1þOðλ8Þ f32
f33

λ4 þOðλ6Þ
f11f12f32
f2
22
f33

λ9 þOðλ10Þ − f32
f33

λ4 þOðλ6Þ 1þOðλ8Þ

1CCCCCA: ð25Þ

We note that Lu is the primary source of the CKM mixing
matrix, whereas the matrix Ru should be close to the
identity matrix—in accordance with the basis in which the
textures of the LQ couplings x and y are given in Eq. (8).
The obtained forms of Lu and Ru fulfil these requirements
to a good degree.
The largest deviation of Ru from the identity matrix is of

order λ4, due to the operator with the coefficient αu7 that
appears automatically. As can be seen below, this deviation
in Ru is partly responsible for the generation of the element
y33 of the LQ coupling ŷ in the charged fermion mass basis
of order λ4—compare Eqs. (56) and (B8) in Appendix B.
Furthermore, Ru;21 ∼ λ5 together with ŷ32 ∼ 1, see Eq. (51),
has particular relevance for the texture of the same LQ
coupling y, leading to y31 ∼ λ5; see Eqs. (56) and (B8) in
Appendix B.

2. Introducing scenario B

One can already infer from the form of the matrix Lu in
Eq. (24) that the CKMmixing matrix element Vtd as well as
the Jarlskog invariant JCP are likely to be very suppressed.
This suppression originates from the entry Lu;13, which is
only of order λ8. Furthermore, the tight relation between the

elements Lu;21, Lu;31, and Lu;32 leads to a too-strong
correlation between Vus, Vub, and Vcb. These points are
discussed further in Sec. III A 4.
A simple way to resolve these issues is to enhance the

elementMu;13 in the up-type quark mass matrixMu, namely,

Mu ¼

0BB@ f11λ8 f12λ5 f̃13λ3

f21λ10 f22λ4 f23λ2

f31λ12 f32λ4 f33

1CCAhH0
ui; ð26Þ

with f̃13 being a complex order-one number. Adding
ad hoc a further contribution to the element Mu;13 is not
explained by an appropriate operator in the context of
this model. From the arguments given in footnote 14,
it is, however, likely that such a contribution can only be
generated by either an operator which explicitly breaks the
flavor symmetry Gf or by changing at least part of the
fermion assignment and/or Gf.
The up-type quark masses are mostly unaffected by this

change, except that the SLO term in the top quark mass; see
Eq. (23), is slightly enhanced and of order λ6. The matrices
Lu and Ru read
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Lu ¼

0BBBBB@
1 − f2

12

2f2
22

λ2 þOðλ4Þ f12
f22

λþOðλ3Þ f̃13
f33

λ3 þOðλ7Þ

− f12
f22

λþOðλ3Þ 1 − f2
12

2f2
22

λ2 þOðλ4Þ f23
f33

λ2 þOðλ6Þ�
f12f23
f22f33

− f̃13
f33

�
λ3 þOðλ5Þ − f23

f33
λ2 þOðλ4Þ 1 − f2

23

2f2
33

λ4 þOðλ6Þ

1CCCCCA ð27Þ

and

Ru ¼

0BBB@
1þOðλ10Þ f11f12

f2
22

λ5 þOðλ6Þ f11f̃13
f2
33

λ11 þOðλ12Þ
− f11f12

f2
22

λ5 þOðλ6Þ 1þOðλ8Þ f32
f33

λ4 þOðλ6Þ
f11f12f32
f2
22
f33

λ9 þOðλ10Þ − f32
f33

λ4 þOðλ6Þ 1þOðλ8Þ

1CCCA: ð28Þ

As expected, the element Lu;13 in the matrix Lu is now of order λ3 and the tight relation between the elements Lu;21, Lu;31,
and Lu;32 is relaxed. In this way, all mentioned shortcomings of the resulting CKM mixing matrix are remedied; see further
discussion in Sec. III A 4. The matrix Ru is very mildly affected by this change in Mu, since only the element Ru;13 is
enhanced to order λ11.

3. Down quark sector

At LO, there are three operators responsible for the generation of the down-type quark masses: one arising at tree level
and the other two requiring the insertion of one spurion, T or U. Thus, we have

Ld
Yuk;LO ¼ αd1Q3HddR3 þ αd2Q̄HddRT þ αd3Q̄HddRU: ð29Þ

At SLO, we find several more operators,

Ld
Yuk;SLO ¼ αd4Q̄HddR3ðS†Þ2 þ αd5Q3HddRS2T þ αd6Q̄HddRT†U2 þ αd7Q̄HddRT2U† þ αd8Q̄HddR3T†ðW†Þ2

þ αd9Q̄HddRTWW† þ αd10Q̄HddR3ðS†Þ2TU† þ αd11Q̄HddR3S2T†W þ αd12Q̄HddR3S2U†W

þ αd13Q̄HddRS2ðW†Þ2 þ αd14Q̄HddR3ðS†Þ2WW† þ αd15Q3HddRS2T†U2 þ αd16Q̄HddRS4W

þ αd17Q3HddRðS†Þ2T2W† þ αd18Q3HddR3S4T†W þ αd19Q3HddR3ðS†Þ4TW† þ αd20Q3HddRS6W

þ αd21Q̄HddRðS†Þ4T2W† þ αd22Q̄HddR3S4ðT†Þ2W† þ αd23Q̄HddR3ðS†Þ6TW†

þ αd24Q̄HddRS6T†W† þ αd25Q̄HddRðS†Þ7ðT†Þ2: ð30Þ

The first operator in Eq. (30) has been discussed already,
since it is automatically present once the corresponding
operator in the up quark sector is considered. Similarly,
the existence of the second operator in this list (with the
coefficient αd5) is automatic, once we have accounted for
the LO operators generating the dominant structures in
the charged fermion mass matrices and in the LQ couplings
x̂ and ŷ.
We note that the operators with the following coefficients

lead to more than one independent contraction, and hence
contribution, to the down-type quark mass matrix. The
operator with αd8 leads to two independent contributions of
order λ10 and λ11; the one with αd9 yields two contributions,
both of order λ11; the operator with αd11 gives two
contributions of order λ8 and λ9; the one with αd13 leads
to three contributions of order λ10, λ11, and λ12; finally, the

operator with the coefficient αd16 leads to two contributions
of order λ8 and λ9.
The effective parametrization of the down-type quark

mass matrix, including all contributions up to and including
order λ12, therefore reads

Md ¼

0BB@
d11λ4 d12λ8 d13λ8

d21λ10 d22λ2 d23λ2

d31λ12 d32λ4 d33

1CCAhH0
di; ð31Þ

with dij being, in general, independent complex order-one
numbers, related to the coefficients αdi as shown in Eq. (B2)
in Appendix B. Furthermore, we arrive at the down-type
quark masses,
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md ¼ jd11λ4 þOðλ12ÞjhH0
di;

ms ¼
����d22λ2 − d23ðd22d23 þ 2d32d33Þ

2d233
λ6 þOðλ10Þ

����hH0
di;

mb ¼
����d33 þ d223

2d33
λ4 þOðλ8Þ

����hH0
di; ð32Þ

with the dominant contributions arising from the three operators in Eq. (29), as expected from the construction of the model.
For the matrices Ld for LH, and Rd for RH down-type quarks, we have up to and including order λ;12

Ld ¼

0BBBBB@
1 − d2

12

2d2
22

λ12 þ oðλ12Þ d12
d22

λ6 þOðλ10Þ d13
d33

λ8 þOðλ12Þ

− d12
d22

λ6 þOðλ10Þ 1 − d2
23

2d2
33

λ4 þOðλ8Þ d23
d33

λ2 þOðλ6Þ

− ðd13d22−d12d23Þ
d22d33

λ8 þOðλ12Þ − d23
d33

λ2 þOðλ6Þ 1 − d2
23

2d2
33

λ4 þOðλ8Þ

1CCCCCA ð33Þ

and

Rd ¼

0BBB@
1þ oðλ12Þ ðd11d12þd21d22Þ

d2
22

λ8 þOðλ12Þ d11d13þd21d23þd31d33
d2
33

λ12 þ oðλ12Þ
− ðd11d12þd21d22Þ

d2
22

λ8 þOðλ12Þ 1þOðλ8Þ ðd22d23þd32d33Þ
d2
33

λ4 þOðλ8Þ
Oðλ12Þ − ðd22d23þd32d33Þ

d2
33

λ4 þOðλ8Þ 1þOðλ8Þ

1CCCA: ð34Þ

We can see that both matrices, Ld and Rd, are close to the identity matrix, except for the (23)-block in Ld, where a rotation
of order λ2 is present. This result has been anticipated in the preceding section; see footnote 13. The effect of this rotation is
twofold. On the one hand, it leads to an additional contribution to the quark mixing angle θ23, which is of the same order as
the contribution arising from the up quark sector; see Lu in Eqs. (24) and (27) and compare the form of the CKM mixing
matrix in Eqs. (35) (scenario A) and (38) (scenario B). On the other hand, it induces contributions to the elements x22 and
x32 of the LQ coupling x̂ in the charged fermion mass basis, which are of the same order as the elements x̂22 and x̂32 of the
LQ coupling x̂ itself; see Eqs. (52) and (B6) in Appendix B.

4. Quark mixing

We first present the CKM mixing matrix, VCKM, as obtained from the matrices Lu and Ld, shown in Eqs. (24) and (33).
This reflects the result of the model without modification of the up-type quark mass matrix Mu, i.e., in scenario A. Here,
we find

VCKM ¼ L†
uLd

¼

0BBBBB@
1 − f2

12

2f2
22

λ2 þOðλ4Þ − f12
f22

λþOðλ3Þ f12ðd33f23−d23f33Þ
d33f22f33

λ3 þOðλ5Þ
f12
f22

λþOðλ3Þ 1 − f2
12

2f2
22

λ2 þOðλ4Þ
�
d23
d33

− f23
f33

�
λ2 þOðλ4Þ

d22d33f13−d12d33f23−d13d22f33þd12d23f33
d22d33f33

λ8 þOðλ9Þ −
�
d23
d33

− f23
f33

�
λ2 þOðλ6Þ 1 − ðd33f23−d23f33Þ2

2d2
33
f2
33

λ4 þOðλ8Þ

1CCCCCA: ð35Þ

There is an obvious suppression of the CKM mixing matrix element Vtd ∼ λ8 compared to its experimentally measured
value, jVtdj ¼ 0.00854þ0.00023

−0.00016 ∼ λ3 [98]. Furthermore, assuming that the effective parameters dij and fij are complex, we
can estimate the size of the Jarlskog invariant JCP and see that it is of order JCP ¼ ImðVudV�

ubV
�
tdVtbÞ ∼ λ11. This is in

conflict with the measured value, JCP ¼ ð3.00þ0.15
−0.09Þ × 10−5 ∼ λ6 [98].

In addition, we note that the relation between Vus, Vcb, and Vub is too tight to accommodate all three CKMmixing matrix
elements in accordance with the experimental data [98]. In this model, we have
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jVusj≈
����f12f22

����λ∼λ and jVcbj≈
����d23d33

−
f23
f33

����λ2∼λ2; ð36Þ

and as well

jVubj ≈
���� f12f22

�
d23
d33

−
f23
f33

�����λ3 ≈ jVusjjVcbj; ð37Þ

which leads with jVusj¼0.22650 and jVcbj ¼ 0.04053 [98]
to jVubj ≈ 0.0092. This is about a factor of 2.5 wrong

with respect to the experimental best-fit value of Vub,
jVubj ¼ 0.00361þ0.00011

−0.00009 [98], and clearly outside the range
preferred at the 3σ level.
We have confirmed these findings with a chi-squared fit.

While the charged fermion masses are fitted well at the
scale μ ¼ 1 TeV [99], quark mixing cannot be brought into
full agreement with experimental data [98].
In scenario B.—Using instead the matrix Lu as given in

Eq. (27), we have for the CKM mixing matrix,

VCKM ¼

0BBBBB@
1 − f2

12

2f2
22

λ2 þOðλ4Þ − f12
f22

λþOðλ3Þ
�
f12ðd33f23−d23f33Þ

d33f22f33
− f̃13

f33

�
λ3 þOðλ5Þ

f12
f22

λþOðλ3Þ 1 − f2
12

2f2
22

λ2 þOðλ4Þ
�
d23
d33

− f23
f33

�
λ2 þOðλ4Þ

f̃13
f33

λ3 þOðλ7Þ −
�
d23
d33

− f23
f33

�
λ2 þOðλ6Þ 1 − ðd33f23−d23f33Þ2

2d2
33
f2
33

λ4 þOðλ6Þ

1CCCCCA: ð38Þ

As we can clearly see, the anticipated changes in the
CKM mixing matrix are achieved: the enhancement of Vtd,
which is now of order λ3, and in turn, the enhancement of
the Jarlskog invariant to JCP ∼ λ6, as well as the loosening
of the tight relation between Vus, Vcb, and Vub,

jVubj ≈
���� f12f22

�
d23
d33

−
f23
f33

�
þ f̃13
f33

����λ3: ð39Þ

Indeed, a chi-squared fit shows that scenario B leads to an
excellent agreement with the experimental data—not only
of the quark mixing parameters [98], but also all charged
fermion masses are fitted very well at the scale μ ¼
1 TeV [99].

B. Charged lepton sector

Like for the quark sector, we first present the list of
operators. We then give the form of the charged lepton mass
matrix Me in the effective parametrization and extract
analytical formulas for the charged lepton masses and
the matrices Le and Re of LH and RH charged leptons,
respectively, needed in order to arrive at the mass basis.
Three operators are mainly responsible for the generation

of the charged lepton masses, as in the case of the down-
type quark masses, namely,

Le
Yuk;LO ¼ αe1L3HdeR3 þ αe2L̄HdeRT þ αe3L̄HdeRU: ð40Þ

As envisaged in the construction of this model, these have
the analogous form as those found in the down quark
sector, compare Eq. (29). The operators, arising at SLO,
differ in general,

Le
Yuk;SLO ¼ αe4L̄HdeR3S† þ αe5L3HdeRST þ αe6L̄HdeRTWW† þ αe7L3HdeRS†ðT†Þ2W† þ αe8L3HdeRS†T†U†W†

þ αe9L̄HdeRS2ðW†Þ2 þ αe10L̄HdeR3ST†ðW†Þ2 þ αe11L̄HdeRS2ðT†Þ3 þ αe12L̄HdeRS2T†ðU†Þ2
þ αe13L̄HdeRS4W þ αe14L̄HdeR3S3T†W þ αe15L3HdeRðS†Þ3T†W þ αe16L3HdeRðS†Þ3U†W

þ αe17L̄HdeRðS†Þ2ðT†Þ2W† þ αe18L3HdeRS3ðW†Þ2 þ αe19L3HdeRS3ðT†Þ3 þ αe20L3HdeRS5W

þ αe21L3HdeR3S4T†W þ αe22L̄HdeRðS†Þ4T†W þ αe23L̄HdeRðS†Þ4U†W þ αe24L3HdeR3ðS†Þ4TW†

þ αe25L3HdeRðS†Þ3T2W† þ αe26L̄HdeR3ðS†Þ5TW† þ αe27L̄HdeRðS†Þ4T2W†: ð41Þ

We briefly comment on the first two of these operators. The first one with the coefficient αe4 has already been
identified in the preceding section, compare footnote 12. The second one with αe5 also turns out to be an operator that is
automatically induced, once the field content of the LO operators, responsible for the dominant contributions to the charged
fermion mass matrices and the LQ couplings x̂ and ŷ, has been fixed. We note that only the operator with the coefficient αe9
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leads to two independent contributions to the charged
lepton mass matrix Me—one of order λ11 and another
one of λ12, compare also Eq. (B3) in Appendix B.
For the charged lepton mass matrix Me the following

effective parametrization is found,

Me ¼

0B@ e11λ4 e12λ12 oðλ12Þ
e21λ8 e22λ2 e23λ

e31λ9 e32λ3 e33

1CAhH0
di; ð42Þ

with eij being complex order-one numbers that are related
to the coefficients αei as shown in Eq. (B3) in Appendix B.
We emphasize that the element Me;13 is only generated at
an order higher than λ12.
From Me in Eq. (42), we can derive for the charged

lepton masses,

me ¼ je11λ4 þ oðλ12ÞjhH0
di;

mμ ¼
����e22λ2 − e23ðe22e23 þ 2e32e33Þ

2e233
λ4 þOðλ6Þ

����hH0
di;

mτ ¼
����e33 þ e223

2e33
λ2 þOðλ4Þ

����hH0
di: ð43Þ

These results match the expectations from the construction
of the model, since the three operators in Eq. (40) domi-
nantly generate the three different charged lepton masses.
We note that, in particular, the muon mass can receive
sizeable contributions from the LQ at one-loop level, if the
observed value of the AMM of the muon is explained in
this model. These contributions can be compensated by
adjusting the effective parameter e22 appropriately; see
Eq. (43). For formulas and estimates of these contributions,
see Sec. VA 2 and Appendix C 1.

The matrices Le and Re read

Le ¼

0BBBBB@
1þ oðλ12Þ e11e21

e2
22

λ8 þOðλ10Þ oðλ12Þ

− e11e21
e2
22

λ8 þOðλ10Þ 1 − e2
23

2e2
33

λ2 þOðλ4Þ e23
e33

λþOðλ3Þ
e11e21e23
e2
22
e33

λ9 þOðλ11Þ − e23
e33

λþOðλ3Þ 1 − e2
23

2e2
33

λ2 þOðλ4Þ

1CCCCCA ð44Þ

and Re ¼

0BBBBB@
1 − e2

21

2e2
22

λ12 þ oðλ12Þ e21
e22

λ6 þOðλ8Þ ðe21e23þe31e33Þ
e2
33

λ9 þOðλ11Þ

− e21
e22

λ6 þOðλ8Þ 1 − ðe22e23þe32e33Þ2
2e4

33

λ6 þOðλ8Þ ðe22e23þe32e33Þ
e2
33

λ3 þOðλ5Þ

− ðe22e31−e21e32Þ
e22e33

λ9 þOðλ11Þ − ðe22e23þe32e33Þ
e2
33

λ3 þOðλ5Þ 1 − ðe22e23þe32e33Þ2
2e4

33

λ6 þOðλ8Þ

1CCCCCA: ð45Þ

We reiterate that the matrix Le is also applied to the LH
neutrinos in order to transform from the interaction to the
mass basis, since neutrinos are massless in this model, and
thus, lepton mixing is unphysical.
In both matrices, Le and Re, the (23)-block deviates from

being close to the identity matrix. These deviations are
induced by the operators with the coefficients αe4 and αe5,
which have been identified as automatically allowed, if the
LO operators for the charged fermion mass matrices and the
LQ couplings x̂ and ŷ are accounted for.
The effect of the rotation of order λ in Le is to also

contribute to the elements x22 and x23 of the LQ coupling
x̂ in the charged fermion mass basis and to do so at the
same order as the elements x̂22 and x̂23 of the LQ coupling
x̂ itself, compare Eqs. (52) and (B6) in Appendix B. The
impact of the rotation of order λ3 in Re is to also generate
the element y22 of the LQ coupling ŷ in the charged
fermion mass basis of order λ3 in addition to the element

ŷ22 ∼ λ3 of the LQ coupling ŷ itself; see Eqs. (56) and (B8)
in Appendix B.

C. Leptoquark couplings

We first list the operators, contributing to the LQ
couplings x̂ and ŷ, up to and including order λ12, and then
discuss the form of x, y, and z, the LQ couplings x̂ and ŷ
in the charged fermion mass basis, in the two different
scenarios, scenario A and scenario B.

1. Couplings in interaction basis

We begin with the LO operators, responsible for the main
structure of the LQ coupling x̂. There are four of them,

Lint
x̂;LO ¼ βL1L

c
3ϕ

†Q3 þ βL2L
cϕ†Q3S

þ βL3L
c
3ϕ

†QS2 þ βL4L
cϕ†QS3: ð46Þ
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They coincide with those anticipated in the construction of the model in the preceding section. At SLO, there are several
more operators,

Lint
x̂;SLO ¼ βL5L

c
3ϕ

†QTW2 þ βL6L
cϕ†QS†TW† þ βL7L

cϕ†QS†UW† þ βL8L
c
3ϕ

†QS2T†U þ βL9L
cϕ†QS†ðT†Þ2W

þ βL10L
cϕ†QS†T†U†W þ βL11L

cϕ†QSTW2 þ βL12L
cϕ†Q3S†TW2 þ βL13L

c
3ϕ

†QðS†Þ2TW† þ βL14L
c
3ϕ

†QðS†Þ2UW†

þ βL15L
c
3ϕ

†QS2WW† þ βL16L
cϕ†QS3T†U þ βL17L

cϕ†Q3ðS†Þ3TW† þ βL18L
cϕ†QSðT†Þ3W† þ βL19L

cϕ†QS3WW†

þ βL20L
cϕ†QðS†Þ5U† þ βL21L

cϕ†QðS†Þ3T2W þ βL22L
c
3ϕ

†Q3S4T†W þ βL23L
c
3ϕ

†Q3ðS†Þ4TW†

þ βL24L
c
3ϕ

†QðS†Þ4T2W þ βL25L
cϕ†Q3S5T†W þ βL26L

c
3ϕ

†QS6T†W: ð47Þ

All couplings βLi are complex order-one coefficients.
Like before, we note that several of these operators lead to
two independent contributions to the LQ coupling x̂. The
operator with the coefficient βL5 leads to contributions of
order λ10 and λ11; the one with βL6 gives contributions of
order λ7 and λ8; the operator with βL10 induces two of order
λ11 and λ12; the one with βL11 yields contributions of order
λ11 and λ12; the one with βL13 gives rise to two of order λ8

and λ9; finally, the operator with the coefficient βL21 leads to
two independent contributions of order λ11 and λ12.
From the contributions of these operators, we can

deduce the form of the LQ coupling x̂, up to and including
order λ12,

x̂ ¼

0B@ â11λ9 â12λ12 oðλ12Þ
â21λ8 â22λ3 â23λ

â31λ8 â32λ2 â33

1CA; ð48Þ

with the effective parameters âij being, in general, complex
order-one numbers. How these are related to the

coefficients βLi can be found in Eq. (B4) in Appendix B.
We note that the element x̂13 is only generated at an order
higher than λ12.
Although not yet in the charged fermion mass basis, we

can already compare this form of the LQ coupling with
the texture, envisaged in Eq. (8). We clearly see that the
elements of the first column and row are protected well by
the residual symmetry Zdiag

17 , while the elements in the
(23)-block of the LQ coupling x̂ all have the desired order
of magnitude in λ; see the texture in Eq. (8).
In the end, we also discuss the operators, contributing

to the LQ coupling ŷ, up to and including order λ12. We
identify only two operators as LO ones,

Lint
ŷ;LO ¼ βR1 e

c
R3ϕ

†uR2 þ βR2 e
c
Rϕ

†uR3S3; ð49Þ

which are expected from the construction of the model. At
SLO, several more operators are found

Lint
ŷ;SLO ¼ βR3 e

c
Rϕ

†uR2ST þ βR4 e
c
R3ϕ

†uR3S2T† þ βR5 e
c
R3ϕ

†uR3W2 þ βR6 e
c
Rϕ

†uR1S†ðU†Þ2 þ βR7 e
c
Rϕ

†uR1SUW

þ βR8 e
c
R3ϕ

†uR3ðS†Þ2W† þ βR9 e
c
Rϕ

†uR3S†TW† þ βR10e
c
Rϕ

†uR3S†ðT†Þ2W þ βR11e
c
Rϕ

†uR3S†T†U†W

þ βR12e
c
Rϕ

†uR3STW2 þ βR13e
c
Rϕ

†uR2S†ðT†Þ2W† þ βR14e
c
Rϕ

†uR2S†T†U†W† þ βR15e
c
Rϕ

†uR1ðS†Þ3TU
þ βR16e

c
R3ϕ

†uR1ðS†Þ2T†ðU†Þ2 þ βR17e
c
Rϕ

†uR2ðS†Þ3T†W þ βR18e
c
Rϕ

†uR2ðS†Þ3U†W þ βR19e
c
Rϕ

†uR3SðT†Þ3W†

þ βR20e
c
Rϕ

†uR2S3ðW†Þ2 þ βR21e
c
Rϕ

†uR2S3ðT†Þ3 þ βR22e
c
R3ϕ

†uR1S4U2 þ βR23e
c
Rϕ

†uR3ðS†Þ5U†

þ βR24e
c
Rϕ

†uR2S5W þ βR25e
c
R3ϕ

†uR3ðS†Þ4TW þ βR26e
c
Rϕ

†uR3ðS†Þ3T2W

þ βR27e
c
R3ϕ

†uR2S4T†W þ βR28e
c
R3ϕ

†uR2ðS†Þ4TW† þ βR29e
c
Rϕ

†uR2ðS†Þ3T2W†; ð50Þ

with all coefficients βRi being complex order-one numbers.
The presence of the first and the second operator is
automatic after having fixed the transformation properties
of the fields which are relevant for the LO terms of the
charged fermion mass matrices Mu, Md, Me, and the LQ
couplings x̂ and ŷ. We note that all listed operators give rise
to a single (independent) contribution to the LQ coupling ŷ.

We arrive at the effective parametrization for ŷ to be of
the form,

ŷ ¼

0B@ b̂11λ9 b̂12λ9 b̂13λ9

b̂21λ9 b̂22λ3 b̂23λ3

b̂31λ12 b̂32 b̂33λ4

1CA: ð51Þ
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The parameters b̂ij are, in general, complex order-one
numbers and are related to the coefficients βRi as shown in
Eq. (B5) in Appendix B.
We may already compare this result to the texture of

the LQ coupling y in Eq. (8) and see that it contains the
same two dominant terms, ŷ32 and ŷ23, like the texture
with y32 ∼ 1 and y23 ∼ λ3. At the same time, however, the
form of the LQ coupling ŷ in Eq. (51) also has rather large
elements ŷ22 ∼ λ3 and ŷ33 ∼ λ4. These arise from the
operators with the coefficients βR3 and βR4 , which have
been identified as automatically allowed, once the LO
operators, contributing to the charged fermion mass
matrices and LQ couplings x̂ and ŷ, and their particle
content are fixed. We note that none of the elements of
the first column and row of the LQ coupling ŷ is larger
than λ9, showing the effectiveness of the residual sym-
metry Zdiag

17 . Couplings to electrons and/or up quarks are
thus suppressed.

2. Couplings in charged fermion mass basis

In this section, we display the results for the LQ
couplings x, y, and z, namely the LQ couplings x̂ and ŷ
in the charged fermion mass basis, compare Eq. (4). The
LQ coupling x is obtained by applying the matrices Le
and Ld to x̂, while z by applying Le and Lu to x̂. The LQ
coupling y is generated from ŷ by applying the matrices Re
and Ru. In doing so, we distinguish between the two
different scenarios, scenario A and scenario B, for the LQ
couplings z and y.
We use the matrices Le and Ld in Eqs. (44) and (33) and

arrive at the LQ coupling x. This matrix can be para-
metrized as

x ¼ LT
e x̂Ld ¼

0B@ a11λ9 a12λ11 a13λ9

a21λ8 a22λ3 a23λ

a31λ8 a32λ2 a33

1CA; ð52Þ

where the effective parameters aij are related to the
parameters âij, dij, and eij, found in the matrix x̂ in
Eq. (48), Md in Eq. (31) and Me in Eq. (42), respectively.
The explicit form of these relations is given in Eq. (B6) in
Appendix B. In general, they can also be expected to be
complex order-one numbers.
Comparing the form of the LQ coupling x in Eq. (52) to

the texture of x in Eq. (8), we clearly see that all elements of
the first column and row are suppressed; i.e., none of them
is larger than λ8. At the same time, the elements x33, x23,
x32, and x22 have the expected order of magnitude in λ.
In scenario A.—The model without any modification of

the up-type quark mass matrix Mu, we find the form of the
LQ coupling z, when applying the matrices Le and Lu, see
Eqs. (44) and (24), to the LQ coupling x̂ in Eq. (48). It is

z ¼ LT
e x̂Lu ¼

0B@ c11λ9 c12λ10 c13λ9

c21λ4 c22λ3 c23λ

c31λ3 c32λ2 c33

1CA: ð53Þ

The effective parameters cij are related to âij, eij,
and fij from Eqs. (48), (42), and (21). Again, the explicit
form of these relations can be found in Appendix B;
see Eq. (B7).
We note that it might be useful to evidence the strong

correlation between the LQ couplings x and z by using a
different parametrization for z, namely,

z ¼

0BBBBBB@

�
a11 −

ðcA
12
Þ2

2a11
λ2 þ cA11λ

3
�
λ9 cA12λ

10 a13λ9�
− cA

12

a11
ða22 þ a23c̃Þ þ cA21λ

�
λ4 ða22 þ a23c̃þ cA22λ

2Þλ3 ða23 þ cA23λ
4Þλ�

− cA
12

a11
ða32 þ a33c̃Þ þ cA31λ

�
λ3 ða32 þ a33c̃þ cA32λ

2Þλ2 a33 þ cA33λ
4

1CCCCCCA; ð54Þ

where aij are the same parameters as in x in Eq. (52). The new effective parameters cAij and c̃ are rather involved expressions
in the other parameters so that we just take them to be complex order-one numbers, apart from

cA12 ¼
â11f12
f22

þOðλÞ and c̃ ¼ d23
d33

−
f23
f33

: ð55Þ

We use the matrices Re and Ru in Eqs. (45) and (25) and ŷ in Eq. (51) in order to arrive at the form of the LQ coupling ŷ in
the charged fermion mass basis,

y ¼ RT
e ŷRu ¼

0B@b11λ9 b12λ9 b13λ9

b21λ8 b22λ3 b23λ3

b31λ5 b32 b33λ4

1CA: ð56Þ
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The effective parameters bij are related to b̂ij from the LQ
coupling ŷ in Eq. (51), to eij of the charged lepton mass
matrix Me in Eq. (42) and to fij of the up-type quark mass
matrixMu in Eq. (21). These relations are given in Eq. (B8)
in Appendix B.
Comparing this form of the LQ coupling y with the

texture in Eq. (8), we see that in the charged fermion
mass basis not only the elements y22 ∼ λ3 and y33 ∼ λ4 turn
out to be larger, but also the element y31 ∼ λ5. As we see in
Sec. VA, these couplings do not enter the analytic estimates
for the strongest (primary) constraints on this model. We
find that they generally lead to subleading contributions to
these estimates or appear in the estimates for secondary/
tertiary observables, discussed further in Sec. VI. For
example, y22 contributes to the process b → cμν, relevant
for subdominant contributions to the LFU ratios RðDÞ and
RðD⋆Þ, and for the secondary observables Rμ=e

D and Re=μ
D⋆ .

