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It is well known that a magnetic monopole-electric charge system carries an angular momentum in its
electromagnetic fields. Here we show that in the Dirac string formulation of magnetic charge, the
monopole-electric charge system also carries a momentum in its electromagnetic fields. This overlooked
field momentum arises from the Coulomb electric field of the electric charge and the solenoidal magnetic
field of the Dirac string. This implies that the monopole-charge system must either (i) carry a “hidden
momentum” in the string, indicating that the string is real, or (ii) that the monopole-charge system violates
the center-of-energy theorem. The overall conclusion is that the Dirac monopole with a regulated Dirac
string is not a true monopole, and it is not even a good effective description for topological monopoles (e.g.,
the ’t Hooft-Polyakov monopole outside the core).
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I. DIRAC STRING FORMULATION
OF MAGNETIC CHARGE

We briefly review the Dirac string approach to magnetic
charge. By definition, a magnetic charge g has a Coulomb
magnetic field B ¼ gr

r3. This implies that the divergence
of B has a delta function source, i.e., ∇ ·B ¼ 4πgδðrÞ.
However, this last result seems to contradict the relation-
ship between the magnetic field and the vector potential:
B ¼ ∇ ×A. If A is well behaved, then ∇ ·B ¼ ∇ ·
ð∇ ×AÞ ¼ 0 ≠ 4πgδðrÞ.
In [1,2], Dirac proposed the following vector potentials

for magnetic charge:

A�ðxÞ ¼
g
r

��1− cosθ
sinθ

�
φ̂¼ g

ρ

�
�1−

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ z2

p
�
φ̂: ð1Þ

We have given the Dirac potentials in both spherical
and cylindrical coordinates for later use. Taking the
curl of either A� does give a Coulomb magnetic field
∇ ×A�ðxÞ ¼ gr

r3. However, the potentials in (1) are not well
behaved in that they are singular everywhere along the þz
axis (for A−) or the −z axis (for Aþ).
The standard way to handle the Dirac string singularity is

by defining a regularized vector potential (see Refs. [3–9]
for details)

Areg
� ¼ gΘðρ − ϵÞ

ρ

�
�1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2 þ ϵ2

p
�
φ̂: ð2Þ

Taking the curl of (2) and the limit ϵ → 0 gives

B ¼ lim
ϵ→0

∇ × ðAreg
� Þ ¼ g

ρρ̂þ zẑ

ðρ2 þ z2Þ3=2 � 2g
δðρÞ
ρ

Θð∓zÞẑ

¼ g
r̂
r2

� 4πgδðxÞδðyÞΘð∓zÞẑ; ð3Þ

where we used δðρÞ
2πρ ¼ δðxÞδðyÞ. This form of the magnetic

field is explicitly derived and discussed in several review
articles and monographs [3–9] with Ref. [3] giving the most
explicit and pedagogical derivation. The first term on the
right-hand side of (3) is the Coulomb part, and the second
term is the Dirac string contribution. The Coulomb part of
(3) gives an outgoing magnetic flux of 4πg, and the string
part of (3) gives an incoming flux of 4πg; thus, there is a net
flux of zero and ∇ ·B ¼ 0.
Now for a physical monopole, one only wants the

Coulomb term from (3); thus, one imposes conditions so
as to make the string part of (3) “invisible” to any electric
charge q placed in the monopole’s field. There are various
ways of accomplishing this (see [3–8] for details on the
various approaches), but they all lead to the famous Dirac
quantization condition between the magnetic and electric
charge qg ¼ n ℏ

2
. The final conclusion is that the string

part of (3) has been made unphysical by imposing the
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Dirac quantization condition. Another argument for the
unphysical character of the string part of (3) is that the two
vector potentialsAþðxÞ andA−ðxÞ are related by the gauge
transformation AþðxÞ−A−ðxÞ ¼∇φα¼ 2g

ρ with the gauge
function α ¼ 2gφ.

II. FIELD MOMENTUM
OF MONOPOLE-CHARGE SYSTEM

While the Dirac quantization condition makes the Dirac
string invisible from the charge q, in this section we show
that the string is not made invisible from the electric field of
q. We start by placing the magnetic charge at the origin, so
that the B field is given by (3), and we then place the
electric charge at the location r0. The electric field is E ¼
q r̂0

r02 with r0 ¼ r − r0 ¼ ðx − x0Þx̂þ ðy − y0Þŷ þ ðz − z0Þẑ.
The field momentum from the Coulomb part of the
magnetic field (i.e., from g r̂

r2) is

Ppoint
EM ¼ 1

4π

Z
ðE × BÞd3x ¼ qg

4π

Z �
r0

r03
×

r̂
r2

�
d3x ¼ 0:

ð4Þ
As expected, this total field momentum is zero. A nonzero
field momentum for a system whose parts are not moving
(the magnetic and electric charges are at rest) would have
implied either (i) there is a violation of the special
relativistic center-of-energy theorem [10,11], or (ii) there
is some hidden momentum [10,12–14] carried by the
sources that produce the electric and magnetic fields.
We now turn to the field momentum of the string part of

the magnetic field in (3) [i.e., the �4πgδðxÞδðyÞΘð∓zÞẑ
term] and show that it does contribute a nonzero part to the
field momentum. It is this contribution that is the focus of
this paper and which we claim has been overlooked in
previous work. It leads to new results for the Dirac string
formulation of magnetic charge. This string contribution to
the field momentum is

Pstring
EM ¼ 1

4π

Z �
q
r̂0

r02
× ð�4πgδðxÞδðyÞΘð∓zÞẑÞ

�
d3x

¼ �gq
Z

∞

−∞
Θð∓zÞ x0ŷ − y0x̂

ðρ20 þ ðz − z0Þ2Þ3=2
dz

¼ gq
r0 ∓ z0
r0ρ20

ð−y0x̂þ x0ŷÞ; ð5Þ

where ρ20 ¼ x20 þ y20 and r20 ¼ x20 þ y20 þ z20 ¼ ρ20 þ z20.
Thus, this system has a nonzero field momentum
Ptotal
EM ¼ Ppoint

EM þ Pstring
EM ≠ 0. Since the electric and magnetic

charges are at rest, and thus have no mechanical momen-
tum, we are left to contemplate one of the two choices listed
under (4): Either the center-of-energy theorem from special
relativity is violated, or there is some hidden momentum in
the system. If we accept the first path and assume that the

center-of-energy theorem remains valid, this implies that
Dirac monopoles, with Dirac strings, are not allowed. Let
us then look at the second path and see if this provides a
resolution to this issue (we find that it does provide a
resolution but at the cost of admitting the string is real).
For a system to have hidden momentum there must be
some physical current, and in fact there is such a current
connected with the string part of the magnetic field
from (3). Inserting the magnetic field from (3) into
∇ ×B ¼ 4πJ, one immediately finds a current density

J ¼ �gΘð∓zÞ½δðxÞδ0ðyÞx̂ − δðyÞδ0ðxÞŷ�; ð6Þ

where primes indicate differentiation with respect to the
argument of the delta function. This current density comes
only from the string part of (3) since the Coulomb part of
the magnetic field has zero curl. We have worked out J in
Cartesian coordinates since this will simplify subsequent
calculations.
It is possible that the current density in (6) plus the chargeq

could carry “hidden” mechanical momentum which could
balance the electromagnetic field momentum in (5) thus
saving the center-of-energy theorem. To check this, take the
charge to be located at r0 ¼ ðx0; 0; z0Þ, i.e., y0 ¼ 0. This can
be done without loss of generality due to the cylindrical
symmetry of the system with respect to the string directions.
With this location for the charge q, Eq. (5) gives

Pstring
EM ¼ gq

r0 ∓ z0
r0x0

ŷ; ð7Þ

where r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ z20

p
in this case. The hidden mechanical

momentum contained in the sources q and J is

Phid
mech ¼ −

Z
ϕJd3x: ð8Þ

Reference [14] gives a good discussion of hidden
mechanical momentum, along with a derivation of (8).
For the setup with q at r0 ¼ ðx0; 0; z0Þ, the potential is
ϕ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx−x0Þ2þy2þðz−z0Þ2
p . We now specialize to the case when

the string is along the −z axis (the case with the string along
the þz axis works out similarly except for a few changes
of sign) so that J ¼ þgΘð−zÞ½δðxÞδ0ðyÞx̂ − δðyÞδ0ðxÞŷ�,
Eq. (8) becomes

Phid
mech ¼ −gq

Z
0

−∞
dz

Z
∞

−∞
dy

×
Z

∞

−∞
dx

½δðxÞδ0ðyÞx̂ − δðyÞδ0ðxÞŷ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ y2 þ ðz − z0Þ2

p : ð9Þ

TheΘð−zÞ function hasbeen taken into account via the limits
on the z integration. To handle the δ0ðyÞ and δ0ðxÞ terms, one
uses integration by parts. For thedy integration of the x̂ term,
integration by parts gives
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δðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ y2 þ z2

p
����
∞

−∞

þ
Z

∞

−∞

yδðyÞ
ððx − x0Þ2 þ y2 þ ðz − z0Þ2Þ3=2

dy:

The first term is zero since the function vanishes at�∞, and
the second term is zero due to the yδðyÞ term in the integrand.
Thus, there is no hidden mechanical momentum in the x̂
direction which is consistent with the result of (7).
Next, we carry out the integration of the second term in

(9). The dy integration is trivial and simply sets y ¼ 0 in the
rest of the integrand. The dx integration is handled via
integration by parts and yields

δðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðz − z0Þ2

p
����
∞

−∞

þ
Z

∞

−∞

ðx − x0ÞδðxÞ
ððx − x0Þ2 þ ðz − z0Þ2Þ3=2

dx:

The first surface term is zero since the function vanishes at
�∞ and, after doing the dx integration, the second term
becomes − x0

ðx2
0
þðz−z0Þ2Þ3=2. Collecting together all the inte-

grations and various minus signs, (9) becomes

Phid
mech ¼ −gqx0

Z
0

−∞
dz

ŷ

ðx20 þ ðz − z0Þ2Þ3=2

¼ −gqx0
�
1

x20
−

z0
x20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ z20

p
�
ŷ ¼ −gq

ðr0 − z0Þ
r0x0

ŷ:

ð10Þ

This hidden mechanical momentum balances the electro-
magnetic field momentum from (7) for the case with the
string along the −z axis (i.e., Pstring

EM þ Phid
mech ¼ 0). This

restores the center-of-energy theorem, but now one has to
allow that the string is a real physical entity since itmust carry
mechanical momentum (10) to balance the field momentum
(7). In the Conclusions, wewill argue that this latter option—
that the Dirac monopole with a regularized string—does not
represent a real monopole, but rather a monopolelike field at
the end of a real, but infinite solenoid.

III. CONCLUSIONS

In this short work, we showed that there is a heretofore
overlooked contribution to the electromagnetic field
momentum of a Dirac monopole with a Dirac string plus
an electric charge. This field momentum came from the
interaction of the magnetic field of the Dirac string and the
electric field of the charge. Hiding the magnetic field of the
Dirac string from the charge q is how one arrives at the
famous Dirac quantization condition, qg ¼ n ℏ

2
. There are a

host of different ways of hiding the Dirac string from

the charge q to obtain the Dirac quantization condition
[3–8,15]. However, in this work we find that one cannot
hide the magnetic field of the Dirac string from the electric
field of q. The electric field of q and the magnetic field of
the Dirac string [the second term in (3)] produce a nonzero
field momentum given by (5). One might have expected
that since the Dirac string is infinitesimally thin, that this
would lead to the vanishing of the field momentum, but the
simple, direct calculation of (5) shows this not to be
the case; there is a nonzero field momentum. Thus, one
has the two previously mentioned options: (i) Either Pstring

EM
is nonzero and unbalanced which violates the center-of-
energy theorem [10,11], or (ii) there is a hidden mechanical
momentum in the sources q and J associated with the
electric charge and magnetic field of the Dirac string. If one
chooses option (i), then either one must conclude Dirac
monopoles with Dirac strings are not viable models of
magnetic charge, or one must accept the violation of the
center-of-energy theorem. This is a terrible option since
violating the center-of-energy theorem is an extremely
unpalatable choice. If one chooses option (ii), then the
center-of-energy theorem is saved since there is a hidden
mechanical momentum to balance the field momentum.
However, now that string has become a real, physical entity
since it must carry mechanical momentum. In our view,
option (ii) is the correct one. It points to the fact that the
Dirac monopole construction with a regularized string [see
Eqs. (2) and (3)] is not a monopole, but it is simply a
standard configuration of electric charges which generates
a monopolelike magnetic field plus a solenoidal mag-
netic flux.
One might hope that the Wu-Yang fiber bundle approach

[16] to magnetic charge, which avoids the Dirac string,
would offer a consistent model for magnetic charge.
However, one can also show that this approach has a
previously overlooked field momentum [17] very similar
to that found in this work. This field momentum in the Wu-
Yang approach also spoils this model for magnetic charge.
The above analysis does not have anything to say about

non-Abelian [18,19] monopoles or recently discovered
electroweak monopoles [20,21], which owe their existence
to nontrivial topology as opposed to a Dirac string.
As well, this analysis does not rule out the two-vector
potential [22] or photon–dual-photon approach to magnetic
charge [23,24].
In a recent work [25], it was also found that the

Dirac string magnetic field also contributed a previously
overlooked contribution to the well-known electromagnetic
field angular momentum [3–9,15] to a charge-monopole
system. However, while the field angular momentum
coming from the magnetic field of the string plus electric
field of the charge did significantly alter the analysis of the
total angular momentum of the system, it was found [25]
that it was still possible to give a consistent description of
the total field angular momentum.
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