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We analyze the potential of future high-energy deep-inelastic scattering (DIS) experiments to probe new
physics within the framework of the Standard Model effective field theory (SMEFT). We perform a detailed
study of SMEFT probes at a future Large Hadron-electron Collider (LHeC) and a Future Circular lepton-
hadron Collider (FCC-eh) machine, and extend previous simulations of the potential of an electron-ion
collider (EIC) to include Z-boson vertex corrections. Precision Z-pole constraints on vertex corrections
suffer from numerous degeneracies in the Wilson-coefficient parameter space. We find that both the LHeC
and the FCC-eh can help remove these degeneracies present in the existing global fits of precision Z-pole
observables and LHC data. The FCC-eh and LHeC will in many cases improve upon the existing precision
electroweak bounds on the SMEFT parameter space. This highlights the important role of precision DIS
measurements for new physics studies.
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I. INTRODUCTION

The accomplishments of the Standard Model (SM) are
many. With the discovery of the Higgs boson in 2012, the
predicted particle spectrum in the SM is complete.
However, the SM suffers from several shortcomings. The
dark matter observed in the Universe is not contained in the
SM, nor are the mechanisms responsible for the baryon-
antibaryon asymmetry and neutrino masses. Moreover, the
SM contains numerous aesthetic issues, such as the
electroweak hierarchy problem and the extreme hierarchy
between fermion Yukawa couplings. A more complete and
compelling theory is desirable. However, there has so far
been neither conclusive evidence for new particles beyond
the SM (BSM) nor any definitive deviation from SM
predictions.
In an attempt to address these lingering issues in our

understanding of nature, many experiments have been
launched or are under design. In this work, we consider
the BSM potential of several proposed future electron-
proton/deuteron deep-inelastic scattering (DIS) experi-
ments; the Large Hadron-electron Collider (LHeC) [1],
the Future Circular lepton-hadron Collider (FCC-eh) [2],
and the Electron-Ion Collider (EIC) [3]. The LHeC is a
proposed upgrade of the Large Hadron Collider (LHC). It
would operate alongside the LHC in order to utilize the

LHC proton and ion beams. The earliest realistic opera-
tional period is estimated to be 2032, which coincides with
the LHC Run 5 period. The integrated luminosity of the
LHeC is projected to be of the order of 100 fb−1. It will
operate at center-of-mass (c.m.) energies reaching 1.5 TeV.
It is designed to provide novel measurements in QCD,
investigate DIS physics at low Bjorken-x values, improve
upon existing electroweak (EW) physics measurements,
and probe BSM physics. The FCC-eh would occur at a new
accelerator complex at CERN, and would feature center-of-
mass energies approaching 3.5 TeV and integrated lumi-
nosities in the inverse attobarns [2]. Like the LHeC it will
feature a broad physics program spanning QCD and
electroweak measurements to new physics searches. The
EIC is a United States Department of Energy project that
will be constructed at Brookhaven National Laboratory
(BNL). The EIC will be the first high-energy DIS machine
that collides polarized electrons with polarized protons. It is
anticipated to commence operatingwithin a decade. TheEIC
is designed to collide a polarized electron beamof energy5 to
18 GeV with polarized proton beams of energies 41 to
275GeV,with polarized light ions of energies up to 166GeV,
andwith unpolarized heavy ions of energies up to 110GeV. It
will run at CM energies between fixed-target-scattering and
high-energy colliders, namely 70 GeV to 140 GeV. It will
improve the extraction of parity-violating (PV) DIS asym-
metries in EW neutral-current (NC) cross section with
reduced uncertainties from luminosity and detector accep-
tance/efficiency.
Our goal in this work is to study the BSM potential of the

LHeC, FCC-eh and the EIC with a detailed accounting of
anticipated uncertainties. We consider the neutral-current
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(NC) DIS cross section as our observable at the LHeC,
following previous studies of electroweak physics at the
LHeC [4] and FCC-eh [5]. At the EIC we focus on PV
asymmetries, following earlier studies of BSM physics at
the EIC [6]. Since there has been no conclusive sign of new
particles beyond the SM yet, we perform our analysis
within the framework of the Standard Model effective field
theory (SMEFT) (see [7] for a review of the SMEFT). In the
SMEFT, one builds higher-dimensional operators using the
existing SM particle spectrum. All new physics is assumed
to be heavier than the SM states, as well as the accessible
collider energies. The leading order basis of the SMEFT for
on shell fields has been completely classified up to
dimension-12 [8–13]. In this work, we restrict ourselves
to dimension-6 (there is a lepton-number violating operator
at dimension-5, which is irrelevant to our study). Previous
work has shown that DIS measurements at the EIC and in
low-energy fixed target experiments can resolve blind spots
in the semileptonic four fermion Wilson coefficient space
that remain after Drell-Yan measurements at the LHC
[14,15], and that EIC measurements of single-spin asym-
metries can competitively probe Wilson coefficients of
dipole operators [16]. We consider here the full spectrum of
Wilson coefficients that can alter the DIS process at leading
order in the SMEFT loop expansion. These include both
semileptonic four fermion Wilson coefficients and Z-boson
vertex correction factors, for a total of 17 Wilson coef-
ficients at leading order in the SMEFT loop expansion. It is
traditionally assumed that the vertex corrections are best
measured with Z-pole precision EW observables at LEP
and SLC. However, due to the limited kinematic informa-
tion available from Z-pole data there are numerous
degeneracies between the Wilson coefficients. This was
illustrated for example in [17], where in addition contri-
butions from existing LHC data were also considered. The
obtained constraints on the Wilson coefficients can become
an order of magnitude weaker when the full spectrum of
Wilson coefficients is activated, as compared to turning on
only a single coefficient. We show here that the future DIS
measurements can help resolve these degeneracies. This
and other key aspects of our study are summarized below:

(i) We find that the LHeC and FCC-eh can significantly
extend the search reach for semileptonic four-fermion
operators. While the EIC can probe the SMEFT
operators of interest to a few TeV, the LHeC, and
FCC-eh can exceed 10 TeV. We thoroughly study
different beam energy, polarization options, luminos-
ity assumptions and lepton species choices at all three
colliders. We find that no single choice probes the
entire SMEFT parameter space, and that a full
spectrum of run scenarios is needed to fully explore
the physics possibilities beyond the SM.

(ii) We find that the option of a positron beam in future
DIS experiments can significantly extend there
reaches in certain sectors of the Wilson coefficient

parameter space, due to the structure of the under-
lying matrix elements.

(iii) It is often assumed that the most stringent constraints
on universal shifts of the Z-boson vertex couplings
to fermions are obtained from fits to the precision
Z-pole observables. While this is true when only a
single Wilson coefficient is turned on, when several
are activated simultaneously numerous degeneracies
arise, as demonstrated in [17]. We show that the
LHeC and FCC-eh can improve upon the existing
bounds on the Z-boson couplings by resolving these
degeneracies.