The LQ coupling y33 relates the top quark to the tau lepton
and shows up in subdominant loop-level contributions to
tau lepton decays, including τ → μγ. The LQ coupling
y31 is relevant for subleading contributions to the decay
B → τν, representing a secondary observable, and to tau
lepton decays to light mesons, e.g., τ → πμ, which corre-
spond to tertiary observables. The LQ couplings y1j
involving the electron are still suppressed.

In scenario B.—Where the element Mu;13 of the up-type
quark mass matrix Mu is enhanced, see Eq. (26), the
matrices Lu and Ru are found in Eqs. (27) and (28). When
using these in order to compute the form of the LQ
coupling z, we find the following: while the order of
magnitude in λ of the different elements of z is not changed
with respect to the matrix shown in Eq. (53), the relations of
the effective parameters cij to the parameters âij, eij, fij,
and f̃13 are to some extent altered. If we compare these to
the expressions in Eq. (B7) in Appendix B, we now have
for c21 and c31,

c21 ¼ −
f12

e33f22f33
ðâ33e23f23 − â23e33f23 − â32e23f33

þ â22e33f33Þ −
f̃13
f33

�
â23 −

â33e23
e33

�
þOðλ2Þ;

c31 ¼
f12ðâ33f23 − â32f33Þ

f22f33
−
f̃13
f33

â33 þOðλ2Þ: ð57Þ

As a consequence, the correlation between the LQ cou-
plings x and z leads to a slightly different parametrization
than the one, displayed in Eq. (54), i.e.,

z ¼

0BBBBBB@

�
a11 −

ðcB
12
Þ2

2a11
λ2 þ cB11λ

3
�
λ9 cB12λ

10 ða13 þ cB13λ
3Þλ9�

− cB
12

a11
ða22 þ a23c̃Þ − a23cþ cB21λ

�
λ4 ða22 þ a23c̃þ cB22λ

2Þλ3 ða23 þ cB23λ
4Þλ�

− cB
12

a11
ða32 þ a33c̃Þ − a33c̄þ cB31λ

�
λ3 ða32 þ a33c̃þ cB32λ

2Þλ2 a33 þ cB33λ
4

1CCCCCCA: ð58Þ

Most of the parameters cBij are complex order-one numbers.
Their expressions in terms of the other parameters are
rather lengthy,16 apart from cB12 ¼ cA12, c̃, and c̄. The former
two are still of the form as given in Eq. (55), while the
further parameter c̄ is defined as

c̄ ¼ f̃13
f33

: ð59Þ

Coming to the form of the LQ coupling y, when using
Ru in Eq. (28), we see that neither its form, found in
Eq. (56), nor the definition of the effective parameters
bij, given in Eq. (B8) in Appendix B, are altered.
Nevertheless, the change in the up-type quark mass
matrix Mu in scenario B, also leaves a slight imprint at

higher order in λ on the LQ coupling y with the
maximum change in y31 at order λ7.

IV. OUTLINE OF PHENOMENOLOGICAL STUDY

In the following, we outline the strategy for the phe-
nomenological study of the aforementioned model. In
particular, we highlight the important features common
to the studies detailed in Secs. V and VI.

A. Classification of observables

We classify all analyzed observables to one of the
following three categories: primary, secondary, or tertiary
observables. The primary observables comprise the anoma-
lies in RðDÞ, RðD⋆Þ, and in the AMM of the muon, as well
as the observables for which contributions generated in this
model can (substantially) violate the current experimental
bounds and/or are accessible in upcoming experiments.

16The parameter cB13 is new with respect to the parametrization
of z in Eq. (54).
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Examples of the former are the radiative cLFV decays
μ → eγ and τ → μγ, while processes such as μ → 3e and
μ − e conversion in aluminium belong to the latter. These
observables are studied analytically in Sec. V, and numeri-
cally in Secs. V and VI. Secondary observables, for
instance, B → τν, do not presently provide any competitive
constraint but are expected to offer an opportunity to further
test this model in the midterm future. These are discussed
both analytically and numerically in Sec. VI. Tertiary
observables, such as the AMM of the electron, do not
lead to any restriction on the parameter space of the model
given the present experimental status. We find numerically
that they do not deviate significantly from the SM pre-
dictions. The projected sensitivity for these observables is
thus not sufficient to probe a signal consistent with this
model. However, if a deviation from the SM prediction is
observed, this could challenge the model. We mention them
in Sec. VI and Appendix E 3, and incorporate them in the
second numerical scan.

B. Implemented model setup

As mentioned in Sec. II A, the presented model contains
two Higgs doublets,Hu andHd, that give masses to up-type
quarks as well as to down-type quarks and charged leptons,
respectively, upon electroweak symmetry breaking.
Nevertheless, we simplify the model in the phenomenologi-
cal study and consider the decoupling limit. We thus
effectively use a model with one SM-like Higgs doublet;
i.e., we only take into account one SM-like Higgs boson,
ignoring effects due to scalars other than the LQ ϕ, and
appropriately rescale the effective parameters fij, dij, and
eij, contained in the up-type quark, down-type quark and
charged lepton mass matricesMu,Md, andMe, respectively.
Since only in scenario B the results for quark mixing are

in full agreement with experimental data, cf. Sec. III A 4,
we focus on this scenario in the phenomenological study.
For scenario A, we note that only the form of the effective
parameters c21 and c31 is slightly different; see Sec. III C 2.
According to the analytic results, the parameter c21 only
contributes at SLO to μ − e conversion in nuclei, see
Sec. VA 5 and also Table V, while c31 is relevant for the
computation of the secondary observable B → τν, compare
Sec. VI E. We thus do not expect any significant differences
in the phenomenological results for these two scenarios.
This expectation is, indeed, confirmed with a smaller data
sample of the first numerical scan.

C. Bases of LQ couplings

The form of the LQ couplings is presented in two
different bases, the interaction basis as well as the charged
fermion mass basis; see Sec. III C. The former basis
refers to the hatted LQ couplings x̂ and ŷ with effective
parameters âij and b̂ij, see definition in Eq. (3) and explicit
forms in Eqs. (48) and (51), while the latter basis

corresponds to the unhatted LQ couplings x, y, and z
with effective parameters aij, bij, and cij or cBij, c̃, and c̄, see
definition in Eq. (4) and explicit forms in Eqs. (52), (56),
and (53) or (58) (for scenario B). Each of the parameters
aij, bij, and cij is (at LO) given by a linear combination of
some of the effective parameters âij and b̂ij with coef-
ficients constituted by fij, dij, and eij, which parametrize
the mass matrices Mu, Md, and Me, respectively. The
explicit relations between the parameters in the two bases
can be found in Appendix B.
While the interaction basis directly reflects the impact

of the imposed flavor symmetry, the charged fermion
mass basis is usually employed in phenomenological
studies that focus on the effects of the LQ. For this
reason, unhatted LQ couplings are used in analytic
computations with z being parametrized in terms of the
effective parameters cij, see Secs. VA and VI E, as well as
in the first numerical scan with the LQ coupling z given in
terms of cBij, c̃, and c̄, cf. Sec. V B. On the other hand, the
second numerical scan is performed in the interaction
basis; see Sec. VI and Appendix E.

D. Strategy of numerical scans

In order to study the phenomenology of the model in
depth, we perform two numerical scans. In the following,
we give details about the employed strategy.
For the first scan, discussed in Sec. V B, we only

consider primary observables and thus, refer to it as the
primary scan. Since the LQ couplings in the model span a
parameter space of high dimensionality, it is reasonable to
first establish which of the effective parameters prove most
relevant for the induced phenomenology. The main purpose
of constructing the model is generating textures of the
LQ couplings, which are suitable to explain the currently
observed flavor anomalies in RðDÞ, RðD⋆Þ and in the
AMM of the muon. So, as a first step, we deem it sufficient
to only consider the effective parameters, contained in the
LQ couplings x, y, and z, without making explicit reference
to the interaction basis. We investigate the capability of the
model to explain the mentioned anomalies and how the
imposed current experimental bounds shape the viable
parameter space. We also establish biases on the relevant
effective parameters aij and bij that are applied in the
second numerical scan; see Sec. VI B. The contributions to
the relevant observables are computed with the help of the
analytic expressions given in Appendix C. In addition, we
use Wilson [100] to account for renormalization group (RG)
running under QCD.
For the second scan, detailed in Sec. VI, we take into

account all observables, primary, secondary, and tertiary,
and thus refer to it as comprehensive. In particular, we
include secondary observables and outline how they can
provide tangible signals for this model in the future; see
Sec. VI F. Tertiary observables are also cross-checked, and
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the generated ranges for these observables are summarized
in Appendix E 3. In order to ensure that this model
accommodates charged fermion masses and quark mixing,
we fix the effective parameters fij, dij, and eij by perform-
ing a chi-squared fit; see details in Sec. VI A. Furthermore,
we vary most of the effective parameters, contained in the
LQ couplings x̂ and ŷ, in the ranges laid out in Eqs. (60)
and (61), apart from the ones that are identified as playing a
dominant role for the phenomenology of the model. For
these effective parameters, we apply a suitable biasing in
order to more efficiently target the parameter space pre-
ferred by the primary observables, as detailed in Sec. VI B.
As computational tools, we use SARAH, SPheno [101,102],
and FLAVIO [62,63] in the comprehensive scan.

E. Range of LQ couplings

In agreement with the expansion in λ, we assume the
magnitude of an unbiased parameter sij to be in the range,

λ ¼ 0.2265 ≤ jsijj ≤
1

λ
≈ 4.42; ð60Þ

and its phase to lie in the interval,

0 ≤ ArgðsijÞ < 2π: ð61Þ

Here, sij corresponds to any of the parameters aij, bij, and
cij or cBij (except for c

B
12, see below), while working in the

charged fermion mass basis, and to any of the parameters
âij and b̂ij, in the case of the interaction basis. In two
instances, different choices for certain parameters are made.
In the primary scan, employing the charged fermion mass
basis, smaller ranges for the magnitudes of the effective
parameters cB12, c̄, and c̃ are used in order to better
approximate the relation of the LQ couplings x and z that
is determined by the CKM mixing matrix; see Sec. V B 1.
In the comprehensive scan, using the interaction basis,
biases on certain effective parameters aij and bij are
imposed that are derived from the results of the primary
scan; see Sec. VI B.
In the analytical study, it is assumed that all effective

parameters vary as indicated in Eqs. (60) and (61).
Depending on the studied observable, we either give an
approximate relation based on the LO in λ or an estimate
accounting only for the correct order of magnitude.
Inspecting the relations between the parameters in the

interaction and the charged fermion mass basis that are
given in Appendix B, we conclude that the value of an
unhatted parameter can significantly differ from the value
of the corresponding hatted parameter. Consequently, the
results of the primary scan over the LQ couplings x, y, and
z do not entirely agree with those obtained from the
comprehensive scan over the LQ couplings x̂ and ŷ; see
discussion in Sec. VI D.

F. Range of LQ masses

We consider the following three values of the LQ mass
mϕ as benchmarks:

m̂ϕ ¼ mϕ

TeV
¼ 2; 4; and 6: ð62Þ

These choices are compatible with current constraints from
direct searches for LQs. The flavor structure of the LQ
couplings predicts the dominant decays to be to τt, τc, and
νb, while branching ratios (BRs) of decays with muons
and electrons as final states are suppressed by at least a
further λ2. ATLAS [103] has constrained LQ masses to
fulfil m̂ϕ ≳ 1.2 at 95% CL for BRðϕ → tτÞ ∼ BRðϕ → bνÞ.
The chosen benchmark values for the LQ mass are even
consistent with the strongest present limits from searches
for LQs exclusively coupling to muons (electrons), which
are m̂ϕ > 1.7ð1.8Þ at 95% CL, with minimal dependence
on the coupled quark flavor [104]; see also Ref. [105].

V. PRIMARY OBSERVABLES:
ANOMALIES AND CONSTRAINTS

In this section, we first present analytic estimates that
help to identify the most relevant LQ couplings for each of
the primary observables in Sec. VA. Then, we turn to a
numerical study for scenario B in Sec. V B.

A. Analytic estimates

The analytic estimates, derived in the following, are
expressed in terms of the effective parameters in the
charged fermion mass basis. The underlying complete
formulas can be found in Appendix C. Note, in particular,
that the low-energy effective field theory (LEFT) Wilson
coefficients are given in the Jenkins-Manohar-Stoffer
(JMS) basis [106].

1. RðDÞ and RðD⋆Þ
The LFU ratios RðDÞ and RðD⋆Þ are observables of high

importance for this study. Taking into account only tree-
level corrections induced by the LQ ϕ, schematically
depicted in the left of Fig. 1, we find the following terms
in the relevant effective semileptonic charged-current
Lagrangian:

L ⊃ CVLL
νedu;ij32ðνiγμPLejÞðbγμPLcÞ

þ CSRR
νedu;ij32ðνiPRejÞðbPRcÞ

þ CTRR
νedu;ij32ðνiσμνPRejÞðbσμνPRcÞ þ H:c: ð63Þ

The relation between the scalar and tensor Wilson coef-
ficients,

CSRR
νedu;ij32ðmϕÞ ¼ −4CTRR

νedu;ij32ðmϕÞ; ð64Þ
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which becomes

CSRR
νedu;ij32ðμBÞ ≈ −8CTRR

νedu;ij32ðμBÞ ð65Þ

at the hadronic scale μ ¼ μB ¼ 4.8 GeV due to RG run-
ning, indicates that contributions from the tensor operator
only play a role, if they are enhanced via form factors or the
phase-space configuration.
We derive analytic expressions for RðDÞ and RðD⋆Þ

from the requirement of (approximate) agreement with the
results obtained from FLAVIO [62,63], v2.3, that is, we also
use the values RðDÞSM ¼ 0.297� 0.008 and RðD⋆ÞSM ¼
0.245� 0.008 given by FLAVIO. In particular, the latter
exhibits a tension with experimental data at the ∼3σ level;
see Table I and Sec. V B 2.17

The LQ ϕ modifies RðDÞ and RðD⋆Þ dominantly via
contributions to the tau lepton channel, that is j ¼ 3 in the
above formulas. As expected, the largest correction occurs for
a tau neutrino ντ in the final statewhich allows for interference
with the SM contribution. Nonetheless, we generically also
account for the lepton flavor violating (LFV) contribution
with a muon neutrino νμ in the estimates of the relevant
observables in this section [see, e.g., in Eqs. (66) and (67) the
rightmost terms], as this may have an appreciable impact.
On the contrary, the channel with an electron neutrino νe
can always be neglected, since the involved couplings are
very small as a result of the residual symmetry Zdiag

17 , i.e.,
x11; x13 ∼ λ9 and x12 ∼ λ11; see Eq. (52).
Corrections to RðDÞ are mainly due to the interference

between the scalar-operator contribution and the SM one,

RðDÞ
RðDÞSM

≈ 1 − 1.17ReðĈSRR
νedu;3332ðμBÞÞ þ 0.63ðjĈSRR

νedu;3332ðμBÞj2 þ jĈSRR
νedu;2332ðμBÞj2Þ

þ 0.72ReðĈTRR
νedu;3332ðμBÞÞ þ 0.37ðjĈTRR

νedu;3332ðμBÞj2 þ jĈTRR
νedu;2332ðμBÞj2Þ

≈ 1þ 1.07
ja33b32j
m̂2

ϕ

cosðArgða33Þ − Argðb32ÞÞ þ 0.46
ja33b32j2

m̂4
ϕ

þ 0.02
ja23b32j2

m̂4
ϕ

: ð66Þ

Here, we have introduced dimensionless Wilson coefficients Ĉ ¼ C × TeV2 for convenience. The dominant corrections to
RðD⋆Þ are sourced by the interference between the tensor operator and the SM in this model,

RðD⋆Þ
RðD⋆ÞSM

≈ 1þ 0.10ReðĈSRR
νedu;3332ðμBÞÞ þ 0.03ðjĈSRR

νedu;3332ðμBÞj2 þ jĈSRR
νedu;2332ðμBÞj2Þ

þ 4.21ReðĈTRR
νedu;3332ðμBÞÞ þ 8.60ðjĈTRR

νedu;3332ðμBÞj2 þ jĈTRR
νedu;2332ðμBÞj2Þ

≈ 1þ 0.36
ja33b32j
m̂2

ϕ

cosðArgða33Þ − Argðb32ÞÞ þ 0.12
ja33b32j2

m̂4
ϕ

þ 0.01
ja23b32j2

m̂4
ϕ

: ð67Þ

Note that contributions from the vector operator to RðDð⋆ÞÞ are suppressed because of the hierarchy z32=y32 ∼ λ2;
see Eqs. (56) and (58).

FIG. 1. Feynman diagrams for tree-level contributions to charged-current b → c processes (left, center) and neutral-current b → s
processes (right) via an intermediate LQ, ϕ.

17Since v2.0, FLAVIO uses the form factors of Ref. [64] which are determined via Heavy-Quark Effective Theory. Furthermore, the
implementation is based on the helicity formalism [107] which has been extensively tested as a general framework.
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2. Anomalous magnetic moment of muon
and muon mass correction

Given that the deviation from the SM prediction for the
AMM of the muon, Δaμ, is of 4.2σ significance [21,57],
we discuss the viability of this model in explaining this
anomaly. The LO LQ contribution is generated by the one-
loop diagram shown in Fig. 2. In particular, it is dominated
by the contribution in which the chirality flip occurs via a
mass insertion on the internal quark line—and can therefore
be enhanced by the mass of this quark (here denoted muk ,
consistent with Fig. 2). For the full calculation of the
leptonic AMM, we refer to Appendix C 2.

Taking the dominant contribution to be the one with the
top quark in the loop, and mϕ ≫ muk , Eqs. (C5) and (C19)
in Appendix C 2 reduce to the following:

Δaμ ≈ −
2Reðb23c�23Þ

m̂2
ϕ

× 10−9

¼ −
2jb23c23j

m̂2
ϕ

cos ðArgðb23Þ − Argðc23ÞÞ × 10−9:

ð68Þ

Contrasting this with Table IV, the order of magnitude
of the AMM of the muon generated by this model can be
consistent with the present experimental best-fit value.
Requiring that this anomaly is addressed tightly con-

strains the parameter space of the order-one coefficients c23
and b23. To satisfy the current experimental value at the
n-sigma level requires them to obey the following relations:��������
8>><>>:

0.890Reðb23c�23Þ þ 2.51; m̂ϕ ¼ 2

0.307Reðb23c�23Þ þ 2.51; m̂ϕ ¼ 4

0.159Reðb23c�23Þ þ 2.51; m̂ϕ ¼ 6

9>>=>>;
��������≲ n × 0.59½0.4�:

ð69Þ

FIG. 2. Feynman diagram for the one-loop contribution to the
process ei → ejγ via an intermediate LQ (ϕ) and an up-type
quark (uk).

TABLE IV. List of primary observables. We list the observables that dominantly constrain this model together with the current
experimental constraint/measurement and the future reach. The values for RðDÞ and RðD⋆Þ reflect the 2021 averages from the HFLAV
Collaboration. The future reach for BRðμ → 3eÞ (in parentheses) is for phase 1 (2) of the Mu3e experiment. For CRðμ − e;AlÞ, the first
(second) value is the future reach of COMET (Mu2e). The future reach for Rν

K⋆ assumes a result, which is consistent with the SM
expectation [108]. For the future projections of gτA=g

SM
A , we have assumed that the measurements of gτA are improved by the same factor

as sin2 θeff [109]; the unbracketed projection is the one for the International Linear Collider (ILC) [110], and the bracketed value is for
the Future Circular Collider (FCC) [111]. The current experimental constraint on the Bc lifetime is τexpBc

¼ ð0.510� 0.009Þ ps [19,98].
Note that the constraint arising from high-pT lepton searches differs from the other constraints, since it is directly imposed in the primary
scan via an adequate restriction of the range for jb32j as indicated.

List of primary observables

Experiment

Observable Current constraint/measurement Future reach

RðDÞ 0.339� 0.026� 0.014 at 1σ level [19] �0.016ð0.008Þ for 5ð50Þ ab−1 [112]
RðD⋆Þ 0.295� 0.010� 0.010 at 1σ level [19] �0.009ð0.0045Þ for 5ð50Þ ab−1 [112]
Δaμ ð2.51� 0.59Þ × 10−9 at 1σ level [21,57] �0.4 × 10−9 [113]

BRðτ → μγÞ 4.2 × 10−8 at 90% CL [114] 6.9 × 10−9 [115]
BRðμ → eγÞ 4.2 × 10−13 at 90% CL [116] 6 × 10−14 [117]
BRðτ → 3μÞ 2.1 × 10−8 at 90% CL [118] 3.6 × 10−10 [115]
BRðτ → μeēÞ 1.8 × 10−8 at 90% CL [118] 2.9 × 10−10 [115]
BRðμ → 3eÞ 1.0 × 10−12 at 90% CL [119] 20ð1Þ × 10−16 [120]
CRðμ − e;AlÞ 2.6ð2.9Þ × 10−17 [121,122]
Rν
K⋆ 2.7 at 90% CL [123] 1.0� 0.25ð0.1Þ for 5ð50Þ ab−1 [108]

gτA=g
SM
A 1.00154� 0.00128 at 1σ level [109,124] �7.5ð0.75Þ × 10−5 [109–111]

τSMBc
0.52þ0.18

−0.12 ps at 1σ level [125]

cc̄ → ττ̄ jb32j < 2.6 (m̂ϕ ¼ 2) [126,127]
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Here, the prospective sensitivity is given in square brackets
as additional information. It assumes that the best-fit value
remains fixed but with the target precision listed in
Table IV. Results for the AMM of the electron and of
the tau lepton are discussed in Sec. VI G.
Given that we generally consider complex LQ couplings,

there is scope to generate both an AMM and an electric
dipole moment (EDM) for charged leptons, as discussed
in Appendix C 2. The leptonic EDMs do not presently
provide competitive constraints on the parameter space of
this model and, therefore, we defer the discussion of these
to Sec. VI.
Through a diagram similar to that shown in Fig. 2,

the LQ also introduces a correction to the muon mass.
Adapting the result from Ref. [109], the full expression for
this correction can be found in Appendix C 1. At LO, this
contribution reduces to

mμ ≈
����mtree

μ −
3

16π2
mtb23c�23λ

4ð1þ tt ln ttÞ
����

≲ jmtree
μ jþ

���� 3

16π2
mtb23c�23λ

4ð1þ tt ln ttÞ
����; ð70Þ

where mtree
μ denotes the tree-level muon mass, the upper

bound follows from the triangle inequality, and tX denotes
the mass squared of particle X normalized to the LQ mass
squared, i.e.,

tX ¼ m2
X

m2
ϕ

: ð71Þ

In the region of parameter space consistent with
explaining the AMM of the muon, we observe numeri-
cally that the correction can be significant, at the order
of 80%, with this value being extracted from the
data output of the comprehensive scan discussed in
Sec. VI. However, as stated in Sec. III B, it is always
possible to absorb this correction by redefining the
effective parameter e22.

18

3. Radiative charged lepton flavor violating
decays ei → ejγ

Similarly to the AMM of the muon, cLFV decays of the
form ei → ejγ proceed at LO via the one-loop diagram
given in Fig. 2. Notably, the diagram for the contribution
to the AMM of the muon shares a common vertex with
both the ones for the cLFV decays τ → μγ and μ → eγ.
Therefore, we expect these two decays to provide com-
petitive constraints on the possibility to explain the former

anomaly. From Table IV, we see that the present exper-
imental bound on BRðμ → eγÞ is five orders of magnitude
more stringent than BRðτ → μγÞ. However, the former
provides a weaker constraint due to the efficient suppres-
sion of the LQ coupling y13, y13 ¼ b13λ9, thanks to the
residual symmetry Zdiag

17 ; see Eq. (56).
Following from Eqs. (C5) and (C17) in Appendix C 2,

we arrive at the following expressions for the LO con-
tributions to these BRs, parametrizing the contributions
from loops containing the top quark:

BRðμ → eγÞ ∼ jb13c23j2
m̂4

ϕ

× 10−11 ð72Þ

and

BRðτ → μγÞ ∼ jb23c33j2
m̂4

ϕ

× 10−5: ð73Þ

Comparing these with the constraints quoted in Table IV,
these estimates show that significant rates for both decay
modes can be generated. We thus use these to constrain the
relevant couplings as follows, where the current experi-
mental bound is shown with the prospective sensitivity
mentioned in square brackets. For μ → eγ, we have

jb13c23j≲

8>><>>:
0.444½0.168�; m̂ϕ ¼ 2

1.264½0.477�; m̂ϕ ¼ 4

5.915½0.845�; m̂ϕ ¼ 6

9>>=>>;: ð74Þ

This shows that this constraint is especially strong for
smaller LQ masses. As indicated above, the effective
parameter c23 appears in the expressions for both BRðμ →
eγÞ and the AMM of the muon, which makes the constraint
from BRðμ → eγÞ important for refining the parameter
space, which could explain the measured value of the
AMM of the muon. Similarly, for τ → μγ, we find

jb23c33j≲

8>><>>:
0.259½0.105�; m̂ϕ ¼ 2

1.037½0.420�; m̂ϕ ¼ 4

2.333½0.946�; m̂ϕ ¼ 6

9>>=>>;: ð75Þ

Here, the effective parameter b23 appears, but also the
parameter c33 ≈ a33. The latter plays an important role in
the generation of the corrections to RðDÞ and RðD⋆Þ in this
model, as discussed in Sec. VA 1.

4. Trilepton decays ei → ejelel
Trilepton cLFV decays provide another sensitive probe

for new physics, particularly in light of several relevant
future experiments. Representative Feynman diagrams are

18An alternative approach to addressing the correction of the
muon mass would be to implement a constraint based on its size,
as is done, for example, in Refs. [128,129].
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shown in Fig. 3. The dominant contributions to the three
most sensitive processes are

BRðμ → 3eÞ ∼ jb13c23j2
m̂4

ϕ

× 10−14; ð76Þ

BRðτ → 3μÞ ∼ jb23c33j2 þ 0.07jc23c33j2
m̂4

ϕ

× 10−7; ð77Þ

BRðτ → μeeÞ ∼ jb23c33j2 þ 0.05jc23c33j2
m̂4

ϕ

× 10−7: ð78Þ

Besides the respective long-distance γ-penguin contribu-
tion with the chirality flip due to an internal top quark, for
tau lepton decays, we also take into account the Z-penguin
contribution with two mass insertions on the internal top
quark line which, although suppressed, becomes relevant
for some regions of the parameter space. The full expres-
sions for the BRs can be retrieved from Eqs. (C20) and
(C22) in Appendix C 2 d for the relevant flavor combina-
tions. For γ-penguin dominance, one finds [130,131]

BRðτ → 3μÞ
BRðτ → μγÞ ≈

αem
3π

�
ln

�
m2

τ

m2
μ

�
−
11

4

�
≈

1

400
; ð79Þ

and thus, the existing experimental bound on BRðτ → μγÞ
implies that no signal of τ → 3μ can be expected at Belle II.

Still, sufficiently large Z-penguin contributions can render
the decays τ → μeiei potentially observable at Belle II.
The upper bounds on the BRs can be translated into

constraints on the effective parameters. While the
experimental limit on the BR of μ → 3e is currently less
sensitive compared to the one on μ → eγ, the Mu3e
experiment [120] is expected to provide a competitive
sensitivity, i.e.,

jb13c23j≲

8>><>>:
0.298; m̂ϕ ¼ 2

0.840; m̂ϕ ¼ 4

1.61; m̂ϕ ¼ 6

9>>=>>;; ð80Þ

using the value given for phase 2; see Table IV. The decays
τ → 3μ and τ → μee are both mainly sensitive to jb23c33j
and lead to similar constraints on the combination. In the
regime of γ-penguin dominance the BRs are closely related,
which results in

BRðτ → 3μÞ
BRðτ → μeēÞ ≈

2 lnðmτ=mμÞ − 11=4

2 lnðmτ=mμÞ − 3
≈ 1.09: ð81Þ

As the decays are mainly sensitive to small LQ masses, we
only present the constraints for m̂ϕ ¼ 2. Currently, τ → μeē
imposes [118]

jb23c33j2 þ 0.0561jc23c33j2 ≲ 4.30 for m̂ϕ ¼ 2; ð82Þ

while in the future, the sensitivity of Belle II [115] allows us
to probe

jb23c33j2 þ 0.0806jc23c33j2 ≲ 0.0655 for m̂ϕ ¼ 2; ð83Þ

assuming the absence of a signal. Due to suppressed LQ
couplings, other cLFV trilepton decays do not provide any
strong constraints and neither achieve a competitive sensi-
tivity at Belle II.

5. μ− e conversion in nuclei

There are relevant contributions to μ − e conversion in
nuclei mediated by the LQ ϕ both at tree level and one-loop
order. Representative Feynman diagrams are displayed in
Fig. 4. The dominant contribution to μ − e conversion in
nuclei originates from the long-range γ-penguin. We find
that also tree-level scalar contributions become relevant in
some part of the parameter space. Using this approximation
the conversion rate (CR) can be written as; see Ref. [132]
and also Appendix C 3 h,

ωconv ¼
���� − C12

eγ

2mμ
D

����2 þ ���� − C21�
eγ

2mμ
Dþ g̃ðpÞRS S

ðpÞ þ g̃ðnÞRSS
ðnÞ
����2;
ð84Þ

FIG. 3. Representative Feynman diagrams for the process
ei → ejekel mediated by the LQ ϕ at one-loop order, where
the up-type quarks un and um run in the loop.
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which is expressed in terms of the relevant dipole-operator
Wilson coefficients in the JMS basis [106] and the effective
scalar contribution,

C21
eγ ≈

emt

64π2m2
ϕ

ð7þ 4 ln ttÞc�23b13λ10;

g̃ðNÞ
RS ≈ Gu;N

S
c21b�11
2m2

ϕ

λ13;

C12
eγ ≈

emt

64π2m2
ϕ

ð7þ 4 ln ttÞc�13b23λ12; ð85Þ

with Gu;p
S ¼ 5.1, Gu;n

S ¼ 4.3 [133] and N ¼ p, n. Nuclear
physics effects are parametrized by D and SðNÞ and the
numerical values for aluminium are D ¼ 0.0362m5=2

μ ,
SðpÞ ¼ 0.0155m5=2

μ and SðnÞ ¼ 0.0167m5=2
μ [132].

