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In this paper we develop the theory of synchrotron radiation in P-odd two-dimensional electrodynamics
based on the quantum theory of radiation and the solution of the Dirac equation in a constant magnetic field
in (2þ 1)-dimensional space-time. Exact analytical expressions for the partial probabilities of the process
obtained for the first time both in the case of a massive and massless charged fermion. Asymptotic formulas
obtained for the spectral distribution and total radiation power of a relativistic massive fermion in the
quasiquantum and ultraquantum limits. The spectral distribution and total power of the synchrotron
radiation of a massless charged fermion calculated in the limiting case of large values of the principal
quantum number of the initial and final states of the fermion.
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I. INTRODUCTION

Synchrotron radiation in (3þ 1)-dimensional space-time
is one of the fundamental processes accompanying the
propagation of charged fermions in an external magnetic
field [1,2].
Recently, the study of the classical and quantum theory

of SR in various models of (2þ 1)-dimensional electro-
dynamics has been of great interest. Note that the theory of
SR in QED2þ1 has not fully developed for both massive and
massless charged fermions [3–11].
In (2þ 1)-dimensional electrodynamics the Huygens

principle is violated, which is mathematically expressed in
the fact that the retarded Green’s function of the d’Alembert
equation has support everywhere inside the future light cone,
and not only on the surface of the characteristic cone, as in the
(3þ 1)-dimensional case.
The retarded Green’s function of the d’Alembert equa-

tion in (2þ 1)-dimensional space-time is determined by the
expression [12,13]

Gret
2þ1ðXÞ ¼

ΘðX0ÞΘðX2Þ
2π

ffiffiffiffiffiffi
X2

p ; Xμ ¼ xμ − x0μ;

where the Heaviside step function ΘðXÞ is introduced,
while in the (3þ 1)-dimensional space-time

Gret
3þ1ðXÞ ¼

1

4πR
δðt − t0 − RÞ; R ¼ jr⃗ − r⃗0j;

where δðt − t0 − RÞ is the Dirac δ function.

As a result, in an odd-dimensional space-time, the
gradient of the retarded potential of the field of a point
charge in the wave zone determined by the integral over
proper time of the sum of two terms, and the integrals of
each of these terms diverge separately. These integrals
regularized in [3], and it is shown that the well-known
methods of classical electrodynamics can also be used to
calculate the SR power of a point charge in an odd-
dimensional space-time.
It is essential that in the case of a circular motion of a

point charge with an ultrarelativistic velocity, the main
contribution to the integral over proper time made by a
small interval preceding the retarded one [3].
Note that before the appearance of the work [3], the

calculation of the SR power in (2þ 1)-dimensional electro-
dynamics carried out by a method based on the classical
Dirac-Lorentz equation, which describes the motion of an
electron, taking into account radiative friction [4].
In [5,6], based on the calculation of the radiative shift of

the electron energy and the optical theorem, the SR process
in the P-odd QED2þ1 model investigated in the limit of
zero charged fermion mass. The quantum theory of SR
developed in a P-even QED2þ1 model with a doubled
fermionic representation and in a reduced QED3þ1 [14,15]
in papers [7,8].
Massless quantum electrodynamics in an external mag-

netic field is of great interest in connection with the
prediction of magnetic catalysis of chiral symmetry break-
ing, in solid-state physics and low-dimensional systems, as
well as in cosmology [3,16–20]. Induced bremsstrahlung,
as indicated in [21], may be the main mechanism of
perpendicular light reflection in the case when the incident
monochromatic wave is perpendicular to the graphene
layer. The SR theory of a massless charged particle has*peminov@mail.ru
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only recently been constructed by Galtsov [11] within the
framework of quantum theory in (3þ 1)-dimensional
scalar and spinor quantum electrodynamics by the operator
Schwinger method.
The aim of this work is to construct a quantum theory of

