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We propose using an optical fiber-based interferometer to search for scalar ultralight dark matter (UDM)
with particle mass in the range 10−17 − 10−13 eV=c2 ð10−3 − 10 HzÞ. Composed of a solid core and a
hollow core fiber, the proposed detector would be sensitive to relative oscillations in the fibers’ refractive
indices due to scalar UDM-induced modulations in the fine-structure constant α. We predict that,
implementing detector arrays or cryogenic cooling, the proposed optical fiber-based scalar UDM search
has the potential to reach new regions of the parameter space. Such a search would be particularly well-
suited to probe for a solar halo of dark matter with a sensitivity exceeding that of previous dark matter
searches over the particle mass range 7 × 10−17 − 2 × 10−14 eV=c2.
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I. INTRODUCTION

Dark matter (DM) is a substance of unknown compo-
sition that accounts for 85% of the matter in the Universe. It
is the dominant component of matter in galaxies [1], and its
existence is inferred through its gravitational effects on
normal matter. The lack of nongravitational observations
permits a wide variety of viable DM candidates, along with
interactions with Standard Model particles and fields [2,3].
We consider a scalar ultralight dark matter (UDM)

scenario, where dark matter is entirely composed of scalar
particles with mass mDM ≲ 10 eV=c2 that would act as a
coherently oscillating scalar field around Earth due to its
large number density. Through nongravitational inter-
actions with normal matter, scalar UDM induces an
effective oscillation in fundamental constants [4].
Specifically, we consider oscillation of the fine-structure
constant α, an effect that can be searched for with a wide
variety of detector types [3] including atomic experiments
[5–10], optical cavities [11–13], mechanical systems
[14,15], and gravitational wave detectors [16–18].
Here we propose a detector that would use optical fibers

to search for scalar UDM-induced oscillations in α, which
would produce a measurable oscillation of optical refractive
indices. Such a detector would probe for UDM by
comparing the refractive indices of two different types of

fibers, solid core and hollow core, which would be differ-
entially affected by oscillations in α.
Due to ease of manufacturing coupled with extremely low

optical loss, optical fibers are low cost and large channel
capacity information transmission devices. These properties
make themubiquitous in long distance classical andquantum
communication networks. Technical advances in ultralow
loss fibers are being accelerated due to demands in disparate
fields such as high-volume online data transmission or
quantum cryptography. In a parallel development, photonic
crystal fibers offer a novel route to efficiently transmit high
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FIG. 1. Conceptual model for an optical fiber-based detector.
Relative oscillations in the refractive indices of two fibers can be
detected using an optical-path-length-balanced Mach-Zehnder
interferometer. Scalar UDM affects the refractive index of the
solid core fiber, shifting the optical phase and resulting in an
oscillation in output optical power at the UDM frequency. While
the noise analysis in this paper assumes a more complex setup (see
Fig. 4),which leads to common-mode rejection of various technical
noise, the signal can be well-modeled by the setup above.
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power without losses associated with material nonlinearity
[19].When combined with advances in cryogenics fueled by
quantumcomputing, existing and near-term fiber technology
offers a promising tabletop route to search for dark matter,
achieving sensitivities to scalar UDM that exceed the current
constraints over a wide range of sub-Hz frequencies.
This paper is organized as follows: In Sec. II, we provide

a brief background of scalar UDM and the signal it
produces. In Sec. III, we introduce the concept of an
optical fiber-based UDM detector. In Sec. IV we present a
model for the noise sources that would limit the detector’s
sensitivity, and in Sec. V we use this noise model to
calculate the minimum detectable coupling strength, which
is evaluated considering both Galactic halo and solar halo
UDM scenarios. Additional details can be found in the
Appendixes, including derivations of expressions in the
main text and extended discussion of the noise models used
to characterize the prospective UDM detector.

II. SCALAR UDM

For the range of particle masses considered in this work,
UDM can be considered a coherent and approximately
spatially uniform background field on Earth. This field is
nearly monochromatic, oscillating at the Compton fre-
quency fDM ¼ mDMc2=h. Through Doppler broadening,
the velocity dispersion of DM gives the field a finite
coherence time τDM. Over timescales less than τDM the field
can be expressed as a sinusoid,

φðtÞ ≈ φ0 cos ð2πfDMtþ θDMÞ; ð1Þ

whose amplitude φ0 is a stochastic quantity described by a
Rayleigh distribution [20]. The field amplitude’s root-

mean-square value φrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GρDM
πc2fDM2

q
is determined by the

local dark matter density ρDM. The values of τDM and ρDM
depend on the DM halo model being considered. For
example, in this work we consider two halo models, (1) a
standard, smooth Galactic halo where ρDM ≈ 0.4 GeV=cm3

[1] and τDM ≈ 106ωDM
−1 ≈ ð1 Hz=fDMÞ × 2 days [21] (see

Table I for details), as well as (2) a local UDM halo
centered on the Sun, which would have a greater particle
density and coherence time (see Sec. V for more details).
The unknown phase θDM has a flat distribution from 0 to 2π
[20]. While these temporal and spatial field properties are
general to multiple types of UDM, the experimental
signature of scalar UDM depends on its specific inter-
actions with Standard Model particles.
We assume scalar UDM couples linearly to the electro-

magnetic field tensor Fμν. Such an interaction is described
by the Lagrangian density term [22]

Lint ¼ deφðtÞ
e2c

16πℏα0
FμνFμν ð2Þ

where e is the elementary electric charge, c is the speed of
light, ℏ is the reduced Planck constant, and α0 is the fine-
structure constant (in the absence of scalar UDM). The
strength of the interaction is parametrized with the dimen-
sionless coupling strength de.
Generally, interactions between scalar UDM fields and

normal matter can be modeled as variations of fundamental
constants [4], such as the electron massme or fine-structure
constant α, where the value of a fundamental constant at
any point in space or time depends on the local value of
the scalar UDM field. In the case of Eq. (2), scalar UDM
causes fractional fluctuations in the fine-structure constant
given by

δα

α0
ðtÞ ¼ deφðtÞ: ð3Þ

Oscillations in α produce measurable effects such as
modulation of atomic energy levels [14], material refractive
indices [23], and mechanical strains [24,25].
Scalar UDM-induced oscillations in the fine-structure

constant lead to a material-dependent oscillation of optical
refractive indices, and the proposed fiber-based detector
would be sensitive to scalar UDM primarily through its
modulation of an optical fiber’s refractive index. The
refractive index of an optical material generally depends
on the fine-structure constant [23,26]. For small fluctuations
in α, the resulting fractional fluctuation in refractive index is

δn
n0

¼ ϵnα
δα

α0
; ð4Þ

where ϵnα ≡ α0
n0

∂n
∂α jα¼α0

. While the coefficient ϵnα may not be
directly measurable, it can be related to a material’s optical
dispersion as [23,26]

ϵnα ¼ −2ϵnωL
; ð5Þ

TABLE I. Quantitative properties of the UDM signal for the
particle mass range considered in this work, and key parameters
used to calculate the detector’s sensitivity. See Table III in
Appendix D for more details on the fiber material properties
that were used to estimate various noise sources.