Experiments generally report the CR normalized to the
muon capture rate, CR ¼ ωconv=ωcapt, with the latter being
ωcapt ¼ 0.7054 × 106 s−1 for aluminium [132].

Although BRðμ → eγÞ currently leads to stronger con-
straints, μ − e conversion in aluminium can provide an
excellent probe for the μ − e transition. From the expected
future reach of COMET to CRðμ − e;AlÞ, shown in
Table IV, we derive

������c23b�13 þ
8<:

0.00486

0.00344

0.00293

9=;c21b�11

������
2

þ 0.00263jc�13b23j2

≲

8>><>>:
0.00373; m̂ϕ ¼ 2

0.0300; m̂ϕ ¼ 4

0.110; m̂ϕ ¼ 6

9>>=>>;; ð86Þ

under the assumption of no signal. The dominant contri-
bution is constituted by the combination c23b�13 which is
also constrained by the nonobservation of μ → eγ. In fact,
if all other contributions are neglected, the CR exhibits the
strict correlation CRðμ − e;AlÞ ≈ 0.0027BRðμ → eγÞ.

6. Bc → τν

In this model, the LQ ϕ contributes to the leptonic decay
Bc → τν and therefore, modifies the lifetime of the Bc
meson via the process illustrated in the center of Fig. 1;
see Ref. [134]. In line with this approach, we employ a
constraint on the Bc lifetime in the SM in this work. We
equate the measured decay width with the sum of the
contributions of the SM and from the LQ ϕ, i.e.,

Γexp
Bc

¼ ΓSM
Bc

þ Γϕ
Bc
: ð87Þ

Here, we fix τexpBc
¼ 1=Γexp

Bc
¼ 0.510� 0.009 ps [98] to

the best-fit value while Γϕ
Bc

accounts for the tree-level

process bc → τν induced by ϕ. The decay width Γϕ
Bc

can be
calculated by subtracting the SM contribution to
ΓðBc → τνÞ; see Eqs. (C37) and (C39) in Appendix C 3 e.
Hence, it also captures interference effects. ΓSM

Bc
takes into

account all SM contributions to the Bc decay width.
We do not attempt a calculation of ΓSM

Bc
¼ 1=τSMBc

but
instead indirectly infer it from Eq. (87) and confront this
inferred value with the result τSMBc

∈ ½0.4; 0.7� ps [125], see
also Table IV and Eq. (C40) for the complete expression.19

The LQ ϕmainly sources the channel with a tau neutrino ντ
in the final state. Upon rearranging Eq. (87), one approx-
imately finds

FIG. 4. Representative Feynman diagrams for μ − e conversion
in nuclei mediated by the LQ ϕ at tree level and one-loop order
with up-type quarks uk and uj and the charged lepton ek running
in the loop.

19For more recent calculations of the Bc lifetime in the SM, see
Refs. [135,136].
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τSMBc

τexpBc

¼
�
1 −

Γϕ
Bc

Γexp
Bc

	−1
≈ 1þ Γϕ

Bc

Γexp
Bc

≈ 1 − 0.13
Reða33b32Þ

m̂2
ϕ

þ 0.19
ja33b32j2

m̂4
ϕ

þ 0.01
ja23b32j2

m̂4
ϕ

¼ 1 − 0.13
ja33b32j
m̂2

ϕ

cosðArgða33Þ − Argðb32ÞÞ þ 0.19
ja33b32j2

m̂4
ϕ

þ 0.01
ja23b32j2

m̂4
ϕ

; ð88Þ

where the rightmost term in both lines represents the LFV
contribution with a muon neutrino νμ in the final state.
Equation (87) is also equivalent to the following relation:

BRðBc → τνÞ ¼ BRðBc → τνÞSM −

 
τexpBc

τSMBc

− 1

!
: ð89Þ

Thereby, imposing an upper bound on the BR, e.g.,
BRðBc → τνÞ≲ 0.3 [134] or BRðBc → τνÞ≲ 0.1 [137],
which takes into account the (semi)tauonic contributions in

the SM and from new physics, is equivalent to τSMBc
≲

0.70 ps or τSMBc
≲ 0.55 ps, respectively.

7. Rν
Kð⋆Þ

We consider the decay B → Kð⋆Þνν̄ and normalize it
to the respective SM prediction in the ratio Rν

Kð⋆Þ .
Equation (C41) in Appendix C 3 f contains the full expres-
sion, which is derived following Ref. [138]. The dominant
contributions arise via the diagram illustrated in Fig. 1
and give

Rν
Kð⋆Þ ≈ 1þ 1.69

ja33a32j
m̂2

ϕ

cosðArgða33Þ − Argða32ÞÞ þ 2.15
ja33a32j2

m̂4
ϕ

þ 0.09
ja23a22j
m̂2

ϕ

cosðArgða23Þ − Argða22ÞÞ

þ 0.01
ja23a22j2

m̂4
ϕ

þ 0.11

�ja23a32j2
m̂4

ϕ

þ ja33a22j2
m̂4

ϕ

�
: ð90Þ

The first line of Eq. (90) represents the contribution from
the tau neutrino-antineutrino pair ντντ in the final state,
while the first two terms in the second line encode the
contribution from the combination νμνμ and, the rightmost
terms contain the LFV contribution from the combinations
ντνμ and νμντ. As the contributions to RH vector currents
are negligible in this model, we have Rν

K ¼ Rν
K⋆ , and thus,

the more stringent experimental bound, Rν
K⋆ < 2.7 at

90% CL [123], acts as a primary constraint.

8. Z → ττ

Inducing sizeable contributions to b → cτν in this
model, as discussed in Sec. VA 1, requires that the LQ
coupling to the bottom quark and (in particular) the tau
neutrino, encoded in a33, is enhanced. This effective
parameter is related via the CKM mixing matrix to c33,
which describes the coupling between the top quark and the
tau lepton. Therefore, an explanation of the flavor anoma-
lies in RðDÞ and RðD⋆Þ may be associated with large
corrections via a top-quark loop to Z → ττ. These con-
tributions are illustrated in Fig. 5.
Following from Ref. [139], we parametrize these con-

tributions by considering the effective axial-vector cou-
plings of the Z boson to fermions, where the full

FIG. 5. Dominant LQ contribution to the process Z → eiej,
arising at one-loop order with the up-type quark uk running in
the loop.
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expressions for these can be found in Appendix C 4. At LO
for the effective ττ coupling, Eq. (C61) in Appendix C 4
reduces to

δgτA ≈

8>><>>:
2.28; m̂ϕ ¼ 2

0.75; m̂ϕ ¼ 4

0.38; m̂ϕ ¼ 6

9>>=>>;jc33j2 × 10−4: ð91Þ

Using the definition of gSMA ð< 0Þ and taking lepton flavor to
be conserved for SM couplings (i.e., gSMA is the same for all
lepton flavors), this yields

gτA=g
SM
A ≈ 1−

2664
8>><>>:

4.54; m̂ϕ ¼ 2

1.50; m̂ϕ ¼ 4

0.75; m̂ϕ ¼ 6

9>>=>>;jc33j2 × 10−4

3775: ð92Þ

Therefore, allowing for a 3σ margin about the best-fit
value quoted in Table IV, we obtain the following con-
straints on jc33j∶

jc33j≲

8>><>>:
2.25; m̂ϕ ¼ 2

3.92; m̂ϕ ¼ 4

5.50; m̂ϕ ¼ 6

9>>=>>;: ð93Þ

Note that if the present best-fit value for gτA=g
SM
A remains

the same and either of the projected sensitivities to this
observable mentioned in Table IV is reached, this model
would not be capable of addressing this deviation from the
SM value. Thus, we do not give a future reach for the bound
on jc33j in Eq. (93). This is seen explicitly from the results
presented in Secs. V B 5 and VI.

9. High-pT dilepton searches

Several recent studies [127,140–142] have placed con-
straints on effective operators using LHC data. In
Ref. [127], the process qq → ττ̄ has been considered for
the LQ ϕ, among other ones, and the ATLAS analysis in
Ref. [126] has been reinterpreted in order to put a constraint
on the LQ couplings for masses 1 ≤ m̂ϕ ≤ 3. Reading off
from the top-right of Fig. 4 in Ref. [127] and using the fact
that the LHC does not distinguish between chiralities, we
find an upper bound for the LQ coupling involving a RH
tau lepton and a charm quark,

jy32j ¼ jb32j < m̂ϕ þ 0.6: ð94Þ

Similarly, in Ref. [142], the process bþ c → τ þ ν
has been considered and two analyses [143,144] by
ATLAS and CMS have been recast to place a constraint
on the charged-current effective operators. The resulting

constraints, under the assumption of the dominance of a
single operator, are found in Table II of Ref. [142]. In
terms of the effective parameters at the LQ mass scale,
they readffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja33c32j

p
< 3.5m̂ϕ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja33b32j

p
< 0.70m̂ϕ; ð95Þ

where we have included RG corrections due to QCD
using RunDec [145,146]. Still, these constraints are auto-
matically respected in the model, if the experimental
bounds on other primary observables are imposed.

B. Numerical study

In this section, we present and discuss the results of a
numerical scan taking into account the primary observ-
ables. The focus rests on studying the way in which the
imposed current experimental bounds shape the parameter
space of the model, and how this affects the possibility to
explain the observed flavor anomalies in RðDÞ, RðD⋆Þ, and
in the AMM of the muon; see Table IV. Furthermore, the
results help to establish biases for the comprehensive scan
discussed in Sec. VI.

1. Preliminaries

According to the strategy outlined in Sec. IV, the
following discussion refers to scenario B only. The

TABLE V. List of primary observables and relevant effective
parameters. We list the observables that dominantly constrain this
model together with the effective parameters of LQ couplings in
the charged fermion mass basis, see Sec. III C 2, which capture
the most relevant contributions, in line with the analytic estimates
performed in Sec. VA. The parameters listed in round brackets
refer to subdominant contributions.

Observable Effective parameters

RðDÞ a33, b32, (a23)
RðD⋆Þ a33, b32, (a23)
Δaμ b23, c23

BRðτ → μγÞ b23, c33
BRðμ → eγÞ b13, c23
BRðτ → 3μÞ b23, c33, (c23)
BRðτ → μeēÞ b23, c33, (c23)

Observable Effective parameters

BRðμ → 3eÞ b13, c23
CRðμ − e;AlÞ b13, c23, (b11, b23, c13, c21)
Rν
K⋆ a32, a33, (a22, a23)

gτA=g
SM
A c33

τSMBc
a33, b32, (a23)

cc̄ → ττ̄ b32
bc → τν a33, b32, (c32)
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effective parameters aij, bij, and cBij (except for cB12, see
below)20 of the LQ couplings x, y, and z are independently
varied within the ranges given in Eqs. (60) and (61). Note
that we make a different choice in the case of jb32j for
m̂ϕ ¼ 2; see Table IV. Furthermore, combining Eqs. (55)
and (59) and the first line in Eq. (B6) in Appendix B with
the structure of the CKM mixing matrix in scenario B, see
Eqs. (36) and (38), one finds

jVusj≈
���� cB12a11

����λ; jVcbj ≈ jc̃jλ2 and jVtdj ≈ jc̄jλ3; ð96Þ

up to corrections of higher order in λ. Comparing these
predictions to the best-fit values of the experimentally
inferred CKM mixing matrix elements, jVusj ¼ λ ¼
0.22650þ0.00048

−0.00048 , jVcbj ¼ 0.04053þ0.00083
−0.00061 , and jVtdj ¼

0.00854þ0.00023
−0.00016 [98], we conclude that the relation between

the LQ couplings x and z is, indeed, to a good approxi-
mation given by the CKM mixing matrix, if we constrain
the parameters cB12, c̃ and c̄ as follows:

cB12 ¼ a11αeiω1 ; c̃ ¼ βeiω2 ; c̄ ¼ γeiω3 ð97Þ

with

0.5 ≤ α; β; γ ≤ 1.5: ð98Þ

The phases are varied in the full range,

0 ≤ ωi < 2π for i ¼ 1; 2; 3: ð99Þ

Here, no information about CP phases, captured by the
Jarlskog invariant, has been taken into account.
The subsequent discussion including the figures is

based on a sample comprising 4ð3Þ½2� × 106 points for
m̂ϕ ¼ 2ð4Þ½6�. The hadronic observables RðDÞ, RðD⋆Þ,
and τSMBc

exhibit RG running under QCD, and so we
evaluate them at the scale μ ¼ μB ¼ 4.8 GeV, as detailed
in Appendix C 3 b. On the contrary, the remaining leptonic
observables are evaluated at μ ¼ mϕ, that is, we neglect the
smaller contributions from QED running in this section. We
impose the current experimental bounds on BRðτ → μγÞ,
BRðμ → eγÞ, BRðτ → 3μÞ, BRðτ → μeēÞ, BRðμ → 3eÞ,
Rν
Kð⋆Þ , τSMBc

and gτA=g
SM
A ; see Table IV. For completeness,

we also track the contributions to the scalar charged-current
Wilson coefficient CSRR

νedu;3332 and provide a brief discussion
in Appendix D.
In general, for the scatter plots in this section, we use

round sample points to indicate the violation of at least one
of the imposed experimental bounds, and the ones with a
specific shape (star, plus, cross) show that all considered

current bounds are respected. The employed colors as well
as shapes allow us to distinguish well between the results
for the different LQ masses, m̂ϕ ¼ 2, 4, 6, as displayed in
the plot legends. Furthermore, solid lines generally refer to
current experimental data at a given confidence level,
whereas a dashed line indicates a prospective bound or a
future sensitivity. Gray shadings are used in order to better
distinguish the regions of parameter space compatible with
current data at different confidence levels. Besides, the
green shaded regions as well as the black cross in the
bottom plot of Fig. 6 indicate the SM prediction for RðDÞ
and RðD⋆Þ at the 1σ level.

2. RðDÞ, RðD⋆Þ and anomalous magnetic
moment of muon

Addressing the anomalies.—The capability of this model to
explain the anomalies in RðDÞ, RðD⋆Þ, and in the AMM of
the muon, as found in the primary scan, is illustrated in
Fig. 6. A priori, a value up to Δaμ ≈ 3 × 10−9 or larger can
be achieved, depending on the LQmass, in accordance with
the analytic estimate in Eq. (68) in the case of large LQ
couplings. Still, after imposing the experimental bounds of
all primary observables, a result of the order Δaμ ∼ 10−9 is
not generic, but instead we find a suppression by one or two
orders of magnitude for about 90% of the viable sample
points with positive Δaμ generated in the primary scan,
irrespective of the LQ mass. We remark that imposing these
experimental bounds does not lead to a preference for either
sign of Δaμ, as is expected, since none of the primary
observables exhibits a particular sensitivity to the phase of
b23 or c23 ≈ a23.

21 Nevertheless, the results hint towards the
possibility of explaining Δaμ at the 2σ level or better in this
model; see the top in Fig. 6.
Furthermore, as expected from Eq. (68), i.e., Δaμ ∝

jb23c23j, and RðDð⋆ÞÞ mainly controlled by ja33b32j, see
Eqs. (66) and (67), these observables are a priori not
(strongly) correlated in this model. The distribution of
viable sample points in Fig. 6 is due to the experimental
constraint on BRðτ → μγÞ; see Sec. V B 3 for more details.
In particular, this entails a tension between explaining the
flavor anomaly in RðD⋆Þ at the 3σ level or better and
generating Δaμ ∼ 10−9.
Using FLAVIO [62–64] (since v2.0), one finds that the

SM prediction RðDÞSM ¼ 0.297� 0.008 is compatible
with the current experimental average at the 2σ level, that
is, the anomaly is primarily constituted by the discrep-
ancy between RðD⋆ÞSM ¼ 0.245� 0.008 and the corre-
sponding experimental value [19], which overlap only at

20We remind that cij and cBij are in general two inequivalent
sets of effective parameters; see Sec. III C 2.

21As can be seen in Eq. (58), the effective parameters c23 and
a23 as well as c33 and a33 agree up to Oðλ4Þ, respectively. Since
c23 and c33 are not varied directly in the primary scan, the
implications for these are mainly discussed in terms of a23 and
a33 in this section.
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the 3σ level.22 Thus, a combined explanation of the
anomalies in RðDÞ, RðD⋆Þ, and in the AMM of the muon
at a confidence level of 3σ or better is challenging in the
primary scan, in particular due to the correlation between
the latter two observables. We refer to Sec. VI D for a
revision of these trends.

The observables RðDÞ and RðD⋆Þ are linearly correlated
in the model by construction. As is visible in the bottom plot
in Fig. 6, only in the case m̂ϕ ¼ 6 a combined explanation of
the anomalies in RðDÞ and RðD⋆Þ at the 1σ level is a priori
impossible. Imposing the experimental bounds results in a
quite pronounced correlation, namely RðD⋆Þ ≈ 0.30RðDÞþ
0.15, and a combined explanation of RðDÞ and RðD⋆Þ is
possible at the 2σ level for all considered LQ masses.

Correlations between parameters.—In order to substantiate
these results, we have checked for all LQ couplings

FIG. 6. Predictions for RðDÞ, RðD⋆Þ, and Δaμ. The regions marked by solid lines are compatible with the current experimental
averages for RðDð⋆ÞÞ [19] and Δaμ [21,57], respectively, at the indicated confidence level; see Table IV. We use the values output by
FLAVIO, v2.3, for the SM predictions for RðDð⋆ÞÞ at the 1σ level [62–64]; see Appendix C 3 c. These are shown by the green shaded
bands (top) and the black cross (bottom). The round points (geometric shapes) indicate that current experimental bounds are violated
(respected); see also Sec. V B 1.

22Since the values for RðDÞSM and RðD⋆ÞSM that are generated
by FLAVIO differ from those quoted in Ref. [19], the significances
are not in exact correspondence with the ones in Table I.
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whether they display some nontrivial correlation, if the
flavor anomalies in RðDÞ and RðD⋆Þ are explained, or in
the case the measured value of the AMM of the muon is
explained, assuming a certain confidence level in each case.
For that purpose, we make use of an algorithm to calculate
Spearman’s rank correlation coefficient, as provided by the
library SEABORN [147].
The correlation plots in Fig. 7 show the effective

parameters, separated in magnitude and argument, which
display a nonzero correlation, if RðDð⋆ÞÞ (left) and Δaμ
(right) are explained, respectively. Here, all sample points
for which the respective anomaly is explained are taken into
account, regardless of whether all experimental bounds on
the primary observables are respected or not. The effective
parameter b13 is included as well for the sake of compari-
son, because it is sensitive to the experimental bounds. Its
effects are detailed in Secs. V B 3 and V B 4. We have
chosen m̂ϕ ¼ 4 and a certain confidence level as illustrative
example. Nevertheless, the results are not appreciably
different for the other considered LQ masses and con-
fidence levels. A negative (positive) correlation is shown in
blueish (reddish) color. The points entering the correlation
plot for RðDð⋆ÞÞ and Δaμ comprise roughly 10% and 15%
of the entire sample for m̂ϕ ¼ 4, respectively.
As evidenced by the analytic estimates for RðDÞ and

RðD⋆Þ in Eqs. (66) and (67), the result for either observable
is largely controlled by the product ja33b32j, which has
to fall in an appropriate range to explain the anomalies.
Furthermore, the arguments of the (complex) effective
parameters a33 and b32 have to be positively correlated,
implying that their difference should be close to zero, and

thus, the cosines appearing in Eqs. (66) and (67) take values
close to one. This shows that explaining the flavor
anomalies in RðDÞ and RðD⋆Þ requires the contribution
linear in ja33b32j to be positive, that is, the contribution
quadratic in ja33b32j is generically too small to yield a
dominant effect.
Similarly, as explaining the anomaly in the AMM of the

muon needs positive Δaμ, the difference of Argðc23Þ ≈
Argða23Þ and Argðb23Þ is necessarily close to π so that the
sign of the cosine appearing in Eq. (68) can cancel the
negative overall sign. Thus, the right plot in Fig. 7 indicates
a (moderate) negative correlation, both in the case of ja23j
and jb23j as well as for the arguments. Note that the
negative correlation of the magnitudes is less pronounced
than in the case of ja33j and jb32j; see left plot in Fig. 7. We
interpret this as being due to the fact that the product
ja33b32j more directly determines the result for RðDð⋆ÞÞ,
since there is not only the contribution arising from the
interference with the SM, but also the (smaller) contribution
proportional to ja33b32j2, which is unaffected by
Argða33Þ − Argðb32Þ, cf. Eqs. (66) and (67). For the
dominant contribution to the AMM of the muon instead,
a too large value of ja23b23j can be easily compensated by
an appropriate value of Argða23Þ − Argðb23Þ. Thus, in the
case of the AMM of the muon, the sensitivities to the
magnitudes and arguments of a23 and b23 are more similar.

3. Radiative charged lepton flavor violating
decays τ → μγ and μ → eγ

Shaping the parameter space.—We move on to the dis-
cussion of the primary observables acting as constraints on

FIG. 7. Correlation plots for m̂ϕ ¼ 4 based on the sample points, which explain RðDð⋆ÞÞ (left) and Δaμ (right) at 2σ and 1σ level,
respectively. The plots visualise Spearman’s rank correlation coefficient, calculated via the library SEABORN [147]. A negative (positive)
correlation among, e.g., themagnitudes of two effective parameters indicates that if one of them increases, theother one tends to decrease (also
increase). Note that sample points not respecting all experimental bounds on the primary observables are taken into account here as well.
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the model, starting with the radiative cLFV decays
τ → μγ and μ → eγ. The interplay between the corre-
sponding BRs, RðDð⋆ÞÞ and Δaμ is shown in Fig. 8. As is
expected from the analytic estimates, there are correla-
tions between these observables: BRðτ → μγÞ is inter-
twined with RðDÞ and RðD⋆Þ via the effective parameter
jc33j ≈ ja33j, and with Δaμ through jb23j, while the latter
observable also largely depends on jc23j ≈ ja23j, which is,
on the other hand, constrained by the experimental bound
on BRðμ → eγÞ; see Secs. VA 1–VA 3. One typically
generates large contributions to BRðτ → μγÞ, also
depending on the LQ mass. Thus, this observable repre-
sents a strong constraint on the parameter space of this
model. Still, the experimental bound on BRðμ → eγÞ can
be easily saturated as well.

This implies that both the flavor anomalies in RðDÞ and
RðD⋆Þ can individually be explained at least at the 2σ level
for all considered LQ masses, while passing the current
experimental bound on BRðτ → μγÞ; see Fig. 8. Still, the
result for RðD⋆Þ turns out to be always smaller than the
experimental best-fit value. Note, though, that even in
the case of a nonobservation of τ → μγ at Belle II [115],
an explanation of RðDÞ within the 1σ level would still be
possible, whereas an accommodation of the anomaly in
RðD⋆Þ would be disfavored in that case.
Furthermore, the shape of the viable parameter space

in Fig. 6 can be understood by noticing the role of the
experimental bound on BRðτ → μγÞ. As indicated in
Sec. VA, the deviation of RðDÞ=RðDÞSM and RðD⋆Þ=
RðD⋆ÞSM from one can be approximated as a quadratic

FIG. 8. Constraining power and future reach of τ → μγ and μ → eγ. The vertical solid (dashed) lines indicate the current bound on
(future sensitivity of) BRðτ → μγÞ [114,115] in the upper plots and the bottom-left one, and the current bound on (future sensitivity of)
BRðμ → eγÞ [116,117] in the bottom-right plot; see Table IV. The round points (geometric shapes) indicate that current experimental
bounds are violated (respected); see also Sec. V B 1.
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function in ja33j, respectively; see Eqs. (66) and (67).
Together with Δaμ ∝ jb23j, see Eq. (68), and the exper-
imental bound on BRðτ → μγÞ constraining the product
jb23c33j ≈ jb23a33j according to Eq. (73), this bounds
RðDÞ=RðDÞSM and RðD⋆Þ=RðD⋆ÞSM from above as a
function of Δaμ.
The upcoming searches for τ → μγ and μ → eγ [117] will

both probe large parts of the currently viable parameter space.
In particular, for m̂ϕ ¼ 2 the search for τ → μγ is expected to
provide a relevant test for this model. The bottom-left plot in
Fig. 8 also indicates that current data on τ → μγ implies an
upper limit on theAMMof themuon,Δaμ ≲ 3 × 10−9, in this
model. This can readily be recovered from combining the
estimates in Eqs. (68) and (73) with the current experimental
bound on BRðτ → μγÞ, BRðτ → μγÞexp < 4.2 × 10−8 [114].
In addition, both the future search for τ → μγ at Belle II
and the one for μ → eγ at MEG II will test the capability
of the model to explain the measured value of Δaμ and
potentially render an explanation of this flavor anomaly
unlikely; see also discussion in Sec. VI D.

Correlations between parameters.—We thus find that the
available parameter space of this model is dominantly
constrained by the experimental bounds on the radiative
cLFV decays τ → μγ and μ → eγ. This is further evidenced
by the correlation plot in Fig. 9, which shows the effective

parameters that display nonzero correlations, if the exper-
imental bounds of all primary constraints are imposed.
As for the correlation plots discussed in Sec. V B 2, the
LQ mass m̂ϕ ¼ 4 is chosen as illustrative example and the
results are not appreciably different for the other considered
LQ masses. We also include the effective parameter b32 in
order to contrast the findings to the case of explaining the
experimental anomalies in Fig. 7. Note that only 0.35% of
the generated sample points respect all imposed bounds
for m̂ϕ ¼ 4 and thus constitute the plot in Fig. 9.
Imposing an adequate negative correlation between the

magnitudes ja23j and jb13j as well as ja33j and jb23j,
respectively, is sufficient in the primary scan to render a
sample point compatible with every experimental constraint
taken into account. This is in very good agreement with the
findings of Sec. VA 3. Generally, at least one of the two BRs,
BRðτ → μγÞ and BRðμ → eγÞ, is larger than its correspond-
ing current experimental bound in the primary scan, if a
bound on one of the other primary constraints is violated.
Thus, the latter appear to be considerably less competitive.
Still, this observation is partly revised in Sec. VI D.

4. Trilepton decays μ → 3e, τ → 3μ, τ → μeē
and μ− e conversion in aluminium

In this section, we discuss the findings of the primary
scan for several cLFV trilepton decays and μ − e con-
version in aluminium.23

The results, shown in the left plot in Fig. 10, indicate that
the reach of phase 2 of the Mu3e experiment [120] may
render an explanation of the anomaly in the AMM of the
muon in this model unlikely. The right plot in Fig. 10
verifies that μ → 3e is entirely dominated by long-range
contributions from γ-penguin diagrams. Thus, one can
effectively establish a one-to-one correspondence with
the BR of μ → eγ in the model, as stated in Sec. VA 4.
If μ − e conversion in nuclei was similarly dominated

by long-range γ-penguins, the plots in the top in Fig. 11
would also just feature a straight line in the center of the
colored region. Due to subdominant contributions, see
Sec. VA 5, the result can generically deviate from the
γ-penguin approximation by a factor of two or three. Still,
the future search for μ − e conversion in aluminium can be
expected to complement the one for μ → 3e, as can be
seen in the top-right plot in Fig. 11. The experiments

FIG. 9. Correlation plot for m̂ϕ ¼ 4 based on the sample points
which respect the experimental bounds of all primary constraints.
The plot visualises Spearman’s rank correlation coefficient,
calculated via the library SEABORN [147]; see caption of Fig. 7
for more details. We remind that the LO contributions to BRðτ →
μγÞ and BRðμ → eγÞ are proportional to ja33b23j2 and ja23b13j2,
respectively; see Sec. VA 3.

23We note that, relatively independently of the target nucleus,
the model can generate contributions ofOð10−13Þ to the respective
CRs for m̂ϕ ¼ 4 and 6, and contributions ofOð10−12Þ for m̂ϕ ¼ 2.
These are, however, ruled out due to the stringent bound on
and the strong correlation with BRðμ → eγÞ in this regime. Thus,
the current experimental bounds, CRðμ − e;Ti½Au�fPbgÞexp <
0.061½0.070�f4.6g × 10−11 [148–150], do not impose relevant
constraints on the model. In addition, the reach of future
searches for μ − e conversion in aluminium [121,122] is projected
to be three to four orders of magnitude better than for carbon
targets [151].
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COMET [121] and Mu2e [122] are both projected to
efficiently probe the possibility of explaining the measured
value of Δaμ in this model; see bottom plot in Fig. 11.
In the following, we only discuss plots involving τ → 3μ.

However, the obtained BRs for τ → 3μ and τ → μeē are
almost identical in the primary scan, and thus, the inferred
statements also apply to BRðτ → μeēÞ. There can be,
nevertheless, appreciable differences between the two in
the comprehensive scan; see Sec. VI D 3. Figure 12 con-
firms that the upcoming search for τ → 3μ at Belle II [115]
can be expected to probe a region of the parameter space,
which is compatible with current constraints. As demon-
strated in Sec. VA 4, this region corresponds to sufficiently
large Z-penguin contributions. Indeed, if only long-range
γ-penguins were present, the top-left plot involving
BRðτ → μγÞ would display a straight line located at the
upper edge of the colored region.
The hierarchy jc23j ≈ ja23j ≫ jb23j required for large

Z-penguin contributions also suppresses the product of
the magnitudes of the two effective parameters and thus,
the contribution to the AMM of the muon; see Eqs. (68)
and (77). As a consequence, observing τ → 3μ at Belle II
would indicate that an explanation of the measured value
of Δaμ is very unlikely for m̂ϕ ¼ 4, 6. For these LQ
masses, conversely, the largest contributions to Δaμ are
generated, if BRðτ → 3μÞ remains below the prospective
sensitivity. This upper bound on Δaμ, Δaμ ∝ jb23j, as a
function of BRðτ → 3μÞ, BRðτ → 3μÞ ∝ jc33j2, is again
mainly due to the experimental constraint on BRðτ → μγÞ,
BRðτ → μγÞ ∝ jb23c33j2.
In the model, a signal in τ → 3μ effectively enforces a

signal in τ → μγ, but the reverse is not true in general.
Furthermore, the plots in the bottom of Fig. 12 suggest that

a result BRðτ → 3μÞ≳Oð10−10Þ becomes increasingly
disfavored, if the contributions to cLFV μ − e transitions
shrink. Since jb13j≳ λ in the primary scan, this shrinkage
mostly relies on small values for jc23j ≈ ja23j, see
Secs. VA 3 and VA 5, and so the Z-penguin contributions
to τ → 3μ become more suppressed. Hence, BRðτ → 3μÞ is
more tightly correlated with BRðτ → μγÞ in this case, and it
is more difficult to respect the stringent experimental bound
on the latter. In turn, if τ → 3μ is observable at Belle II,
jc23j ≈ ja23j must be rather large and therefore one gen-
erates an enhancement of BRðμ → eγÞ and CRðμ − e;AlÞ.
Note that this interplay is far less pronounced in the
comprehensive scan; see Sec. VI D.