SR in P-odd QED2þ1.
In contrast to the method used in the works [5–8,11], to

solve the problem, we use the quantum theory of radiation
and the exact solutions of the Dirac equation in a constant
magnetic field in P-odd QED2þ1. We consider the case
when the Dirac equation contains only the parity-violating
mass term. In the presence of both parity-preserving and
parity-violating mass terms, the solution of the Dirac
equation in a magnetic field in both the (2þ 1)- and
(3þ 1)-dimensional case obtained in Ref. [22].
Section II presents the calculation of the exact formula

for the partial probability of a spontaneous transition of a
massive electron from the initial to any low-lying state with
the emission of a photon in a magnetic field with an
arbitrary strength.
In Sec. III, analytical results are obtained that describe

the dependence of the spectral distribution and total
radiation power on the dynamic parameter of synchrotron
radiation in the quasiquantum approximation, taking into
account the first quantum correction to the radiation power,
as well as in the ultra-quantum approximation.
In Sec. IV, we obtain an exact formula for the partial

probabilities of the SR of a massless charged fermion. It
shown that the transition probabilities depend only on the
principal quantum numbers of the initial and final states of
the fermion and do not contain an explicit dependence on
the magnetic field strength. The spectrum and total power
of the SR of a massless fermion investigated in the limiting
case of values of the principal quantum number of the
initial and final states of the fermion that are large
compared to unity.
In Sec. V, we discuss the results of the work.

II. SPECTRAL DISTRIBUTION
OF PROCESS PROBABILITY

In (2þ 1)-dimensional space-time, the Dirac matrix
algebra described using Dirac matrices in two nonequiva-
lent ways [16,23–26]. In this work, we will use the
representations [27]

γ0 ¼ ξσ3; γ1 ¼ iξσ1; γ2 ¼ iξσ2; ð2:1Þ

where ξ ¼ �1, σkðk ¼ 1; 2; 3Þ are the Pauli matrices.
As a result, there are two different Dirac equations for

describing spinor fields

½γμðpμ þ eAμÞ −mI�ΨðxÞ μ ¼ 0; 1; 2: ð2:2Þ

Here ΨðxÞ is a two-component spinor, p̂x and p̂y the
projections of the momentum operator, andm is the mass of

an electron with the charge −e < 0, AμðxÞ potential of the
external field.
Unlike QED3þ1, a massive electron in (2þ 1)-

dimensional space-time has only one spin state, i.e. the
electron spin is not a pseudovector but a pseudoscalar with
respect to Lorentz transformations, and the mass term in
Eq. (2.2) violates P and T parity. Note also that the magnetic
field strength in QED2þ1 is also a pseudoscalar.
Thus, in QED2þ1 we have two different and odd Dirac

equations, each of which can be used to describe an
electron or positron with one spin degree of freedom.
In a constant magnetic field given in the Landau gauge

by the potential

Aμ ¼ ð0; 0; xHÞ; ð2:3Þ

the energy levels and the wave function of the stationary
states of a two-dimensional electron determined by the
following formulas:

Ψðt;x;yÞ¼ 1ffiffiffiffiffiffiffiffi
2En

p
�
un−1ðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enþ ξm

p

unðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−ξm

p
�
e−iEntþiypy ; ð2:4Þ

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eHn

p
; ð2:5Þ

where n ¼ 0; 1; 2;… is the principle quantum number and
py is the electron momentum projection.
The Hermite function in the formula (2.4) expressed in

terms of the Hermite polynomials by the formula

unðηÞ ¼
ðeHÞ14�

2nn!
ffiffiffi
π

p �
1=2 e

−η2

2HnðηÞ;

HnðηÞ ¼ ð−1Þneη2 dn

dηn
ðe−η2Þ; ð2:6Þ

and the argument of these functions

η ¼
ffiffiffiffiffiffiffi
eH

p �
xþ py

eH

�
: ð2:7Þ

In the Furry’s representation, the probability of transition in
a unit of time from the initial state of a fermion ðn; pyÞ to a
state ðn0; p0

yÞ with radiation a photon with a 3-momentum
kμ ¼ ðω; kx; kyÞ is determined by the formula

wðn; py → n0; p0
yÞ ¼

g2

4π

Z
dk⃗
ω

δðEn − En0 − ωÞje⃗� · j⃗j2;