This manuscript is organized as follows. In Sec. II, we
briefly review the relevant formalism of the SMEFT and
DIS and also define our observables of interest. In Sec. III,
we describe our LHeC, FCC-eh, and EIC pseudodatasets,
as well as anticipated uncertainties. We also detail our
numerical procedure for fitting of the SMEFT parameters.
In Sec. IV, we present the results of the fits. We conclude in
Sec. V. Details regarding the construction of the error
matrix and the generation of pseudodata are given in the
Appendix.

II. REVIEW OF THE FORMALISM

A. Review of the SMEFT formalism

The SMEFT is a model-independent extension of the SM
Lagrangian in which one builds operators of dimension
higher than four, OðnÞ

k , using the existing spectrum of the
SM and assuming the SM gauge symmetries. The Wilson
coefficients associated with these operators are denoted as

CðnÞ
k . These effective couplings are defined at a UV cutoff

scale, Λ, which is assumed to be heavier than all the SM
states and all accessible collider energies. The Lagrangian
takes the form

LSMEFT ¼ LSM þ
X
n>4

1

Λn−4

X
k

CðnÞ
k OðnÞ

k : ð1Þ

In this work, we restrict ourselves to operators of dimension-
6. There is only a single lepton-number violating operator at
dimension 5, which is irrelevant to our analysis of lepton-
number conserving observables. We note that we linearize
our observables in the Wilson coefficients. We will see later
that the results obtained justify this assumption. There are 17
operators that affectNCDISmatrix elements at leading order
in coupling constants [10], which are summarized in Table I.
Here, φ is the SU(2) Higgs doublet, l and q are the left-
handed lepton and quark doublets, and e, u, and d are the
right-handed electron and up- and down-quark singlets,
respectively. The τI are the Pauli matrices and the double-
arrow covariant derivative is defined such that

φ†iD
↔

μφ ¼ φ†iDμφþ H:c: ð2Þ
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φ†iD
↔

μτ
Iφ ¼ φ†iDμτ

Iφþ H:c: ð3Þ

We suppress flavor indices and assume flavor universality in
our analysis for simplicity. We remark that operators con-
taining scalar and dipole fermionic bilinears are discarded in
our analysis. Such vertex factors produce cross section
contributions proportional to fermion masses, which are
small and are neglected here. We note that SMEFT loop
corrections are expected to be subdominant to the next-to-
leading order (NLO) QCD corrections. Since we include the
NLO QCD corrections in our study and find that they do not
have a large effect on the obtained results, we assume that the
higher-order terms in the SMEFT loop expansion can be
safely neglected.

B. Review of the DIS formalism

In our analysis we study NC DIS in the process
lþH → l0 þ X, where l is an electron or a positron,
H can be a proton or a deuteron, and l0 and X are the

final-state lepton and hadronic systems, respectively.
Charged current DIS involves missing energy and con-
sequently the reconstruction of hadronic final states in
order to determine the kinematic variables. It therefore
receives different and typically larger systematic uncertain-
ties. For this reason we do not consider this mode in our
study. We include next-to-leading order QCD corrections to
both the SM and the SMEFT corrections. At leading order
in the perturbative QCD expansion, this process can be
mediated by single photon or Z-boson exchange or by the
SMEFT contact interaction of leptons with quarks. The LO
Feynman diagrams are presented in Fig. 1. The NLO QCD
corrections to the SM process are well-known [18–22].
These corrections modify only the quark lines, as illustrated
in Fig. 2. Therefore the corrections are identical for both
SM and SMEFT cross sections. It is convenient to express
the DIS cross sections in terms of structure functions.
The NC DIS cross section expressions for collisions of a

lepton l with an unpolarized or polarized hadron are given
in terms of the NC structure functions FNC

1;3;L and gNC1;5;L by

d2σlNC
dxdQ2

¼ 2πα2

xQ4

�½1þ ð1 − yÞ2�2xFNC
1 þ sgnðlÞ½1 − ð1 − yÞ2�xFNC

3 þ ð1 − yÞ2FNC
L

� ð4Þ

and

d2ΔσlNC
dxdQ2

¼ 8πα2

xQ4

�½1þ ð1 − yÞ2�xgNC5 − sgnðlÞ½1 − ð1 − yÞ2�xgNC1 þ ð1 − yÞgNCL
�
; ð5Þ

TABLE I. Dimension-6 operators in the Warsaw basis [10] affecting NC DIS matrix elements at leading order in
the coupling constants. Operators in the left column shift the ffV vertices, while those on the right induce
semileptonic four-fermion contact interactions. Both the operators and their associated Wilson coefficients are
shown.

ffV Semileptonic four-fermion

CφWB OφWB ¼ ðφ†τIφÞWI
μνBμν

Cð1Þ
lq Oð1Þ

lq ¼ ðlγμlÞðq̄γμqÞ
CφD OφD ¼ ðφ†DμφÞ�ðφ†DμφÞ Cð3Þ

lq
ðlγμτIlÞðq̄γμτIqÞ

Cð1Þ
φl Oð1Þ

φl ¼ ðφ†iD
↔

μφÞðlγμlÞ Ceu Oeu ¼ ðēγμeÞðūγμuÞ
Cð3Þ
φl Oð3Þ

φl ¼ ðφ†iD
↔

μτ
IφÞðlγμτIlÞ Ced Oed ¼ ðēγμeÞðd̄γμdÞ

Cφe Oφe ¼ ðφ†iD
↔

μφÞðēγμeÞ Clu Olu ¼ ðlγμlÞðūγμuÞ
Cð1Þ
φq Oð1Þ

φq ¼ ðφ†iD
↔

μφÞðq̄γμqÞ Cld Old ¼ ðlγμlÞðd̄γμdÞ
Cð3Þ
φq Oð3Þ

φq ¼ ðφ†iD
↔

μτ
IφÞðq̄γμτIqÞ Cqe Oqe ¼ ðq̄γμqÞðēγμeÞ

Cφu Oφu ¼ ðφ†iD
↔

μφÞðūγμuÞ
Cφd Oφd ¼ ðφ†iD

↔

μφÞðd̄γμdÞ
Cll Oll ¼ ðlγμlÞðlγμlÞ
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where sgn is the particle signum function that returns þ1
for particles and −1 for antiparticles. Q is the usual
DIS momentum transfer, x is the Bjorken variable, and y is
the inelasticity parameter. These are defined as usual

for the DIS process. We define the reduced cross
sections as

d2σlr;NC
dxdQ2

¼
�
2πα2

xQ4
½1þ ð1 − yÞ2�

�−1 d2σlNC
dxdQ2

; ð6Þ

d2Δσlr;NC
dxdQ2

¼
�
4πα2

xQ4
½1þ ð1 − yÞ2�

�−1 d2ΔσlNC
dxdQ2

: ð7Þ

From this point onward, when we mention cross sections,
we mean the reduced ones and denote them simply by
ðΔÞσNC.
In Fig. 3, we show the NC DIS cross section with NLO

QCD corrections for e−p collisions at
ffiffiffi
s

p ¼ 1.3 TeV with
right-handed (RH) electrons of polarization Pl ¼ þ80%

FIG. 1. LO Feynman diagrams for the partonic process medi-
ating lþH → l0 þ X.