Property Range considered

UDM signal parameters
Frequency 10−3 Hz ≤ fDM ≤ 10 Hz
Coherence time 4 hours ≲ τDM ≲ 5 years
Coherence length 107 km≲ λDM ≲ 1011 km

Experiment parameters
Laser wavelength λ0;L ¼ 1550 nm
Laser power PL ¼ 1 mW
Length of solid core fiber L0;A ¼ 10 km
Length of hollow core fiber L0;B ¼ 14.7 km
Measurement time τint ¼ 1 year
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where ϵnωL
≡ ωL

n0
∂n
∂ωL

jωL¼ω0;L
, ωL is the optical angular

frequency, and ω0;L is the angular frequency of the laser.
Details of the model used to derive Eq. (5) are given in
Appendix B.

III. OPTICAL FIBERS AS DM DETECTORS

Here we propose to search for scalar UDM by comparing
the refractive indices of two different types of fibers, solid
core and hollow core fibers, which are differentially
affected by oscillations in the fine-structure constant. In
solid core fibers, the optical mode is contained within silica
(nA ≈ nsilica ≈ 1.5), for which ϵnωL;silica ¼ 0.013 at an opti-
cal wavelength of 1550 nm (see Appendix B). In hollow
core fibers, the optical mode is mostly contained within air
(or vacuum) (nB ≈ nair ≈ 1 [27]), for which ϵnωL;air ≪
ϵnωL;silica [28,29].
A simple model for a fiber-based scalar UDM detector

is an optical-path-length-balanced Mach-Zehnder inter-
ferometer, as depicted in Fig. 1, where a solid core fiber
and a hollow core fiber each constitute an interferometer
arm. By balancing the optical path lengths of each fiber,
some common mode noise sources can be suppressed,
and oscillations in the relative optical lengths of the fibers
can be measured interferometrically using a laser with
central wavelength λ0;L ¼ 1550 nm and average power
∼1 mW. Small fluctuations in α due to scalar UDM
result in a phase difference signal with magnitude

ΔΦDM ¼ ω0;Lτ0ϵnωL;silica
δα

α0
; ð6Þ

where τ0 ¼ n0L0=c is the time delay. A detailed deriva-
tion of the output phase difference, including the UDM-
induced phase difference given in Eq. (6), is given in
Appendix C.
Appendix C also introduces a modified version of the

interferometric setup (see Fig. 1), which enables the
cancellation of several phase noise sources. As detailed
derivations in Appendixes C and D 1 show, the detector
geometry displayed in Fig. 4 has a sensitivity that is
consistent with a balanced interferometer (represented in
Fig. 1), while being immune to laser frequency noise. We
note that the quantitative results presented below in Figs. 2
and 3 are for the setup shown in Fig. 4.
Scalar UDM also produces a strain signal [24,25] that

affects the experiment via a coherent oscillation in the
lengths of the fibers and the laser cavity. Because both
fibers are primarily composed of the same materials, the
strain is common to both interferometer arms and does
not produce a measurable phase difference (also, the
material dependence of the strain would be a higher-order
effect [31]). However, straining the laser cavity shifts the
laser’s central wavelength, producing an optical path
length imbalance due to differences of optical dispersion

between the fibers. Therefore, while the presence of
scalar UDM would ultimately be inferred from relative
oscillations in the fibers’ refractive indices, it is worth
noting that this signal includes contributions from both
direct modulation of the solid core fiber’s refractive index
as well as the strain in the laser cavity (via optical
dispersion in the fibers). Incidentally, for the case of
scalar UDM coupling to the electron mass, this effect
cancels the signal produced through direct refractive
index modulation of the fibers (see Appendix B). For
this reason, the detector is only sensitive to oscillations in
the fine-structure constant. We note that a different
combination of fiber-based interferometry and laser sta-
bilization might enable measurement of a differential
length change effect, or access to the electron mass
coupling to UDM. More importantly, our analysis high-
lights the importance of including the effect of the
omnipresent UDM signal on the experimental apparatus
beyond the interferometer.

IV. NOISE

Various noise sources have the potential to overshadow
the DM signal ΔΦDM. The dominant noise sources to be
considered when designing a fiber-based UDM detector
are thermal noise and acoustic noise in the fibers
themselves, noise from the laser, and photon shot noise.
The effect of each noise source is quantified by a one-
sided phase noise power spectral density (PSD) SΔΦðfÞ,
and plotted in Fig. 2.
Thermomechanical noise in the fibers will likely set the

ultimate limit to the detector’s sensitivity. Fiber “thermo-
mechanical noise” STMδϕ refers to the optical phase fluctua-
tions δϕ that are induced by spontaneous thermal
fluctuations of a fiber’s length due to internal friction
[32]. The fluctuation-dissipation theorem provides an
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FIG. 2. Estimated phase noise for the fiber-based detector.
Contributions are included from each of the noise sources
detailed in Sec. IV. Several thermal noise curves are included,
corresponding to fibers with (solid lines) and without (dashed
lines) polymer coatings at temperatures of 300 K and 50 mK.
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accurate model for thermomechanical noise in fibers,
resulting in a phase noise PSD given by [33]

STMδϕ;iðfÞ ¼
�
2πn0;i
λ0;L

�
2 2kBTL0;iξi

3πEiAi

1

f
; ð7Þ

where T is the temperature, L0;i is the physical length, ξi
is the mechanical loss tangent, Ei is the Young’s
modulus, and Ai is the cross sectional area of fiber i.
The resulting differential phase noise in the interferometer
is the sum of contributions from both fibers A and B:
STMΔΦ ¼ STMδϕ;A þ STMδϕ;B. Several experiments have directly
measured thermomechanical noise in single mode fibers
[34,35], and the thermomechanical noise model described
by Eq. (7) has been verified down to frequencies as low as
0.05 Hz [36]. In Figs. 2 and 3 we extend this model down to
1 mHz to explore the possible low-frequency performance
of a fiber-based detector under the assumption that low-
frequency technical noise sources such as thermal drift or
laser intensity fluctuations are adequately suppressed.
As a method for reducing thermomechanical noise we

propose reducing the thickness of the fibers’ polymer
coatings. Mechanical loss in fibers likely comes primarily
from the polymer coatings that protect the silica cladding,
and there is some evidence suggesting that reducing the
thickness of these coatings reduces the thermomechanical
noise floor in optical fibers [35]. We include thermal noise
estimates in Fig. 2 for bare (without coating) fibers as a
benchmark approximation for thinly coated fibers, noting
that while fiber coatings can be made quite thin [27], bare

fibers may be difficult to manufacture and handle due to
fragility. AppendixD 3 has a detailed discussion ofmechani-
cal dissipation in optical fibers, including the values of the
parameters used in the thermal noise estimates for Fig. 2.
Another way to reduce thermal noise is to implement

cryogenic cooling. Figure 2 illustrates the impact on
thermal noise of lowering the temperature from room
temperature (300 K) to cryogenic temperature (50 mK).
It is clear from the figure that the benefit of removing the
coatings diminishes at lower temperature, where the intrin-
sic mechanical loss tangent ξ of fused silica increases
beyond its room-temperature value.
To achieve a thermally limited detection sensitivity, steps