ð2:8Þ

j⃗ ¼
Z

Ψþ
n0;p0

y
ðx⃗Þα⃗e−ik⃗ r⃗Ψn;py

ðx⃗Þd2x: ð2:9Þ
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Here α⃗ ¼ γ0γ⃗, the Dirac δ function expresses the energy
conservation law, the quantity g2 in QED2þ1 has the
dimension of mass, and of the two independent 4-vectors
of linear polarization in QED3þ1, on the mass shell in
(2þ 1)-dimensional QED the only possible choice for the
linear-polarization vector is [28,29]

eμ ¼ ð0;− sin ϕ; cos ϕÞ; ð2:10Þ

where ϕ is the polar angle of the photon momentum. The
matrix elements in the formula (2.9) with wave functions
(2.4) calculated using the integral [30]

Z þ∞

−∞
dxe−ixkxunðγ1

2xþ γ−
1
2pyÞun0 ðγ1

2xþ γ−
1
2py0 Þ

¼ e½iμþiðn−n0ÞΦ�Inn0 ðρÞ; ð2:11Þ

where the following notations are adopted:

γ ¼ eH; μ ¼ k1
2γ

ðpy þ py0 Þ;

ρ ¼ ðEn − En0 Þ2
2γ

; k2 − ik1 ¼ jk⃗jeiΦ: ð2:12Þ

The Laguerre function defined by the formula

Inn0 ðρÞ ¼
1ffiffiffiffiffiffiffi
nn0

p e−
ρ
2ρ

n−n0
2 Qn−n0

n0 ðρÞ; ð2:13Þ

and Laguerre polynomials

Qn−n0
n0 ðρÞ ¼ eρρ−ðn−n0Þ

dn
0

dρn
0 ðρne−ρÞ: ð2:14Þ

As a result, we get

ðe⃗ · j⃗Þ¼ i
eiμþiðn−n0ÞΦ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
EnEn0

p
n
In−1;n0 ðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enþξm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0 −ξm

p

− In;n0−1ðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−ξm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0 þξm

p o
δp0

y;py−ky :

where δp0
y;py−ky is the Kronecker symbol.

After integrating over the variables ω and p0
y we arrive at

the following expression for the partial probability of the
process per unit time and per unit volume:

wðn→ n0Þ ¼ g2

8EnEn0

h
In−1;n0 ðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enþξm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0 −ξm

p

− In;n0−1ðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−ξm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En0 þξm

p i
2
: ð2:15Þ

Thus, in contrast to the standard QED3þ1, for the partial
probability of the SR it is possible to obtain the exact result

in two-dimensional quantum electrodynamics described by
the formula (2.15).
Let us find, for example, the probability of SR for the

transition of a massive charged fermion from excited states
ðn ≥ 1; ξ ¼ −1Þ to the ground state ðn0 ¼ 0Þ:

wðn → n0 ¼ 0Þ ¼ g2

4

�
1 −

m
En

�
1

ðn − 1Þ! e
−ρρn−1;

ρ ¼ ðEn −mÞ2
2eH

: ð2:16Þ

In the limiting case of a relativistic initial electron
ðp⊥ ≫ m; n ≫ 1; ρ ≃ nÞ, using Stirling’s formula

n! ≃
�
n
e

�
n ffiffiffiffiffiffiffiffi

2πn
p

; n ≫ 1; ð2:17Þ

from (2.16) we get the following result:

wðn ≫ 1 → n0 ¼ 0Þ ¼ g2

4
ffiffiffiffiffiffiffiffi
2πn

p : ð2:18Þ

III. SR POWER OF A MASSIVE
RELATIVISTIC FERMION

Let us find the spectral distribution and total SR power of
a massive relativistic fermion in a relatively weak magnetic
field when the following conditions are satisfied:

e
m2

�
1

2
ðFμνFμνÞ2

�1
2 ¼ H

H0

≪ 1;

m
p⊥

≪ 1;
m
p0⊥

≪ 1; n − n0 ≫ 1: ð3:1Þ

Dynamic parameter of synchrotron radiation

χ ¼ e
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
¼ H · p⊥

H0 ·m
; ð3:2Þ

whereH0 ¼ m2

e is the Schwinger value of the magnetic field
strength for the considered fermion. Let us also introduce
the invariant spectral variable

u ¼ χ − χ0

χ0
¼ p⊥ − p0⊥

p0⊥
¼

ffiffiffi
n

p
−

ffiffiffiffi
n0

p
ffiffiffiffi
n0

p ; n0 ≠ 0; ð3:3Þ

which does not depend on the mass of the electron.
Under conditions (3.1), the argument of the Laguerre

functions ρ → ρ0 − 0, where ρ0 ¼ ð ffiffiffi
n

p
−

ffiffiffiffi
n0

p
Þ2:

1 −
ρ

ρ0
≃

m2

p⊥p0⊥
≪ 1: ð3:4Þ
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Note that inequality (3.4) remains valid in a magnetic field
of any finite strength starting from some sufficiently small
value of the mass of a hypothetical charged fermion, and
the limiting case of a massless fermion corresponds to the
case when ρ ¼ ρ0.
When condition (3.4) are satisfied, the following asymp-

totic formulas are valid for the Laguerre functions in terms
of the Macdonald functions [1]

In;n0−1ðρÞ ≃ 2N
ffiffiffi
ε

p ½K1
3
ðxÞ − ðuþ 1Þ ffiffiffi

ε
p

K2
3
ðxÞ�;

In−1;n0 ðρÞ ≃ 2N
ffiffiffi
ε

p ½K1
3
ðxÞ þ ffiffiffi

ε
p

K2
3
ðxÞ�; ð3:5Þ

where the notations are accepted

N¼ðuþ1Þ12
2π

ffiffiffi
3

p ; ε¼
�
m
p⊥

�
2

; u¼
ffiffiffiffi
n
n0

r
−1; x¼ u

3χ
:

ð3:6Þ

The SR power obtained by multiplying the probability by
the photon energy and replacing the summation over the
quantum number with integration over the spectral variable
u. As a result, from the formulas (2.15), (3.5), and (3.6) for
the spectral power distribution SR in odd QED2þ1 we get
the following representation:

dP
du

¼ mg2u3

24π2χð1þuÞ3
�
K1

3
ðxÞ−ξ

uþ2

u
K2

3
ðxÞ

�
2

; x¼ u
3χ

:

ð3:7Þ

Let us find the asymptotics of the total radiation power in
the quasiquantum approximation. To do this, we first
transform the formula (3.7) to the form

dP¼ 3mg2χtdt
8π2ð1þ3χtÞ3 ½9χ

2t2K2
1
3

ðtÞ

−6ξχtð2þ3χtÞK1
3
ðtÞK2

3
ðtÞþð2þ3χtÞ2K2

2
3

ðtÞ�: ð3:8Þ

In the classical approximation, everywhere in the for-
mula (3.8), except for the common factor proportional to
the parameter χ, we assume χ ¼ 0, and integration over the
variable t carried out using the value of the integral [1]

Z
∞

0

tμ−1K2
ρðtÞdt

¼ 2μ−3

ΓðμÞΓ
2

�
μ

2

�
Γ
�
μ

2
þ ρ

�
Γ
�
μ

2
− ρ

�
; μ > 2ρ; ð3:9Þ

where ΓðxÞ is the Euler gamma function.
Then for the radiation power, we obtain the formula of

the classical approximation

Pcl ¼
mg2χ

π
ffiffiffi
3

p ; ð3:10Þ

which agrees with the results of the work [3,4,8] up to a
numerical factor. Note that the classical radiation power is
the same for two possible types of charged fermions in odd
two-dimensional electrodynamics.
Next, we calculate the first quantum correction to the

classical radiation power. Keeping in formula (3.8) the next
term of the expansion with respect to the parameter χ and
using (3.9), as well as the integral