FIG. 2. Representative Feynman diagrams describing the NLO QCD corrections to lþH → l0 þ X.

FIG. 3. NC DIS cross section with NLO QCD corrections for e−p collisions at
ffiffiffi
s

p ¼ 1.3 TeV with Pl ¼ þ80%.
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and the corresponding k factors as a function of Q for
various x values. We observe that the NLO QCD correc-
tions to the NC DIS cross section are 30% at most. They
exhibit high sensitivity to Q and low sensitivity to x for
Q≲ 30 GeV, and low sensitivity to Q and high sensitivity
to x for higher values of Q. We have compared the Wilson
coefficient constraints obtained using NLO QCD structure
functions with those obtained using LO QCD, and have
found very similar results. We therefore believe that the
neglect of QCD corrections at the NNLO level and beyond
are justified in our analysis.

C. Observables of interest

The observable of interest at the LHeC and FCC-eh is the
NCDIS cross section, σNC, of unpolarized protons/deuterons
with electrons or positrons of various polarizations. We
choose this observable in order to compare our simulated
pseudodata with previous studies in the literature [4,5]. For
the EIC we consider PV asymmetries in cross sections of
polarized electrons with either polarized or unpolarized
protons/deuterons. Previous studies have shown that this
asymmetry at the EIC generically provides somewhat more
sensitivity to BSM effects than asymmetries with polarized
protons or lepton-charge asymmetries [6], so we focus on
this case here. We define the unpolarized PV asymmetry by

APV ¼ σþNC − σ−NC
σþNC þ σ−NC

; ð8Þ

and the polarized one by

ΔAPV ¼ Δσ0NC
σ0NC

: ð9Þ

Here, σ�NC is the unpolarized NC DIS e−H (H ¼ p,D) cross
section evaluated with λl ¼ �Pl, σ0NC is the same as σ�NC but
with λl ¼ 0, and Δσ0NC is the same as σ0NC but with a
polarized hadron. Pl is the assumed value for the lepton-
beam polarization at the EIC. We linearize the SMEFT
expressions in this study. Thus, the SMEFTobservables have
the generic form

O ¼ OSM þ
X
k

CkδOk þOðC2
kÞ; ð10Þ

where k runs over the active Wilson coefficients, O ¼ σNC
or APV is the observable, and δOk is the SMEFT correction
to the observable proportional to the Wilson coefficient Ck.

III. DESCRIPTION OF THE ANALYSIS

A. Description of the pseudodata

For our analysis we use the most recent publicly
available LHeC pseudodatasets [23,24], as well as the
EIC dataset found to be most sensitive to SMEFT Wilson
coefficients in [6]. For the FCC-eh we generate pseudo-
datasets following the procedure established in [6], with the
FCC-eh run parameters found in [5]. We refer to the
pseudodatasets as datasets from this point onward. In
Table II, we summarize the configurations of these datasets
in terms of beam energies, lepton-beam polarizations, and
total-integrated luminosities, together with our labeling

TABLE II. Configuration of the LHeC, FCC-eh, and EIC datasets used in our analysis in terms of beam energies, lepton- and hadron-
beam polarizations, total-integrated luminosities, our labeling scheme, and the observable of interest.

Experiment Dataset label Dataset configuration Observable

LHeC LHeC1 60 GeV × 1000 GeVe−p; Pl ¼ 0;L ¼ 100 fb−1 σNC
LHeC2 60 GeV × 7000 GeVe−p; Pl ¼ −80%;L ¼ 100 fb−1

LHeC3 60 GeV × 7000 GeVe−p; Pl ¼ þ80%;L ¼ 30 fb−1

LHeC4 60 GeV × 7000 GeVeþp; Pl ¼ þ80%;L ¼ 10 fb−1

LHeC5 60 GeV × 7000 GeVe−p; Pl ¼ −80%;L ¼ 1000 fb−1

LHeC6 60 GeV × 7000 GeVe−p; Pl ¼ þ80%;L ¼ 300 fb−1

LHeC7 60 GeV × 7000 GeVeþp; Pl ¼ 0%;L ¼ 100 fb−1

FCC-eh FCCeh1 60 GeV × 50000 GeVe−p; Pl ¼ −80%;L ¼ 2ab−1 σNC
FCCeh2 60 GeV × 50000 GeVe−p; Pl ¼ þ80%;L ¼ 0.5ab−1

FCCeh3 60 GeV × 50000 GeVeþp; Pl ¼ 0;L ¼ 0.2ab−1

EIC D4 10 GeV × 137 GeVe−D;Pl ¼ 80%;L ¼ 100 fb−1 APV

D5 18 GeV × 137 GeVe−D;Pl ¼ 80%;L ¼ 15.4 fb−1

P4 10 GeV × 275 GeVe−p; Pl ¼ 80%;L ¼ 100 fb−1

P5 18 GeV × 275 GeVe−p; Pl ¼ 80%;L ¼ 15.4 fb−1

ΔD4 The same as D4 but with Pl ¼ 0 and PH ¼ 70% ΔAPV
ΔD5 The same as D5 but with Pl ¼ 0 and PH ¼ 70%
ΔP4 The same as P4 but with Pl ¼ 0 and PH ¼ 70%
ΔP5 The same as P5 but with Pl ¼ 0 and PH ¼ 70%
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scheme and also the observable of interest. Note that in this
work, we do not consider a possible tenfold high-
luminosity scenario of the EIC. We also consider joint
LHeC and FCC-eh fits that combine all run scenarios for
each experiment listed below. We restrict ourselves to bins
that satisfy x ≤ 0.5, Q ≥ 10 GeV, and 0.1 ≤ y ≤ 0.9. We
introduce these additional cuts to avoid large uncertainties
from nonperturbative QCD and nuclear dynamics that
occur at low Q and high x, where we expect SMEFT
effects to be reduced. We call the bins that pass our cuts the
good bins. The kinematic coverage of the LHeC, FCC-eh,
and EIC datasets is displayed in Fig. 4. The darker regions
in these plots indicate the good regions.
We next discuss the anticipated error budgets for these

datasets. For the LHeC and FCC-eh, we use the error
estimates provided in previous analyses [4,5]. The uncer-
tainty components consist of uncorrelated statistical uncer-
tainties (δσstat), uncorrelated efficiency errors (δσueff ), and
correlated systematic errors (δσsys). The correlated system-
atic uncertainties include contributions from the lepton
energy scale and polar angle measurements (δσlen and
δσlpol), the hadronic energy scale (δσhen), radiative correc-
tions (δσrad), photoproduction backgrounds (δσgam), a
global efficiency factor (δσgeff ), and luminosity (δσlum).
We assume the luminosity error to be 1% relative to the
cross section. We introduce the systematics in a fully
correlated manner. As for the EIC asymmetries, we have
statistical uncertainties given by event counts, corrected
for beam polarization and lepton beam luminosities:
δAPV;stat ¼ 1