5. Bc → τν, Rν
Kð⋆Þ , and Z → ττ

We proceed with a discussion of further hadronic
observables as well as the axial-vector coupling of Z
bosons to tau leptons. As illustrated in Fig. 13, a large
contribution from the LQ to the lifetime of the Bc meson is
incompatible with the imposed experimental bounds.24 In
particular, the model can accommodate the current best-fit
value of RðDÞexp ¼ 0.339� 0.026� 0.014, even if that
contribution vanished. Besides, the results suggest that τSMBc

would still be close to agreeing with the measured lifetime
τexpBc

¼ ð0.510� 0.009Þ ps [98] at the 1σ level for the
largest value of RðD⋆Þ achievable in this model (which
would also be closest to the best-fit value). In case of larger

FIG. 10. Constraining power and future reach of μ → 3e. The vertical dashed lines indicate the respective projected reach of phase 1
and phase 2 of the Mu3e experiment [120]; see Table IV. The round points (geometric shapes) indicate that current experimental bounds
are violated (respected); see also Sec. V B 1.

24We stress again that we have not attempted to perform a
calculation of the SM contribution to the Bc lifetime but have
indirectly inferred it from the requirement that the combined
contribution from the SM and the LQ agrees with the exper-
imentally determined lifetime.
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LQ masses, a substantial contribution to the lifetime of the
Bc meson from the LQ only arises, if RðDÞ and RðD⋆Þ
become smaller than in the SM. This is in agreement with
the opposite signs of the respective contributions linear
in ja33b32j in the analytic estimates in Eqs. (66), (67),
and (88). This interdependence can get (partly) lifted, if the
channel with a muon neutrino νμ in the final state becomes
more relevant; see Sec. VI D for details.
Nevertheless, a deviation of τSMBc

from the best-fit

value of τexpBc
by more than 10% is incompatible with

the considered constraints. This implies that the BR for
Bc → τν remains below 0.1 in most cases and can
potentially exceed this limit only to a very small
degree. In line with Eq. (89), imposing the upper bound
BRðBc → τνÞ≲ 0.1 constrains the SM contribution to the
lifetime to fulfil τSMBc

≲ 0.55 ps, indicated by the hatched

region in the top and the bottom-left plot in Fig. 13.
Therein, the vertical solid lines show the region in which
the SM prediction agrees with the measured lifetime of the
Bc meson at the 1σ level. Furthermore, we recall that
BRðBc → τνÞ ≲ 0.3 corresponds to τSMBc

≲ 0.7 ps.
If the measured value of Δaμ is explained at the 3σ level

or better in this model, we find that a substantial deviation
of τSMBc

from the measured Bc lifetime is very unlikely for
m̂ϕ ¼ 4, 6. This reflects the fact that an explanation of
RðDÞ and RðD⋆Þ competes with an explanation of Δaμ;
see Secs. V B 2 and V B 3. The results of the primary scan
also suggest that Rν

Kð⋆Þ is close to one in that case. We refer
to Sec. VI D for a discussion of the results of the
comprehensive scan. Thus, the prospective measurement
of B → Kð⋆Þ þ invisible at Belle II [108] provides a
promising avenue to test this model, since the primary

FIG. 11. Future reach of μ − e conversion in Al. The vertical dashed lines show the future sensitivity of μ − e conversion in aluminium
as anticipated by COMET [121] and Mu2e [122]; see Table IV. The round points (geometric shapes) indicate that current experimental
bounds are violated (respected); see also Sec. V B 1.
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scan prompts the expectation that the nonappearance of a
substantial excess on top of the SM expectation implies
the best chances for an explanation of the observed
anomaly in the AMM of the muon. As is the case for
RðDÞ=RðDÞSM and RðD⋆Þ=RðD⋆ÞSM, the observables
Rν
Kð⋆Þ and τSMBc

=τexpBc
can also be approximated as quadratic

functions in ja33j, respectively, and are therefore corre-
lated with Δaμ, Δaμ ∝ jb23j, via the experimental bound
on BRðτ → μγÞ, BRðτ → μγÞ ∝ ja33b23j2; see the relevant
estimates in Sec. VA.
As evidenced in Fig. 14, the contributions to the AMM

of the muon, Δaμ ∝ ja23b23j, and gτA=g
SM
A are not per se

correlated, as is expected from Eq. (92) according to which
the difference of gτA=g

SM
A from one is essentially only

controlled by jc33j ≈ ja33j. Still, if the experimental con-
straints of all primary observables are imposed, the axial-
vector coupling of Z bosons to tau leptons is necessarily
SM-like, if the measured value of Δaμ is explained at the
3σ level. In particular, the deviation from LFU would be
constrained to be much smaller than 0.1%. This correlation
is established through the bound on BRðτ → μγÞ,
BRðτ → μγÞ ∝ ja33b23j2, which is illustrated by the right
plot in Fig. 14. It is clearly visible that a deviation of gτA=g

SM
A

from the current experimental average [109,124] by more
than 2σ is incompatible with the constraint on BRðτ → μγÞ.
Furthermore, the future search for τ → μγ at Belle II [115]
can conclusively test the capability of the model to induce a
significant deviation from LFU in axial-vector couplings.

FIG. 12. Constraining power and future reach of τ → 3μ. The vertical solid (dashed) lines show the current bound on (future sensitivity
of) τ → 3μ [115,118]; see Table IV. The round points (geometric shapes) indicate that current experimental bounds are violated
(respected); see also Sec. V B 1.

FLAVOR ANOMALIES MEET FLAVOR SYMMETRY PHYS. REV. D 108, 075014 (2023)

075014-35



VI. COMPREHENSIVE STUDY

In this section, we conduct a comprehensive scan over
the parameter space of this model, only considering the
phenomenology of scenario B. In order to do so, we first
perform a chi-squared fit to the charged fermion masses and
quark mixing, as detailed in Sec. VI A. This fixes (a subset
of) the effective parameters dij; eij, and fij. Furthermore,
we obtain the unitary matrices necessary in order to
transform the LQ couplings x̂ and ŷ to the charged fermion
mass basis. Then, we bias this numerical study to account

for the parameter space, preferred by the primary observ-
ables, as has been revealed by the analysis in Sec. V B.
We can thereby focus on important regions of parameter
space and extract the most useful information from this
multidimensional parameter scan. The details of the
biasing can be found in Sec. VI B. Otherwise, we vary
all parameters with flat priors and in the ranges specified
in Eqs. (60) and (61). For more information about the scan
procedure, we refer to Appendix E 1.
To perform this numerical study, we use a combination

of different computational software. We encode this model

FIG. 13. Constraining power and future reach of τSMBc
and Rν

K⋆ . In the top and the bottom-left plot, the vertical solid lines indicate the
region in which the inferred SM contribution to the Bc lifetime agrees with the experimental best-fit value at the 1σ level [98], and
the hatched area marks the region in which BRðBc → τν) remains smaller than 0.1, as given via Eq. (89). In the bottom-right plot, the
vertical solid line shows (dashed lines show) the region compatible with the current experimental bound on (future reach of)
Rν
K⋆ [108,123]; see also Table IV. For the future reach, an SM-like value and an uncertainty of 10% are assumed. The round points

(geometric shapes) indicate that current experimental bounds are violated (respected); see also Sec. V B 1.
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in SARAH [101,102]. The program SARAH generates an
output module for use with SPheno [102], which can calculate
the Wilson coefficients, decay rates, and a set of flavor
observables, defined by FlavorKit [101].25 We also make use
of FLAVIO [62] to process analytically defined sets of Wilson
coefficients, where appropriate, and use these to calculate a
broader class of flavor observables. The running of Wilson
coefficients in FLAVIO is implemented using the Wilson

package [100]. In this way, it is possible to construct an
efficient multidimensional parameter scan, the results of
which are discussed in the following. Information regarding
the conventions of the shown plots is given in Sec. VI C.
We consider not only the primary observables in

Sec. VI D and Appendix E 2, as explored in Sec. V, but
also secondary and tertiary observables. Secondary observ-
ables are outlined and analytic estimates are provided for
these in Sec. VI E. We discuss the numerical results for the
secondary observables in Sec. VI F and tertiary observables
are commented in Sec. VI G as well as Appendix E 3.

A. Fit of charged fermion masses and quark mixing

In order to fix the effective parameters dij, eij, and fij,
contained in the charged fermion mass matrices Md, Me,
and Mu, respectively, we perform a chi-squared fit of the
charged fermion masses and quark mixing. As discussed in
Sec. III, accommodating quark mixing correctly requires to
consider scenario B, i.e., the up-type quark mass matrix has
to be of the form given in Eq. (26). As the mass of the LQ is
selected to be maximally a few TeV, see Eq. (62), we fit the

charged fermion masses at a scale of μ ¼ 1 TeV, taken
from Ref. [99]. Quark mixing is fitted to the best-fit values
given by the PDG (Particle Data Group) [98], because RG
running effects are small.
This model contains two Higgs doublets, Hu giving

masses to up-type quarks and Hd giving masses to down-
type quarks as well as charged leptons. The suppression
of the down-type quark and charged lepton masses with
respect to those of the up-type quarks (in particular, the top
quark) is achieved by taking the VEV of Hd to be much
smaller than that of Hu—recall Eq. (13). Thus, in the chi-
squared fit we have (mainly) varied the size of the VEVof
Hd such that hH0

di takes a minimum value of 1.22 GeVand
a maximum value of 4.86 GeV, generating several viable
datasets. Each of these leads to an excellent fit to the
charged fermion masses taken at μ ¼ 1 TeV [99] and to
quark mixing [98]. From these datasets, we also extract the
unitary matrices Ld, Rd, Le, Re, Lu, and Ru, necessary in
order to compute the form of the LQ couplings x̂ and ŷ in
the charged fermion mass basis, i.e., the LQ couplings x, y,
and z, according to Eqs. (52), (53), and (56). For further
details about the implementation of the chi-squared fit in
the scan, see Appendix E 1.

B. Biases from primary scan

We remind that the study of primary observables
involves samples of 4ð3Þ½2� × 106 data points for
m̂ϕ ¼ 2ð4Þ½6�, sampled as described in Sec. V B 1. These
points have been filtered to select only those that pass
the primary constraints in Table IV, including gτA=g

SM
A at

the 3σ level and τSMBc
at the 1σ level.

FIG. 14. Constraining power and future reach of gτA=g
SM
A . The regions indicated by vertical solid (dashed) lines are compatible with

the current experimental averages for (future sensitivity of) gτA=g
SM
A at the shown confidence level [109,124] (at the 3σ level [109–111]);

see Table IV. The round points (geometric shapes) show that current experimental bounds are violated (respected); see also Sec. V B 1.

25A comprehensive discussion can be found in Ref. [152].
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In an unbiased scan, it turns out to be difficult to find
points capable of addressing the three flavor anomalies,
while passing the constraints arising from the experimental
bounds on the radiative cLFV decays τ → μγ and μ → eγ.
From Table V, it becomes evident why, since common
effective parameters drive these observables, recalling that
aij and cij are related via the CKM mixing matrix. For this
reason, the biases in Table VI are presented for points
satisfying all primary constraints, together with two further
numerical restrictions; see Eqs. (100) and (101). The latter
intend to address the constraints from τ → μγ and μ → eγ
by biasing the values of the magnitudes of the effective
parameters b23 and b13, respectively.
For a value of the magnitude of the effective parameter

a23 chosen according to Table VI, we also impose a
restriction on the magnitude of b13 in order to pass the
experimental bound on the BR of μ → eγ, see Eq. (72),

jb13j≲ 1

ja23j

8>><>>:
0.41; m̂ϕ ¼ 2

1.16; m̂ϕ ¼ 4

2.22; m̂ϕ ¼ 6

9>>=>>;: ð100Þ

Furthermore, respecting the experimental constraint on the
BR of τ → μγ enforces that, once a value for the magnitude
of a33 is chosen according to Table VI, the magnitude of b23
is restricted such that

jb23j≲ 1

ja33j

8>><>>:
0.16; m̂ϕ ¼ 2

0.45; m̂ϕ ¼ 4

0.86; m̂ϕ ¼ 6

9>>=>>;; ð101Þ

compare Eq. (73). This means that determining whether a
sample point can rather explain the flavor anomalies in
RðDð⋆ÞÞ, for which ja33j needs to be quite large, or in the
AMM of the muon, for which jb23j must be quite large, is
tightly controlled by the bound on the BR of τ → μγ. The
ranges for ja33j indicated in Table VI are the union of the

ranges separately extracted using the 3σ ranges of RðDð⋆ÞÞ
and of the AMM of the muon.
Note that these constraints are imposed on the effective

parameters in the charged fermion mass basis, while
scanning over effective parameters in the interaction basis
in the comprehensive scan. Therefore, we have two related,
but distinctly defined, regions of parameter space. The
transformations between them are given by the unitary
matrices, generated by the chi-squared fit to charged
fermion masses and quark mixing, as described in
Sec. VI A. As addressed in Sec. IV, varying the effective
parameters in the interaction basis in the range found in
Eq. (60) ensures the preservation of the expansion in orders
of λ used to construct the underlying model. In doing so, the
corresponding effective parameters in the charged fermion
mass basis, calculated from this scan, may fall outside the
range ½λ; 1=λ�, compare Table X in Appendix E 1.
For practicality in implementing the biases, we assume

that the LO relations listed in Appendix B can be used to
translate between the two bases. In particular, we first
assume that

ja33j¼ jâ33j; jb32j¼ jb̂32j; and jb23j¼ jb̂23j; ð102Þ

which allows us to directly bias the input values for
jâ33j; jb̂32j, and jb̂23j. All other effective parameters in
the interaction basis are varied in the ranges, specified by
Eqs. (60) and (61). We then bias the magnitudes of a23
and b13 by first extracting their values from the effective
parameters in the interaction basis, using the aforemen-
tioned unitary matrices, and afterwards enforcing the
bounds shown in Table VI and Eq. (100), respectively.
For further details regarding the implementation of the
scan, see Appendix E 1.
We do not claim to have extensively explored the entire

multidimensional parameter space of this model but imple-
ment the biases from the primary scan to better identify
regions capable of explaining the three flavor anomalies
and respecting all considered present constraints.

TABLE VI. Inputs for biasing in comprehensive scan, derived from primary scan. These intervals have been identified in the
primary scan as satisfying all primary constraints and explaining at least one of the flavor anomalies in RðDð⋆ÞÞ or in the AMM of the
muon at the 3σ level or better. The fact that there is no entry for ja23j in the case of m̂ϕ ¼ 2means that no points have been identified in
the primary scan that allow the presented conditions to be met. Therefore, we take ½λ; 1=λ� to be the imposed range for biasing the
magnitude of the effective parameter a23. Then, we manually input the restricted range for cosðArgða23Þ − Argðb23ÞÞ for m̂ϕ ¼ 2 to
ensure that the contribution to the AMM of the muon is positive, compare Eq. (68). Note that these values are taken together with the
inequalities found in Eqs. (100) and (101) to also bias the values of the effective parameters jb13j and jb23j. All shown numbers are
rounded to one decimal place.

m̂ϕ ja33j jb32j cosðArgða33Þ − Argðb32ÞÞ ja23j cosðArgða23Þ − Argðb23ÞÞ
2 [0.2, 0.7] [1.1, 2.6] [0.4, 1.0] � � � ½−1.0; 0.0�
4 [0.2, 1.9] [1.0, 4.5] [0.1, 1.0] [1.6, 4.4] ½−1.0;−0.5�
6 [0.2, 3.6] [0.8, 4.5] [0.0, 1.0] [1.4, 4.4] ½−1.0;−0.3�
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C. Conventions for plots presented in this section

Before discussing the results of this comprehensive scan,
we first outline the conventions for showing data in this
section. In all plots, the displayed colored points pass all
considered constraints—red stars for m̂ϕ ¼ 2, yellow plus
signs for m̂ϕ ¼ 4, and blue crosses for m̂ϕ ¼ 6, as shown in
the plot legends. Black dotted lines indicate the central
values for SM predictions, black solid lines show present
experimental constraints, and black dashed lines show
prospective bounds. Where we display a physical observ-
able on an axis, gray shaded regions indicate the 1, 2, and
3σ contours about the present experimental best-fit values.
If relevant for that observable, a red-brown shaded region
indicates a prospective reach, as labeled, with a best-fit
value denoted with a solid red-brown line. Where we show
an effective parameter (or combination of them) on an axis,
the gray shaded band indicates the region of parameter
space probed by the primary scan. Overlaid white crosses in
each of the displayed plots, labeled “Anomalies” in the
legends, are points that can simultaneously address the
anomalies in RðDÞ, RðD⋆Þ, and in the AMM of the muon
within the 3σ range of their present best-fit values. Each of
these features can be seen in Fig. 15. Additional features in
plots are defined in the captions.

D. Numerical results for primary observables

For the comprehensive scan, we sample 1.5 × 105 points
for each of the three LQ masses. In the primary scan,
approximately 0.005(0.35)[2.4]% of the sample points
have passed the primary constraints for m̂ϕ ¼ 2ð4Þ½6�. In
contrast, for the comprehensive scan, we find that approx-
imately 4(8)[27]% of the sample points pass the primary
constraints for m̂ϕ ¼ 2ð4Þ½6�. Therefore, in the compre-
hensive scan, the percentage of viable points has particu-
larly increased for m̂ϕ ¼ 2. Below, we discuss the efficacy
of this biased scan for addressing the flavor anomalies and
evading constraints. Once we have imposed all con-
straints, we identify 58ð1Þ½0� points for m̂ϕ ¼ 2ð4Þ½6� that
can generate RðDÞ, RðD⋆Þ, and the AMM of the muon
within the 3σ range of the present best-fit values. These
points are illustrated by white crosses in the plots, as
mentioned in Sec. VI C.26

The difference in the parameter space probed by the
primary and the comprehensive scan, in turn, impacts the
resultant ranges of the observables. This may occur due to
modifying the sampled region for a particular effective
parameter that enters in a dominant contribution according
to Sec. VA (e.g., smaller accessible values of the magni-
tude of b13, discussed in Sec. VI D 2) or through an
enhancement of the effective parameters appearing as
subdominant in the primary scan (e.g. enhancement of

LFV contributions in processes with neutrinos in the final
state, see Sec. VI D 4). Each of these may be a result of
biasing and/or the use of a different basis. We emphasize
that for the plots contained in this section, used to contrast
the two scans, the colored points always represent those
for which all primary constraints are satisfied. Constraints
from secondary and tertiary observables are automatically
fulfilled after imposing all primary constraints. Table VII
contains a summary of the spread of the numerical results
for the primary observables.
Regarding the computation of the primary observables,

we directly employ the analytic expressions for the
trilepton decays, i.e., for BRðτ → 3μÞ, BRðτ → μeēÞ, and
BRðμ → 3eÞ, from Appendix C 2 d, and for Z → ττ from
Appendix C 4. So for these observables the calculation
method is the same as in the primary scan in Sec. V. For
the other primary observables, the method is different
compared to the scan in Sec. V, since we numerically
calculate RðDÞ, RðD⋆Þ, and Rν

K⋆ using the Wilson coef-
ficients in Appendix C 3, the Wilson package [100], and
FLAVIO [62,63]. Furthermore, we compute Δaμ, BRðτ →
μγÞ, BRðμ → eγÞ, and CRðμ − e;AlÞ using SARAH and
SPheno [101,102].
For Z → ττ, we do not find a discernible difference

between the distributions of data from the primary and the
comprehensive scan. We thus refer to Sec. V B 5 for a
discussion of the results. We, however, display the output
for Z → ττ, when discussing the secondary observable
gμA=g

SM
A in Sec. VI F.

1. Differences between datasets

Before comparing the results of the primary and the
comprehensive scan, we first comment on some important
differences between the outputs of the primary scan,
discussed in Sec. V, and the comprehensive one, discussed
in this section. In Table X in Appendix E 1, we list the
distributions of the unhatted LQ couplings extracted from
the comprehensive scan. In this way, we can identify the
effective parameters, whose magnitude can be (much)
smaller than λ, e.g., jb13j, or (much) larger than 1=λ,
e.g., ja22j, i.e., the region sampled in the primary scan. This
difference impacts the distribution of the observables
influenced by these parameters.
We look at the effective parameters that dominantly drive

the analytic estimates for the primary observables, listed in
Table V. We note that there is complementary influence of
the effective parameters b13 and a23 via the constraints from
μ → e processes, especially BRðμ → eγÞ. We also see from
Table V that the effective parameter b23 is responsible for
the dominant contributions to both the AMM of the muon
and to cLFV tau decays, especially BRðτ → μγÞ. Therefore,
as discussed in Sec. V, the magnitude of b23 should not be
too large. Table X shows that b13 can take particularly small
values in the comprehensive scan, which means that
sampled points with larger values of c23 ≈ a23 are capable

26As most of these points correspond to m̂ϕ ¼ 2, we do not
distinguish between LQ masses for the white crosses.
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of avoiding constraints from μ → e processes; see
Eq. (100). These larger values of the magnitude of a23
then require smaller b23 in order to generate large Δaμ
compatible with the experimental indication. At the same
time, large contributions to the BR of τ → μγ are avoided.
This makes the comprehensive scan more likely to identify
a larger sample of viable points consistent with reconciling

the observed anomaly in the AMM of the muon—which is
a challenge for the primary scan.
Furthermore, we note several instances in which the

differences in the two scans result in an amplification of a
contribution to a primary observable, identified as sub-
dominant in Sec. V. Interestingly, this is relevant for the
case of LFV contributions to decays with neutrinos in the

FIG. 15. Results of comprehensive scan for the flavor anomalies in RðDÞ, RðD⋆Þ, and in the AMM of the muon. The top-left plot
shows points that pass all considered constraints, while the top-right plot shows points that not only pass these constraints but also satisfy
Δaμ within 3σ (light-colored circles) or 2σ (dark-colored other shapes) of the present best-fit value. The scale in the top-right plot is
magnified in order to highlight the region populated by the data. In both plots, the purple dot-dashed ellipse shows the 1σ contour about
the most recent Belle results for RðDÞ and RðD⋆Þ [13], and a green band shows the 1σ region about the most recent LHCb result for
RðD⋆Þ [17,18]. The black dashed ellipse indicates the prospective 3σ reach for 5 ab−1 of data at Belle II [112], assuming the best-fit
value from 2021 and the correlation coefficient from the HFLAV Collaboration [19]. The SM values for RðDÞ and RðD⋆Þ (with
associated uncertainties) are illustrated by a black barred cross in the top plots, and the SM central values are given as black dotted
lines in the bottom plots. These SM values are extracted from FLAVIO [62,63], v2.3. The bottom plots show the AMM of the muon
plotted against RðDÞ (left) and RðD⋆Þ (right), with the red-brown band showing the 3σ projected sensitivity from the Muon g − 2
experiment [113]. This (roughly) overlays the present 2σ region, assuming the best-fit value remains the same as the current
experimental average (see red-brown solid line). For further information on how to read this figure, see Sec. VI C.
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final state, including RðDÞ, RðD⋆Þ, τBc
, and Rν

K⋆ . As we
have seen, cLFV can be considerable in this model, and
it is thus reasonable to expect similar violation in decays
involving neutrinos.
We discuss the features mentioned above and other

differences between the results of these two scans in the
following. Throughout this section, we use the term
“viable” to denote points that are capable of passing all
constraints but not necessarily addressing the three flavor
anomalies. For instance, all data points displayed in plots in
this section are viable points.

2. Addressing the anomalies

In the comprehensive scan, we are able to identify
valid points that can explain the anomalies in all three
observables, RðDÞ, RðD⋆Þ, and Δaμ, at the 3σ level (see
light-colored circles in the top-right plot in Fig. 15).
Indeed, the data reveal that, with the correlation between
RðDÞ and RðD⋆Þ accommodated, the anomalies in these
two observables and the measured value of Δaμ can be
explained at the 2σ level for m̂ϕ ¼ 2 (see dark-colored
points in the top-right plot in Fig. 15). Note that the
latter cannot be explicitly seen in the bottom in Fig. 15,
because the σ-regions about the best-fit values of RðDÞ
and RðD⋆Þ do not consider the correlation between these
two observables.
If we only look at the flavor anomalies in RðDÞ and

RðD⋆Þ, all three considered LQ masses are compatible with
viable solutions at the 2σ level (see top-left plot in Fig. 15).
This is also found in the primary scan in Sec. V. In case
the best-fit values remain the same and the Belle II
Collaboration increases the precision with which they

can probe these observables [112], the prospective 3σ
contour assuming 5 ab−1 of data is shown in the top in
Fig. 15 as black dashed ellipse.27 We, therefore, expect that
future measurements of RðDÞ and RðD⋆Þ at Belle II will
provide an important test of this model. We also recognize
that the LQ masses we have shown to be viable to explain
the anomalies are likely within the reach of upcoming LQ
direct-production searches at the LHC.
Furthermore, we indicate the prospects for future mea-

surements of the AMM of the muon. In the bottom in
Fig. 15, the 3σ projected sensitivity from the Muon g − 2
experiment [113] is seen to (roughly) overlay the present 2σ
region for this observable. If, as we have illustrated here,
the best-fit value remains the same and the sensitivity is
improved, this will challenge the model as an explanation
of the three anomalies but not entirely rule out the viable
parameter space. This is consistent with the preceding
discussion and is evident from the distribution of white
crosses in the plots in Fig. 15.

Simultaneously addressing all three anomalies.—In the
primary scan, it is found to be difficult to identify points
that can address all three flavor anomalies simultaneously.
A key limiting factor is the interplay between large
contributions to the AMM of the muon and large contri-
butions to the radiative cLFV processes τ → μγ and
μ → eγ. Here, we discuss how this limitation is relaxed
in the comprehensive scan.

TABLE VII. Overview of spread of results for primary observables in comprehensive scan. We present a summary of the statistics
reflecting the distribution of the primary observables: the minimum, maximum, and average values generated for a sample of P points
passing the primary constraints.

Spread of results for primary observables in comprehensive scan

Observable

m̂ϕ ¼ 2, P ¼ 5955 m̂ϕ ¼ 4, P ¼ 12570 m̂ϕ ¼ 6, P ¼ 39807

[min, max] Average [min, max] Average [min, max] Average

RðDÞ [0.302, 0.452] 0.333 [0.297, 0.442] 0.321 [0.291, 0.436] 0.316
RðD⋆Þ [0.245, 0.293] 0.256 [0.243, 0.288] 0.252 [0.238, 0.285] 0.250
Δaμ × 1010 ½−0.350; 18.26� 1.658 [0.320, 22.40] 2.363 [0.013, 20.21] 1.252
BRðτ → μγÞ × 108 [0.234, 4.200] 3.123 [0.099, 4.200] 2.997 [0.040, 4.200] 2.834
BRðμ → eγÞ × 1014 [0.014, 42.00] 19.96 [0.008, 42.00] 20.65 [0.002, 42.00] 20.10
BRðτ → 3μÞ × 1010 [0.149, 30.92] 1.895 [0.078, 31.42] 3.754 [0.030, 31.86] 3.479
BRðτ → μeēÞ × 1010 [0.103, 59.72] 1.948 [0.036, 28.83] 2.465 [0.016, 18.20] 1.891
BR(μ → 3e) ×1016 [0.010, 29.54] 14.04 [0.005, 29.53] 14.52 [0.001, 29.54] 14.13
CRðμ − e;AlÞ × 1016 [0.009, 14.40] 6.341 [0.002, 13.56] 6.480 [0.002, 13.37] 6.298

Rν
K⋆ [0.672, 2.695] 1.171 [0.672, 2.694] 1.096 [0.668, 2.698] 1.071

ð1 − gτA=g
SM
A Þ × 104 ½−1.646; 1.963� −0.203 ½−1.593; 4.791� 0.742 ½−0.777; 9.193� 1.986

τSMBc
(inferred) [ps] [0.499, 0.540] 0.506 [0.500, 0.524] 0.507 [0.499, 0.527] 0.507

27In generating this projected Belle II chi-squared ellipse, we
have assumed the same correlation coefficient and best-fit value
as reported for the HFLAV averages in 2021 [19].
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We first analytically show that the maximum value of
the AMM of the muon compatible with the primary
constraints is (roughly) inversely proportional to the
magnitude of the effective parameter b13. Recall from
the estimate in Eq. (68) that

jΔaμj≲ jb23c23j
m̂2

ϕ

× 10−9: ð103Þ

The present bound on the combination jb13c23j from
BRðμ → eγÞ, see Eq. (74), can be used to parametrize
the dependence on jb13j for a viable point. We can also
bound the magnitude of b23 (roughly) from above by
considering the dominant contribution to BRðτ → μγÞ, see
Eq. (75), which is proportional to jb23c33j, and using the
minimum sampled value of the magnitude of c33 ≈ a33
from Table VI. Therefore, an approximate upper bound for
the maximally accessible value of jΔaμj for each LQ mass
can be expressed as

jΔaμj≲ 1

jb13j

8>><>>:
0.249; m̂ϕ ¼ 2

0.993; m̂ϕ ¼ 4

2.236; m̂ϕ ¼ 6

9>>=>>; × 10−9: ð104Þ

This inverse correlation between the maximum value of
jΔaμj and the magnitude of the effective parameter b13 is
also influenced by the biasing procedure, which aims
to target points that avoid constraints from the two
radiative cLFV decays μ → eγ and τ → μγ using
Eqs. (100) and (101).
The influence of biasing the effective parameters and

the distribution of those dominating the contributions to
radiative cLFV decays are illustrated in the top in Fig. 16.
The top-left plot shows the distribution of values of the
magnitude of b13 accessible in the primary and the
comprehensive scan. Whereas the minimum value for
jb13j is seen to be as small asOð10−3Þ in the comprehensive
scan, the primary scan only employs values larger than
λ ≈ 0.22. From Eq. (104), we therefore expect larger
accessible values of the AMM of the muon, while, at
the same time, evading the primary constraints. This is,
indeed, the case as shown in the bottom in Fig. 16, where
we show the distribution of Δaμ plotted against the value
of jb13j. This effect is especially striking for m̂ϕ ¼ 2, for
which the only points that explain the observed anomaly in
Δaμ within the 3σ range are found outside the gray shaded
region, i.e., the sampled region of the magnitude of b13 in
the primary scan. We note that in the bottom in Fig. 16 we
also overlay as dot-dashed lines the upper bound for each
LQ mass, as shown in Eq. (104). We see reasonable
agreement with the data, given that this upper bound has
been derived under the assumption that the magnitudes of
both a33 and b23 lie in the interval ½λ; 1=λ�, which is,

however, not always fulfilled in the comprehensive scan,
compare top-right plot in Fig. 16.