need to be taken to shield the experiment from acoustic
noise in the fibers. Mechanical vibrations, which may
originate from a variety of sources such as human activity,
natural seismic activity, or local weather, often pose a
challenge for terrestrial experiments at low frequencies.
Vibration-induced strains in optical fibers can be sup-
pressed by using low vibration sensitivity fiber spools
[37] and by cowinding the fibers on the same spool to
correlate the acoustic noise between them [34,35]. The
remaining effects then come from differences in the strain
optic effect between the two fibers (see Appendix D 4 for
more details). To estimate the effects of mechanical
vibrations, we use the United States Geological Survey
New High Noise Model (NHNM) for seismic noise [38].
By cowinding both fibers on a single vibration-insensitive
spool, acoustic noise at the level predicted by the NHNM
can be reduced to a level comparable to that of thermal
noise in this experiment, as can be seen in Fig. 2.
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FIG. 3. Projected constraints on de from optical fibers, for Galactic (left) and solar (right) DM halos. Curves are included for fiber
detectors operating at temperatures of 300 K and 50 mK, with (solid) and without (dashed) polymer coatings, for a measurement time
τexp ¼ 1 year. The fiber lengths are chosen to be L0;A ¼ 10 km and L0;B ≈ 15 km. The detectors are primarily limited by thermal noise;
cryogenic detectors start to become limited by acoustic noise at frequencies above ∼10−1 Hz. Also included are projected constraints
from an array of 1000 detectors, using bare fiber at room temperature. The strongest experimental constraints in this mass range come
from MICROSCOPE [30], Kennedy et al. [12], and atomic clock comparisons (here included as a rough, combined constraint from
Filzinger et al. [8] and Sherrill et al. [9]).
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The final noise source included in Fig. 2 is photon shot
noise, which can be limited to a subdominant level by
ensuring sufficient output optical power despite propaga-
tion losses in the fibers. Recent advances in hollow core
fiber technology have yielded hollow core fibers with a
propagation loss of 0.17 dB=km at λ0;L ¼ 1550 nm [39],
reaching the level of low-loss solid core fibers
(0.18 dB=km for SMF28 [40]). We find that shot noise
in this experiment can be limited to below the thermal noise
floor at cryogenic temperatures with an input laser power of
PL ∼ 1 mW (see Appendix D 2 for more details). The laser
shot noise can be further reduced by employing quantum
optical techniques such as squeezing.
A more detailed discussion of these noise sources can be

found in Appendix D, along with discussion of techniques
to address frequency and intensity noise in the laser. In
addition, Ref. [41] also has a comprehensive review on the
noise performance of optical fibers in interferometric setups
for precision measurements.

V. MINIMUM DETECTABLE
COUPLING STRENGTH

The smallest signal a detector is capable of measuring
can be inferred from the modeled noise floor, and is
improved upon by increasing the duration of the measure-
ment τexp. Here, the minimum detectable signal strength
ΔΦDM

min is defined as the signal strength needed to achieve a
unity signal to noise ratio. For measurement times less than
the DM coherence time (τexp ≲ τDM), the signal can be
considered coherent and stochastic, such that ΔΦDM

min ∝
3τexp

−1=2 [20]. For significantly longer measurement times
(τexp ≫ τDM), ΔΦDM

min ∝ ðτDMτexpÞ−1=4 [42]. Here, we com-
bine both regimes into a single smooth function (see
Appendix E for more details) to approximate the minimum
detectable signal:

ΔΦDM
min ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SnoiseΔΦ

q
½3τexp−1=2 þ ðτDMτexpÞ−1=4�: ð8Þ

The utility of a potential UDM experiment is typically
evaluated by its projected minimum detectable coupling
strength de;min, a quantity that depends on the astrophysical
DM model being considered. The minimum detectable
coupling strength de;min for the detector can be related to the
signal strength via Eq. (6) as

de;min ¼
ΔΦDM

min

ω0;Lτ0ϵnωL;silicaφrms
: ð9Þ

The minimum detectable coupling strength de;min

depends on the local energy density ρDM and coherence
time τDM of the DM; here we consider two different
astrophysical DM models for these parameters. The spatial
distribution of dark matter across the Milky Way is

typically estimated with the Standard Halo Model, which
assumes a gravitationally stable and spherically symmetric
density profile that decreases with distance from the center
of the Galaxy ρDMðrÞ ∝ r−2 and a Maxwellian velocity
distribution [1].
The most commonly used model for UDM in direct

detection experiments assumes a smooth Galactic halo,
lacking any noticeable substructure, where the DM density
and coherence time at Earth take on values determined
by the average density and velocity dispersion within the
solar neighborhood: ρDM ≈ 0.4 GeV=cm3 [1] and τDM ≈
106ωDM

−1 [21]. The projected constraints from optical
fibers, using a Galactic halo model for DM, are plotted in
Fig. 3 (left).
We also consider an alternative UDM model, where it is

assumed that UDM forms a local halo centered on the Sun
[43]. It is possible that DM forms gravitationally bounded
objects, which could potentially form a halo bound to an
external gravitational source, such as the Sun or Earth [43],
while maintaining consistency with the Standard Halo
Model on larger scales. In this scenario, the local DM
halo could have a greater density and coherence time at
Earth than in the Galactic halo model, leading to potentially
stronger constraints on coupling strength from direct
detection experiments. The halo’s size and density would
generally depend on the mass of the DM particles. Earth
halos are well-motivated at particle energies 10−13 eV≲
mDMc2 ≲ 10−7 eV [43], and several recent experiments
have set constraints on the Earth halo model for DM
[13,17,44–46]. A fiber-based detector is aptly suited to
search for a local DM halo that is gravitationally bound to
the Sun, as such solar halos are well-motivated in the
particle energy range 10−17 eV≲mDMc2 ≲ 10−13 eV [43].
In this range, a solar halo could have an energy density up
to ∼105 times greater than that of a Galactic halo. The
projected constraints from optical fibers, using a solar
halo model for DM, are plotted in Fig. 3 (right). To
recalculate de;min for a solar DM halo, we rescale ρDM
using Supplementary Figure 2 from Ref. [43] and use
τDM ¼ 108 sð1 Hz

fDM
Þ3 [47]. Constraints on both halo models

can be calculated on the same data acquired in a single
experimental run, so long as the difference in the expected
coherence times is accounted for in the postprocessing.
The parameter space for scalar UDM is plotted in Fig. 3

for both Galactic (left) and solar (right) DM halos. The
allowable parameter space is constrained by previous
experiments, including both DM direct detection experi-
ments and DM-independent equivalence principle (EP)
tests. Experiments designed to test the equivalence princi-
ple [30,48] set constraints on scalar interactions regardless
of whether the scalar field composes DM. The strongest
EP-test constraints in this mass range come from
MICROSCOPE [30], which has constrained de ≲ 10−4

for mDM ≲ 10−13 eV=c2. This constraint does not depend
on the DM energy density ρDM, so it applies equally to both
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halo models in Fig. 3. Also included are constraints from
the DM direct detection experiments in Refs. [8,9,12],
which depend on the DM halo model considered.
The potential of fiber-based scalar UDM detectors

operating for τexp ¼ 1 year can be seen in Fig. 3,
where projections for de;min are plotted for various exper-
imental parameters. Fiber-based detectors operating at
room temperature and 50 mK, with and without polymer
coatings, are considered to search for DM in the
particle energy range 10−17 eV≲mDMc2 ≲ 10−13 eV
ð10−3 Hz≲ fDM ≲ 10 HzÞ.
To enable room-temperature optical fibers to set more

competitive constraints on de, an array ofN detectors can be
implemented for background rejection and averaging down
the effects of stochastic noise sources. The UDM coherence
length λc ≈ ð1 Hz=fDMÞ × 107 km [21] is greater than
106 km for frequencies below 10 Hz, allowing for coherent
averaging of the signals collected by sites anywhere on Earth
to improve the sensitivity as N−1=2 [49]. To achieve a
significant improvement over the current constraints on de
for a standard Galactic halo UDM model, a network of
aroundN ∼ 1000would be needed. The expected constraints
from an array of 1000 detectors with bare fibers at room
temperature are included in green. While we acknowledge
the logistical challenges associated with launching and
maintaining such a network, the technology involved in
such detectors already exists and can be mass produced.