Z
∞

0

tλKμðtÞKνðtÞdt¼
2λ−2

Γðλþ1ÞΓ
�
1þλþμþν

2

�

×Γ
�
1þλ−μþν

2

�
Γ
�
1þλþμ−ν

2

�

×Γ
�
1þλ−μ−ν

2

�
;

λ>μþνþ1; ð3:11Þ

we find

P1
q ¼ −

mg2χ2ffiffiffi
3

p
π

�
ξþ 7π

ffiffiffi
3

p

16

�
: ð3:12Þ

As in QED3þ1, in the ultraquantum, case (χ ≫ 1) the
main contribution to the radiation power in the formula (3.7)
given by the area in which the argument of the Macdonald
function x ≪ 1 and the asymptotic formula is valid

KμðxÞ ≃
2μ−1ΓðμÞ

xμ
; x ≪ 1: ð3:13Þ

Using further the value of the integral

Z
∞

0

xμ

ð1þ 3χxÞν dx ¼ Γðμþ 1ÞΓðν − μ − 1Þð3χÞ−ν−1
ΓðνÞ ;

ð3:14Þ

we get

Puq ≃
17mg2

36π
ffiffiffi
3

p 2−
2
3Γ2

�
2

3

�
ð3χÞ13; ð3:15Þ

where χ ∼m−3. Thus, so as in the standard QED3þ1, in the
ultraquantum case the leading term of the radiation power
asymptotics does not depend on the parity-violating elec-
tron mass.
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IV. SR OF A MASSLESS CHARGED
FERMION IN QED2 + 1

For amassless charged fermion, the partial probabilities of
the process determined by the exact formula (2.15) atm ¼ 0:

wðn → n0Þ ¼ g2

8
½In;n0−1ðρ0Þ − In−1;n0 ðρ0Þ�2; ð4:1Þ

where the argument of the Laguerre functions is

ρ0 ¼ ð ffiffiffi
n

p
−

ffiffiffiffi
n0

p
Þ2: ð4:2Þ

The result (4.1) and (4.2) is exact and does not explicitly
depend on the magnetic field strength. The partial proba-
bilities of spontaneous transitions of a massless charged
fermion depend only on the principal quantum numbers of
the initial and final states of the fermion.
The recurrence relations for the Laguerre functions with

shifted indices and with an argument equal to the transition
point transformed to the form

In;n0−1ðρ0Þ ¼ In;n0 ðρ0Þ −
ffiffiffiffiffi
ρ0
n0

r
I0n;n0 ðρ0Þ;

In−1;n0 ðρ0Þ ¼ In;n0 ðρ0Þ þ
ffiffiffiffiffi
ρ0
n

r
I0n;n0 ðρ0Þ: ð4:3Þ

Then formula (4.1) takes the following final form:

wðn → n0Þ ¼ g2

8

ðn − n0Þ2
nn0

ðI0n;n0 ðρ0ÞÞ2: ð4:4Þ

Further, we find the total SR power of a massless fermion
when the quantum numbers n and n0 satisfy the conditions

n ≫ 1; n0 ≫ 1; n − n0 ≫ 1 ð4:5Þ

for any magnetic field strength.
To do this, we note that under conditions (4.5) for

the derivative of the Laguerre function at ρ → ρ0 − 0 the
following asymptotic formula is valid in terms of the
Macdonald function [1]

I0n;n0 ðρÞ ≃
ffiffiffiffiffiffiffi
nn04

p

π
ffiffiffiffiffiffiffi
3ρ0

p
�
1 −

ρ

ρ0

�
K2

3
ðzÞ; ð4:6Þ

where the argument of the Macdonald function is defined by
the formula

z ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffi
ρ20nn

04

q �
1 −

ρ

ρ0

�3
2

: ð4:7Þ

Therefore, taking into account also the formula (3.13), for
any values n and n0 satisfying the conditions (4.5), we find