3. Leptonic primary constraints

Contributions from lepton flavor violating channels to
RðDÞ and RðD⋆Þ.—We comment on the impact of the
LFV contribution from b → cτνμ to RðDÞ and RðD⋆Þ in the
comprehensive scan. Appealing to the analytic formulas in
Eqs. (66) and (67), we see that the contribution from the
LFV final state with a muon neutrino is proportional to
ja23b32j. We recall that the magnitude of a23 is biased
towards larger values, see Table VI, and we thus expect
non-negligible contributions from this decay channel to
RðDÞ and RðD⋆Þ in the comprehensive scan. Even though
this LFV channel does not interfere with the SM contri-
bution, for m̂ϕ ¼ 2, it can generate an enhancement above
the SM value as large as 40% for RðDÞ and 30% for RðD⋆Þ,
respectively, using all viable points. For m̂ϕ ¼ 4, 6 there is
at most a 10% enhancement in either observable above the
SM value, which is roughly consistent with the present 1σ
margin about the best-fit values. Therefore, we emphasize
that this effect cannot be neglected, when considering these
observables in this model, particularly as future experi-
ments will reach increased sensitivity.
In Sec. V B 3, it is shown that the strongest present

experimental constraints on this model arise from the
radiative cLFV decays τ → μγ and μ → eγ. In the
following, we discuss the differences between the results
of the primary and the comprehensive scan for these and
other leptonic primary constraints as well as the pros-
pects that these processes offer as signals of this model
at future experiments.

Radiative charged lepton flavor violating decays.—In
Fig. 17, we show the impact of biasing on the parameter
space in the case of the radiative cLFV decays μ → eγ and
τ → μγ. The upper bounds from Eqs. (100) and (101) are
shown as vertical dot-dashed lines.
Since in the comprehensive scan the magnitude of the

effective parameter b13 can be significantly lower than λ, also
the attained values of the product ja23b13j can be smaller than
naively expected, compare colored points and gray shaded
region in the left plot in Fig. 17. This product being smaller
generally corresponds to a suppressed value of BRðμ → eγÞ,
consistent with the analytic estimate in Eq. (72).We see that a
signal of μ → eγ is predicted to be observed at MEG II [117]
for a large number of viable points, in agreement with the
findings of the primary scan; see Sec. V B 3. Nevertheless,
there are points capable of addressing all three flavor
anomalies that remain unconstrained by this observable even
with the increased sensitivity.
Similarly, we note that the magnitude of the effective

parameter a33 can be smaller than λ, see top-right plot in
Fig. 16, though to a lesser extent than in the case of b13.

BIGARAN, FELKL, HAGEDORN, and SCHMIDT PHYS. REV. D 108, 075014 (2023)

075014-42



We thus expect points in the right plot in Fig. 17 to fall
below the gray shaded region for the product ja33b23j.
Smaller accessible values of a33 imply viable points with
larger magnitude of b23, although we see that the present
bound from BRðτ → μγÞ is already very constraining on
this product. Furthermore, we note that the majority of
points able to address the three anomalies, i.e., the white
crosses, lead to a value for BRðτ → μγÞ in the region that
can be probed by the future sensitivity of Belle II [115].
Finally, we mention that the distributions for these

radiative cLFV decays with respect to RðDÞ, RðD⋆Þ and
the AMM of the muon can be found in Fig. 26 in
Appendix E 2. They can be compared with Fig. 8 in
Sec. V B 3.

Trilepton tau decays.—We discuss the results for the
primary constraints BRðτ → 3μÞ and BRðτ → μeēÞ in
the comprehensive scan. The relationship between these
two observables is displayed in the top-left plot in Fig. 18.
Unlike in the primary scan in Sec. V, we in general do not
find that BRðτ → 3μÞ ≈ BRðτ → μeēÞ; i.e., Eq. (81) does
not hold for the shown data. This is due to the impact of
subdominant contributions to both processes, including
the Z-penguin contributions explicitly detailed in Eqs. (77)
and (78), as well as subleading contributions to both
processes, e.g., contributions due to box diagrams as
discussed in Appendix C 2. We show the relation given
in Eq. (81), reflecting γ-penguin dominance, as an overlaid
purple dot-dashed line. We note that there is a strong

FIG. 16. Interplay of imposed biasing and employed basis in comprehensive scan. In the top, the dot-dashed lines show the imposed
bounds from Eqs. (100) and (101), in dark red for m̂ϕ ¼ 2, orange for m̂ϕ ¼ 4, and dark blue for m̂ϕ ¼ 6, respectively. The bottom plot
shows the influence of this biasing on the viability to explain the anomaly observed in Δaμ for each LQ mass, and overlaid dot-dashed
lines show the approximate bound from Eq. (104). The gray bands, shown for the effective parameters, illustrate the regions sampled in
the primary scan. For further information on how to read this figure, see Sec. VI C.
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positive correlation between the observables but also a
spread influenced nontrivially by these subdominant con-
tributions. Therefore, both observables should be sepa-
rately considered with respect to the future prospects for
signals at Belle II [115].
Next, we would like to contrast the results for

BRðτ → 3μÞ with those of the primary scan. In the top-
right plot in Fig. 18, we show BRðτ → 3μÞ plotted against
BRðτ → μγÞ. The overlaid purple dot-dashed line shows
the estimate from Eq. (79), i.e., the linear correlation
between BRðτ → 3μÞ and BRðτ → μγÞ in the case of
γ-penguin dominance. Comparing this plot with the
corresponding one in Fig. 12, we notice a large number
of points, particularly for m̂ϕ ¼ 2, that result in a value for
BRðτ → 3μÞ that can be probed at Belle II, unlike in
the case of the primary scan. This includes a sizeable
number of the white crosses, points capable of addressing
all three anomalies, which motivates further examination
of this difference.
The explanation of this difference lies in the relevance

of Z- and γ-penguin contributions to BRðτ → 3μÞ.
Equation (77) reveals that both contributions are propor-
tional to jc33j ≈ ja33j, and also to jc23j ≈ ja23j (Z-penguin)
or jb23j (γ-penguin), respectively. Smaller γ-penguin con-
tributions correspond to smaller values of BRðτ → μγÞ,
see Eq. (73), and are thus preferred in the comprehensive
scan due to the biasing, compare Eq. (101). Therefore, in
order to generate a significant contribution to the AMM of
the muon larger values of the magnitude of the effective
parameter a23 ≈ c23 are needed; see Eq. (68) and Table VI.
This, in turn, typically enhances the Z-penguin contribu-
tions to BRðτ → 3μÞ. From Eq. (77), we can derive the
value of the ratio jb23=c23j at which the dominant

contribution changes. This is illustrated as a purple dot-
dashed line in the bottom-left plot in Fig. 18. Consistent
with the preceding discussion, we see that points preferred
by explaining the flavor anomalies overwhelmingly corre-
spond to those which have values of jb23=c23j in the range
of Z-penguin dominance. In the bottom-right plot in
Fig. 18, we also see that, indeed, the same points corre-
spond to significant contributions to Δaμ.
Furthermore, we notice in the bottom-right plot in Fig. 18

a prominent feature, namely a diagonal cutoff towards the
top-right corner of the plot for m̂ϕ ¼ 4, 6, which is not
present for m̂ϕ ¼ 2. In Sec. V B 4, this feature has been
associated with the inverse proportionality of the maximum
contributions to BRðτ → μγÞ and Δaμ, at LO. In the top-
right plot in Fig. 12, we observe this cutoff for all three
sampled LQ masses, although less clearly for m̂ϕ ¼ 2. For
larger LQ masses, subdominant contributions, particularly to
BRðτ → μγÞ and BRðτ → 3μÞ, are more suppressed by the
LQ mass, and consequently this cutoff is more pronounced.
For m̂ϕ ¼ 2, such contributions enter and weaken the
mentioned inverse proportionality—leading to the observed
spread of points towards the top-right corner of the plot.
In summary, the observed anomaly in the AMM of the

muon can be explained, while potentially large signals for
both τ → 3μ and τ → μeē can be observed at Belle II. These
signals are driven by largish Z-penguin contributions that,
unlike contributions due to γ-penguins, are not constrained
by correspondingly large contributions to BRðτ → μγÞ.
The correlation between larger BRs for trilepton tau decays
and sizeable values of the AMM of the muon is enhanced by
the biasing, and particularly by the increase in sampled
viable points with a large magnitude of the effective
parameter a23, as discussed in Sec. VI D 2.

FIG. 17. Impact of sampling on radiative cLFV decays in comprehensive scan. The vertical dot-dashed lines show the upper bounds on
the respective product of effective parameters taken from Eqs. (100) and (101), in dark red for m̂ϕ ¼ 2, orange for m̂ϕ ¼ 4, and dark blue
for m̂ϕ ¼ 6, respectively. For further information on how to read this figure, see Sec. VI C.
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Further μ → e processes.—With smaller values of the
magnitude of the effective parameter b13, see top-left plot
in Fig. 16, in particular the white crosses, we can also
access smaller values of the observables dominantly driven
by this parameter. These include, as we can see from
Table V, BRðμ → eγÞ, CRðμ − e;AlÞ, and BRðμ → 3eÞ.
Although smaller b13 allows us to evade present con-
straints, it does not exclude these channels as means to test
this model at future experiments. As the prospects for
BRðμ → eγÞ are already discussed, we focus in the follow-
ing on the other two processes. From Table VII, we see that
on average BRðμ → 3eÞ ∼Oð10−15Þ, which is an order of
magnitude larger than the projected sensitivity of phase 2 of
the Mu3e experiment [120]. Still, we find points that can
evade this constraint, even with the future sensitivity,

including the ones that are capable of addressing the
three flavor anomalies. Similarly, we have on average
CRðμ − e;AlÞ ∼Oð10−16Þ, which is an order of magnitude
larger than the future projections for COMET [121] and
Mu2e [122]. Compellingly, in Fig. 19, we see that all white
crosses, associated with points that can explain the three
flavor anomalies at the 3σ level or better, are within
the region of parameter space probed by either future
search for μ − e conversion in aluminium. Therefore, we
predict a signal to be observed for this process. Note that
the same proportionality between CRðμ − e;AlÞ and
BRðμ → eγÞ is found in the comprehensive scan as in
the primary scan, illustrated in Fig. 11. So, the upper
bound on CRðμ − e;AlÞ, seen in Fig. 19, stems from
respecting the present constraint on BRðμ → eγÞ.

FIG. 18. Impact of sampling on trilepton tau decays in comprehensive scan. In the two plots in the top, the purple dot-dashed line,
labeled “γ-penguin”, indicates the approximate relation between these observables in the case of γ-penguin dominance; see Eqs. (81)
(left) and (79) (right). In the bottom-left plot, the purple dot-dashed line shows the borderline between Z- and γ-penguin dominance, as
labeled. For further information on how to read this figure, see Sec. VI C.
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Furthermore, we comment on the relation between
μ → e processes and BRðτ → 3μÞ in this model. This is
a continuation of the discussion found in Sec. V B 4, in
which it is noted that large BRðτ → 3μÞ, observable at
Belle II, is much less likely, if contributions to μ → e
processes are beyond the reach of future experiments. This
relation is found to be less pronounced in the comprehen-
sive scan, because smaller values of the rates of μ → e
processes can be generally reached, given that their
dominant contributions are proportional to the magnitude
of b13. As this effective parameter can take much smaller
values in the comprehensive scan, larger values of the
magnitude of a23 ≈ c23 become allowed that can enhance
Z-penguin contributions to BRðτ → 3μÞ. This explains the
existence of viable points towards the bottom-right corner
in Fig. 19, not observed in the corresponding plot of the
primary scan; see Fig. 12. We notice that the plots for
BRðμ → 3eÞ and BRðμ → eγÞ reveal a behavior very
similar to the one for CRðμ − e;AlÞ, shown in Fig. 19.

4. Hadronic primary constraints

In the primary scan in Sec. V, the behavior of the
hadronic observables Rν

K⋆ and τBc
, the Bc lifetime, is

explored. Notably, both of these observables involve
neutrinos in the final state. Naively, one may be tempted
to consider only contributions for which lepton flavor is
conserved, since these lead to interference with the corre-
sponding SM contributions. However, as pointed out for
RðDÞ and RðD⋆Þ in Sec. VI D 2, the contributions from

LFV channels are found to be non-negligible in the
comprehensive scan. We discuss these and other
differences between the primary and the comprehensive
scan for Rν

K⋆ and τBc
in the following.

Contributions to observable Rν
K⋆ .—From Sec. V B 5, we

expect the constraint on BRðτ → μγÞ, whose dominant
contribution is driven by the product jb23c33j, to impact
the size of the main contributions to Rν

K⋆ , driven by the
magnitude of a33 ≈ c33, and to the AMM of the muon,
depending dominantly on the magnitude of b23; see
Table V. This correlation is visible to a certain extent in
the primary scan; see bottom-right plot in Fig. 13. In the
comprehensive scan, the relation between the effective
parameters a33 and b23 is further enhanced by the biasing;
see Eq. (101). Thus, the observed correlation is apparent in
the top-left plot in Fig. 20, in particular for m̂ϕ ¼ 4 and
m̂ϕ ¼ 6. As can be seen, the majority of points that imply
values for Rν

K⋆ close to its present bound corresponds to
smaller values of Δaμ. This trend seems absent for m̂ϕ ¼ 2,
as we discuss in the following.
In order to understand the distribution of values for Rν

K⋆

in the comprehensive scan, we first recall that the dominant
contribution in the model has ντντ in the final state, see
Eq. (90), and is determined by the product ja33a32j. In the
top-right plot in Fig. 20, we see that there is, indeed, a
strong correlation between larger values of the magnitude
of a32 and large values for Rν

K⋆. Numerically we find that
ja32j can be as large asOð10Þ, see Table X in Appendix E 1.
This can be traced back to a potentially large additional
contribution to the effective parameter a32, originating from
the transformation from the interaction to the charged
fermion mass basis, compare Eq. (B6) in Appendix B.
At the same time, we see in the bottom-left plot in Fig. 20
that the biasing prefers smaller values of ja33j ≈ jc33j for
smaller LQ masses, see also Table VI, and that most white
crosses also correspond to smaller ja33j. For these smaller
values, larger values of the magnitude of b23 are likely to be
compatible with the present bound from BRðτ → μγÞ,
compare Eq. (73). These larger values of jb23j tend to
increase Δaμ, see Eq. (68), and can push it closer to the
present best-fit value. Altogether, we can generally expect
larger contributions to Rν

K⋆ to be accessible for ντντ in the
final state than in the primary scan, see Sec. V B 5.
However, for m̂ϕ ¼ 2 smaller values of ja33j are usually
attained, as we see from the bottom-left plot in Fig. 20.
Nevertheless, large values for Rν

K⋆ can be obtained.
From Eq. (90), we note that there can be sizeable

contributions from the channel with νμνμ in the final state
which are proportional to the product ja23a22j as well as
LFV contributions having νμντ and ντνμ in the final state
that are driven by ja23a32j and ja33a22j, respectively. In
the comprehensive scan, we find that the magnitude of
a22 can be as large as Oð10Þ, see bottom-right plot in

FIG. 19. Example of interplay between BRðτ → 3μÞ and μ → e
processes in comprehensive scan. We plot CRðμ − e;AlÞ against
BRðτ → 3μÞ in order to illustrate the spread of points that
correspond to large BRðτ → 3μÞ but a small signal in μ → e
processes. We show for CRðμ − e;AlÞ two prospective limits as
black dashed lines, from COMET [121] and Mu2e [122]. For
further information on how to read this figure, see Sec. VI C.
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Fig. 20 and Table X in Appendix E 1. At the same time,
larger values of the magnitude of a23 are preferred by the
biasing; see Table VI. Therefore, the contribution with
νμνμ in the final state becomes more significant for Rν

K⋆

in comparison to the primary scan. This argument is
supported by the positive correlation in the data between
large ja22j and larger Rν

K⋆, shown in the bottom-right plot
in Fig. 20. Additionally, the LFV contributions with νμντ
and ντνμ in the final state can also be relevant, particu-
larly the one driven by larger values of the product
ja23a32j. For the other contribution proportional to the
product ja33a22j, the biasing prefers smaller values of
ja33j, see Table VI and bottom-left plot in Fig. 20,

especially for smaller LQ masses, so that we do not
expect it to be equally important.
In summary, the current constraint on Rν

K⋆ is found to
genuinely shape the viable parameter space, and the pro-
spective measurement of B → Kð⋆Þ þ invisible at Belle II
[108] provides a promising avenue to test this model.

Lifetime of Bc meson.—For this observable, we similarly
find differences between the values obtained in the
comprehensive and the primary scan. While a substantial
contribution to the Bc lifetime is associated with values
of RðDÞ and RðD⋆Þ below their SM predictions in
the primary scan, see top in Fig. 13 and discussion in

FIG. 20. Impact of sampling on Rν
K⋆ in comprehensive scan. The red-brown shaded regions show the projected reach for Rν

K⋆ at
Belle II for 5 ab−1 of data, assuming the best-fit value is SM-like. The top-left plot displays the parameter space for Rν

K⋆ plotted together
with Δaμ. The remaining plots show Rν

K⋆ plotted together with one of the relevant effective parameters, as identified in the analytic
estimate in Eq. (90). For the bottom-left plot, the dot-dashed lines indicate the upper limit on the magnitude of a33 for each LQ mass,
taken from Table VI, in dark red for m̂ϕ ¼ 2, orange for m̂ϕ ¼ 4, and dark blue for m̂ϕ ¼ 6, respectively. For further information on how
to read this figure, see Sec. VI C.
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Sec. V B 5, in the comprehensive scan, especially for
m̂ϕ ¼ 2, points are observed that are in disagreement
with this statement and therefore hint at the influence of
subdominant contributions. This can be explicitly seen in
the top in Fig. 21.
Equation (88) shows that the dominant term for the

inferred SM contribution to the Bc lifetime, inferred τSMBc
, is

driven by the product ja33b32j, which corresponds to the tau
neutrino being in the final state and which interferes with
the SM contribution. From the bottom-left plot in Fig. 21,
we see that this product is sampled over a much smaller
range for m̂ϕ ¼ 2 than for the other LQ masses, due to the
biasing imposed; see Table VI. However, for small values

of this product, larger values of the inferred τSMBc
are

nevertheless accessible. This indicates the relevance of
subdominant contributions. The other contribution, men-
tioned in Eq. (88), is proportional to the product ja23b32j,
and corresponds to the muon neutrino in the final state. One
should recall that the magnitude of a23 ≈ c23 needs to be
quite large to explain the observed anomaly in Δaμ and that
we sample more viable points with such larger values due
to the biasing, see Table VI. We thus can expect an
enhancement of this LFV contribution to the inferred
τSMBc

—similarly to the effect found for RðDÞ and RðD⋆Þ,
see Sec. VI D 2. For m̂ϕ ¼ 2, we see from the bottom in
Fig. 21 that a sizeable fraction of the points that correspond

FIG. 21. Impact of sampling on inferred SM contribution to Bc lifetime in comprehensive scan. For the Bc lifetime, the gray shaded
region represents the 1σ region about the present experimental best-fit value of τBc

, and the red-brown shaded region shows the area that
corresponds to BRðBc → τνÞ ≤ 0.1. For the bottom-left plot, the gray shaded region represents the sampled parameter range in the
primary scan and the dot-dashed lines show the upper limit on the product ja33b32j for each LQ mass, calculated from Table VI, in dark
red for m̂ϕ ¼ 2, orange for m̂ϕ ¼ 4, and dark blue for m̂ϕ ¼ 6, respectively. Further information on how to read this figure can be found
in Sec. VI C.
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to small values of the product ja33b32j and larger inferred
τSMBc

also leads to a larger value for the AMM of the muon,
compare especially the white crosses.
Despite the differences found in the results of the

primary and the comprehensive scan, this model still
predicts BRðBc → τν) to be below 0.1. More precise
measurements of Bc → τν could provide a further test of
this model, in particular, when considering the comple-
mentarity with measurements of RðDÞ and RðD⋆Þ.

E. Analytic estimates for secondary observables

As in Sec. V, we first discuss analytic estimates for the
secondary observables. Present constraints/measurements
and future reach for these are summarized in Table VIII.

1. Electric dipole moment of muon

The contributions to leptonic AMMs and EDMs arise both
from the one-loop diagram, shown in Fig. 2 in Sec. VA 2. In
fact, they correspond to the real and imaginary part of the
same effective vertex, as can be seen from Eq. (C19) in
Appendix C 2. As we generate large contributions to the
AMMof themuon andwe allow for complex values for the
LQ couplings, we expect that this model can lead to
sizeable values for the EDM of the muon.
Similar to the AMM of the muon, most relevant is the

contribution in which a chirality flip occurs via a mass
insertion on the internal quark line and which can thus be
enhanced by the mass of the top quark. The following
expression for dμ can be derived, assuming mϕ ≫ mt:

jdμj ≈
2jImðc23b�23Þj

m̂2
ϕ

× 10−22 e cm: ð105Þ

This predicts the value of dμ below the current bound, but
well within the reach of future experiments, as quoted in
Table VIII. This is consistent with the literature for

expected correlations between dμ and solutions to the
present flavor anomaly in the AMM of the muon, particu-
larly for the LQ ϕ; see, e.g., Refs. [129,162].

2. Z → μμ

In the case of sizeable contributions to the AMM of
the muon through loops with a top quark, an associated
enhanced contribution to the process Z → μμ is expected;
see diagrams in Fig. 5. Similarly to Sec. VA 8, we use
Eq. (C61) in Appendix C 4 to parametrize the contribu-
tion to the effective axial-vector coupling of Z bosons to
muons in this model. Following Appendix C 4 for the
definition of gSMA , gSMA < 0, and taking lepton flavor to be
conserved for SM couplings, i.e., gSMA is the same for all
lepton flavors, we find

gμA=g
SM
A ≈ 1 −

2664
8>><>>:

2.31; m̂ϕ ¼ 2

0.76; m̂ϕ ¼ 4

0.39; m̂ϕ ¼ 6

9>>=>>;jc23j2 × 10−5

3775:
ð106Þ

If we allow for a 3σ margin about the best-fit value,
given in Table VIII, we obtain upper bounds on the
magnitude of the effective parameter c23, namely the
unbracketed values,

jc23j≲

8>><>>:
12.1½3.8�; m̂ϕ ¼ 2

21.1½6.6�; m̂ϕ ¼ 4

29.5½9.2�; m̂ϕ ¼ 6

9>>=>>;: ð107Þ

In the comprehensive scan, the values of c23 ≈ a23
typically do not become larger than 1=λ, see Table X
in Appendix E 1, and so the present constraints from this
process are not competitive. However, future experiments

TABLE VIII. List of secondary observables. We list the observables that can potentially be used to further constrain and test this
model, together with their current experimental constraint/measurement and future sensitivity. In the case of the EDM of the muon, dμ,
the future projection without brackets refers to the reach expected from the Muon g − 2 experiment at Fermilab [153] and a similar
experimental effort undertaken at J-PARC [154]. The values in brackets are estimates given for experimental proposals using the frozen-
spin technique [155–157]. In the case of the future projections for gμA=g

SM
A , we assume that the measurements of gμA are improved by the

same factor as sin2 θeff [109]; the unbracketed projection is for the ILC [110] and the bracketed value is for the FCC [111].

List of secondary observables

Experiment

Observable Current constraint/measurement Future reach

jdμj < 1.5 × 10−19 e cm at 90% CL [158] 1000ð60Þ½1� × 10−24 e cm [153–157]
gμA=g

SM
A 0.99986� 0.00108 at 1σ level [109,124] �6.3ð0.63Þ × 10−5 [109–111]

Rμ=e
D

0.995� 0.090 at 1σ level [159] �0.00995 [160]

Re=μ
D⋆

1.01� 0.032 at 1σ level [161] �0.0101 [160]

BRðB → τνÞ ð1.09� 0.24Þ × 10−4 at 1σ level [98] �9ð4Þ% at 5ð50Þ ab−1 [112]
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are projected to be much more sensitive, as can be
seen from the values in square brackets in Eq. (107).
These are extracted using the projected sensitivity for
the ILC [110]; see Table VIII. A further reduction of the
error by a factor of ten is expected from the FCC [111],
allowing us to probe more viable parameter space of the
model. Therefore, this observable will be relevant in the
future, particularly for m̂ϕ ¼ 2.

3. Lepton flavor universality ratios Rμ=e
D and Re=μ

D⋆

The observed anomalies in RðDÞ and RðD⋆Þ raise the
question whether the effects of LFU violation may be
evident in other ratios of b → ceiνj processes. Two of

particular interest are the ratios Rμ=e
D and Re=μ

D⋆ ,

Rμ=e
D ¼ ΓðB → DμνÞ

ΓðB → DeνÞ and Re=μ
D⋆ ¼ ΓðB → D⋆eνÞ

ΓðB → D⋆μνÞ :

ð108Þ

Using the expressions from Appendix C 3 d, we arrive at
the following estimates at LO:

Rμ=e
D

½Rμ=e
D �SM

≈1þ
�
2.25Reðb�22a23Þþ19.7Reða�23c22Þ

m̂2
ϕ

�
×10−4;

ð109Þ

Re=μ
D⋆

½Re=μ
D⋆ �SM

≈1−
�
0.68Reðb�22a23Þþ19.6Reða�23c22Þ

m̂2
ϕ

�
×10−4:

ð110Þ

The terms proportional to Reðb�22a23Þ come from the
scalar-operator contribution, while the vector-operator con-
tribution is responsible for the dominant terms proportional
to Reða�23c22Þ. Both contributions arise at the same order
in λ. As shown in Secs. III C 1 and III C 2, in this model, the
LQ coupling y22 turns out to be larger than expected,
y22 ¼ b22λ3. This coupling enters the estimates for these
observables. We also note that both of them depend on the
effective parameter a23 ≈ c23, which plays an important
role for addressing the flavor anomaly in the AMM of the
muon. Eventually, note that the SM value for both is
approximately one, with the exact value used in the
comprehensive scan being extracted from FLAVIO, v2.3.

4. Leptonic decay B → τν

In this model, the LQ ϕ contributes to the leptonic decay
B → τν, which is CKM-suppressed due to jVubj ∼ λ3 in the
SM, see Eq. (C37) in Appendix C 3 e with uk ¼ u for the
full decay width including the contributions from ϕ. We
focus on the case of a tau neutrino in the final state, since
its contribution interferes with the SM one. The largest

contribution arises for the Wilson coefficient CVLL
νedu;3331,

while the Wilson coefficient CSRR
νedu;3331 is suppressed at

the scale μ ¼ mϕ due to the hierarchy y31=z31 ∼ λ2; see
Eqs. (56) and (53). This suppression is only partly
compensated by the RG running down to the hadronic
scale μ ¼ μB ¼ 4.8 GeV and the chirality enhancement of
the scalar-operator contribution. This together results in an
enhancement factor of roughly 6.5. We thus find

BRðB→ τνÞ
BRðB→ τνÞSM

≈1−
0.1
m̂2

ϕ

Reða33c�31Þ

¼1−
0.1
m̂2

ϕ

ja33c31jcosðArgða33Þ−Argðc31ÞÞ:

ð111Þ

All contributions which are quadratic in Wilson coeffi-
cients, induced by the LQ ϕ, can be neglected. Note that the
currently viable parameter space of the model will only be
probed by future searches for B → τν to an appreciable
extent, despite its dependence on the LQ couplings y31 and
z31, which involve quarks of the first generation.

F. Numerical results for secondary observables

In this section, we analyze the numerical results for the
secondary observables from the comprehensive scan. We
first comment on the leptonic observables, illustrated in
Fig. 22, before moving on to the hadronic observables,
shown in Fig. 23. A summary of the spread of the numerical
results for the secondary observables is given in Table IX.
We note that the EDM of the muon dμ is calculated using

SARAH and SPheno [101,102], for the LFU ratios Rμ=e
D and

Re=μ
D⋆ and BRðB → τνÞ the Wilson coefficients in

Appendix C 3, the Wilson package [100] and FLAVIO

[62,63] are employed as well as Z → μμ is calculated
from Appendix C 4.

1. Leptonic secondary observables

Regarding the EDM of the muon, we see that viable
points are capable of generating a maximum of jdμj ∼
Oð10−22Þ e cm and that points, associated with explaining
the anomaly observed in the AMM of the muon at the 3σ
level or better, predict the EDM of the muon to lie in the
interval ½10−25; 10−22� e cm; see top-left plot in Fig. 22.
While this signal could not be seen at the Muon g − 2
experiment at Fermilab, some parameter space is expected
to be probed at the muEDM experiment at the Paul Scherrer
Institute (PSI) and similar experiments using the frozen-
spin technique, as indicated by the black dashed lines in
the top-left plot in Fig. 22. We remind that a bias for the
difference of the arguments of the effective parameters
a23 ≈ c23 and b23 is employed, see Table VI, such that more
sizeable contributions to the AMM of the muon, and thus,
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a larger real part of the relevant Wilson coefficient, are
generated. Therefore, we expect the comprehensive scan to
prefer smaller values of the imaginary part of the product of
the same effective parameters; see Eq. (105). This, in turn,
leads to a distribution of values of jdμj below the analytic
estimate ofOð10−22Þ e cm. Still, enhanced contributions to
both observables are seen to be compatible, and so this
effect is limited. Furthermore, note that we do not observe
any preference for the sign of the EDM of the muon. Given
that the contributions to it turn out to be suppressed relative
to present constraints, there is no need for an additional CP
symmetry to restrict its size.
Turning to the effective coupling of Z bosons to muons,

we first repeat that according to the analytic estimate the

dominant contribution to the ratio gμA=g
SM
A is proportional

to jc23j2 and negative such that the resulting value of
gμA=g

SM
A should always be smaller than one in this model;

see Eq. (106). This is consistent with the data, illustrated in
the top-right plot in Fig. 22. Then, we remind that the
comprehensive scan prefers larger values of the magnitude
of a23 ≈ c23, since this increases the chances to satisfac-
torily address the flavor anomalies. Such larger values
correspond to points with a smaller ratio gμA=g

SM
A , as

observed in the distribution of white crosses in the top-
right plot in Fig. 22. Present constraints are not competitive
enough to be illustrated in this plot, although the present
best-fit value may hint at contributions beyond the SM
that generate a ratio gμA=g

SM
A smaller than one. From the

FIG. 22. Future reach of leptonic secondary observables in comprehensive scan. In the top-left plot, we present two constraints on the
magnitude of the EDM of the muon, jdμj, from the Muon g − 2 experiment [153] and the muEDM experiment [155] (as example for the
frozen-spin technique); see also Table VIII. For gμA=g

SM
A and gτA=g

SM
A , the red-brown shaded regions represent the projected sensitivities

from the ILC [110], assuming the current best-fit values [109,124], shown as red-brown solid lines. For further information on how to
read this figure, see Sec. VI C.
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top-right plot in Fig. 22, we see that increased precision will
allow us to probe parts of the viable parameter space of this
model. Note that we use the projected ILC bounds [110],
but a further reduction of the error by a factor of ten is
expected from the FCC [111]. For completeness, a plot
showing the EDM of the muon and the ratio gμA=g

SM
A can be

found in the left plot in Fig. 27 in Appendix E 2.
Lastly, we observe no correlation between gμA=g

SM
A and

gτA=g
SM
A . This is expected from the analytic estimates, see

Eqs. (92) and (106), since these ratios dominantly depend on
distinct effective parameters. The regions of the two ratios in
the comprehensive scan are displayed in the bottom plot in
Fig. 22 for the three different LQ masses and result from the
biasing imposed on the effective parameters a23 ≈ c23 and
a33 ≈ c33, respectively; see Table VI.