VI. SUMMARY AND OUTLOOK

In summary, we have investigated optical fibers as
detectors for scalar ultralight dark matter. Dark matter-
induced oscillations in the fine-structure constant α would
produce a potentially measurable oscillation in fibers’
optical path lengths that could be detected in a fiber-based
interferometer. To estimate the detection capabilities of
optical fibers, we propose an idea for a detector that could
measure oscillations in the relative refractive indices of two
different types of fibers that are differentially affected by
scalar UDM. Accounting for various noise sources, we
calculated the minimum detectable scalar UDM coupling
strength considering two different UDM models (Galactic
and solar halos), finding that cryogenically cooled fiber-
based detectors can achieve sensitivities to scalar UDM that
exceed the current constraints at sub-Hz frequencies.
In addition to cryogenic cooling, competitive sensitiv-

ities can be achieved by using longer fibers or selecting (or
fabricating) a better choice of optical fiber. The ideal fiber
would likely have a thicker cladding and lower mechanical
loss to reduce thermomechanical noise, and low optical loss
to reduce shot noise and photothermal heating effects.
Finally, the compactness of optical fibers facilitates array-
based detection, where a network of detectors can be
deployed to improve the overall sensitivity as well as to
probe for local substructure in the UDM field.

Optical fibers are a mature technology with a multitude
of applications in classical and quantum communication.
Increasingly low tolerance for optical loss is driving
various technological developments, making them a viable
candidate for precision measurements beyond those relying
on low photon number quantum optical effects. Creative
ideas to harness such technology to study fundamental
science are already emerging, such as those involving
optical clock networks [50,51]. Along with using fibers
as delay lines [13] to look for scalar UDM or as a
waveguide to search for axions [52], our proposed inter-
ferometric scheme demonstrates that existing optical fiber
technology can be repurposed to search for ultralight dark
matter. Taken together, these developments present a
promising avenue to harness this widely used technology
in the search for beyond the Standard Model physics.
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APPENDIX A: DEFINITIONS AND MODEL
ASSUMPTIONS

Assumption 1: We restrict our analysis to low frequen-
cies, defined by fDM ≪ τ0;i

−1; i.e. this derivation holds
when the DM Compton frequency is significantly below
the inverse time delay of both fibers.
Assumption 2: All fluctuations are small:�

δx
x0

;
δLi

L0;i
;
δni
n0;i

;
δωL

ω0;L

�
≪ 1:

Definition of ϵ coefficients: Consider a quantity wðvÞ
with steady-state value w0 ≡ wðv0Þ determined by the
steady-state value of its parameter v0. Assuming small
fluctuations (δv ≪ v0) in v about v0, the fractional fluc-
tuations of w can be expressed to first order as

δw
w0

≈ ϵwv
δv
v0

;

where

ϵwv ≡ v0
w0

∂w
∂v

����
v¼v0

: ðA1Þ

Note that while ϵwv is dimensionless and resembles the
sensitivity coefficients discussed in Ref. [53], the ϵ
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coefficients used in this work will not generally be inde-
pendent in the choice of units. We use SI units throughout.
We also define the quantities Δϵwv ≡ ϵwv;A − ϵwv;B.

APPENDIX B: DM COUPLING
TO REFRACTIVE INDEX

The dependence of a dielectric medium’s refractive index
on fundamental constants such as α andme can be estimated
using a Lorentz model, which assumes that the medium is a
collection of resonant atoms responding harmonically to an
applied electric field. The refractive index depends on the
electric susceptibility n2 ¼ χ þ 1, which accounts for multi-
ple electron and phonon modes by considering the sum over
all modes, χ ¼ P

k χk. The susceptibility of eachmode takes
the following form off resonance [23]:

χk ¼ 4πℏcα
Nk

Mk

fk
ωk

2 − ω2
: ðB1Þ

Here, Nk is the effective number density, Mk is the reduced
effective mass, fk is the oscillator strength, and ωk is the
resonance frequency. The number density is inversely
proportional to the atomic/molecular volume [determined
by the Bohr radius aB ∝ ðαmeÞ−1], such that Nk ∝ ðαmeÞ3.
For electron modes, Mk ¼ me; for phonon modes, Mk is
independent of α,me, andω [23]. The oscillator strengths fk
are also approximately independent of α,me, andω [23]. For
both electron and phonon modes, it can be shown that

χk ∝ ð1 − ω2ωk
−2Þ−1: ðB2Þ

Therefore, the dependence on fundamental constants α and
me is entirely accounted for by the resonance frequenciesωk.
For phonon modes ωk ∝ me

3=2α2; for electron modes ωk ∝
meα

2 [23].
If the laser frequency is assumed to be in a range where it

is reasonable to consider either only phonon modes or
only electron modes (i.e. relationship between ωk and the

fundamental constants is independent of mode number k),
Eq. (B1) implies that

x
n
∂n
∂x

¼ −
�

x
ωk

∂ωk

∂x

��
ω

n
∂n
∂ω

�
ðB3Þ

where x∈ fα; meg. Equation (B2) allows one to calculate
the response of a material’s refractive index to variations of
fundamental constants using the material’s dispersion,
which can be measured experimentally.
For variations in α,

α

n
∂n
∂α

¼ −2
�
ω

n
∂n
∂ω

�
; ðB4Þ

regardless of the type of mode. However, the refractive
index’s dependence on me depends on which modes
dominate:

me

n
∂n
∂me

¼
(
−ðωn ∂n

∂ωÞ electronmodes

− 3
2
ðωn ∂n

∂ωÞ phononmodes:
ðB5Þ

Following Ref. [26], it is assumed that electron modes
dominate the dispersion of fused silica, in which case

ϵnα;silica ¼ −2ϵnωL;silica ðB6Þ

ϵnme;silica ¼ −ϵnωL;silica: ðB7Þ

From the three-term Sellmeier equation for fused silica
[54], ϵnωL;silica ¼ 0.013. Since the optical dispersion and,
therefore, DM coupling to the refractive index of air, are
significantly less than that of silica, it is assumed
that fϵnx;air; ϵnωL;airg ¼ 0.
The DM signal [Eq. (C4)] is proportional to

ϵnx;silica þ ϵnωL;silica. Evidently, from Eqs. (B5) and (B6),
the detector is only sensitive to DM-induced oscillations in
α, not me, since ϵnme;silica þ ϵnωL;silica ¼ ð−ϵnωL;silicaÞ þ
ϵnωL;silica ¼ 0. We note that a more detailed analysis
(beyond the simple Lorentz model used here) of the
refractive index of silica may affect this result.

APPENDIX C: DERIVATION OF OUTPUT
PHASE DIFFERENCE ΔΦA

In this section we derive an expression for the output
phase differenceΔΦA for the detector displayed in Fig. 4 in
terms of fluctuations due to both noise and the dark matter
signal.
This analysis is general to the DM-modulation of both

electron mass me and the fine-structure constant α; funda-
mental constants will be generally represented by the
variable x∈ fme; αg. While it was shown in Appendix A
that for our specific choice of detector configuration and the
model for refractive index, the detector is not sensitive to
oscillation in me, a different material choice and/or

TABLE II. Summary of fluctuations included in the derivation
of ΔΦA, due to both noise and DM. Each effect is expressed as a
fluctuation in length, refractive index, or simply optical phase.