Pl

ffiffiffi
N

p , δΔAPV;stat ¼ Pl
PH

δAPV;stat, where Pl is

the assumed lepton-beam polarization at the EIC and PH

is the assumed proton/deuteron polarization. The assumed
systematic errors δAPV;sys are mainly due to particle back-
ground and other imperfections in measurements. They are
assumed to be uncorrelated and 1% relative to the asym-
metry. We assume uncertainties in lepton (hadron) beam
polarization, δðΔÞApol, to be fully correlated and 1% (2%)
relative in asymmetry. More discussion on the anticipated
experimental uncertainties at the EIC is given in [6].
Additionally, for all datasets we take into account PDF
errors fully correlated between bins, δσpdf and δAPV;pdf ,
respectively. We summarize the expected uncertainties for
both the EIC, FCC-eh, and LHeC in Table III below. In the
Appendix we discuss how these systematic uncertainties

FIG. 4. Kinematic coverage of LHeC, FCC-eh, and EIC data-
sets for several choices of center-of-mass energy.

TABLE III. Anticipated values or ranges of uncertainties at the
LHeC, FCC-eh, and the EIC for the good bins used in our
analysis. All uncertainties are relative with respect to the
observable of interest, unless stated otherwise.

Experiment
Source of
uncertainty

Value or range of
uncertainty [%] Observable

LHeC Statistical 0.10–6.83 σNC
Uncorrelated
efficiency

0.50

Lepton energy 0.11–0.49
Lepton polar angle 0.00–0.13
Hadron energy 0.00–1.81
Radiative
corrections

0.30

Photoproduction
background

0.00–1.00

Global efficiency 0.50
Calorimetry noise 0.00
Luminosity 1.00

FCC-eh Statistical 0.10–5.49 σNC
Lepton energy 0.90
Lepton polar angle 0.40
Hadron energy 2.00
Radiative
corrections

0.30

Photoproduction
background

0.00–1.00

Global efficiency 0.50
Luminosity 1.00

EIC Statistical 1.53–65.87 APV
Systematical 1.00
Lepton beam
polarization

1.00

Statistical 1.74–75.28 ΔAPV
Systematical 1.00
Hadron beam
polarization

2.00

Statistical 3.86–166.64 ALC
Systematical 1.00
Luminosity 2.00 [absolute]
NLO QED 0.00–0.51 [absolute]
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are incorporated into the error matrix for our analysis. We
also give details of our pseudodata generation and describe
our statistical procedure for deriving Wilson coefficients
bounds in the Appendix.
In Figs. 5 and 6 we present the aforementioned uncer-

tainty components at the LHeC, FCC-eh, and EIC for
representative datasets. On the horizontal axis, we order the
bins of the indicated datasets. On the vertical axes are the
central values of the observables and the uncertainty
components that go into the diagonal entries of the error
matrix. The central values of cross sections and asymme-
tries are denoted by the black lines, statistical uncertainties
by red, systematics by magenta, and PDF errors by orange.
The blue line for the LHeC indicates uncorrelated effi-
ciency errors, whereas the cyan lines for P4 and Δ P4
denote beam-polarization errors. The bins are sorted first by

low to high Q and then by low to high x. This explains the
observed sawtooth behavior.
From Figs. 5 and 6 we can make the following points:
(i) Statistical uncertainties are smaller for the LHeC and

FCC-eh runs for the majority of the bins compared
to the EIC. They constitute only a negligible part of
the total uncertainties for these machines. Measure-
ments at the LHeC and FCC-eh will be systematics
limited. We note that the PDF error constitutes a
non-negligible fraction of the error budget, indicat-
ing the need to eventually consider a joint fit of
PDFs and Wilson coefficients [25–27].

(ii) The statistical uncertainties are the leading error for
the unpolarized PV asymmetries at the EIC, and are
almost an order of magnitude larger than other
sources of errors. For the polarized PVasymmetries,

FIG. 5. The various uncertainty components that enter the diagonal entries of the error matrix for datasets LHeC3 (left) and P4 (right).
The red line denotes the statistical uncertainty, the blue line denotes the uncorrelated global-efficiency uncertainty, the magenta line
indicates the systematic uncertainty, and the orange line is the PDF uncertainty. For P4, the cyan line denotes the beam-polarization
uncertainty.

FIG. 6. The same as in Fig. 5 but for ΔP4 (left panel) and for the FCC-eh (right panel).

SMEFT PROBES IN FUTURE PRECISION DIS EXPERIMENTS PHYS. REV. D 108, 075007 (2023)

075007-7



statistical uncertainties are smaller than the PDF
errors.

(iii) Other uncorrelated uncertainties originating from
efficiency errors compete with the systematics and
PDF errors at the LHeC. Systematic uncertainties
dominate for most of the FCC-eh bins.

(iv) Correlated uncertainties at the LHeC account for the
largest source of errors for the majority of the bins
used in our analysis. At the EIC, for the PV
asymmetries, the only correlated uncertainty comes
from beam polarization, and it is a small part of the
total uncertainty.

IV. SMEFT FIT RESULTS

We discuss here our numerical results. For our input
parameters we use an electroweak scheme with GF, α, and
MZ as our inputs. The numerical values for the parameters
used in our analysis are as follows:

GF ¼ 1.1663787 × 10−5 GeV−2; ð11Þ

α−1 ¼ 137.036; ð12Þ

MZ ¼ 91.1876 GeV: ð13Þ

We assume a lepton-beam polarization at the EIC of
Pl ¼ 80%, and a hadron-beam polarization of PH ¼ 70%.
The assumed polarizations for thevarious LHeC andFCC-eh
runs are given in Table II. For our UV scale we take
Λ ¼ 1 TeV. We use NNPDF3.1 NLO PDFs [28] for the
unpolarized cross sections and NNPDF 1.1 NLO polarized
PDFs [29]. The 2-loop running strong coupling constant is
numerically evaluated according to the renormalization
group equation

μ2R
dαs
dμ2R

¼ βðαsÞ ¼ −ðb0α2s þ b1α3sÞ; ð14Þ

where b0 ¼ 33−2Nf

12π and b1 ¼ 153−19Nf

24π2
with the initial con-

dition αsðM2
ZÞ ¼ 0.1185. We set μ2R ¼ Q2 and take Nf ¼ 5

since we impose the cut Q > 10 GeV on our data.