I0n;n0 ðρ0Þ ¼ lim
ε→0

I0n;n0 ðρ0 − εÞ

¼
ffiffiffiffiffiffiffi
nn04

p

2π
ffiffiffiffiffiffiffi
3ρ0

p 3
2
3Γ
�
2

3

�
1

ðρ20nn0Þ
1
6

: ð4:8Þ

Thus, for thepartial probabilities of theprocess in the limiting
case (4.5) we obtain the following result:

wðn → n0Þ ≃
g23

1
3Γ2

�
2
3

�� ffiffiffi
n

p þ
ffiffiffiffi
n0

p �
2

32π2
ffiffiffiffiffiffiffi
nn0

p
½ð ffiffiffi

n
p

−
ffiffiffiffi
n0

p
Þ4nn0�13 : ð4:9Þ

The summation over the quantum number n0 in the formula
approximately replaced by integration over the spectral
variable u defined by the formula (3.3) and for the spectral
distribution of the SR intensity we find the expression

dP
du

¼
g23

1
3Γ2

�
2
3

� ffiffiffiffiffiffiffiffiffiffiffiffi
2eHn

p
u−

1
3ðuþ 2Þ2

16π2n
1
3ðuþ 1Þ3 : ð4:10Þ

Integrals over a variable u calculated using the formula

Z
∞

0

xp−1

ð1þ xÞpþr dx ¼ ΓðpÞΓðrÞ
Γðpþ rÞ : ð4:11Þ

Asa result, for theSR intensity of amassless charged fermion
in QED we obtain under the conditions (4.5) the following
asymptotic expression:

P ¼ 17g2

36π
ffiffiffi
3

p 2−
2
33

1
3Γ2

�
2

3

�
ðeHp⊥Þ13: ð4:12Þ

V. CONCLUSION

In this work, the process of synchrotron radiation in an
odd QED2þ1 studied for the first time based on the quantum
theory of radiation using the exact solution of the Dirac
equation in a constant magnetic field.
Analytical formulas obtained that describe the depend-

ences of the partial probabilities of the process of sponta-
neous transition of a charged fermion, both massive and
massless, from any initial state to an arbitrary final state
with photon emission. In contrast to similar formulas of
standard QED3þ1, our results (2.15) and (4.4) are valid for
any magnetic field strength.
The dependence of the spectral distribution and total

radiation power of a massive relativistic fermion on the SR
dynamic parameter in a relatively weak magnetic field is
studied. In the classical approximation, the result (3.3) of
this work for the radiation power of a relativistic fermion is
consistent with the results obtained in the works [3,4]
by different methods in the framework of classical
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electrodynamics, as well as with the corresponding result of
the work [8]. It is shown that the first quantum correction to
the classical SR power contains two types of terms, one of
which is proportional to the parameter ξ, i.e., depends on
the choice of one of the two irreducible representations
of the Dirac matrix algebra in QED2þ1, and the second term
is the same for both types of fermions n0 ≫ 1; n − n0 ≫ 1.
We assume that, if one introduce two types of mass terms in
the Dirac equation [22], then the most favorable conditions
for the manifestation of vodd effects in the synchrotron
radiation by the relativistic electron realized in the quasi-
quantum approximation.
The spectral distribution and total power of the SR of a

massless charged fermion calculated in the case of rela-
tively large values of the principal quantum number of the

initial and final states of the fermion, when the conditions
n ≫ 1; n0 ≫ 1; n − n0 ≫ 1 are satisfied.
The calculation performed shows that, in the considered

approximation, the total radiation power of a massless
charged fermion [Eq. (4.12)] coincides with the main term
of the asymptotic expansion of the radiation power of a
massive two-dimensional electron in the ultraquantum limit
of large values of the SR dynamic parameter, which is
described by Eq. (3.15).
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