Effect Expression

DM-index coupling δni
n0;i

¼ ϵnx;i
δx
x0

DM-length coupling δLi
L0;i

¼ ϵLx;i
δx
x0

Mechanical vibrations δLi
L0;i

¼ hacoustici

Vibrations (strain-optic) δni
n0;i

¼ ϵnL;ihacoustici

Optical dispersion δni
n0;i

¼ ϵnωL;i
δωL
ω0;L

Fiber thermal noise δϕi ¼ δϕthermal
i

Shot noise (at detector) δϕi ¼ δϕshot
i
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configuration might give access to the dme
coupling. The

analysis presented here can be applied to other material-
based interferometer schemes with minimal modifications.
For simplicity, we introduced the detector as a simple

optical-length-balanced interferometer in the main text (see
Fig. 1). In order to cancel the detrimental effects of a variety
of technical noise sources, we now assume a more complex
geometry as shown in Fig. 4. Our detailed analysis in this
and the next section will reveal that several technical noise
sources can be suppressed via common-mode rejection in
this, more complex, configuration. In essence, the detector
geometry displayed in Fig. 4 has a sensitivity that is
consistent with a balanced interferometer (represented in
Fig. 1), while being immune to laser frequency noise. We
note that the quantitative results presented in Figs. 2 and 3
come from the derivations presented here, which assume
the experimental geometry of Fig. 4.

1. Fractional fluctuations of fiber refractive
index and length

Fiber i’s refractive index niðx;ωLÞ depends on the
fundamental constant x, the laser frequency ωL due to
optical dispersion, and vibration-induced strains hacoustici via
the strain-optic effect:

δni
n0;i

¼ ϵnx;i
δx
x0

þ ϵnωL;i
δωL

ω0;L
þ ϵnL;ihacoustici : ðC1Þ

Additionally, the fiber lengths depend on fundamental
constant x, as the length of a solid is proportional to the
Bohr radius, which will be affected by fluctuations inme or
α (aB ∝ ðmeαÞ−1Þ [24,25]. Since ϵLx;i ¼ −1 for both fibers,
the differential scheme described in Fig. 1 is insensitive to
this strain signal.

2. Optical phase at fiber output

Consider a simple fiber interferometer as depicted in
Fig. 5. If the phase of light entering a fiber is ϕLðtÞ, then
the phase of light exiting the fiber will be equal to the
input phase at an earlier time ϕiðtÞ ¼ ϕLðt − τiðtÞÞ, where
τi is the time it takes for an optical wavefront to traverse the
entire length of the fiber. In the low-frequency limit
(Assumption 1) the time delay is simply related to the fiber’s
instantaneous optical path length τiðtÞ ¼ niðtÞLiðtÞ=c, and
the output phase is

ϕiðtÞ ¼ ϕLðtÞ − ωLðtÞniðtÞLiðtÞ=c:

Including small fluctuations of the optical frequency, fiber
index, and fiber length, the output optical phase can be
written as

ϕi ≈ ϕL − ω0;Lτ0;i

�
1þ δni

n0;i
þ δLi

L0;i
þ δωL

ω0;L

�
:

We have omitted from our notation the explicit time
dependence of each variable (t), since the analysis considers
the quasistatic (low-frequency) regime.
Accounting for both noise and DM-induced effects

(Table II), the optical phase at the output of fiber i is

ϕi ¼ ϕL|{z}
input
laser
phase

− ω0;Lτ0;i

0
BBB@ 1|{z}

DC term

þ ϵnx;i
δx
x0|fflfflffl{zfflfflffl}

DM-index
coupling

þ ϵnωL;i
δωL

ω0;L|fflfflfflfflfflffl{zfflfflfflfflfflffl}
optical

dispersion

þ ϵLx;i
δx
x0|fflfflffl{zfflfflffl}

DM-length
coupling

þ ð1þ ϵnL;iÞhacoustici|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
mechanical
vibrations

þ δωL

ω0;L|{z}
laser frequency
fluctuations

1
CCCAþ δϕthermal

i|fflfflfflffl{zfflfflfflffl}
fiber thermal
fluctuations

: ðC2Þ

3. Laser stabilized to fiber B

For this analysis, the schematic in Fig. 4 is assumed (see
Appendix D 1), where fiber B acts as a delay line for
stabilizing the laser. The inferred phase difference at

Photodetector B is ΔΦB ¼ ϕL − ϕB þ δϕshot
B , where ϕshot

B

is the apparent phase imparted by shot noise. Stabiliza-
tion can be achieved by tuning the laser’s frequency
using feedback based on the optical power measured by

Fiber B

Fiber A
PD A

PD B

PM

DM 
signal

feedback

control

feedback

control

tunable 

laser

FIG. 4. Detector model with FDL-stabilized laser: The purpose
of this detector geometry is to eliminate the effects of laser phase
noise relative to the geometry proposed in Fig. 1. Fiber B serves
as a delay line in an interferometer to stabilize a tunable laser.
Using feedback from the measurement at Photodetector B (PD
B), the laser frequency is tuned such that ΔΦB remains constant.
The phase difference ΔΦA would then contain the DM signal.
The phase difference ΔΦA depends linearly on the optical power
when the recombining beams are kept near quadrature bias (ΔΦA
mod 2π ¼ π=2). In the presence of noise and long term
instabilities, quadrature bias can be maintained by including a
phase modulator (PM) that is driven by feedback from Photo-
detector A (PDA). The DM signal is then present in the feedback
signal supplied to the phase modulator.
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Photodetector B. For example, the laser’s frequency can be
tuned such that ΔΦB mod 2π ¼ π=2, maintaining quad-
rature bias between the recombining beams before
Photodetector B. At quadrature bias, where the output
optical power depends linearly on the phase difference ΦB,
it can be shown [using Eq. (C2)] that the laser frequency
fluctuations will be

δωL

ω0;L
¼ ð1þ ϵnωL;BÞ−1

�π
2
þ δϕthermal

B − δϕshot
B

ω0;Lτ0;B
:

− ð1þ ϵnL;BÞhacousticB − ðϵnx;B − 1Þ δx
x0

�
: ðC3Þ

4. Detector output phase difference ΔΦA

The experimental observable in this experiment is the
differential phase ΔΦA between the output of fiber A and
the interferometer’s short arm, which is inferred from the
measured optical power at Photodetector A. Here it is
assumed that quadrature bias is maintained between the
recombining beams before Photodetector A, which can be
accomplished with a phase modulator that is driven by
feedback from the power measured at Photodetector A. The
DM signal would then be present in the feedback signal
supplied to the modulator.
The phase difference ΔΦA can be calculated using

Eqs. (C2) and (C3). Ignoring zero-frequency terms, ΔΦA
is the sum of individual contributions from DM effects and
each noise source

ΔΦA ¼ ΔΦDM
A þ ΔΦthermal

A þ ΔΦacoustic
A þ ΔΦshot

A :

Noting that ϵnx ∼ ϵnωL
≈ 10−2 and ignoring higher-order

terms, it can be shown that

ΔΦDM
A ≈ ω0;Lτ0ðΔϵnx þ ΔϵnωL

Þ δx
x0

ðC4Þ

ΔΦacoustic
A ≈ ω0;Lτ0½ð1þ ϵnL;AÞhacousticA

− ð1þ ΔϵnωL
þ ϵnL;BÞhacousticB � ðC5Þ

ΔΦthermal
A ≈ −δϕthermal

A þ δϕthermal
B ðC6Þ

ΔΦshot
A ≈ δϕshot

A − δϕshot
B ; ðC7Þ

where we have assumed both fibers to have equal optical
path lengths τ0;i ≡ τ0 for simplicity.