A. Bounds on semileptonic four-fermion operators

We begin by activating only the seven semileptonic four-
fermion operators. Previous studies have shown that the
Drell-Yan process at the LHC, the natural channel to probe
these operators due to its energy reach and excellent
measurement precision, has difficulty probing certain linear
combinations of Wilson coefficient in this subspace [14,30].
Future DIS experiments can help resolve these degeneracies
[6,14]. Restricting ourselves to this subspace of Wilson
coefficients allows us to compare the potential of DIS
measurements at the EIC, FCC-eh, and LHeC to improve
uponDrell-Yanmeasurements at the LHC. Themarginalized

95% confidence level (CL) bounds on the semileptonic four-
fermion Wilson coefficients projected from the full seven-
parameter (7d) fit and the corresponding effective UV scales
are presented in Table IV. We also present the bounds
obtained by activating only single operators for comparison.
We consider several different fit scenarios in this table: fits of
the separate EIC datasets P4, ΔP4, the combined EIC fit of
D4, ΔD4, P4, and ΔP4, the individual LHeC runs, a joint
LHeC fit, the individual FCC-eh fits, and a joint FCC-eh fit.
We can make the following points from this table:

(i) There are significant differences between the margin-
alized and nonmarginalized bounds in fits to individ-
ual datasets. When we activate the entire sector of
four-fermion operatorsweobserve strong correlations
among Wilson coefficients, leading to degeneracies.
However, when we combine the different run scenar-
ios at a given machine the flat directions in the
respective individual fits are removed. The effective
scales probed in the fully marginalized joint fits range
from 500 GeV to 1 TeV at the EIC, from 2.5 TeV to
14TeVat the LHeC, and from2.0TeV to 18TeVat the
FCC-eh, depending on the Wilson coefficient being
considered.

(ii) The polarized PV asymmetries at the EIC play an
important role in the fully marginalized joint fit,
even though they typically lead to weaker con-
straints on individual coefficients.

(iii) No single LHeC or FCC-eh dataset can provide
strong probes of all the four-fermion semileptonic
Wilson coefficients. This is not surprising since the
different runs each utilize distinct lepton helicities
and species, and since these sevenWilson coefficients
characterize the strength of lepton-quark contact
interactions for different helicity states. The full
spectra of proposed run scenarios at both the LHeC
and FCC-eh are needed to fully explore the allowed
parameter space. These possibilities are represented in
the figure by the joint LHeC and FCC-eh bounds.

(iv) The joint LHeCdataset imposes significantly stronger
bounds on semileptonic four-fermion Wilson coef-
ficients than the EIC. This is also not surprising,
given its higher momentum transfers where SMEFT-
induced deviations are expected to be larger. For the
majority of operators the joint FCC-eh fit imposes
stronger constraints than the joint LHeC fit.

(v) e−p collisions with RH electrons (LHeC3, LHeC6,
and FCCeh2) provide the optimal configurations to
constrain Ceu and Ced.

(vi) The highest-luminosity e−p collisions with LH
electrons (LHeC2, LHeC5, and FCCeh1) are the

optimal configuration to constrain Cð1Þ
lq and Cð3Þ

lq .
(vii) Polarized eþp collisions (LHeC4) yield the optimal

configuration to constrain Clu and Cld. This is an
interesting result that shows the physics gain result-
ing from a positron beam at a future LHeC. It arises
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from the structure of the underlying matrix elements.
We discuss this point in more detail later.

(viii) eþp collisions with unpolarized positrons (LHeC7
and FCCeh3) serve as the optimal configuration to
constrain Cqe.

The effective UV scales presented in Table IVare defined
as Λ=

ffiffiffiffiffiffi
Ck

p
for each Wilson coefficient Ck. We note that the

convergence of the EFT expansion is controlled by the ratio
CkQ2=Λ2, where Q denotes the DIS momentum transfer.
The effective scale constraints obtained above indicate that
this ratio is significantly less than unity for all runs
considered. This supports our truncation of the expansion
at dimension-6, as well as our linearization of the dimension-
6 SMEFT effects.
In Fig. 7, we present representative confidence ellipses

projected from the 7d fit of the four-fermion Wilson

coefficients. In order to emphasize the changes in higher-
dimensional fits asmoreWilson coefficients are activated,we
also include ellipses where only two Wilson coefficients are
activated at a time. We show the results for the strongest
LHeC, FCC-eh, and EIC datasets, as well as the joint fits, for
the shownpairs ofWilson coefficients.Wepresent zoomed-in
ellipses of the joint FCC-eh and LHeC fits for clarity. Flat
directions not present in the 2d fits emerge when all several
Wilson coefficients are activated, significantlyweakening the
bounds obtained from individual run scenarios. However,
they are ameliorated in the joint fits, and in particular the
LHeC and FCC-eh joint fits show very similar constraints in
both the marginalized and nonmarginalized cases. The joint
EIC constraint ellipse remainsweaker in the joint fit, although
it is much stronger than the individual P4 fit, indicating the
need to consider multiple run scenarios at the EIC.

FIG. 7. Nonmarginalized (top) and marginalized (bottom) 95% confidence level ellipses for the parameter subspaces spanned by Cð1Þ
lq

andClu (left) andC
ð1Þ
lq andCqe (right) with Λ ¼ 1 TeV. Shown are the strongest individual EIC dataset, the strongest LHeC and FCC-eh

sets for these Wilson coefficients, as well as the joint EIC, FCC-eh and LHeC fits. The insets show the zoomed-in plot of the joint LHeC
and FCC-eh fits.
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Referring to Table II we note that there are three
parameters in the simulations that can be varied: luminos-
ity, lepton-beam polarization, and lepton species. We
further investigate the physics impact of varying these
parameters. For simplicity we will focus this study on the
LHeC, although the conclusions hold for the FCC-eh as
well. We can compare LHeC2 to LHeC5, and LHeC3 to
LHeC6, to check the importance of integrated luminosity.
We can also compare LHeC3 and LHeC4 to understand the
consequences of having different lepton species. In Fig. 8,
we present plots that compare the impact of increasing the
integrated luminosity. Increasing the luminosity (going
from LHeC2 to LHeC5 or LHeC3 to LHeC6) only slightly
improves the estimated bounds. As shown in Fig. 5
systematic uncertainties dominate over statistical uncer-
tainties at both the LHeC and the FCC-eh, and must be
brought under control to facilitate high-luminosity BSM
analyses.
Figure 9 demonstrates that significant improvements

occur when we change the lepton species from electrons
to positrons. This is despite LHeC4, with positrons,
having three times less luminosity than LHeC3 with
electrons, as we recall from Table II. The reason is that
the y-dependence of the various Wilson coefficient struc-
tures in the matrix elements changes when we switch from
electrons to positrons. We note that replacing an electron
with a positron amounts to the following interchanges in

the matrix elements: Ceu by Clu, Ced by Cld, and Cð1Þ
lq ∓

Cð3Þ
lq by Cqe. Referring to Eq. (7) in Ref. [14], we see that

these replacements remove the ð1 − yÞ2 factors multiply-
ing the Wilson coefficients. These factors reduce the
cross sections for the electron case, since on average
ð1 − yÞ2 ∼ 1=4. Removing them leads to larger corrections

from the SMEFT for the positron-induced cross sections.
This result demonstrates the usefulness of positron runs in
the future DIS program.
Finally, it is known that the LHC has blind spots in the

Wilson coefficient parameter space due to the observables
measured in the Drell-Yan process, and that measurements
of the DIS process can help remove these degeneracies
[6,14]. It is possible that the DIS measurements themselves
exhibit approximate degeneracies as well. We study that
issue here, again focusing on the LHeC for illustrative
purposes. Looking at the leading-order matrix elements, we
see that there are two kinematic structures, a term propor-
tional to ð1 − yÞ2 and a term without y dependence.