2. Hadronic secondary observables

The LFU ratios Rμ=e
D and Re=μ

D⋆ are useful probes for
b → ceiνj processes that do not involve the tau lepton. The
results of the comprehensive scan reveal an anticorrelation
in the deviations of these two ratios from the SM values.
This is consistent with the analytic estimates in Eqs. (109)
and (110). We note that the effective parameters b22 and
c22 ≈ a22, which enter the estimates for these observables,
can be Oð10Þ in the comprehensive scan, see Table X in
Appendix E 1, while a23 is biased towards larger values;
see Table VI. This enhancement explains the extent of the
distribution of points in the left plot in Fig. 23. Presently, all
predictions are consistent with the measurements, although
the experimental sensitivity is expected to considerably
improve at Belle II [160].

FIG. 23. Future reach of hadronic secondary observables in comprehensive scan. In both plots, we present the projected sensitivities
from Belle II for Rμ=e

D , Re=μ
D⋆ [160] and BRðB → τνÞ, at 5 ab−1, [112]. Note that we do not show the white crosses in the left plot, because

they would uniformly lie across the entire allowed range. A complementary plot showing BRðB → τνÞ against RðD⋆Þ can be found in
the right plot in Fig. 27 in Appendix E 2. For further information on how to read this figure, see Sec. VI C.

TABLE IX. Overview of spread of secondary observables in comprehensive scan. We present a summary of the statistics reflecting the
distribution of the secondary observables: the minimum, maximum, and average values generated for a sample of P points passing the
primary constraints.

Spread of secondary observables in comprehensive scan

m̂ϕ ¼ 2, P ¼ 5955 m̂ϕ ¼ 4, P ¼ 12570 m̂ϕ ¼ 6, P ¼ 39807

Observable [min, max] Average [min, max] Average [min, max] Average

jdμj × 1025 [e cm] [0.067, 2144] 153.4 [0.033, 1449] 128.1 [0.003, 1417] 86.51

Rμ=e
D

[0.983, 1.015] 1.000 [0.994, 1.004] 1.000 [0.996, 1.002] 1.000

Re=μ
D⋆

[0.989, 1.020] 1.003 [0.999, 1.009] 1.003 [1.001, 1.007] 1.003

BRðB → τνÞ × 105 [8.201, 9.505] 8.862 [8.278, 9.341] 8.853 [8.216, 9.396] 8.845

ð1 − gμA=g
SM
A Þ × 104 [0.008, 4.223] 0.292 [0.178, 1.383] 0.427 [0.069, 0.704] 0.214
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On the other hand, BRðB → τνÞ is interesting as observ-
able, since it probes the process bu → τν, which is sensitive
to the LQ coupling between the bottom quark and tau
neutrino common with b → cτν, but is suppressed by the
small coupling between the up quark and tau lepton in this
model, z31 ¼ c31λ3; see Eq. (53). For this BR, we predict a
value consistent within 2 to 3σ of the projected sensitivity,
assuming that the best-fit value of this measurement
remains the current one. In the right plot in Fig. 23, we
illustrate this observable plotted against RðDÞ. As one can
see, we find no correlation between these two observables.
A plot for RðD⋆Þ shows a similar result and can be found
in the right plot in Fig. 27 in Appendix E 2. We note that
the scalar-operator contribution to this observable remains
suppressed by the size of the coupling y31 ¼ b31λ5,
see Eq. (56), consistent with the analytic estimate in
Sec. VI E 4. For the effective parameter b31, an enhance-
ment only slightly above 1=λ is found in the comprehensive
scan; see Table X in Appendix E 1. This is not sufficient to
make the scalar-operator contribution competitive with the
one from the vector operator. Furthermore, we note that,
indeed, the effective parameter c31 ≈ a31 relevant for the
latter can take rather large values.

G. Comment on tertiary observables

In the following, we briefly comment on the results for
the tertiary observables extracted from the comprehensive
scan. We find that none of these observables, listed in
Table XI in Appendix E 3, provides a signal within the
reach of current and planned experiments. Thus, any
observation of new physics in these allows to falsify this
model. We relegate detailed ranges for these observables
for each LQ mass to Table XII in Appendix E 3 and only
make a few comments below. Note that in Table XI also the
present experimental constraints and calculation method
employed in the comprehensive scan are found, while
Table XII also displays the prospective future reach for
these observables.
For processes involving electrons, we first observe that

the effective coupling of Z bosons to electrons is sup-
pressed by small LQ couplings of Oðλ9Þ; see Eqs. (53)
and (56). Thus, we do not expect large LQ contributions to
Z → ee in this model, as reflected in the data in Table XII.
We see that these contributions are up to eleven orders of
magnitude below future sensitivities. Similarly, the con-
tribution to the AMM of the electron generated in this
model for each LQ mass is Oð10−21Þ. Present measure-
ments of Δae hint at a preference for jΔaej ∼ 10−12

[163,164], although these two measurements indicate
deviations from the SM value with opposite sign and
comparable magnitude. We, therefore, note that this model
would be incapable of addressing this anomaly but could be
revisited in case the present discrepancy in the experimental
results is resolved. Likewise, the results for the EDM of the

electron show that a detection in future experiments [165]
should not be expected.
We predict the BRs for Bs → ττ, Ds → τν, and Ds → μν

to be only slightly beyond the projected sensitivities
to these observables. Furthermore, the future sensitivities
for tau decays to a muon and light mesons, i.e.,
BRðτ → ½ρ;ϕ; π�μÞ, are only one or two orders of magni-
tude above the maximum value generated for these observ-
ables in the comprehensive scan. These decays can thus be
of interest when considering a next generation of experi-
ments, beyond what is currently found in the literature.
Lastly, we comment on the results for Bs − B̄s mixing;

see ΔMBs
=ΔMSM

Bs
in Tables XI and XII. Comparing the

obtained values in Table XII with the current experimental
constraint, quoted in Table XI, we note that for m̂ϕ ¼ 6,
there are points which generate ΔMBs

=ΔMSM
Bs

outside
the allowed 3σ region. However, the data, presented in
Table XII, do not necessarily satisfactorily address the
flavor anomalies in RðDÞ, RðD⋆Þ, and in the AMM of the
muon. Indeed, once a value of Δaμ is achieved within
the experimentally preferred 3σ range, the obtained interval
for ΔMBs

=ΔMSM
Bs

is significantly reduced for all considered
LQ masses, such that it always agrees with the current
experimental constraint at the 2σ level or better. As there is
no projection for future reach available for ΔMBs

=ΔMSM
Bs

,
we have classified it as tertiary rather than secondary
observable.

VII. SUMMARY AND OUTLOOK

We have considered an extension of the SM with two
Higgs doublets Hu and Hd (in the decoupling limit) and
one scalar LQ ϕ that transforms as ð3; 1;− 1

3
Þ under the SM

gauge group. The main purpose of the LQ ϕ is to explain
the flavor anomalies in RðDÞ, RðD⋆Þ, and in the AMM of
the muon. The flavor structure of this model is constrained
by the flavor group Gf ¼ D17 × Z17. The three scalars Hu,
Hd, and ϕ are singlets under the dihedral group, whereas
the three generations of all SM fermion species transform
as doublet and singlet, apart from the three RH up-type
quarks that are all singlets. In this way, the masses of the
charged fermions of the third generation arise without
breaking the dihedral group.
The flavor symmetryGf is (mainly) broken by the VEVs

of four different spurions, called S, T, U, and W, that are
assigned to doublets of the dihedral group. While the role of
S is to (mainly) generate the LQ couplings x̂ and ŷ, T andU
are responsible for the mass of the second and first
generation of both down-type quarks and charged leptons,
respectively. The spurion W, eventually, is necessary in
order to give mass to the charm quark and to generate the
correct size of the Cabibbo angle. The smaller quark mixing
angles as well as the up quark mass arise automatically
due to the spurions S as well as T and U, respectively.
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According to their roles, the VEVs of these spurions are of
different order of magnitude in the expansion parameter λ,
λ ≈ 0.2, i.e., hSi∼λ, hTi∼λ2, hUi∼λ4, and hWi ∼ ðλ5; λ4Þt.
In order to achieve suitable textures for the LQ couplings x̂
and ŷ and, at the same time, avoid too large effects related
to quarks and/or leptons of the first generation, a residual
symmetry Zdiag

17 , being the diagonal subgroup of a Z17

group, contained in D17, and the external Z17 symmetry, is
preserved by both x̂ and ŷ at LO.
We have performed analytical and numerical studies of

the phenomenology of this model. In doing so, all con-
sidered observables have been classified as primary, sec-
ondary, or tertiary. The primary observables include the
flavor anomalies in RðDÞ, RðD⋆Þ, and in the AMM of the
muon as well as observables for which the present
experimental measurements can (significantly) constrain
the viable parameter space of this model. Secondary
observables instead do not currently provide competitive
constraints, but midterm future experiments offer an
opportunity to probe them and, thus, this model. For the
primary as well as secondary observables analytical esti-
mates are given. Lastly, tertiary observables are not
expected to allow us to probe the model in the midterm
future but are discussed lest future measurements bring
these into disagreement with the SM.
In the primary scan, we have focused on the primary

observables and varied the effective parameters of the LQ
couplings in the charged fermion mass basis as (mostly)
independent complex order-one numbers. In this way, we
have identified the two radiative cLFV decays μ → eγ and
τ → μγ as the most stringent constraints on the parameter
space of the model. Furthermore, we have extracted biases
on the effective parameters of the LQ couplings which have
been used to guide the more thorough comprehensive scan.
A simultaneous reconciliation of all three flavor anomalies
has proven to be very challenging in the primary scan.
The comprehensive scan has involved primary, secon-

dary, and tertiary observables. In contrast to the primary
scan, it has been performed over effective parameters in the
interaction basis. Thus, a subset of these has been fixed by a
chi-squared fit to the charged fermion masses and quark
mixing, achieving excellent agreement with the measured
values (for scenario B). The remaining parameters, taken to
be complex order-one numbers and parametrizing the LQ
couplings, have been biased using the input from the
primary scan. In the comprehensive scan, we have found
that this model is compatible with all constraints, while
being capable of explaining the observed deviations in
RðDÞ, RðD⋆Þ, and Δaμ from the SM predictions within the
3σ ranges of their present best-fit values for LQ masses of 2
and 4 TeV. Furthermore, a LQ with a mass of 2 TeVallows
for compatibility with all considered constraints, while
reconciling the three flavor anomalies at the 2σ level.
The secondary observables studied in the comprehensive
scan are the EDM of the muon, the effective coupling

of Z bosons to muons, the LFU ratios Rμ=e
D and Re=μ

D⋆ as well
as BRðB → τνÞ.
The differences between the parameter space probed by

the primary and the comprehensive scan have been dis-
cussed in detail. The use of the interaction basis is the main
reason for the comprehensive scan being able to reconcile
all three flavor anomalies. At the same time, this has shown
a considerable preference for one of the effective param-
eters, namely b13, being slightly smaller than expected from
the construction of the model. This indicates that an
improved version of this model should further suppress
this particular LQ coupling by λ or λ2. Contributions
beyond the ones from γ-penguins can play an important
role in several decays such that, e.g., not only the tau decay
τ → μγ can be accessible at Belle II, but, at the same time,
τ → 3μ and τ → μeē can be measured. For the primary
observables with neutrinos in the final state, i.e., RðDÞ,
RðD⋆Þ, Rν

K⋆ and the lifetime of the Bc meson, LFV
contributions are found to be relevant, generating effects
up to 40% in some instances.
There are several interesting directions to expand the

current study. On the phenomenological side, it is highly
interesting to study the observables RðJ=ψÞ and RðΛcÞ that
are (tightly) related to the analyzed b − c transitions as well
as the angular distributions of B → D⋆eiν [166] and the
longitudinal polarization of the tau lepton in B → D⋆τν
[134]. Some of these also reveal a (slight) disagreement
between the current measured value and the SM expect-
ation, e.g., RðJ=ψÞ [167]. Other flavor anomalies, such as
those observed in b − s transitions, e.g., in RðKÞ, RðK⋆Þ
and in the process Bs → μμ, may also be relevant to
address, see, e.g., Ref. [168] for a recent concise overview.
For this purpose, an additional LQ, for example trans-
forming as ð3; 3;− 1

3
Þ under the SM gauge group, has to be

added to the model, see, e.g., Refs. [71,75,80,169]. This
may have the added effect of simultaneously generating
neutrino masses. A neutrino mass mechanism could be
incorporated in many different ways. It could be either one
type of seesaw mechanism, e.g., by adding RH neutrinos to
the existing model [170], or some radiative generation
mechanism, see Ref. [171] for a review. In the current
analysis, it has been assumed, for simplicity, that possible
diquark couplings of the LQ ϕ are forbidden by a baryon
number symmetry. However, it may also be interesting
to study the efficacy of Gf to suppress these couplings
beyond the strong existing bounds from searches for proton
decay [98], see, e.g., Refs. [88,172] for studies about also
controlling them with the help of a flavor symmetry.
With nonvanishing neutrino masses, lepton mixing

becomes physical and its appropriate description, i.e.,
two large mixing angles and one small one [173], may
require a change in the assignment of the LH lepton
doublets to representations of Gf or even the extension
or change of Gf itself. The observed lepton mixing angles
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are often interpreted as sign of unification of the three
generations of LH lepton doublets into a three-dimensional
irreducible representation of the flavor symmetry; for
reviews, see Refs. [6–9]. Prime candidates for such a flavor
symmetry are the groups belonging to the series Δð6n2Þ
with n integer and at least two [174]. As has been shown,
they lead to an adequate description of lepton as well as
quark mixing; see, e.g., Refs. [175–179], and also of the
charged fermion mass hierarchies, if accompanied by an
appropriate external symmetry, see e.g. the supersymmetric
model in Ref. [180]. Furthermore, it is interesting to
consider adding a CP symmetry to Gf, given that this
can also constrain the two Majorana phases in the lepton
sector [181] (see also Refs. [3,182–188]). This might, at the
same time, be beneficial for controlling the amount of CP
violation in the LQ couplings.
Eventually, an extension of the SM gauge group similar

to the Pati-Salam theory has proven to be useful, since in
this way the vector LQ transforming as ð3; 1; 2

3
Þ under the

SM gauge group arises automatically, when breaking to the
SM; see, e.g., Refs. [189–193]. This vector LQ is capable
of addressing all aforementioned flavor anomalies, assum-
ing an appropriate structure of its couplings to the SM
fermions can be achieved. While in the case of a vector LQ
the flavor structure is determined by the gauge group of the
model, for scalar LQs, explaining (some of) the observed
flavor anomalies, it is also worth considering a possible
embedding of the model into a (partially) unified theory
endowed with a flavor (and CP) symmetry.

ACKNOWLEDGMENTS

M. S. and C. H. thank John Gargalionis for providing us
with data from the scans found in Ref. [67]. I. B. and C. H.
thank Mark Goodsell, Werner Porod, and Avelino Vicente
for help with SARAH and SPheno. T. F. and M. S. acknowl-
edge helpful correspondence with Thorsten Feldmann. We
also thank Peter Stangl for information on FLAVIO. In
addition to the software packages cited in the text, this
research has made extensive use of Matplotlib [194,195].
C. H. has been partly supported by the European Union’s
Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement
No. 754496 (FELLINI programme) as well as is supported
by Spanish MINECO through the Ramón y Cajal pro-
gramme RYC2018-024529-I, by the national Grant
No. PID2020–113644 GB-I00 and by the Generalitat
Valenciana through PROMETEO/2021/083. C. H. has also

received support from the European Union’s Horizon
2020 research and innovation programme under the
Marie Skłodowska-Curie Grant Agreement No. 860881
(HIDDeν network). I. B. is supported in part by the
Australian Research Council and the Australian
Government Research Training Program Scholarship ini-
tiative. T. F. and M. S. acknowledge support by the
Australian Research Council through the ARC
Discovery Project DP200101470. C. H. would like to
thank the Instituto de Fisica Teorica (IFT UAM-CSIC) in
Madrid for support via the Centro de Excelencia Severo
Ochoa Program under Grant No. CEX2020-001007-S,
during the Extended Workshop “Neutrino Theories”,
where this work developed.

Note added.—After the completion of this work, the
LHCb Collaboration has published a combined analysis
of RðDÞ and RðD⋆Þ [196] using muonic tau reconstruction,
resulting in RðDÞ ¼ 0.441� 0.060� 0.066 and RðD⋆Þ ¼
0.281� 0.018� 0.024, as well as an updated measurement
[197] utilizing hadronic τþ decays, RðD⋆Þ ¼ 0.257�
0.012� 0.018. These results are consistent with the SM
predictions in Table I, for RðD⋆Þ within the 1σ and for
RðDÞ within the 2σ range, but with relatively large
experimental uncertainties. Consequently, the HFLAV
averages for RðDÞ and RðD⋆Þ have been updated to include
the new measurements [198], giving RðDÞ ¼ 0.356�
0.029 and RðD⋆Þ ¼ 0.284� 0.013 (with a correlation of
ρ ¼ −0.37). Compared with the previous averages, quoted
in Table I, this is closer to the SM prediction for RðD⋆Þ, but
further away from the SM value of RðDÞ. Nevertheless,
both averages remain in agreement at the 1σ level with the
previous ones. The discrepancy with the SM predictions
now amounts to 3.2σ, which is only slightly reduced from
3.4σ, see Table I. Thus, the results have not changed
significantly and remain qualitatively the same.
In any case, it is interesting to confront the outcome

of the comprehensive scan with these new averages. In
order to do so, we employ the same dataset as shown in
Sec. VI and present Fig. 24 as updated version of
Fig. 15. Once the primary constraints, see Table IV,
are enforced in the comprehensive scan, we find
75(5)[0] points for m̂ϕ ¼ 2ð4Þ½6� that can now generate
RðDÞ, RðD⋆Þ, and the AMM of the muon within the
respective 3σ ranges. In fact, this is a slight quantitative
improvement over the 58(1)[0] points identified and
discussed in Sec. VI D.
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APPENDIX A: GROUP THEORY OF D17

In this appendix,we briefly summarize themain features of
the non-Abelian discrete groupD17 [83]. It is amember of the
series of dihedral groups Dn that are non-Abelian
for n ≥ 3. It has 34 distinct elements and contains ten real
irreducible representations: two singlets, the trivial singlet 11
as well as 12, and eight doublets, called 2i with i ¼ 1;…; 8.
All these eight doublets are faithful. The group D17 can be
described, like the other dihedral groups, with the help of two
generators a and b which fulfil the following relations:

a17 ¼ e; b2 ¼ e; aba ¼ b; ðA1Þ

with e denoting the neutral element of the group. The
representation matrices aðrÞ and bðrÞ of the two generators
a and b read in the different representations r,

að11Þ ¼ bð11Þ ¼ 1 and að12Þ ¼ 1; bð12Þ ¼ −1;

ðA2Þ
as well as

FIG. 24. Results of comprehensive scan for the flavor anomalies in RðDÞ, RðD⋆Þ and in the AMM of the muon using updated HFLAV
averages for RðDÞ and RðD⋆Þ. This figure is an updated version of Fig. 15, taking into account the new LHCb combined analysis of RðDÞ
and RðD⋆Þ [196] and the latest LHCbmeasurement of RðD⋆Þ using hadronic τþ decays [197], which have led to new HFLAVaverages for
these. In the top-left plot, the blue dotted ellipse represents the 1σ contour of the new LHCb combined analysis, while the green band now
shows the 1σ region about the most recent LHCb result forRðD⋆Þ. The black dashed ellipse indicates the prospective 3σ reach for 5 ab−1 of
data at Belle II [112], assuming the best-fit value from 2023 and the correlation coefficient from the HFLAV Collaboration [198]. In the
top-right plot which shows points that not only pass all considered constraints but also satisfy Δaμ within 3σ (light-colored circles) or
2σ (dark-colored other shapes) of the present best-fit value, we have magnified the scale and, at the same time, removed the results by single
experiments for better readability. For further information on how to read this figure, see Sec. VI C, in particular Fig. 15.
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að2iÞ¼
�
ωi
17 0

0 ω17−i
17

�
and bð2iÞ¼

�
0 1

1 0

�
; ðA3Þ

where ω17 is the 17th root of unity, ω17 ¼ e
2πi
17 . In this model,

we onlymake use of the doublets 21, 22, 23, and 24. The most
relevant Kronecker products and Clebsch-Gordan coeffi-
cients are presented in the following. The latter have a
particularly simple form in the chosen basis. Assume a
and b are singlets, ðc1c2Þ, ð

d1
d2
Þ are doublets, then we have [83]

11 × 11∶ab ∼ 11; ðA4aÞ

11 × 12∶ab ∼ 12; ðA4bÞ

12 × 12∶ab ∼ 11; ðA4cÞ

11 × 2i∶
�
ac1
ac2

�
∼ 2i; ðA4dÞ

12 × 2i∶
�

ac1
−ac2

�
∼ 2i; ðA4eÞ

21 × 21∶c1d2 þ c2d1 ∼ 11;

�
c1d1
c2d2

�
∼ 22;

c1d2 − c2d1 ∼ 12; ðA4fÞ

21 × 22∶
�
c2d1
c1d2

�
∼ 21;

�
c1d1
c2d2

�
∼ 23; ðA4gÞ

22 × 22∶c1d2 þ c2d1 ∼ 11;

�
c1d1
c2d2

�
∼ 24;

c1d2 − c2d1 ∼ 12; ðA4hÞ

21 × 23∶
�
c2d1
c1d2

�
∼ 22;

�
c1d1
c2d2

�
∼ 24; ðA4iÞ

22 × 23∶
�
c2d1
c1d2

�
∼ 21;

�
c1d1
c2d2

�
∼ 25; ðA4jÞ

23 × 23∶c1d2 þ c2d1 ∼ 11;

�
c1d1
c2d2

�
∼ 26;

c1d2 − c2d1 ∼ 12; ðA4kÞ

21 × 24∶
�
c2d1
c1d2

�
∼ 23;

�
c1d1
c2d2

�
∼ 25; ðA4lÞ

22 × 24∶
�
c2d1
c1d2

�
∼ 22;

�
c1d1
c2d2

�
∼ 26; ðA4mÞ

23 × 24∶
�
c2d1
c1d2

�
∼ 21;

�
c1d1
c2d2

�
∼ 27; ðA4nÞ

24 × 24∶c1d2 þ c2d1 ∼ 11;

�
c1d1
c2d2

�
∼ 28;

c1d2 − c2d1 ∼ 12: ðA4oÞ
We note, furthermore, that the Clebsch-Gordan coefficients
for combinations, involving conjugated fields, look slightly
different, since the generator a is chosen as complex matrix
in the two-dimensional representations 2i, although all
these representations are real. For a being a singlet and
ðc1c2Þ, ð

d1
d2
Þ being doublets, the combinations involving c�1;2

read e.g.,

2i × 11∶
�
c�2a

c�1a

�
∼ 2i; ðA5aÞ

2i × 12∶
�

c�2a

−c�1a

�
∼ 2i; ðA5bÞ

21 × 21∶c�1d1 þ c�2d2 ∼ 11;

�
c�2d1
c�1d2

�
∼ 22;

c�1d1 − c�2d2 ∼ 12; ðA5cÞ

21 × 22∶
�
c�1d1
c�2d2

�
∼ 21;

�
c�2d1
c�1d2

�
∼ 23: ðA5dÞ

The general form of the Kronecker products and Clebsch-
Gordan coefficients can be found in Ref. [83].

APPENDIX B: RELATIONS BETWEEN
LAGRANGIAN AND EFFECTIVE PARAMETERS

Here, we collect the relations between the Lagrangian
parameters and the effective ones, appearing in the charged
fermion mass matrices and LQ couplings assuming real
parameters.
The effective parameters fij, appearing in the up-type

quark mass matrix in Eq. (21), are related as follows to the
Lagrangian parameters αui :

f11 ¼ αu4;

f12 ¼ αu2 þ αu5λ
2 þ ðαu5Þ0λ2 þ αu13λ

5 þ αu18λ
3 þ αu19λ

6

þ αu20λ
5 þ αu27λ

7 þ αu29λ
5;

f13 ¼ αu14λ
2 þ αu15 þ αu16λþ αu17λ

2 þ αu21λ
3 þ αu28λ

4;

f21 ¼ αu10;

f22 ¼ αu2 þ αu5λ
2 − ðαu5Þ0λ2 þ αu6λ

2 þ αu9λ
8 þ αu12λ

7

þ ðαu18Þ0λ5 þ ðαu20Þ0λ7;
f23 ¼ αu3 þ ðαu14Þ0λ9 þ ðαu16Þ0λ6 þ αu30λ

10;

f31 ¼ αu22 þ αu23;

f32 ¼ αu7 þ αu8λ
5 þ αu11λ

2 þ αu26λ
7;

f33 ¼ αu1 þ αu24λ
10 þ αu25λ

10: ðB1Þ
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For the effective parameters dij, used in the down-type
quark mass matrix in Eq. (31), we have as relations to the
Lagrangian parameters αdi ,

d11 ¼ αd3 þ αd9λ
7 þ αd13λ

8;

d12 ¼ αd7 þ ðαd9Þ0λ3 þ ðαd13Þ0λ2 þ αd16λþ αd24λ
4 þ αd25λ

3;

d13 ¼ αd8λ
2 þ αd10 þ αd11λþ αd12λ

2 þ αd14λ
3 þ αd22λ

4;

d21 ¼ αd6;

d22 ¼ αd2 þ ðαd13Þ00λ9 þ ðαd16Þ0λ6 þ αd21λ
10;

d23 ¼ αd4 þ ðαd8Þ0λ9 þ ðαd11Þ0λ6 þ αd23λ
10;

d31 ¼ αd15;

d32 ¼ αd5 þ αd17λ
6 þ αd20λ

6;

d33 ¼ αd1 þ αd18λ
10 þ αd19λ

10: ðB2Þ

Likewise, we find for eij, the effective parameters con-
tained in the charged lepton mass matrix Me, see Eq. (42),
that they are expressed in terms of αei , appearing in the
Lagrangians in Eqs. (40) and (41), as follows:

e11 ¼ αe3 þ αe6λ
7 þ αe9λ

8;

e12 ¼ αe12;

e21 ¼ αe11 þ αe17λ
2 þ αe22λ

3 þ αe23λ
4;

e22 ¼ αe2 þ ðαe9Þ0λ9 þ αe13λ
6 þ αe27λ

10;

e23 ¼ αe4 þ αe10λ
11 þ αe14λ

8 þ αe26λ
10;

e31 ¼ αe7 þ αe8λ
3 þ αe15λþ αe16λ

2 þ αe19;

e32 ¼ αe5 þ αe18λ
9 þ αe20λ

6 þ αe25λ
8;

e33 ¼ αe1 þ αe21λ
10 þ αe24λ

10: ðB3Þ

We continue with the relations between the effective
parameters âij, appearing in the LQ coupling x̂, see
Eq. (48), and the coefficients βLi ,

â11 ¼ βL9 λþ βL10λ
2 þ βL18λ

2 þ βL20;

â12 ¼ ðβL10Þ0;
â21 ¼ βL6 þ βL7 λþ βL11λ

3 þ βL16λþ βL19λ
4 þ βL21λ

3;

â22 ¼ βL4 þ ðβL6 Þ0λ4 þ ðβL11Þ0λ9 þ ðβL21Þ0λ9;
â23 ¼ βL2 þ βL12λ

11 þ βL17λ
8 þ βL25λ

10;

â31 ¼ βL5 λ
2 þ βL8 þ βL13λþ βL14λ

2 þ βL15λ
3 þ βL24λ

4;

â32 ¼ βL3 þ ðβL5 Þ0λ9 þ ðβL13Þ0λ6 þ βL26λ
10;

â33 ¼ βL1 þ βL22λ
10 þ βL23λ

10: ðB4Þ

For the LQ coupling ŷ, found in Eq. (51), we define the
effective parameters b̂ij in terms of the coefficients βRi as

b̂11 ¼ βR7 þ βR15;

b̂12 ¼ βR13 þ βR14λ
3 þ βR17λþ βR18λ

2 þ βR21;

b̂13 ¼ βR10λþ βR11λ
2 þ βR19λ

2 þ βR23;

b̂21 ¼ βR6 ;

b̂22 ¼ βR3 þ βR20λ
9 þ βR24λ

6 þ βR29λ
8;

b̂23 ¼ βR2 þ βR9 λ
4 þ βR12λ

9 þ βR26λ
9;

b̂31 ¼ βR16 þ βR22;

b̂32 ¼ βR1 þ βR27λ
10 þ βR28λ

10;

b̂33 ¼ βR4 þ βR5 λ
5 þ βR8 λ

2 þ βR25λ
7: ðB5Þ

The effective parameters aij in the LQ coupling x, given in
Eq. (52), read in terms of the effective parameters âij, dij,
and eij, as follows:

a11 ¼ â11 þ oðλ3Þ;

a12 ¼ −
â22e11e21

e222
þ â23d23e11e21

d33e222
þ â32e11e21e23

e222e33

−
â33d23e11e21e23

d33e222e33
þOðλÞ;

a13 ¼ −
â23e11e21

e222
þ â33e11e21e23

e222e33
þOðλ2Þ;

a21 ¼ â21 þOðλÞ;

a22 ¼ â22 −
d23
d33

�
â23 −

â33e23
e33

�
−
â32e23
e33

þOðλ2Þ;

a23 ¼ â23 −
â33e23
e33

þOðλ2Þ;

a31 ¼ â31 −
â32d12
d22

−
â33d13
d33

þ â33d12d23
d22d33

þOðλÞ;

a32 ¼ â32 −
â33d23
d33

þOðλ2Þ;

a33 ¼ â33 þOðλ2Þ: ðB6Þ

Similarly, we can express the effective parameters cij in the
LQ coupling z in Eq. (53) in terms of âij, eij, and fij and
find for scenario A,
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c11 ¼ â11 þOðλ2Þ;

c12 ¼
â11f12
f22

þOðλÞ;

c13 ¼ −
â23e11e21

e222
þ â33e11e21e23

e222e33
þOðλ2Þ;

c21 ¼ −
f12

e33f22f33
ðâ33e23f23 − â23e33f23

− â32e23f33 þ â22e33f33Þ þOðλ2Þ;

c22 ¼ â22 −
â32e23
e33

−
�
â23 −

â33e23
e33

�
f23
f33

þOðλ2Þ;

c23 ¼ â23 −
â33e23
e33

þOðλ2Þ;

c31 ¼
f12ðâ33f23 − â32f33Þ

f22f33
þOðλ2Þ;

c32 ¼ â32 −
â33f23
f33

þOðλ2Þ;

c33 ¼ â33 þOðλ2Þ: ðB7Þ

The effective parameters bij in the LQ coupling y, found in
Eq. (56), are for scenario A in terms of b̂ij, eij, and fij,

b11 ¼ b̂11 þ oðλ3Þ;

b12 ¼ b̂12 −
b̂22e21
e22

−
b̂32e31
e33

þ b̂32e21e32
e22e33

þOðλ2Þ;

b13 ¼ b̂13 −
b̂23e21
e22

þOðλ2Þ;

b21 ¼ −
b̂22f11f12

f222
þ b̂32e22e23f11f12

e233f
2
22

þ b̂32e32f11f12
e33f222

þOðλÞ;

b22 ¼ b̂22 −
b̂32ðe22e23 þ e32e33Þ

e233
þOðλ2Þ;

b23 ¼ b̂23 þOðλ4Þ;

b31 ¼ −
b̂32f11f12

f222
þOðλÞ;

b32 ¼ b̂32 þOðλ6Þ;

b33 ¼ b̂33 þ
b̂32f32
f33

þOðλ2Þ: ðB8Þ

APPENDIX C: FORMULAS FOR
PHENOMENOLOGY

We use the Warsaw basis [199] for SM effective field
theory (SMEFT) and the JMS basis [106] below the
electroweak scale for LEFT.