APPENDIX D: NOISE ANALYSIS

In this section we discuss the potential sources of noise
that would act to obscure the DM-induced phase difference.
The effect of each noise source is quantified by a one-sided
phase noise PSD SΔΦ;AðfÞ.

1. Laser noise

Interferometric experiments are subject to noise from
the driving laser, due to random fluctuations in the optical
phase/frequency and intensity. Laser phase/frequency
noise is eliminated in a perfectly balanced interferometer.
However, when each arm is composed of different types of
fiber with different levels of optical dispersion, an inter-
ferometer cannot remain balanced for all optical frequen-
cies, and laser frequency noise is non-negligible. For the
sensitivity of a balanced interferometer to reach the thermal
noise floor at 50 mK, laser frequency noise needs to
be limited to roughly ∼10−1 ðHz=fÞ1=2 Hz · Hz−1=2; this
would require an ultrastable laser [55].
Alternatively, laser frequency noise can be mitigated

by stabilizing the frequency-tunable laser to one of the
fibers, which acts as a delay line in a Mach-Zehnder
interferometer. As a result, the laser’s frequency noise
PSD takes the form of the fiber delay line’s (FDL)1 phase
noise PSD2: Sδν;L ¼ ð2πτ0Þ−2Sδϕ;FDL [56]. This procedure
effectively eliminates laser frequency noise from the
analysis, replacing it with phase noise from fiber B
(which would have been present to the same level in a
balanced interferometer).
For the detector depicted in Fig. 4, the “observable” is

the phase difference ΔΦA between the recombining
optical paths before Photodetector A, which would still
be affected by DM-induced modulation of the fiber
refractive indices. At low frequencies ðfDM ≪ τ0

−1Þ, this
is simply ΔΦA ¼ 2πnALA=λL (prior to receiving correc-
tions from the phase modulator). Because the laser is
stabilized to fiber B, the laser wavelength is proportional
to the optical path length of fiber B: λL ∝ nBLB.
Therefore, the detector’s function is to compare the
optical path lengths of fibers A and B, as ΔΦA is

FIG. 5. Illustration of fiber interferometer, with relevant
phases marked. The inferred output phase difference ΔΦiðtÞ ¼
ϕLðtÞ − ϕiðtÞ þ δϕshot

i is determined by measuring the output
optical power.

1Ultrastable lasers have been demonstrated using FDL stabi-
lization. For example, a linewidth of 200 mHz has been achieved
with a 5 km FDL at room temperature [36].

2This relationship holds for low frequencies, as the bandwidth
of the control loop is limited by the time delay in the FDL [56]:
f ≪ τ0

−1 ≈ 20 kHz.
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proportional to the ratio nALA=nBLB. The balanced
interferometer displayed in Fig. 1 is still a reasonable
conceptual model for the detector, and it can be seen
from the derivation for ΔΦA in Appendix C the magni-
tude of the DM signal ΔΦDM is unchanged in Eq. (6).
In addition to laser frequency noise, random fluctuations

of the laser’s optical intensity would limit the sensitivity of
a detector like that depicted in Fig. 4. Experiments for
measuring thermal noise in fibers have successfully mini-
mized laser intensity noise to below the thermal noise floor
with methods such as heterodyne detection [35] or with the
use of differential amplifiers [34]. Assuming these methods
are implemented, laser intensity noise is neglected in this
analysis.
We note that the resulting appearance of the detector in

Fig. 4 is similar to that of the DAMNED experiment [13]
for scalar UDM, where an ultrastable laser drives an
unbalanced fiber interferometer. There are, however, some
key differences. While the detector we propose is sensitive
to DM-induced refractive index modulation at sub-Hz
frequencies, the DAMNED experiment is primarily sensi-
tive to the DM-induced strain at kHz frequencies where
their optical cavity has acoustic resonances. Schematically,
the only major difference is the use of an optical fiber
for stabilizing the laser instead of an ultrastable optical
cavity. However, this distinction is important for sup-
pressing acoustic noise at low frequencies (explained in
Section D 4) to reach the fibers’ thermal noise floor. By
achieving a thermally limited measurement scheme, the
sensitivity of the detector can then be enhanced through
cryogenic cooling. In fact, operating at low temperatures
will likely be necessary to set novel constraints on scalar
UDM at sub-Hz frequencies, as demonstrated by the results
in Fig. 3.

2. Photon shot noise and optical power

The phase difference ΔΦ between the arms of an
interferometer is inferred by measuring the output optical
power P after the junction where the arms recombine.
Assuming that the recombining beams have equal optical
power and are maintained at quadrature bias,3 the PSDs of
the phase difference and output optical power fluctuations
ΔP are related by SΔΦ ¼ SΔP=hPi2, where hPi is the
average output optical power.
Small fluctuations in the measured optical power due to

shot noise are indistinguishable from small phase fluctua-
tions in an interferometer, thereby limiting the sensitivity
of our setup. The one-sided PSD of the fluctuations in
measured optical power due to shot noise is [57]

SshotΔP ¼ 2hc
λ0;L

hPi: ðD1Þ

Assuming that the optical power imminent on each photo-
detector is equal,

hPi ¼ PL

2þ 10γBLB þ 10γALA
; ðD2Þ

where γi is the optical loss of fiber i and PL is the optical
power of the laser. The total contribution of shot noise to
the differential phase noise of the detector is thus

SshotΔΦ;A ¼ 4hc
λ0;LPL

ð2þ 10γBLB þ 10γALAÞ; ðD3Þ

which is simply double the shot noise at each detector.
The effects of shot noise can be reduced by increasing

the optical power. Figure 2 shows that a detector with
bare fibers, operating at T ¼ 50 mK, achieves a noise
floor (combined thermomechanical and acoustic noise)
of ≳10−7 rad=

ffiffiffiffiffiffi
Hz

p
. Reducing the total shot noise in

this experiment to the subdominant level of
ffiffiffiffiffiffiffiffiffiffiffiffi
SshotΔΦ;A

q
≲

10−7 rad=
ffiffiffiffiffiffi
Hz

p
requires an average optical power on each

photodetector of hPi≳ 50 μW.
Recent advances in hollow core fiber technology have

yielded hollow core fibers with a propagation loss of
0.17 dB=km (γ¼ 1.7×10−5 m−1) at λ0;L ¼ 1550 nm [39],
reaching the level of low-loss solid core fibers
(0.18 dB=km for SMF28 [40]), and we use these num-
bers for our shot noise estimates. In Fig. 2, the total shot
noise is plotted for a detector with a 10 km solid core
and ∼15 km hollow core fiber, assuming a laser power of
PL ¼ 1 mW. To account for optical loss, the optical
power being diverted into the solid and hollow core fibers
is taken to be 0.25 mW and 0.42 mW, respectively, and
the power reaching each photodetector, hPi ¼ 0.16 mW.