FIG. 8. Marginalized 95% CL ellipses in the parameter subspaces spanned by Cð1Þ
lq and Cð3Þ

lq (left) and Clu and Cld (right) at
Λ ¼ 1 TeV comparing datasets having luminosities that differ by a factor of 10, namely LHeC2 and LHeC5 (left) and LHeC3 and
LHeC6 (right).

FIG. 9. The same as in Fig. 8 but for Clu and Cld, with datasets
having different lepton species (LHeC3 and LHeC4).
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We must separately set these to zero, for both the up-quark
and down-quark channels. Doing so leads to four con-
ditions on the seven semileptonic four-fermion Wilson

coefficients. We choose to keep ðCð1Þ
lq ; C

ð3Þ
lq ; CqeÞ as our

basis. This leads to the following conditions on the other
four Wilson coefficients in order to have all SMEFT-
induced corrections to e−p scattering vanish:

Ceu ¼
Pl − 1

Pl þ 1

Qu − geþguþη̂γZ
Qu − ge−gu−η̂γZ

ðCð1Þ
lq − Cð3Þ

lq Þ; ð15Þ

Clu ¼
Pl þ 1

Pl − 1

Qu − ge−guþη̂γZ
Qu − geþgu−η̂γZ

Cqe; ð16Þ

Ced ¼
Pl − 1

Pl þ 1

Qd − geþgdþη̂γZ
Qd − ge−gd−η̂γZ

ðCð1Þ
lq þ Cð3Þ

lq Þ; ð17Þ

Cld ¼
Pl þ 1

Pl − 1

Qd − ge−gdþη̂γZ
Qd − geþgd−η̂γZ

Cqe: ð18Þ

We note that this also removes SMEFT corrections to eþp
scattering upon taking Pl → −Pl. Here, Qu=d is the up-/

down-quark electric charge, gf� ¼ gfV � gfA, g
f
V=A are the

usual SM vector/axial fermion couplings to the Z-boson,
and the energy-dependent η factor is defined by

η̂γZ ¼ GFM2
Z

2
ffiffiffi
2

p
πα

Q2

Q2 þM2
Z
: ð19Þ

Before presenting results we first discuss several caveats
associated with these solutions. First, due to the presence of
the energy-dependent η factors, any flat direction can only
be approximate. As noted in [14] these degeneracies
become more apparent at high energies and momentum

transfers. Since Q2 reaches up to 1 TeV at the LHeC, and
consequently Q2 ≫ M2

Z, we expect them to become
important at this experiment. Second, since the solutions
above depend on the lepton polarization, a clear path to
removing any degeneracy is clear: run the LHeC and FCC-
eh with multiple polarization scenarios. This again illus-
trates the importance of running with multiple run scenarios
as outlined in Table II. We also note that this example is a
bottom-up construction of a flat direction only, and we
make no attempt to connect this to an ultraviolet model.
Setting Pl ¼ −80%, we can study the approximate flat
directions that appear in the fits of LHeC2, LHeC4, and
LHeC5 as a representative example. Letting Q2=M2

Z → ∞,
Eqs. (15) through (18) give

Ceu ≈ −13ðCð1Þ
lq − Cð3Þ

lq Þ≡ Cð1Þ
eu ; ð20Þ

Clu ≈ −0.052Cqe ≡ Cð1Þ
lu ; ð21Þ

Ced ≈ −22ðCð1Þ
lq þ Cð3Þ

lq Þ≡ Cð1Þ
ed ; ð22Þ

Cld ≈ 0.12Cqe ≡ Cð1Þ
ld : ð23Þ

We now impose these relations and perform fits in the 3d

parameter space of of Cð1Þ
lq , C

ð3Þ
lq , and Cqe. In Fig. 10, we

present effective UV scales derived from the marginalized

95% CL bounds on Cð1Þ
lq , C

ð3Þ
lq , and Cqe. This figure shows

that the reaches of the LHeC2, LHeC4, and LHeC5 runs
become weak, as expected. The joint LHeC fit can,
however, cover this region of parameter space, as can
the EIC. This explicitly demonstrates the importance of
running future DIS experiments with multiple parameter
scenarios.

FIG. 10. Effective UV scales corresponding to marginalized 95% CL bounds on the Wilson coefficients Cð1Þ
lq , C

ð3Þ
lq , and Cqe in the

analysis of flat directions for LHeC2, LHeC4, and LHeC5.
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B. Bounds on f fV vertex corrections

We now activate all 17 Wilson coefficients listed in
Table I. These include both four-fermion interactions and
operators which shift the ffV vertices. One typically
expects corrections to the ffV vertices to be better con-
strained by precision Z-pole observables. Indeed, fits
with only a single Wilson coefficient activated result in
extremely strong bounds, reaching 10 TeV in some cases
[31]. However, due to the limited number of measurements
possible there are numerous degeneracies in this parameter
space. This is nicely illustrated in [17], where bounds on
ffV vertex corrections are loosened by roughly an order of
magnitude when switching from single-coefficient fits to
results where the other Wilson coefficients are marginalized
over. For example, the bound on the effective UV scale
associated with the coefficient CϕWB decreases from
approximately 15 TeV to 1 TeV when all coefficients
are turned on (see [17], Fig. 3). Other possibilities for
probing these couplings include top, Higgs and diboson
data at the LHC, which are also considered in [17], and on
shell Z-boson production at the LHC [32]. We consider

here the potential of future DIS experiments to probe this
sector of the SMEFT.
We present in Table V the marginalized 95% CL bounds

on Wilson coefficients coming from the full 17d fit. We
show results for joint EIC fit of D4, ΔD4, P4, and ΔP4, as
well as the joint LHeC and FCC-eh constraints. In addition
we show the results from the 34d fit of Z andW observables
and of EW, diboson, Higgs, and top data, adapted from [17].
To convert the results of [17] to our notation we take the
individual non-marginalized 95% CL bounds, symmetrize
them, form pairwise covariance matrices using the given
correlations, and then re-derivemarginalized2-parameter fits
at 95% CL. The correlation matrix for our joint LHeC fit is
shown in Fig. 11, and the joint FCC-eh fit is shown in Fig. 12.
We caution that because of the different numbers of param-
eters fitted in [17], this is not quite an apples-to-apples
comparison between the two fits:

(i) The LHeC bounds are stronger than those from the
joint fit of electroweak precision data and LHC
results for the majority of Wilson coefficients,
indicating that it would add constraining power to

TABLE V. Marginalized 95% CL bounds onWilson coefficients in the 17d fit assumingΛ ¼ 1 TeV, as well as the
corresponding effective UV scales in units of TeV. Shown is the combined EIC fit of D4, ΔD4, P4, and ΔP4, the
joint LHeC and FCC-eh fits, as well as the marginalized bounds and UV scales from the 34d fits of EW, diboson,
Higgs, and top data [17].