1. Correction to charged lepton masses

The LQ contributes via its couplings to the charged lepton
self-energies. This results in a correction to the charged
lepton masses, which is approximately given by [109]

mei ¼ mtree
ei

�
1þ 1

2
ΣLL
ii þ 1

2
ΣRR
ii

�
þ ΣLR

ii ; ðC1Þ

in terms of the self-energies ΣXY
ij , where X; Y ∈ fL; Rg label

the chiralities of the charged leptons and i, j the lepton
flavor. It can be compactly rewritten as

mei ¼
����mtree

ei −
3

16π2
X3
j¼1

�
mujyijz

�
ijI0ð1; tujÞ

þ 1

4
mtree

ei ðjzijj2 þ jyijj2ÞI1ð1; tujÞ
�����; ðC2Þ

where tX is defined in Eq. (71). After removing the UV
divergences using minimal subtraction, the loop functions
take the simple form,

I0ðx;yÞ¼1þ lnxþylny; I1ðx;yÞ¼
1

2
þ lnx−y: ðC3Þ

The last terms of the loop functions I0 and I1 are only
numerically relevant for the top quark and can be neglected
otherwise.

2. Leptonic processes

a. Effective interactions at one-loop order

The relevant effective Lagrangian using the JMS
basis [106] reads

L ⊃ CVLL
ee;ijklðeiγμPLejÞðekγμPLelÞ

þ CVRR
ee;ijklðeiγμPRejÞðekγμPRelÞ

þ CVLR
ee;ijklðeiγμPLejÞðekγμPRelÞ

þ ½CSRR
ee;ijklðeiPRejÞðekPRelÞ þ H:c:�

þ ½Cij
eγðeiσμνPRejÞFμν þ H:c:�: ðC4Þ

Note that some of the Wilson coefficients contain redun-
dant indices. We define the covariant derivative in QED
as Dμ ¼ ∂μ þ iQeAμ, following the convention in [106].
We use FeynRules [200], FeynArts [201], FormCalc [202,203],
Package-X [204], and ANT [205] to evaluate the amplitudes
and match the result to the operator basis. The Wilson
coefficient of the dipole operator is given by
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Cij
eγ ¼ −

e
32π2m2

ϕ

X
m

n
ðmeiy

�
imyjm þmejz

�
imzjmÞ

× ½fSðtumÞ − 3fFðtumÞ�
−mumz

�
imyjm½gSðtumÞ − 3gFðtumÞ�

o
ðC5Þ

≈
e

128π2m2
ϕ

X
m

�
meiy

�
imyjm þmejz

�
imzjm

þ 2mumz
�
imyjmð7þ 4 ln tumÞ

�
; ðC6Þ

where e ¼ jej is the unit electric charge. The relevant loop
functions are given by

fSðxÞ ¼
xþ 1

4ðx − 1Þ2 −
x ln x

2ðx − 1Þ3 ;

fFðxÞ ¼
x2 − 5x − 2

12ðx − 1Þ3 þ x ln x
2ðx − 1Þ4 ;

gSðxÞ ¼
1

x − 1
−

ln x
ðx − 1Þ2 ;

gFðxÞ ¼
x − 3

2ðx − 1Þ2 þ
ln x

ðx − 1Þ3 : ðC7Þ

The contributions to the four-lepton interactions can be
split in different parts. The Higgs-penguin contributions are
suppressed by the small charged lepton masses and thus,
negligible. The Z-penguin contributions are given by

CVLL;Z
ee;ijkl ¼

3
ffiffiffi
2

p
GFð1 − 2s2WÞ
64π2

X
m

tumð1þ ln tumÞ

×
�
δilz�kmzjm þ δijz�kmzlm

þ δklz�imzjm þ δjkz�imzlm
�
; ðC8Þ

CVRR;Z
ee;ijkl ¼

3
ffiffiffi
2

p
GFs2W

32π2
X
m

tumð1þ ln tumÞ

×
�
δily�kmyjm þ δijy�kmylm

þ δkly�imyjm þ δjky�imylm
�
; ðC9Þ

CVLR;Z
ee;ijkl ¼ −

3
ffiffiffi
2

p
GF

16π2
X
m

tumð1þ ln tumÞ

×
�
ð1 − 2s2WÞδijy�kmylm þ 2s2Wδklz

�
imzjm

�
;

ðC10Þ

where GF denotes the Fermi constant and sW ¼ sin θW the
sine of the weak mixing angle, θW .

The short-distance γ-penguin contributions are given by

CVLL;γ
ee;ijkl ¼

αem
96πm2

ϕ

X
m

ð5þ 4 ln tumÞ
�
δilz�kmzjm

þ δklz�imzjm þ δijz�kmzlm þ δjkz�imzlm
�
; ðC11Þ

CVRR;γ
ee;ijkl ¼

αem
96πm2

ϕ

X
m

ð5þ 4 ln tumÞ
�
δily�kmyjm

þ δkly�imyjm þ δijy�kmylm þ δjky�imylm
�
; ðC12Þ

CVLR;γ
ee;ijkl ¼

αem
24πm2

ϕ

X
m

ð5þ 4 ln tumÞ

×
�
δijy�kmylm þ δklz�imzjm

�
; ðC13Þ

where αem denotes the fine structure constant. Finally, the
box diagrams also contribute to the four-lepton operators,

CVLL;box
ee;ijkl ¼ 3

256π2m2
ϕ

X
m;n

zjmzlnðz�inz�km þ z�imz
�
knÞ; ðC14Þ

CVRR;box
ee;ijkl ¼ 3

256π2m2
ϕ

X
m;n

yjmylnðy�iny�km þ y�imy
�
knÞ; ðC15Þ

CVLR;box
ee;ijkl ¼ 3

64π2m2
ϕ

X
m;n

ylnzjmy�knz
�
im: ðC16Þ

b. Radiative charged lepton flavor violating
decays ei → ejγ

The BR for ei → ejγ can be expressed in terms of the
dipole Wilson coefficients,

BRðei → ejγÞ ¼
m3

ei

4πΓei

ðjCji
eγj2 þ jCij

eγj2Þ; ðC17Þ

where Γei denotes the full decay width of the charged
lepton ei.

c. Dipole moments

The electromagnetic current of a particle of mass m
coupling to a real on-shell photon can be parametrized in
terms of three form factors Fi, see, e.g., Refs. [206,207],

hp1jjμð0Þjp2i ¼ uðp1Þ
�
F1ðq2Þγμ þ F2ðq2Þ

iσμν

2m
qν

þ F3ðq2Þ
σμν

2m
γ5qν

	
uðp2Þ; ðC18Þ

where qμ ¼ pμ
1 − pμ

2. At zero squared momentum transfer,
q2 ¼ 0, the form factors can be identified with the electric
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charge eF1ð0Þ, the AMM a ¼ F2ð0Þ, and the EDM
d ¼ −eF3ð0Þ=ð2mÞ. Taking into account the definition
of the covariant derivative, we find for the contributions
of the dipole operator to the AMM and the EDM of the
charged lepton ei with F1ð0Þ ¼ −1,

aei ¼
4mei

e
ReðCii

eγÞ; dei ¼ 2ImðCii
eγÞ; ðC19Þ

respectively.

d. Trilepton decays ei → ejekem
We have recalculated trilepton decays due to discrepan-

cies in the literature [205,208] and make use of the
recent calculation in terms of LEFT [209] and earlier
Refs. [130,210]. Note there are no redundant indices in
Ref. [209], and thus, there are additional symmetry factors.
The BR for ei → ejejej is

BRðei → ejejejÞ ¼
m5

ei

3ð16πÞ3Γei

�
16jCVLLj2

þ 16jCVRRj2 þ 8jCVLRj2 þ 8jCVRLj2

þ 256e2

m2
ei

�
ln
m2

ei

m2
ej

−
11

4

�
ðjCji

eγj2 þ jCij
eγj2Þ

−
64e
mei

Re½ð2CVLL þCVLRÞCji�
eγ

þ ð2CVRR þCVRLÞCij
eγ�
	
; ðC20Þ

where the coefficients in the decay rate are given in terms of
the Wilson coefficients,

CVLL ¼ 2CVLL
ee;jijj; CVRR ¼ 2CVRR

ee;jijj;

CVLR ¼ CVLR
ee;jijj; CVRL ¼ CVLR

ee;jjji: ðC21Þ

The BR for ei → ejekek is

BRðei → ejekekÞ ¼
m5

ei

3ð16πÞ3Γei

�
8jCVLLj2

þ 8jCVRRj2 þ 8jCVLRj2 þ 8jCVRLj2

þ 256e2

m2
ei

�
ln
m2

ei

m2
ej

− 3

�
ðjCji

eγj2 þ jCij
eγj2Þ

−
64e
mei

Re½ðCVLL þCVLRÞCji�
eγ

þ ðCVRR þCVRLÞCij
eγ�
	
; ðC22Þ

where the coefficients in the decay rate are given in terms of
the Wilson coefficients,

CVLL ¼ 4CVLL
ee;jikk; CVRR ¼ 4CVRR

ee;jikk;

CVLR ¼ CVLR
ee;jikk; CVRL ¼ CVLR

ee;kkji: ðC23Þ

The BR for ei → ekekej is

BRðei → ekekejÞ ¼
m5

ei

3ð16πÞ3Γei

h
16jCVLLj2 þ 16jCVRRj2

þ 8jCVLRj2 þ 8jCVRLj2
i
; ðC24Þ

where the coefficients in the decay rate are given in terms of
the Wilson coefficients,

CVLL ¼ 2CVLL
ee;kikj; CVRR ¼ 2CVRR

ee;kikj;

CVLR ¼ CVLR
ee;kikj; CVRL ¼ CVLR

ee;kjki: ðC25Þ

The Higgs-penguin contribution is neglected, because it
is suppressed by small charged lepton masses, and thus, no
scalar operators are induced at leading order.

3. Semileptonic processes

a. Effective Lagrangian

The effective Lagrangian relevant for semileptonic interactions is

L ⊃ CVLL
eq ðeγμPLeÞðq̄γμPLqÞ þ CVRR

eq ðēγμPReÞðq̄γμPRqÞ þ CVLR
eq ðēγμPLeÞðq̄γμPRqÞ þ CVLR

qe ðq̄γμPLqÞðēγμPReÞ
þ
h
CSRR
eq ðēPReÞðq̄PRqÞ þ CSRL

eq ðēPReÞðq̄PLqÞ þ CTRR
eq ðēσμνPReÞðq̄σμνPRqÞ þ H:c:

i
þ CVLL

νq ðν̄γμPLνÞðq̄γμPLqÞ þ CVLR
νq ðν̄γμPLνÞðq̄γμPRqÞ

þ
h
CVLL
νeduðν̄γμPLeÞðd̄γμPLuÞ þ CVLR

νeduðν̄γμPLeÞðd̄γμPRuÞ

þ CSRR
νeduðν̄PReÞðd̄PRuÞ þ CSRL

νeduðν̄PReÞðd̄PLuÞ þ CTRR
νeduðν̄σμνPReÞðd̄σμνPRuÞ þ H:c:

i
; ðC26Þ
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where the first three lines describe neutral-current inter-
actions between charged leptons and quarks, the fourth line
describes neutral-current interactions between neutrinos
and quarks, and the last two lines describe charged-current
interactions. The flavor indices are suppressed in the above
equation. In the following discussion, they are indicated as
subscripts, e.g., CVLL

eq;ijklðeiγμPLejÞðqkγμPLqlÞ.
The dominant RG corrections are due to QCD. Their

correction at one-loop order to the Wilson coefficients of
operators with two quarks and two leptons is described by

CVXYðμ ¼ mbÞ ¼ CVXYðμ ¼ mϕÞ;

CSXYðμ ¼ mbÞ ¼
�
αsðmtÞ
αsðmbÞ

	−3CF

β
ð5Þ
0

×

�
αsðmϕÞ
αsðmtÞ

	−3CF

β
ð6Þ
0 CSXYðμ ¼ mϕÞ;

CTXYðμ ¼ mbÞ ¼
�
αsðmtÞ
αsðmbÞ

	 CF

β
ð5Þ
0

×

�
αsðmϕÞ
αsðmtÞ

	 CF

β
ð6Þ
0 CTXYðμ ¼ mϕÞ; ðC27Þ

where X; Y ∈ fL;Rg denote the chiralities of the fermion

bilinears. The Casimir invariant CF and β
ðnfÞ
0 that

parametrizes the one-loop RG equation of the strong
coupling are

CF¼ðN2
c−1Þ=ð2NcÞ¼4=3; β

ðnfÞ
0 ¼11−2nf=3; ðC28Þ

with Nc ¼ 3 colors and nf flavors.

b. Tree-level matching

Here, we provide the matching to relevant operators
in LEFT at tree level. At this level, the interactions of
the LQ ϕ induce Wilson coefficients with two quarks and
two leptons. The nonzero Wilson coefficients for neutral-
current interactions are given by

CVLL
νd;ijkl ¼

xjlx�ik
2m2

ϕ

; CVLL
eu;ijkl ¼

zjlz�ik
2m2

ϕ

;

CVRR
eu;ijkl ¼

yiky�jl
2m2

ϕ

; CSRR
eu;ijkl ¼

z�ikyjl
2m2

ϕ

;

CTRR
eu;ijkl ¼ −

1

4

z�ikyjl
2m2

ϕ

; ðC29Þ

and the ones for charged-current interactions are

CVLL
νedu;ijkl ¼ −

x�ikzjl
2m2

ϕ

;

CSRR
νedu;ijkl ¼ −

x�ikyjl
2m2

ϕ

;

CTRR
νedu;ijkl ¼

1

4

x�ikyjl
2m2

ϕ

: ðC30Þ

For the charged-current observables, involving the b − c
transition and defined in the following, the RG running of
the contributions to the Wilson coefficients due to the LQ ϕ
between the scale, set by the LQ mass, and the hadronic
scale, μ ¼ μB ¼ 4.8 GeV, is accounted for as

CVLL
νedu;βα32ðμBÞ
CVLL
νedu;βα32

≈

8>><>>:
1.016; m̂ϕ ¼ 2

1.018; m̂ϕ ¼ 4

1.019; m̂ϕ ¼ 6

9>>=>>;;

CSRR
νedu;βα32ðμBÞ
CSRR
νedu;βα32

≈

8>><>>:
1.675; m̂ϕ ¼ 2

1.736; m̂ϕ ¼ 4

1.770; m̂ϕ ¼ 6

9>>=>>;;

CTRR
νedu;βα32ðμBÞ
CTRR
νedu;βα32

≈

8>><>>:
0.860; m̂ϕ ¼ 2

0.852; m̂ϕ ¼ 4

0.848; m̂ϕ ¼ 6

9>>=>>;; ðC31Þ

where the numerical values have been extracted using the
Wilson package [100].

c. RðDð⋆ÞÞ
We define

GD
α ≈

X3
β¼1

0BB@
8>><>>:

0.500; α ¼ 1

0.500; α ¼ 2

1.000; α ¼ 3

9>>=>>;
���ð1þ δÞ · 2

ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
���2

þ

8>><>>:
0.596

0.593

1.120

9>>=>>;
���CSRR

νedu;βα32ðμBÞ
���2 þ

8>><>>:
0.272

0.272

0.662

9>>=>>;
���CTRR

νedu;βα32ðμBÞ
���2
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−

8>><>>:
0.000

0.079

1.563

9>>=>>;Re
��

ð1þ δÞ · 2
ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
�
CSRR�
νedu;βα32ðμBÞ

�

−

8>><>>:
0.000

0.084

0.959

9>>=>>;Re
��

ð1þ δÞ · 2
ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
�
CTRR�
νedu;βα32ðμBÞ

�1CCA ðC32Þ

and

GD⋆
α ≈

X3
β¼1

0BB@
8>><>>:

0.501; α ¼ 1

0.499; α ¼ 2

1.000; α ¼ 3

9>>=>>;
���ð1þ δÞ · 2

ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
���2

þ

8>><>>:
0.039

0.039

0.053

9>>=>>;
���CSRR

νedu;βα32ðμBÞ
���2 þ

8>><>>:
6.372

6.364

15.347

9>>=>>;
���CTRR

νedu;βα32ðμBÞ
���2

−

8>><>>:
0.000

−0.012
−0.139

9>>=>>;Re
��

ð1þ δÞ · 2
ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
�
CSRR�
νedu;βα32ðμBÞ

�

−

8>><>>:
−0.001
−0.261
−5.620

9>>=>>;Re
��

ð1þ δÞ · 2
ffiffiffi
2

p
GFVcbδαβ − CVLL

νedu;βα32ðμBÞ
�
CTRR�
νedu;βα32ðμBÞ

�1CCA: ðC33Þ

Here, α (β) denotes the flavor of the charged lepton
(neutrino) in the final state. The numbers in the first
(second) [third] entry of the vectors in curly brackets
encode the hadronic form factors employed by FLAVIO

[62–64] (since v2.0), and the integrated-out phase space for
α ¼ 1 (2) [3]. These numbers can be compared to the ones
that are found in Ref. [211]. The correction δ, δ ¼ 0.007,
accounts for QED running of the SM contribution to CVLL

νedu
from the Z boson mass scale down to the hadronic scale,
μ ¼ μB ¼ 4.8 GeV. We use the best-fit value for Vcb from
the PDG, Vcb ≈ 0.0405 [98]. These general formulas then
constitute RðDÞ and RðD⋆Þ,

RðDÞ
RðDÞSM

¼ GD
3

GD
2 þ GD

1

;

RðD⋆Þ
RðD⋆ÞSM

¼ GD⋆

3

GD⋆

2 þ GD⋆

1

: ðC34Þ

Using the values RðDÞSM¼0.297�0.008 and RðD⋆ÞSM ¼
0.245� 0.008 given by FLAVIO, v2.3, we find that the
results obtained from the expressions above deviate from

those obtained from FLAVIO only by up to 0.5% in the
ranges of RðDð⋆ÞÞ displayed in the plots.

d. Rμ=e
D and Re=μ

D⋆

Similarly to RðDð⋆ÞÞ in Appendix C 3 c, these observ-
ables can be calculated using Eqs. (C32) and (C33),
such that

Rμ=e
D ¼ ΓðB → DμνÞ

ΓðB → DeνÞ ¼
GD

2

GD
1

; ðC35Þ

and

Re=μ
D⋆ ¼ ΓðB → D⋆eνÞ

ΓðB → D⋆μνÞ ¼
GD⋆

1

GD⋆

2

: ðC36Þ

e. Leptonic pseudoscalar meson decays Bk → τν

A pseudoscalar meson Bk, constituted by a bottom quark
b and an up-type quark uk, decays into a tau lepton and a
neutrino with a rate [98,212],
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ΓBk→τν ¼
G2

F

8π
mBk

f2Bk
jVukbj2m2

τ

�
1 −

m2
τ

m2
Bk

�
2X3
β¼1

�����ð1þ δÞ · δ3β −
1

2
ffiffiffi
2

p
GFVukb

Cϕ
νedu;β33kðμBÞ

�����
2

; ðC37Þ

where

Cϕ
νedu;β33kðμBÞ ¼ CVLL

νedu;β33kðμBÞ −
m2

Bk

mτðmukðμBÞ þmbðμBÞÞ
CSRR
νedu;β33kðμBÞ: ðC38Þ

mBk
and fBk

are the mass and decay constant of the meson, respectively. The correction δ ¼ 0.007 accounts for QED
running of the SM contribution to CVLL

νedu from the Z boson mass scale down to the hadronic scale, μ ¼ μB ¼ 4.8 GeV.
From Eq. (C37), one may define

Γϕ
Bc

¼ G2
F

8π
mBc

f2Bc
V2
cbm

2
τ

 
1 −

m2
τ

m2
Bc

!
2
 X3

β¼1

����ð1þ δÞ · δ3β −
1

2
ffiffiffi
2

p
GFVcb

Cϕ
νedu;β332ðμBÞ

����2 − ð1þ δÞ2
!
; ðC39Þ

which vanishes in the absence of contributions to Bc → τν from the LQ ϕ. Then, rearranging Eq. (87) yields the following
inferred SM contribution to the Bc lifetime:

τSMBc
¼
"

1

τexpBc

−
G2

F

8π
mBc

f2Bc
V2
cbm

2
τ

 
1 −

m2
τ

m2
Bc

!
2
 X3

β¼1

����ð1þ δÞ · δ3β −
1

2
ffiffiffi
2

p
GFVcb

Cϕ
νedu;β332ðμBÞ

����2 − ð1þ δÞ2
!#−1

: ðC40Þ

We require that the result for τSMBc
lies in the interval [0.4,

0.7] ps, following the estimate in Ref. [125], at the 1σ level,
and neglect all other uncertainties against the broadness
of this range. Furthermore, we use the PDG values
τexpBc

¼ 0.510 ps, mBc
¼ 6.2745 GeV, mτ ¼ 1.7769 GeV,

Vcb ≈ 0.0405 [98] as well as fBc
¼ 434 MeV [213] and

the quark masses mcðμBÞ ¼ 0.9023 GeV and mbðμBÞ ¼
4.0945 GeV, as output by FLAVIO, v2.3.

f. B → Kð⋆Þνν

The BR of the decay B → Kð⋆Þþ invisible is normalized
to the SM prediction in the ratio Rν

Kð⋆Þ . As CVLR
νd is not

generated at one-loop order in the SM, the decay
B → Kð�Þνν̄ is dominated by CVLL

νd;αβ23. In contrast to the
SM case, the flavors of the neutrinos do not have to
coincide for the contribution due to the LQ ϕ. Following
Ref. [138], we obtain

Rν
Kð⋆Þ ¼

1

3

X3
α;β¼1

�����δαβ þ CVLL
νd;αβ23

CVLL
νd;23;SM

�����
2

: ðC41Þ

We use CVLL
νd;23;SM ≈ ð1.01 − 0.02iÞ × ð10 TeVÞ−2, which is

the value given by FLAVIO, v2.3, see also Ref. [214],
converted to the JMS basis and evaluated at the hadronic
scale, μ ¼ μB ¼ 4.8 GeV.

g. Relevant Wilson coefficients for b → seiej
The relevant Wilson coefficients for b → seiej at one-

loop order can be obtained from equation (A.6) in Ref. [76],

CVLL
ed;ij23 ¼ −

1

64π2m2
ϕ

X
m;n

x�m2xm3zjnz�in

þ
ffiffiffi
2

p
GF

16π2
V�
tsVtbzj3z�i3tt; ðC42Þ

CVLR
de;23ij ¼ −

1

64π2m2
ϕ

X
m;n

x�m2xm3yjny�in

−
ffiffiffi
2

p
GF

32π2
V�
tsVtbyj3y�i3tt

�
ln tt þ

3

2

�
: ðC43Þ

Note that the contributions from the up and the charm quark
have been neglected.
For lepton flavor conserving interactions, we have to

additionally consider the down-type quark dipole operator,

L ⊃ Cij
dγðdiσαβPRdjÞFαβ þ H:c: ðC44Þ

with the Wilson coefficients,

C23
dγ ¼ −

emb

576π2
X
m

x�m2xm3

m2
ϕ

;

C32
dγ ¼ −

ems

576π2
X
m

xm2x�m3

m2
ϕ

: ðC45Þ
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These calculated contributions are used in the numerical
evaluation of the tertiary constraints in the comprehen-
sive scan.

h. μ − e conversion rate

Not taking into account next-to-leading-order correc-
tions (in the loop expansion), we obtain at one-loop order
the following contributions in the limit of vanishing
external masses and momenta in addition to the tree-
level contributions discussed above. The short-distance
γ-penguin contributions result in

CVLL;γ
eq;ijkk ¼ CVLR;γ

eq;ijkk

¼ −
Qqe2

96π2m2
ϕ

X
m

z�imzjmð5þ 4 ln tumÞ; ðC46Þ

CVRR;γ
eq;ijkk ¼ CVLR;γ

qe;kkij

¼ −
Qqe2

96π2m2
ϕ

X
m

y�imyjmð5þ 4 ln tumÞ; ðC47Þ

where Qq denotes the electric charge of the quark. The
Z-penguin diagrams generate the Wilson coefficients,

CVLL;Z
eq;ijkk ¼ −

6
ffiffiffi
2

p
GFðT3 −Qqs2WÞ

16π2
X
m

z�imzjmtumð1þ ln tumÞ;

ðC48Þ

CVLR;Z
eq;ijkk ¼

6
ffiffiffi
2

p
GFQqs2W
16π2

X
m

z�imzjmtumð1þ ln tumÞ; ðC49Þ

CVLR;Z
qe;kkij ¼

6
ffiffiffi
2

p
GFðT3 −Qqs2WÞ

16π2
X
m

y�imyjmtumð1þ ln tumÞ;

ðC50Þ

CVRR;Z
eq;ijkk ¼ −

6
ffiffiffi
2

p
GFQqs2W
16π2

X
m

y�imyjmtumð1þ ln tumÞ:

ðC51Þ

For up-type quarks, there are no contributions from box
diagrams. For down-type quarks, there are only box
contributions to vector operators. Thus, for μ − e conver-
sion, the only relevant contributions are to vector operators
with down quarks. These are given by, neglecting all
Yukawa couplings apart from the one of the top quark, yt,

CVLL;box
ed;ijkk ¼

X
m;n

jxnkj2z�imzjm
64π2m2

ϕ

þ
ffiffiffi
2

p
GFx�ikxjk
16π2

tW ln tW −
jVtdk j2y2t zj3z�i3

32π2m2
ϕ

�
1

tt − tW
þ

tW ln tW
tt

ðtt − tWÞ2
	

−
ffiffiffi
2

p
GF

16π2
X
m

ðz�imxjkV�
umdk

þ x�ikzjmVumdkÞ
tWðtW ln tW − tum ln tumÞ

tW − tum

þ
ffiffiffi
2

p
GF

16π2
X
m;n

z�inzjmVumdkV
�
undk

�
t3W ln tW

ðtum − tWÞðtun − tWÞ
þ tWt2um ln tum
ðtW − tumÞðtun − tumÞ

þ tWt2un ln tun
ðtW − tunÞðtum − tunÞ

	
ðC52Þ

CVLR;box
de;kkij ¼

X
m;n

jxnkj2y�imyjm
64π2m2

ϕ

−
jVtdk j2y2t yj3y�i3

64π2m2
ϕ

�
tt

tW − tt
−

t2W ln tW
ðtW − ttÞ2

þ ð2tW − ttÞtt ln tt
ðtW − ttÞ2

	

−
X
m;n

ffiffiffi
2

p
GFVumdkV

�
undk

y�inyjmtWt
1=2
um t1=2un

8π2

�
tW ln tW

ðtW − tumÞðtW − tunÞ
þ tum ln tum
ðtW − tumÞðtun − tumÞ

þ tun ln tun
ðtW − tunÞðtum − tunÞ

	
:

ðC53Þ

The μ − e CR can be obtained from the effective Lagrangian following Ref. [132],

ωconv ¼
���� − Ceγ;12

2mμ
Dþ g̃ðpÞLS S

ðpÞ þ g̃ðpÞLVV
ðpÞ þ ðp → nÞ

����2 þ ���� − C�
eγ;21

2mμ
Dþ g̃ðpÞRS S

ðpÞ þ g̃ðpÞRVV
ðpÞ þ ðp → nÞ

����2 ðC54Þ

with the effective coupling constants,
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g̃ðNÞ
LS ¼

X
i

Gqi;N
S ðCSRR

eq;12ii þ CSRL
eq;12iiÞ

g̃ðNÞ
RS ¼

X
i

Gqi;N
S ðCSRR�

eq;21ii þ CSRL�
eq;21iiÞ

g̃ðpÞLV ¼ 2ðCVLL
eu;1211 þ CVLR

eu;1211Þ þ ðCVLL
ed;1211 þ CVLR

ed;1211Þ
g̃ðpÞRV ¼ 2ðCVRR

eu;1211 þ CVLR
ue;1112Þ þ ðCVRR

ed;1211 þ CVLR
de;1112Þ

g̃ðnÞLV ¼ ðCVLL
eu;1211 þ CVLR

eu;1211Þ þ 2ðCVLL
ed;1211 þ CVLR

ed;1211Þ
g̃ðnÞRV ¼ ðCVRR

eu;1211 þ CVLR
ue;1112Þ þ 2ðCVRR

ed;1211 þ CVLR
de;1112Þ;

ðC55Þ

with N ¼ p, n. In the numerical analysis, we use the
nuclear form factors Gqi;N

S given in Ref. [133] and the
overlap integrals D, SðNÞ and VðNÞ as well as capture rates
ωcapt presented in Ref. [132].