3. Thermal noise in fibers

The detector’s noise floor in the 10−3 − 101 Hz fre-
quency range will likely be dominated by thermal noise
in the optical fibers, which will induce optical phase
fluctuations δϕ at the fiber outputs. Thermal noise in
fibers includes contributions from two effects, which are
referred to as “thermomechanical” noise STMδϕ (discussed
in the main text) and “thermoconductive” noise STCδϕ [32].
Thermoconductive noise results from spontaneous local
temperature fluctuations within an optical fiber [58,59]
that affect the fiber’s length and refractive index via
thermal expansion and the thermo-optic effect, respec-
tively [32]. We have estimated STCδϕ in solid core fibers
using the parameters (for SMF28) and Eq. (1) from
Ref. [35]. Thermoconductive noise in hollow core fibers

3At quadrature bias, the average phase difference between
recombining beams at an interferometer’s output is hΔΦi mod
2π ¼ π=2.
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will likely be lower than that of solid core fibers at lower
frequencies ð≲1 kHzÞ, especially in hollow core fibers
that are evacuated [60].
Assuming the thermal noise for each fiber is uncorre-

lated,

Sthermal
ΔΦ;A ¼

X
i

STMδϕ;i þ STCδϕ;i: ðD4Þ

Thermoconductive noise is approximately frequency
independent at lower frequencies ð≲1 kHzÞ, and scales
with temperature and fiber length as STCδϕ ∝ T2L [61].
Thermomechanical noise, scaling as STMδϕ ∝ TL=f, is
expected to dominate the experiment given lower
frequencies and temperatures considered here. This can
be seen in the thermal noise curves in Fig. 2, which
inherit the 1=f frequency scaling from thermomechanical
noise, except for the 300 K bare case, where thermo-
conductive noise dominates above ∼10−2 Hz.
Key parameters for evaluating fiber thermomechanical

noise using Eq. (7) are summarized in Table III. While
the physical properties ξ and E have not been measured
specifically for SMF28 fibers, the estimates found in
Table III have been shown to reliably predict thermo-
mechanical noise in SMF28 fibers [35] via Eq. (7).
Below we provide details for the evaluation of E, and the
choice of ξ for various scenarios considered in this work.

a. Young’s modulus evaluation

The Young’s modulus (E) is approximated for a fiber by
a weighted average of the Young’s moduli of each material
over the cross sectional area [64]

E ≈
AcoatEcoat þ AcladEclad

A
: ðD5Þ

The values Eclad ¼ 66.1 GPa for a silica fiber and Ecoat ¼
3.3 GPa for the polymer coating (assuming acrylate)

are used, based on measurements at kHz frequencies [64].
The Young’s moduli are assumed to be frequency inde-
pendent. The values for E in Table III are calculated from
Eq. (D5) with the following cross sectional areas:

A ≈
π

4
ðdcoat2 − dpc2Þ

Acoat ¼
π

4
ðdcoat2 − dclad2Þ

Aclad ≈
π

4
ðdclad2 − dpc2Þ;

which approximate the hollow and photonic crystal regions
to be empty space.

b. Bare fiber parameters

While fused silica optical fibers with a polymer coating
have a loss tangent ξ ≈ 10−2 [35,64], bulk fused silica can
potentially achieve ξ ≈ 10−8 at room temperature [65]. In
addition, mechanical dissipation in the violin modes (trans-
verse oscillations) of bare fibers at room temperature is
typically around ξ ≈ 10−7–10−6 [66–68]. Noting that
mechanical loss in a spooled optical fiber will likely differ
from that of bulk silica or violin modes in silica suspensions
under tension, a value of ξ ¼ 10−6 is assumed for bare
fibers at room temperature. By setting dcoat ¼ dclad the
fibers’ cross sectional areas and effective Young’s moduli
are recalculated, with all other parameters in Table III
unchanged.

c. Low-temperature parameters

Measurements of the temperature dependence of the
Young’s modulus of fused silica [69] and the refractive
index of fused silica fibers [70] suggest that n0 and Eclad can
be assumed constant with respect to temperature without
appreciably affecting the estimates in Fig. 2. We assume

TABLE III. Parameters used for room temperature optical fibers with coatings. The solid core fiber is assumed to
be SMF28 [40], and the hollow core fiber is assumed to be nested antiresonant nodeless fiber [62]. We also discuss
how the parameters are affected by removing the fiber coatings and operating at cryogenic temperatures.

Quantity Variable [Units] Solid core Hollow core

Refractive index n0 [-] 1.47 [40] 1
Optical loss γ [m−1] 1.8 × 10−5 [40] 2.8 × 10−5 [62]
Optical dispersion ϵnωL

[-] 0.013 [54] 0
Stress-optic effect ϵnL [-] −0.17 [63] 0
Mechanical loss tangent ξ [-] 10−2 [35,64] 10−2

a

Diameter of coating dcoat [μm] 242 [40] 302a

Diameter of cladding dclad [μm] 125 [40] 185 [27]
Diameter of photonic crystal region dpc [μm] 0 70 [27]
Total cross sectional area A [μm2] 4.6 × 104 6.8 × 104

Young’s modulus E [GPa] 20 25
aThe loss tangent and coating thickness for hollow core fiber is assumed equal to those of SMF28.
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ξ ¼ 10−3 for cryogenic (50 mK) bare fibers, based on
measurements in Ref. [71].
At low temperatures (∼200 K), the acrylate coatings

transition from a rubbery state to a stiffer, glassy state with
a Young’s modulus Ecoat ≈ 40 GPa [72], and the effective
Young’s modulus has been adjusted for coated fibers at
50 mK accordingly with Eq. (D5). However, due to the
absence of data on mechanical dissipation in optical fibers at
low temperatures,we assume ξ ¼ 10−2 for coated fibers at all
temperatures.

4. Acoustic noise in fibers

Mechanical vibrations alter the optical path lengths of
fibers, resulting in phase noise. Here we estimate the
amplitude of mechanical vibrations, which we will generi-
cally refer to as “acoustic noise,” and discuss techniques to
potentially reduce the resulting phase noise to a subdomi-
nant level.
To estimate the effects of mechanical vibrations, we use

the United States Geological Survey NHNM for seismic
noise,which canbe found inTable 4 inRef. [38]. TheNHNM
provides an estimate of seismic acceleration noise Sseismicaa for
a hypothetical, relatively noisy location on Earth. For the
frequency range considered in this work (∼10−3 − 101 Hz),
the NHNM roughly predicts an upper bound of

Sseismic
aa ≲ 10−9

�
m
s2

�
2

Hz−1; ðD6Þ

which we extrapolate to frequencies above 10 Hz by
assuming white acceleration noise ∼10−9 ðms2Þ2Hz−1. We
will assume this seismic noise accounts for all of the
vibrations the fibers will experience: Sacousticaa ≈ Sseismic

aa .
Vibration-induced strains in optical fibers can be sup-

pressed by using low vibration sensitivity fiber spools,
a technology designed to reduce frequency noise in FDL-
stabilized lasers [37]. This technique has been shown to
produce ultrastable lasers at room temperature, reaching
the thermomechanical noise floor in km-scale fibers at
sub-Hz frequencies [36]. Such vibration-insensitive fiber
spools have achieved sensitivities Γa ≡ hacoustic=aacoustic ≲
10−11 ðm=s2Þ−1 to both horizontal and vertical accelera-
tions [73]. Thus, we expect acoustic noise to induce a strain
noise in each fiber on the order of

Sacoustichh ¼ jΓaj2Sacousticaa ≲ 10−31 Hz−1: ðD7Þ
In solid core fiber, this will lead to a change in the

refractive index via the strain-optic effect

δn
n0

¼ ϵnLhacoustic: ðD8Þ

From the analysis in Ref. [63], which considers a linear
strain along a single mode fiber, it can be shown
that ϵnL;solid ≈ −0.17.