Joint EIC Joint LHeC Joint FCCeh EW, diboson, Higgs, and top data

CφD ½−3.8; 3.8� ½−0.019; 0.019� ½−0.013; 0.013� ½−1.6; 0.81�
Λffiffiffiffiffiffi
CφD

p 0.51 7.2 8.8 0.91

CφWB ½−9.9; 9.9� ½−0.098;−0.098� ½−0.034; 0.034� ½−0.36; 0.73�
Λffiffiffiffiffiffiffiffi
CφWB

p 0.32 3.2 5.4 1.4

Cð1Þ
φq

½−38; 38� ½−0.40; 0.40� ½−0.39; 0.39� ½−0.27; 0.18�
Λffiffiffiffiffiffi
Cð1Þ
φq

p 0.16 1.6 1.6 2.1

Cð3Þ
φq

½−4.1; 4.1� ½−0.11; 0.11� ½−0.031; 0.031� ½−0.11; 0.012�
Λffiffiffiffiffiffi
Cð3Þ
φq

p 0.49 3.1 5.7 4.1

Cφu ½−38; 38� ½−0.51; 0.51� ½−0.45; 0.45� ½−0.63; 0.25�
Λffiffiffiffiffiffi
Cφu

p 0.16 1.4 1.5 1.5

Cφd ½−84; 84� ½−0.82; 0.82� ½−0.71; 0.71� ½−0.91; 0.13�
Λffiffiffiffiffiffi
Cφd

p 0.11 1.1 1.2 1.4

Cð1Þ
φl

½−18; 18� ½−0.094; 0.094� ½−0.060; 0.060� ½−0.19; 0.41�
Λffiffiffiffiffiffi
Cð1Þ
φl

p 0.23 3.3 4.1 1.8

Cð3Þ
φl

½−4.1; 4.1� ½−0.060; 0.060� ½−0.022; 0.022� ½−0.13; 0.055�
Λffiffiffiffiffiffi
Cð3Þ
φl

p 0.49 4.1 6.7 3.3

Cφe ½−5.7; 5.7� ½−0.16; 0.16� ½−0.046; 0.046� ½−0.41; 0.79�
Λffiffiffiffiffiffi
Cφe

p 0.42 2.5 4.6 1.3

Cll ½−7.7; 7.7� ½−0.039; 0.039� ½−0.026; 0.026� ½−0.084; 0.02�
Λffiffiffiffiffiffi
Cll

p 0.36 5.1 6.2 4.4
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FIG. 12. Correlation matrix of the 17d joint FCC-eh fit of Wilson coefficients.

FIG. 11. Correlation matrix of the 17d joint LHeC fit of Wilson coefficients.
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the global fit. The FCC-eh are stronger than both the
LHeC and EIC in most cases.

(ii) From the correlation matrix we observe that there is
only weak correlation between the vertex corrections
and the four-fermion operators in the joint LHeC and
FCC-eh fits.

(iii) The bounds from the EIC reach 500 GeV for the
effective scale at most, and are weaker than those
obtained from the LHeC and in [17].

To study this further and to see what including the future
precision DIS data in the existing global fit may lead to, we
consider several representative 2d projections of our results.
In Figs. 13 and 14, we present non-marginalized 95% CL
ellipses in the parameter subspace spanned by ðCφD; C

ð3Þ
φq Þ,

ðCφu; CφeÞ, ðCφWB; C
ð1Þ
φlÞ, and ðCφWB; CφuÞ. We consider

the joint fits from each DIS experiment, as well as the
EWPO fits adapted from [17]. We can make the following
points from these representative 2d projection:

(i) The potential LHeC probes are in most cases
stronger than those of the joint electroweak and
LHC fit, and the FCC-eh bounds are stronger still.
In particular the joint electroweak and LHC fit
exhibits strong correlations between parameters that
results in elongated ellipses in several of the 2d
projections that we consider, as illustrated by the
pairs ðCφD;C

ð3Þ
φq Þ and ðCφWB; C

ð1Þ
φlÞ. The combina-

tions of future LHeC and FCC-eh runs do not
show these correlations, and can remove these

FIG. 13. Marginalized 95% CL ellipses in the two-parameter fits of CφD and Cφe (left) and C
ð1Þ
φl and Cφe (right) at Λ ¼ 1 TeV. Shown

are joint EIC, LHeC, and FCC-eh fits, as well as the EWPO fit adapted from [17].

FIG. 14. Marginalized 95% CL ellipses in the two-parameter fits of CφD and Cφe (left) and C
ð1Þ
φl and Cφe (right) at Λ ¼ 1 TeV. Shown

are joint EIC, LHeC, and FCC-eh fits, as well as the EWPO fit adapted from [17].
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approximate degeneracies in the joint electroweak
and LHC fit.

(ii) The EIC probes are far weaker than those obtained
from the other fits, and do not contribute signifi-
cantly to probing the ffV parameter space.

V. CONCLUSIONS

In this work we have studied the BSM potential of the
LHeC, FCC-eh, and EIC within the SMEFT framework.
Following previous studies in the literature the observables
considered are the NC DIS cross section at the LHeC and
FCC-eh, and parity-violating asymmetries at the EIC. We
considered the full spectrum of SMEFT operators that can
shift the DIS cross section, including both semileptonic
four-fermion operators and ffV vertex corrections. This
leads us to a 17-dimensional Wilson coefficient parameter
space. We considered numerous experimental configura-
tions for these machines, and various energy, polarization
and lepton species in order to determine their impact on
probes of SMEFT. We have found that the EIC can probe
UV scales up to 3 TeV. This increases to 13 TeV for
individual LHeC runs, 14 TeV with the joint LHeC run, and
as high as 18 TeV in the joint FCC-eh fit. No single-run
scenario at any experiment is ideal for probing the full
SMEFT parameter space, and for the purpose of BSM
studies it will be important to vary polarization and lepton
species. Most importantly, we have found that future
precision DIS measurements can lift degeneracies present
in the precision electroweak fit to Z-pole observables.
Constraints from the LHeC and FCC-eh are estimated to be
in most cases stronger than those coming from combined
fits of Z-pole and LHC data. Our results further demon-
strate the BSM potential of future DIS studies.
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APPENDIX: DETAILS OF THE EXPERIMENTAL
ERROR MATRIX AND PSEUDODATA

GENERATION

1. Construction of the error matrix

We discuss here the structure of the error matrix. The
experimental error matrix is defined by

Eexp;bb0 ¼
� ðδQunc;b ⊕ δQcor;bÞ2; b ¼ b0

ρbb0δQcor;bδQcor;b0 ; b ≠ b0
ðA1Þ

with b; b0 ¼ RangeðNbinÞ, where b and b0 are the bin
indices, Nbin is the number of bins, Q ¼ σNC or ðΔÞAPV
is the observable, and δQunc;b and δQcor;b are the uncorre-
lated and correlated errors summed in quadrature for the
bth bin. We define