4. Z decays to fermions

For calculating the contributions to leptonic Z decays
due to the LQ ϕ, we follow the procedure of Ref. [139].
To parametrize these effects, we consider the
effective Lagrangian for the Z boson interaction with a
SM fermion fi,

LZ
eff ¼

g
cos θW

X
i;j

fi γμ½gijfLPL þ gijfRPR�fjZμ; ðC56Þ

where g is the SU(2) gauge coupling, and

gijfLðRÞ ¼ gSMfLðRÞδ
ij þ δgijfLðRÞ : ðC57Þ

At tree level, the SM effective couplings are given by

g0fL ¼ Tf
3 −Qf sin2 θW;

g0fR ¼ −Qf sin2 θW; ðC58Þ

where Qf is the electric charge of the fermion f, and Tf
3 is

its third component of weak isospin.
For the remainder of this appendix, we focus on the

interactions with charged leptons, i.e., fi ¼ ei. At higher
loop order in the SM, these couplings are modified by
factors ρf ¼ 1.00937 and sin2 θeff ¼ 0.231533 [98],

gSMfL ¼ ffiffiffiffiffi
ρf

p �
Tf
3 −Qf sin2 θeff

�
;

gSMfR ¼ − ffiffiffiffiffi
ρf

p
Qf sin2 θeff : ðC59Þ

The contributions to the effective couplings for Z → ff are
calculated in general for scalar LQ models in Ref. [139].
We refrain from detailing these results here, but instead
recast the dominant contributions in the context of
this model.

For charged leptons, to contrast with existing constraints,
we note the relation of the effective couplings gijfLðRÞ to those

for vector and axial-vector interactions,

gijeVðAÞ ¼ gijeL � gijeR : ðC60Þ

In this model, charged leptons couple solely to up-type
quarks and an enhancement via the top quark mass yields
the following dominant contribution:

δgiieAðVÞ ¼ δgeiAðVÞ ≈
Nc

32π2
ttðtt − 1 − ln ttÞ

ðtt − 1Þ2 ðjzi3j2 � jyi3j2Þ:

ðC61Þ

Note that the dependence of the SM value on sin2 θeff
motivates the consideration of the future sensitivities of
collider experiments, as listed in Table VIII. Prospective
sensitivities are quoted from Ref. [109], where they have
assumed that the measurements of geiA are improved by the
same factor as sin2 θeff , and geiA provides the more sensitive
probe to new physics than geiV .

APPENDIX D: SUPPLEMENTARY
INFORMATION FOR SEC. V

In the following, we briefly discuss current constraints on
and the projected sensitivity of future experiments to
contributions to the magnitude of the Wilson coefficient
CSRR
νedu;3332. It constitutes the dominant contribution to the

observablesRðDÞ,RðD⋆Þ, and τSMBc
in this model. According

to Eqs. (C30) and (C31) in Appendix C 3 b, we find
CSRR
νedu;3332≈−1.7x33y32=ð2m2

ϕÞ≈−1.7a33b32=ð2m2
ϕÞ at the

hadronic scale, μ ¼ μB ¼ 4.8 GeV. Note the following
statements are directly inferred from the primary scan, which
is discussed in Sec. V. A comparison with the comprehensive
scan, see Sec. VI, only reveals small deviations from the
results described below for m̂ϕ ¼ 2.
As can be seen in the top in Fig. 25, the achievable

deviation of RðDÞ and RðD⋆Þ from their respective SM
values grows linearly with the magnitude of CSRR

νedu;3332.
Only for jCSRR

νedu;3332j ≳ 0.2=TeV2, a slight deviation from
this trend becomes visible. This confirms that the con-
tributions to RðDÞ and RðD⋆Þ, which are linear in the
Wilson coefficient, since they arise from the interference
with the SM contribution, see Eqs. (66) and (67),
dominate for smaller values of the LQ couplings.
These plots also conveniently illustrate that the anomalies
are mainly driven by the experimental data for RðD⋆Þ, that
is, explaining RðD⋆Þ at the 2σð1σÞ level requires
jCSRR

νedu;3332j≳ 0.2ð0.3Þ=TeV2.
The center-left plot in Fig. 25 evidences that a correlation

between the AMM of the muon, Δaμ ∝ jb23c23j, and the
Wilson coefficient, jCSRR

νedu;3332j ∝ ja33b32j, only arises after
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FIG. 25. Current constraints on and future sensitivity to jCSRR
νedu;3332j. The Wilson coefficient is computed according to Eqs. (C30)

and (C31) in Appendix C 3 b, and the displayed results hold at the hadronic scale, μ ¼ μB ¼ 4.8 GeV. The plots reflect the findings of
the primary scan, discussed in Sec. V. The round points (geometric shapes) indicate that current experimental bounds are violated
(respected); see also Sec. V B 1.
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imposing the bound on BRðτ → μγÞ, BRðτ → μγÞ ∝
jb23c33j2 ≈ jb23a33j2. Indeed, the current constraint requires
that jCSRR

νedu;3332j≲ 0.4=TeV2 [114], and the upcoming
search for this process at Belle II [115] can strengthen
this to jCSRR

νedu;3332j≲ 0.15=TeV2, see center-right plot. Note
that an efficient test of the capability of the model to explain
the AMM of the muon still requires a further refinement of
that bound, as is visible in the center-left plot.
Lastly, one can see that the inferred value of τSMBc

is
slightly less sensitive to jCSRR

νedu;3332j than RðDÞ or RðD⋆Þ
are. The distribution of generated sample points for m̂ϕ ¼ 2

features a kink, which is localized at the upper boundary of
the colored region at jCSRR

νedu;3332j ≈ 0.13=TeV2, due to the
experimental constraint on b32, jb32j < 2.6; see Table IV.
Note that jCSRR

νedu;3332j≳ 0.3=TeV2 is necessary to have
BRðBc → τν) exceed approximately 0.1.

APPENDIX E: SUPPLEMENTARY
INFORMATION FOR SEC. VI

1. Details of implementation of comprehensive scan

In the following, we present details of how the compre-
hensive scan has been implemented. First note that,
although the LQ couplings are sampled in the interaction
basis, they are input to SPheno in the charged fermion mass
basis, which avoids modifying the hard-coded fermion
masses in SPheno. As such, we use the unitary matrices Ld,

Rd, Le, Re, Lu, and Ru, extracted from the chi-squared fit
discussed in Sec. VI A, to perform this basis transforma-
tion. As mentioned in Sec. VA 2, the correction to the
muon mass arising from LQ contributions could be
corrected for by appropriately redefining the effective
parameter e22 in the charged lepton mass matrix Me; see
Eqs. (42) and (43). Nevertheless, since this redefinition has
hardly any effect on the form of the unitary matrices Le
and Re, see analytic expressions in Eqs. (44) and (45), it is
neglected throughout the scan.
Furthermore, we notice that we implement the model in

the comprehensive scan in a simplified version, considering
only one SM-like Higgs doublet that gives masses to all
charged fermions. As explained in Sec. II, the main reason
for having two Higgs doublets,Hu andHd, is to facilitate the
search for a suitable flavor symmetry. The existence of these
two Higgs doublets is, however, not relevant for the
explanation of the flavor anomalies, observed in RðDÞ,
RðD⋆Þ, and in the AMMof the muon. As a consequence, the
suppression of the down-type quark masses and of the
charged lepton masses is no longer due to the VEV of Hd
being much smaller than that of Hu, compare Eq. (13), but
becomes encoded in the effective parameters dij and eij, that
must be appropriately rescaled. Such a rescaling only
changes the magnitudes of these parameters, but not the
results for the unitary matrices Ld, Rd, Le, Re, Lu, and Ru,
since the latter contain ratios of dij, eij, and fij, respectively.
Therefore, this simplification has no impact on the calculated

TABLE X. Spread of magnitudes of unhatted LQ couplings for viable points in comprehensive scan. Recall that
the effective parameters cij are related to aij via the CKM mixing matrix.

Spread of unhatted LQ couplings in comprehensive scan

m̂ϕ ¼ 2 m̂ϕ ¼ 4 m̂ϕ ¼ 6

Parameter [min, max] Average [min, max] Average [min, max] Average

ja11j [0.23, 4.41] 2.32 [0.23, 4.41] 2.33 [0.23, 4.41] 2.33
ja12j [0.01, 5.70] 0.75 [0.003, 7.59] 1.09 [0.001, 8.62] 1.03
ja13j [0.001, 2.01] 0.19 [0.001, 2.63] 0.53 [0.002, 2.73] 0.51
ja21j [0.08, 17.1] 3.12 [0.03, 23.9] 4.27 [0.03, 23.1] 4.10
ja22j [0.05, 10.6] 2.12 [0.03, 14.2] 3.27 [0.01, 15.8] 3.21
ja23j [0.23, 4.40] 0.91 [1.60, 4.40] 2.34 [1.40, 4.40] 2.30
ja31j [0.11, 38.3] 8.92 [0.07, 45.8] 10.2 [0.02, 59.8] 11.5
ja32j [0.06, 5.31] 2.20 [0.02, 6.55] 2.41 [0.005, 8.94] 2.61
ja33j [0.05, 0.73] 0.37 [0.02, 1.90] 0.85 [0.05, 3.62] 1.58

jb11j [0.22, 4.43] 2.33 [0.22, 4.43] 2.31 [0.21, 4.44] 2.32
jb12j [0.07, 48.1] 10.8 [0.12, 65.0] 13.1 [0.09, 69.2] 13.2
jb13j [0.007, 1.67] 0.43 [0.006, 0.70] 0.33 [0.004, 1.57] 0.65
jb21j [0.02, 13.3] 3.58 [0.02, 19.9] 3.70 [0.03, 19.6] 4.06
jb22j [0.01, 11.2] 3.63 [0.02, 15.5] 3.97 [0.01, 15.5] 4.20
jb23j [0.15, 0.80] 0.31 [0.18, 1.84] 0.38 [0.15, 3.48] 0.43
jb31j [0.21, 4.07] 1.63 [0.17, 6.08] 1.99 [0.15, 6.34] 2.10
jb32j [1.10, 2.60] 1.70 [1.00, 4.50] 2.23 [0.80, 4.50] 2.27
jb33j [0.03, 12.9] 2.68 [0.01, 11.1] 2.25 [0.02, 13.5] 3.02
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LQ couplings x, y, and z. In addition, considering only one
SM-like Higgs doublet allows us to simplify the implemen-
tation of this model with the computational tools employed.
We proceed as follows with sampling over the parameter

space consistently with the biasing, discussed in Sec. VI B:
(1) Sample â33, b̂32, and b̂23 using the biases for the

effective parameters in the charged fermion mass
basis; see Table VI and Eq. (101). Sample all other
effective parameters in the interaction basis, includ-
ing â23 and b̂13, with flat priors within the ranges
specified in Eqs. (60) and (61).

(2) Transform these parameters into the ones in the
charged fermion mass basis using the unitary

matrices Ld, Rd, Le, Re, Lu, and Ru, extracted from
the chi-squared fit discussed in Sec. VI A.

(3) Check that the generated values of the effective
parameters a23 and b13 satisfy Eq. (100), and that a23
and the cosine of the arguments of the latter and the
effective parameter b23 are within the prescribed
regions in Table VI.

(4) If any of the checks in step 3 fails, return to step 1;
otherwise, a valid set of effective parameters
is found.

The distribution of the magnitudes of the effective param-
eters in the charged fermion mass basis, output from the
comprehensive scan, is summarized in Table X.

FIG. 26. Constraining power and future reach of radiative cLFV decays in comprehensive scan. These plots show the results for the
BRs of the radiative cLFV decays τ → μγ and μ → eγ, plotted against the anomalous observables RðDÞ, RðD⋆Þ, and the AMM of the
muon. They can be compared with the corresponding plots for the primary scan, displayed in Fig. 8 in the main text. For further
information on how to read this figure, see Sec. VI C.
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2. Additional plots

In this appendix, we present some supplementary plots
showing the distributions of different primary and secon-
dary observables in the comprehensive scan. Figure 26
illustrates the correlation between BRðτ → μγÞ and the
three different flavor anomalies as well as between BRðμ →
eγÞ and the AMM of the muon. These plots should be
compared with the corresponding ones, obtained in the
primary scan; see Fig. 8 in the main text. Observe the

effects of biasing in refining the sampled parameter space.
Other features and discussion of these observables can be
found in Sec. VI D 3. In Fig. 27, we show two additional
plots for secondary observables, which complement the
discussion in Sec. VI F.

3. Tertiary observables

Table XI details the present experimental constraints
on the tertiary observables and the calculation method

FIG. 27. Additional plots for secondary observables in comprehensive scan. In the left plot, for gμA=g
SM
A the red-brown shaded

regions represent the projected sensitivities from the ILC [110], assuming the present best-fit value [109,124] shown as red-brown
solid line. Furthermore, we show as future constraint on the EDM of the muon the one expected from the muEDM experiment [155]
(as an example for the frozen-spin technique). In the right plot, we present the projected sensitivities from Belle II for 5 ab−1 for
BRðB → τνÞ [112] as red-brown shaded regions about the current best-fit value [98]. For further information on how to read this
figure, see Sec. VI C.

TABLE XI. List of tertiary observables and their present experimental bounds and calculation method in comprehensive scan.
Constraints quoted without explicit reference are taken from Ref. [98].

Observable Present constraint
Calculation
method Observable Present constraint

Calculation
method

BRðBs → ττÞ 6.8 × 10−3 Appendix C 3 g
& FLAVIO

ΔMBs
=ΔMSM

Bs
1.11� 0.09 [215] SPheno

BRðDs → τνÞ ð5.32� 0.11Þ × 10−2 SPheno BRðDs → μνÞ ð5.43� 0.15Þ × 10−3 SPheno

BRðKþ → πþννÞ ð1.7� 1.1Þ × 10−10 FLAVIO BRðKL → π0ννÞ 2.6 × 10−8 FLAVIO

Δae � � � a
SPheno Δaτ ≲Oð0.01Þ SPheno

jdej [e cm] < 1.1 × 10−29 SPheno jdτj [e cm] ≲Oð10−16Þ SPheno

BRðB → XsγÞ ð3.32� 0.15Þ × 10−4 SPheno BRðτ → eγÞ 3.3 × 10−8 SPheno

BRðτ → 3eÞ 2.7 × 10−8 SPheno BRðτ → μμeÞ 2.7 × 10−8 SPheno

BRðτ → ēμμÞ 1.7 × 10−8 SPheno BRðτ → μ̄eeÞ 1.5 × 10−8 SPheno

BRðτ → πeÞ 8.8 × 10−8 SPheno BRðτ → πμÞ 1.1 × 10−7 [208]
BRðτ → ϕeÞ 3.1 × 10−8 SPheno BR(τ → ρe) 1.8 × 10−8 SPheno

BRðτ → ϕμÞ 8.4 × 10−8 SPheno BR(τ → ρμ) 1.2 × 10−8 SPheno

geA=g
SM
A − 1 ð−3.19� 6.98Þ × 10−4 [109] Appendix C 4

aPresently, anomalies in Δae indicate a preference for jΔaej ∼ 10−12 [163,164]. However, as the status of these anomalies is
unresolved (two separate measurements show deviations from the SM with opposite sign), we take this value to be a future reach rather
than a present constraint.
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employed for each observable in the comprehensive scan.
Table XII displays a summary of the results for the tertiary
observables, mentioning the range for each of them

obtained for the sample of P points passing the primary
constraints as well as listing the future reach for these
observables.
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BRðτ → ēμμÞ < 2.6 × 10−10 [115] ½1.74 × 10−30; 2.71 × 10−21� ½1.96 × 10−28; 4.46 × 10−21� ½8.11 × 10−29; 3.20 × 10−21�
BRðτ → μ̄eeÞ < 2.3 × 10−10 [115] ½2.45 × 10−39; 1.01 × 10−27� ½8.78 × 10−39; 9.98 × 10−28� ½5.32 × 10−40; 2.47 × 10−28�
BRðτ → πeÞ < 7.3 × 10−10 [115] ½1.71 × 10−23; 5.11 × 10−19� ½1.08 × 10−24; 1.00 × 10−19� ½5.55 × 10−25; 8.78 × 10−20�
BRðτ → πμÞ < 7.1 × 10−10 [115] ½4.70 × 10−19; 1.09 × 10−12� ½2.87 × 10−20; 2.29 × 10−13� ½4.83 × 10−21; 7.77 × 10−14�
BRðτ → ϕeÞ < 7.4 × 10−10 [115] ½1.26 × 10−22; 1.08 × 10−17� ½5.49 × 10−24; 3.80 × 10−18� ½4.63 × 10−25; 1.07 × 10−18�
BRðτ → ρeÞ < 3.8 × 10−10 [115] ½1.41 × 10−21; 5.13 × 10−17� ½1.57 × 10−22; 1.74 × 10−17� ½1.33 × 10−23; 4.94 × 10−18�
BRðτ → ϕμÞ < 8.4 × 10−10 [115] ½1.28 × 10−14; 3.52 × 10−11� ½6.77 × 10−16; 1.58 × 10−11� ½1.38 × 10−16; 4.97 × 10−12�
BRðτ → ρμÞ < 5.5 × 10−10 [115] ½6.55 × 10−14; 2.61 × 10−10� ½4.67 × 10−15; 1.14 × 10−10� ½8.44 × 10−16; 3.81 × 10−11�

FLAVOR ANOMALIES MEET FLAVOR SYMMETRY PHYS. REV. D 108, 075014 (2023)

075014-71

https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01336-9


[3] P. F. Harrison and W. G. Scott, Symmetries and general-
izations of tri-bimaximal neutrino mixing, Phys. Lett. B
535, 163 (2002).

[4] Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP
violation, Phys. Lett. B 533, 85 (2002).

[5] P. F. Harrison and W. G. Scott, Permutation symmetry, tri-
bimaximal neutrino mixing and the S3 group characters,
Phys. Lett. B 557, 76 (2003).

[6] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H.
Okada, and M. Tanimoto, Non-Abelian discrete sym-
metries in particle physics, Prog. Theor. Phys. Suppl.
183, 1 (2010).

[7] S. F. King and C. Luhn, Neutrino mass and mixing with
discrete symmetry, Rep. Prog. Phys. 76, 056201 (2013).

[8] F. Feruglio and A. Romanino, Lepton flavor symmetries,
Rev. Mod. Phys. 93, 015007 (2021).

[9] W. Grimus and P. O. Ludl, Finite flavour groups of
fermions, J. Phys. A 45, 233001 (2012).

[10] J. P. Lees et al. (BABAR Collaboration), Evidence for an
Excess of B̄ → Dð�Þτ−ν̄τ Decays, Phys. Rev. Lett. 109,
101802 (2012).

[11] J. P. Lees et al. (BABAR Collaboration), Measurement of
an Excess of B̄ → Dð�Þτ−ν̄τ Decays and Implications for
Charged Higgs Bosons, Phys. Rev. D 88, 072012 (2013).

[12] M. Huschle et al. (Belle Collaboration), Measurement
of the branching ratio of B̄ → Dð�Þτ−ν̄τ relative to B̄ →
Dð�Þl−ν̄l decays with hadronic tagging at Belle, Phys.
Rev. D 92, 072014 (2015).

[13] G. Caria et al. (Belle Collaboration), Measurement of
RðDÞ and RðD�Þ with a Semileptonic Tagging Method,
Phys. Rev. Lett. 124, 161803 (2020).

[14] S. Hirose et al. (Belle Collaboration), Measurement of
the τ Lepton Polarization and RðD�Þ in the Decay
B̄ → D�τ−ν̄τ, Phys. Rev. Lett. 118, 211801 (2017).

[15] S. Hirose et al. (Belle Collaboration), Measurement of the
τ lepton polarization and RðD�Þ in the decay B̄ → D�τ−ν̄τ
with one-prong hadronic τ decays at Belle, Phys. Rev. D
97, 012004 (2018).

[16] R. Aaij et al. (LHCb Collaboration), Measurement of
the Ratio of Branching Fractions BðB̄0 → D�þτ−ν̄τÞ=
BðB̄0 → D�þμ−ν̄μÞ, Phys. Rev. Lett. 115, 111803
(2015); 115, 159901(E) (2015).

[17] R. Aaij et al. (LHCb Collaboration), Measurement of the
Ratio of the B0 → D�−τþντ and B0 → D�−μþνμ Branching
Fractions Using Three-Prong τ-Lepton Decays, Phys. Rev.
Lett. 120, 171802 (2018).

[18] R. Aaij et al. (LHCb Collaboration), Test of lepton flavor
universality by the measurement of the B0 → D�−τþντ
branching fraction using three-prong τ decays, Phys. Rev.
D 97, 072013 (2018).

[19] Y. S. Amhis et al. (HFLAV Collaboration), Averages of
b-hadron, c-hadron, and τ-lepton properties as of 2018,
Eur. Phys. J. C 81, 226 (2021).

[20] G.W. Bennett et al. (Muon g − 2 Collaboration), Final
report of the muon E821 anomalous magnetic moment
measurement at BNL, Phys. Rev. D 73, 072003 (2006).

[21] B. Abi et al. (Muon g − 2 Collaboration), Measurement of
the Positive Muon Anomalous Magnetic Moment to
0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

[22] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the Standard Model predictions of the muon
g − 2 and αðm2

ZÞ using newest hadronic cross-section data,
Eur. Phys. J. C 77, 827 (2017).

[23] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g − 2

and αðM2
ZÞ: A new data-based analysis, Phys. Rev. D 97,

114025 (2018).
[24] G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion

contribution to hadronic vacuum polarization, J. High
Energy Phys. 02 (2019) 006.

[25] M. Hoferichter, B.-L. Hoid, and B. Kubis, Three-pion
contribution to hadronic vacuum polarization, J. High
Energy Phys. 08 (2019) 137.

[26] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
αðm2

ZÞ, Eur. Phys. J. C 80, 241 (2020); 80, 410(E) (2020).
[27] A. Keshavarzi, D. Nomura, and T. Teubner, g − 2 of

charged leptons, αðM2
ZÞ, and the hyperfine splitting of

muonium, Phys. Rev. D 101, 014029 (2020).
[28] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser,

Hadronic contribution to the muon anomalous magnetic
moment to next-to-next-to-leading order, Phys. Lett. B
734, 144 (2014).

[29] B. Chakraborty et al. (Fermilab Lattice, LATTICE-
HPQCD, MILC Collaborations), Strong-Isospin-Breaking
Correction to the Muon Anomalous Magnetic Moment
from Lattice QCD at the Physical Point, Phys. Rev. Lett.
120, 152001 (2018).

[30] S. Borsanyi, Z. Fodor, C. Hoelbling, T. Kawanai, S. Krieg,
L. Lellouch, R. Malak, K. Miura, K. K. Szabo, C. Torrero,
and B. C. Toth (Budapest-Marseille-Wuppertal Collabora-
tion), Hadronic Vacuum Polarization Contribution to the
Anomalous Magnetic Moments of Leptons from First
Principles, Phys. Rev. Lett. 121, 022002 (2018).

[31] T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C.
Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang
(RBC, UKQCD Collaborations), Calculation of the
Hadronic Vacuum Polarization Contribution to the Muon
Anomalous Magnetic Moment, Phys. Rev. Lett. 121,
022003 (2018).

[32] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and S.
Simula, Electromagnetic and strong isospin-breaking cor-
rections to the muon g − 2 from Lattice QCDþ QED,
Phys. Rev. D 99, 114502 (2019).

[33] E. Shintani and Y. Kuramashi (PACS Collaboration),
Hadronic vacuum polarization contribution to the muon
g − 2 with 2þ 1 flavor lattice QCD on a larger than
ð10 fmÞ4 lattice at the physical point, Phys. Rev. D 100,
034517 (2019).

[34] C. T. H. Davies et al. (Fermilab Lattice, LATTICE-
HPQCD, MILC Collaborations), Hadronic-vacuum-
polarization contribution to the muon’s anomalous mag-
netic moment from four-flavor lattice QCD, Phys. Rev. D
101, 034512 (2020).

[35] A. Gérardin, M. Cè, G. von Hippel, B. Hörz, H. B. Meyer,
D. Mohler, K. Ottnad, J. Wilhelm, and H. Wittig, The
leading hadronic contribution to ðg − 2Þμ from lattice QCD

BIGARAN, FELKL, HAGEDORN, and SCHMIDT PHYS. REV. D 108, 075014 (2023)

075014-72

https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01649-0
https://doi.org/10.1016/S0370-2693(03)00183-7
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1103/RevModPhys.93.015007
https://doi.org/10.1088/1751-8113/45/23/233001
https://doi.org/10.1103/PhysRevLett.109.101802
https://doi.org/10.1103/PhysRevLett.109.101802
https://doi.org/10.1103/PhysRevD.88.072012
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevLett.124.161803
https://doi.org/10.1103/PhysRevLett.118.211801
https://doi.org/10.1103/PhysRevD.97.012004
https://doi.org/10.1103/PhysRevD.97.012004
https://doi.org/10.1103/PhysRevLett.115.111803
https://doi.org/10.1103/PhysRevLett.115.111803
https://doi.org/10.1103/PhysRevLett.115.159901
https://doi.org/10.1103/PhysRevLett.120.171802
https://doi.org/10.1103/PhysRevLett.120.171802
https://doi.org/10.1103/PhysRevD.97.072013
https://doi.org/10.1103/PhysRevD.97.072013
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://doi.org/10.1103/PhysRevD.101.014029
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1103/PhysRevLett.120.152001
https://doi.org/10.1103/PhysRevLett.120.152001
https://doi.org/10.1103/PhysRevLett.121.022002
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevD.99.114502
https://doi.org/10.1103/PhysRevD.100.034517
https://doi.org/10.1103/PhysRevD.100.034517
https://doi.org/10.1103/PhysRevD.101.034512
https://doi.org/10.1103/PhysRevD.101.034512


with Nf ¼ 2þ 1 flavours of OðaÞ improved Wilson
quarks, Phys. Rev. D 100, 014510 (2019).

[36] C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung, and S.
Peris, Light quark vacuum polarization at the physical
point and contribution to the muon g − 2, Phys. Rev. D
101, 014503 (2020).

[37] D. Giusti and S. Simula, Lepton anomalous magnetic
moments in lattice QCDþ QED, Proc. Sci. LAT-
TICE2019 (2019) 104.

[38] K. Melnikov and A. Vainshtein, Hadronic light-by-light
scattering contribution to the muon anomalous magnetic
moment revisited, Phys. Rev. D 70, 113006 (2004).

[39] P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole
contribution to the ðgμ − 2Þ: A rational approach, Phys.
Rev. D 95, 054026 (2017).

[40] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,
Dispersion relation for hadronic light-by-light scattering:
Two-pion contributions, J. High Energy Phys. 04 (2017)
161.

[41] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.
Schneider, Dispersion relation for hadronic light-by-light
scattering: Pion pole, J. High Energy Phys. 10 (2018) 141.

[42] A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice calcu-
lation of the pion transition form factor with Nf ¼ 2þ 1

Wilson quarks, Phys. Rev. D 100, 034520 (2019).
[43] J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-

Sánchez, Short-distance constraints for the HLbL contri-
bution to the muon anomalous magnetic moment, Phys.
Lett. B 798, 134994 (2019).

[44] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and
P. Stoffer, Longitudinal short-distance constraints for the
hadronic light-by-light contribution to ðg − 2Þμ with large-
Nc Regge models, J. High Energy Phys. 03 (2020) 101.

[45] V. Pauk and M. Vanderhaeghen, Single meson contribu-
tions to the muon’s anomalous magnetic moment, Eur.
Phys. J. C 74, 3008 (2014).

[46] I. Danilkin and M. Vanderhaeghen, Light-by-light scatter-
ing sum rules in light of new data, Phys. Rev. D 95, 014019
(2017).

[47] F. Jegerlehner, The Anomalous Magnetic Moment of the
Muon (Springer, Cham, 2017), Vol. 274.

[48] M. Knecht, S. Narison, A. Rabemananjara, and D.
Rabetiarivony, Scalar meson contributions to aμ from
hadronic light-by-light scattering, Phys. Lett. B 787,
111 (2018).

[49] G. Eichmann, C. S. Fischer, and R. Williams, Kaon-box
contribution to the anomalous magnetic moment of the
muon, Phys. Rev. D 101, 054015 (2020).

[50] P. Roig and P. Sanchez-Puertas, Axial-vector exchange
contribution to the hadronic light-by-light piece of the
muon anomalous magnetic moment, Phys. Rev. D 101,
074019 (2020).

[51] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and
P. Stoffer, Remarks on higher-order hadronic corrections to
the muon g − 2, Phys. Lett. B 735, 90 (2014).

[52] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C.
Jung, and C. Lehner, Hadronic Light-by-Light Scattering
Contribution to the Muon Anomalous Magnetic Moment
from Lattice QCD, Phys. Rev. Lett. 124, 132002 (2020).

[53] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete Tenth-Order QED Contribution to the Muon
g − 2, Phys. Rev. Lett. 109, 111808 (2012).

[54] T. Aoyama, T. Kinoshita, and M. Nio, Theory of the
anomalous magnetic moment of the electron, Atoms 7, 28
(2019).

[55] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Refine-
ments in electroweak contributions to the muon anomalous
magnetic moment, Phys. Rev. D 67, 073006 (2003); 73,
119901(E) (2006).

[56] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, The
electroweak contributions to ðg − 2Þμ after the Higgs boson
mass measurement, Phys. Rev. D 88, 053005 (2013).

[57] T. Aoyama et al., The anomalous magnetic moment of the
muon in the Standard Model, Phys. Rep. 887, 1 (2020).

[58] S. Borsanyi et al., Leading hadronic contribution to
the muon magnetic moment from lattice QCD, Nature
(London) 593, 51 (2021).
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