Accounting for the strain-optic effect ϵnL;i and
differences in optical dispersion ΔϵnωL

, it can be shown
that the output phase difference due to strains hacoustici in
both fibers is (see Appendix C)

ΔΦacoustic
A ≈ ω0;Lτ0½ð1þ ϵnL;AÞhacousticA

− ×ð1þ ΔϵnωL
þ ϵnL;BÞhacousticB �: ðD9Þ

The strain-optic effect has a larger impact on the
acoustic phase noise than the optical dispersion effect
ðjΔϵnLj > jΔϵnωL

jÞ.
If the individual fiber strains are correlated and of equal

magnitude hacousticA ¼ hacousticB ,

SacousticΔΦ;A ¼ jω0;Lτ0ðΔϵnωL
þ ΔϵnLÞj2Sacoustichh : ðD10Þ

This can be accomplished by cowinding the fibers on a
spool or cylinder, a technique that has been used to observe
the thermal noise floor in fiber-based interferometers
[34,35]. By cowinding both fibers on a single spool with
Γa ≲ 10−11 ðm=s2Þ−1, acoustic noise at the level predicted
by the NHNM can be reduced to a level comparable to
that of thermal noise in this experiment, as can be seen in
Fig. 2. If desired, further suppression of vibration-induced
phase noise can also be achieved using the feedforward
method [74,75].

Appendix E: MINIMUM DETECTABLE SIGNAL
VS MEASUREMENT TIME

The purpose of this Appendix is to motivate Eq. (8),
which describes how the minimum detectable signal ΔΦDM

min
scales with the measurement time τexp. There are two
separate regimes for dark matter detection, the “stochastic”
ðτexp ≲ τDMÞ and “deterministic” ðτexp ≫ τDMÞ regimes
[20]. As discussed in Ref. [42], ΔΦDM

min ∝ τexp
−1=2 for a

coherent signal and ΔΦDM
min ∝ τexp

−1=4 for measurement
durations greatly exceeding theDMcoherence time.Herewe
provide a complementary analysis using a discrete
Fourier transform (DFT) formalism and join both regimes
with a single expression for the DM-induced phase
difference.
We consider the case where the measurement is con-

taminated by noise ΔΦnoise. Performing a measurement of
duration τexp with a sampling rate of fs, a periodogram
SnoiseΔΦ;k can be obtained from the DFT ΔΦ̃noise

k as SnoiseΔΦ;k ¼
2jΔΦ̃noise

k j2=Nfs, where N ≡ fsτexp. Here, the subscript k
refers to the bin number. Assuming Gaussian noise, the
periodogram’s standard deviation can be approximated
by its mean [76], which for a broadband noise source
can be estimated simply by sampling the PSD: hSnoiseΔΦ;ki≈
SnoiseΔΦ ðkfs=NÞ. This expression is valid in the large
N limit.
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Here we define the minimum detectable signal strength
ΔΦDM

min as the signal amplitude required for the signal power
to equal the variance in the noise floor, i.e.

SDMΔΦ;k ¼ SnoiseΔΦ ðkfs=NÞ: ðE1Þ

In the following sectionswe explore the relationship between
ΔΦDM

min and the expected noise floor SnoiseΔΦ ðkfs=NÞ for the
stochastic and deterministic regimes.

1. Minimum detectable signal for τexp ≲ τDM
For measurement times less than the DM coherence time

the signal is approximately coherent ΔΦDM ≈ ΔΦDM
0 ×

cos ð2πfDMtþ θDMÞ. For a coherent signal, the signal power
is entirely contained within a single frequency bin,

SDMΔΦ;k ¼
1

2
ðΔΦDM

0 Þ2τexp: ðE2Þ

From Eq. (E1), the minimum detectable signal would
be ΔΦDM

min ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SnoiseΔΦ

p
τ−1=2exp .

This analysis so far assumed a deterministic signal
amplitude ΔΦDM

0 . However, due to interference of UDM
field components of differing frequency and phase, the
field’s amplitude fluctuates over timescales roughly equal
to τDM. The field amplitude within a chunk of time τDM, φ0,
is a stochastic quantity with a Rayleigh distribution,
where ∼63% of all realizations are less than φrms, resulting
in a reduced signal [20]. Therefore, a DM signal in the
stochastic regime would need an amplitude ∼3 times larger
than an otherwise identical signal with deterministic
amplitude to have the same probability of detection [20].
Accounting for the stochastic nature of the UDM field, the
minimum detectable signal is

ΔΦDM
min ≈ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SnoiseΔΦ

q
τ−1=2exp : ðE3Þ

2. Minimum detectable signal for τexp ≫ τDM
For measurement times exceeding the DM coherence

time, the signal power would be spread across ∼τexp=τDM
frequency bins. However, the measurement could be split
into M ¼ τexp=τDM shorter measurements of duration τDM.
This procedure is known as Bartlett’s method (described in
Ref. [76]), where the total periodogram would be the
average of the M short-time periodograms, resulting in
an M-fold reduction in the variance in the noise floor
SnoiseΔΦ → SnoiseΔΦ =

ffiffiffiffiffi
M

p
. Each individual data segment is dura-

tion τDM, so SDMΔΦ;k ≈ ðΔΦDM
0 Þ2τDM=2. The minimum

detectable signal amplitude is then

ΔΦDM
min ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SnoiseΔΦ

q
ðτDMτexpÞ−1=4: ðE4Þ

3. Combined expression for ΔΦDM
min

For measurement times less than the DM coherence
time, the minimum detectable signal scales as ∝ τexp

−1=2

[Eq. (E3)]. For measurement times greatly exceeding the
DM coherence time, the minimum detectable signal scales
as ∝ τexp

−1=4 [Eq. (E4)]. This relationship between ΔΦDM
min

and τexp is a broken power law, which we simplify with a
“smoothly joined broken power law” [77] by simply adding
contributions from both regimes as

ΔΦDM
min ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SnoiseΔΦ

q
½3τ−1=2exp þ ðτDMτexpÞ−1=4�: ðE5Þ

This function reproduces the behavior of Eqs. (E3) and
(E4) in the limits τexp ≪ τDM and τexp ≫ τDM, respec-
tively, while resulting in a larger ΔΦDM

min in the τexp ≈ τDM
regime, as shown in Fig. 6. This effect is desirable, as
there would be some carryover of stochastic effects in
this regime.

FIG. 6. Dependence of de;min on τexp. We approximate the
minimum detectable signal strength’s dependence on the total
measurement time with Eq. (8) [Eq. (E5)], which accounts for
both measurement regimes: τexp ≲ τDM (whereΔΦDM

min ∝ τexp
−1=2)

and τexp ≫ τDM (where ΔΦDM
min ∝ τexp

−1=4). Here, de;min is calcu-
lated using Eq. (E3) (dashed pink line), Eq. (E4) (dashed yellow
line), and Eq. (E5) (red curve), assuming a noise floor limited
purely by the thermomechanical noise of room temperature,
coated fibers. It can be seen that the combined expression from
Eq. (E5) converges to the ∝ τexp

−1=2 and ∝ τexp
−1=4 limits at low

and high frequencies, respectively.
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