δQ1 ⊕ δQ2 ⊕ � � � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δQ2

1 þ δQ2
2 þ � � �

q
ðA2Þ

as a shorthand notation. For the correlated errors we assume
full correlation between bins: ρbb0 ¼ 1. For the LHeC and
FCC-eh datasets, we have

δσunc;b ¼ δσstat;b ⊕ δσueff;b; ðA3Þ

δσcor;b ¼ δσsys;b; ðA4Þ

with

δσsys;b ¼ δσlen;b ⊕ δσlpol;b ⊕ δσhen;b ⊕ δσrad;b

⊕ δσgam;b ⊕ δσgeff;b ⊕ δσlum;b: ðA5Þ

The meaning of each individual systematic error in
Eq. (A5) was discussed in Sec. III A. For the EIC datasets
we have

δðΔÞAPV;unc;b ¼ δðΔÞAPV;stat;b ⊕ δðΔÞAPV;sys;b; ðA6Þ

δðΔÞAPV;cor;b ¼ δðΔÞAPV;pol;b: ðA7Þ
In addition to the experimental errors we must consider the
PDF uncertainties. Potential uncertainties from uncalculated
higher-order QCD corrections, typically estimated by vary-
ing renormalization and factorization scales, are smaller than
the other sources of uncertainty and are neglected in our
analysis. The PDF error matrix is defined by

Epdf;bb0 ¼
1

Npdf

XNpdf

m¼1

ðQm;b −Q0;bÞðQm;b0 −Q0;b0 Þ; ðA8Þ

whereNpdf is the number of PDFmembers andQ0ðmÞ;b is the
SM prediction for the observableQ at the bth bin, evaluated
with the central (mth) member of the relevant PDF set. The
total error matrix is given by

E ¼ Eexp þ Epdf : ðA9Þ

In our analysis, we also consider joint fits of various
datasets. We assume that the PDF errors and all systematic
uncertainties, except the photoproduction background, are
correlated among runs. The joint error matrix is given by the
individual error matrices of the runs on the block-diagonal
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entries, with error matrices of correlated uncertainties in the
off-block diagonal entries given by

Jnn0 ¼ Jexp;nn0 þ Jpdf;nn0 : ðA10Þ

Here, n, n0 are the run indices and

Jexp;nn0;bb0 ¼ ρnn0;bb0 fδQcor;n;b
fδQcor;n0;b0 ; ðA11Þ

Jpdf;nn0;bb0 ¼
1

Npdf

XNpdf

m¼1

ðQn;m;b−Qn;0;bÞðσNC;n0;m;b0 −Qn0;0;b0 Þ:

ðA12Þ

The index, b ¼ 1;…; Nbin;n, Nbin;n denotes the number of
bins of the nth dataset. eδσcor;n;b is given by Eq. (A5) after
removing the photoproduction background error, δσgam;b.
Q;n;0ðmÞ;b is the observable evaluated with the central (mth)
member of the PDF set in the bth bin of the nth run. The joint
error matrix takes the form

E ¼

0BBBBB@
E1 J12 � � � J17

E2 � � � J27

. .
. ..

.

E7

1CCCCCA
sym

; ðA13Þ

where En is the error matrix of the nth set given by Eq. (A9).

2. Generation of the pseudodata

Following the procedure of [6] we simulate numerous
realizations of each LHeC, FCC-eh, and EIC run, which we
denote as pseudoexperiments. For each pseudoexperiment
we define a χ2 test function by

χ2e ¼
XNbin

b;b0¼1

ðQb −Qe;bÞÊ−1
bb0 ðQb0 −Qe;b0 Þ; ðA14Þ

where Qb is the SMEFT expression and Qe;b is the
simulated value for the observable Q in the bth bin.
Here, Ê−1 indicates the symmetrized inverse error matrix,

Ê−1 ¼ 1

2
½E−1 þ ðE−1ÞT�: ðA15Þ

For a given observable Q we define pseudoexperimental
values according to

Qe;b ¼ QSM
b þ re;bδQunc;b þ

X
j

r0j;eδQcorj;b; ðA16Þ

where QSM
b is the SM prediction for the observable Q. re;b

and r0j;e are random variables picked from the unit normal
distribution, namely re;b; r0j;e ∼N ð0; 1Þ. δQunc;b is the
total uncorrelated uncertainty, and δQcorj;b is the jth
correlated uncertainty. Note that each correlated error
is introduced with a single random variable for each
pseudoexperiment.

3. Statistical treatment for Wilson
coefficient bounds

The χ2 function for the joint LHeC and FCC-eh runs,
which have 206 and 120 bins respectively, for a single
pseudoexperiment has the form

χ2eðre;r0eÞ¼ χ2SM;eðre;r0eÞþωeðre;r0eÞ ·CþC ·MC; ðA17Þ

where re and r0e stand for all the random variables involved.
The best-fit values of the Wilson coefficients, C̄e, are
given by minimizing the χ2e function for each pseudoexperi-
ment via

∂χ2e
∂C

����
C¼C̄e

¼ 0: ðA18Þ

The inverse covariance matrix of the fit is obtained from the
second derivatives of the χ2e function as

V−1 ¼ 1

2

∂
2χ2e

∂C∂C

����
C¼C̄e

¼ M: ðA19Þ

This is constant for all the pseudoexperiments, hence we
have dropped the subscript e. The average of the best-fit
values of Wilson coefficients across pseudoexperiments, C̄,
is given by

C̄ ¼
�XNexp

e¼1

V−1
	−1�XNexp

e¼1

V−1Ce

	
¼ 1

Nexp

XNexp

e¼1

Ce; ðA20Þ

where Nexp is the number of pseudoexperiments. Since the
inverse covariance matrix is constant for all pseudoexperi-
ments, we manage to avoid running a large number of
pseudoexperiments, which saves a great deal of computa-
tional expense. We justify this approach by noting that the
distribution of the best-fit values of each Wilson coefficient
exhibits a Gaussian distribution around zero. We know
that the average of the best-fit values of each Wilson
coefficient is expected to be zero, which is in fact the case
for large Nexp.
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The marginalized bound for the Wilson coefficient Ck is
½−ΔCk;ΔCk� where

ΔCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ2ðd; cÞ

V−1
kk

s
: ðA21Þ

The confidence ellipse in the parameter subspace spanned
by Wilson coefficients Ck and Ck0 is described by

ðCk Ck0 ÞV−1
kk0



Ck

Ck0

�
¼ Δχ2ðd; cÞ; ðA22Þ

where Δχ2ðd; cÞ is the quantile of the χ2 distribution for d
fitted parameters at confidence level c. Here, V−1

kk is the
inverse of the kk entry of the covariance matrix, and V−1

kk0 is
the inverse of the covariance matrix after removing all the
rows (columns) other than the kth (k0th) ones.
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