
Semisimple unifications of any gauge theory

Andrew Gomes ,* Maximilian Ruhdorfer ,† and Joseph Tooby-Smith ‡

Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA

(Received 14 July 2023; accepted 18 August 2023; published 2 October 2023)

We present a Mathematica package that takes any reductive gauge algebra and fully-reducible fermion
representation, and outputs all semisimple gauge extensions under the condition that they have no
additional fermions, and are free of local anomalies. These include all simple completions, also known as
grand unified theories. We additionally provide a list of all semisimple completions for 5835 fermionic
extensions of the one-generation Standard Model.

DOI: 10.1103/PhysRevD.108.075001

I. INTRODUCTION

Unification, the idea that the Standard Model (SM)
gauge algebra suð3Þ ⊕ suð2Þ ⊕ uð1Þ and particle repre-
sentations embed into a semisimple algebra in the UV, is
an appealing scenario for physics beyond the Standard
Model (BSM). Theories based on semisimple algebras have
phenomenological benefits over their reductive counter-
parts [those algebras containing uð1Þ factors]. These
include the simplicity of local anomaly cancellation, a
possible origin for flavor symmetries, and the freedom from
Landau poles.
Arguably the most famous of such extensions are grand

unified theories (GUTs), a particularly elegant subclass
where the unifying algebra is simple. These include
the well-known suð5Þ and soð10Þ GUTs [1–3], which
unify the fermion content of the SM—including right-
handed neutrinos (RHNs) in the case of soð10Þ—into
representations of suð5Þ and soð10Þ, respectively.
Another theoretically well-motivated subclass are semi-
simple extensions which mix flavor with gauge symmetries
in a nontrivial way. Examples are those based on the Pati-
Salam suð4Þ ⊕ suð2Þ ⊕ suð2Þ model [4] such as “color-
flavor” unification [e.g., suð12Þ ⊕ suð2Þ ⊕ suð2Þ [5]]
and “electroweak-flavor” unification [e.g., suð4Þ ⊕
spð6Þ ⊕ spð6Þ [6]].
In the past, searching for semisimple extensions of a

model was a tedious process that involved manual calcu-
lations and guesswork. The approach developed in [7],

which we will refer to as “Flocci” (short for floccinau-
cinihilipilification), produced a complete list of the 340
possible anomaly-free semisimple extensions of the three
generation Standard Model with right-handed neutrinos
(SMν). However, Flocci was specifically tailored to the
SM gauge algebra and fermion content and was not able
to deal with different gauge algebras or a modified
fermion content.
In this paper, we rectify this shortcoming and introduce

“superfloccinaucinihilipilification” (or “SuperFlocci”), a
Mathematica package that implements a more comprehen-
sive and fundamentally different approach that can handle
any reductive Lie algebra and any fully reducible anomaly-
free fermion representation as an input. SuperFlocci out-
puts all semisimple anomaly-free extensions with a fixed
number of fermions, including the maximal and minimal
extensions and the branching patterns between them.
Like Flocci, the underlying workings of SuperFlocci rely

heavily on the theory of Lie algebras, in particular the
Refs. [8–13]. However, SuperFlocci uses a much more
streamlined approach, building a tree of semisimple exten-
sions starting from the input. Each edge of the tree
corresponds to a maximal embedding of semisimple Lie
algebras. Flocci, on the other hand, took a much more
computationally expensive brute force approach that was
difficult to generalize.
SuperFlocci has many applications, including the

following:
(1) Determining the existence of a semisimple comple-

tion for a given theory.
(2) Finding possible flavor symmetries of a given

fermion content and gauge algebra, whether hori-
zontal or mixed with the input gauge algebra.

(3) Helping identify possible breaking patterns from a
given semisimple completion down to the input
algebra, through other semisimple completions.

(4) Determining the semisimple completions of uð1Þ
extensions of a theory.

*awg76@cornell.edu
†m.ruhdorfer@cornell.edu
‡j.tooby-smith@cornell.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 075001 (2023)

2470-0010=2023=108(7)=075001(12) 075001-1 Published by the American Physical Society

https://orcid.org/0000-0002-5318-032X
https://orcid.org/0000-0002-8897-3223
https://orcid.org/0000-0003-2831-598X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.075001&domain=pdf&date_stamp=2023-10-02
https://doi.org/10.1103/PhysRevD.108.075001
https://doi.org/10.1103/PhysRevD.108.075001
https://doi.org/10.1103/PhysRevD.108.075001
https://doi.org/10.1103/PhysRevD.108.075001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(5) Scanning over theories of different fermion content,
and searching for interesting semisimple extensions
of each one.

It is worth noting that SuperFlocci only considers the
fermionic sector; i.e., it cannot provide any insight into
questions that require information about the scalar degrees
of freedom. This includes the running of couplings, how a
symmetry-breaking pattern is achieved through scalar
vacuum expectation values, and the question of whether
and at what scale the gauge couplings unify. However, the
output of SuperFlocci is an exhaustive list of all possible
unified models and can serve as a starting point for model
building of a realistic unified theory.
The paper is organized as follows. We start with an

explanation of how to download, run, and interpret the
output of SuperFlocci in Sec. II. Section III describes
formally the program’s inputs and outputs. In Sec. IV we
perform a number of checks, showing the agreement
of SuperFlocci with previous results, and perform a scan
over BSM theories, looking for interesting semisimple
extensions. Section V provides an intuitive description
of SuperFlocci’s underlying algorithm with the help of a
worked-out example. The Appendices contain our con-
ventions for Dynkin diagrams and summaries of the results
of the example runs of Sec. IV.

II. RUNNING THE CODE

We have designed SuperFlocci so that it is easy to use,
with minimal prerequisites. It has been tested on
Mathematica v12 and is available in the Supplemental
Material [14].
The most up-to-date version of our code can be down-

loaded from GitHub at https://github.com/jstoobysmith/
Superfloccinaucinihilipilification.
To install, download the file SuperFlocci.m, and

import it into a Mathematica notebook using

Import½“SuperFlocci:m”�:

To find all semisimple extensions (within our criterion) we
call the SuperFlocci function as

SuperFlocci½alg;rep�;

which takes the required arguments:
alg: a reductive gauge algebra in the form of a list of
simple or uð1Þ factors labeled according to the Dynkin
classification, e.g., {A1, A2, U1} for suð2Þ ⊕
suð3Þ ⊕ uð1Þ.

rep: a fermion representation in the form of a list of
highest weights in the same order as the algebra, e.g.,
the highest weight of the ð2; 3Þ1 representation is
written as {1, 1, 0, 1}. Charges associated with
uð1Þ factors should be scaled to integers.

A list of optional arguments is given in Table I.
SuperFlocci uses Dynkin notation to denote simple Lie

algebras. A conversion of the Dynkin notation for the
classical Lie algebras to the more commonly used notation
in physics, together with their syntax in SuperFlocci, is given
in Table II. Our convention (though not essential in the use of
SuperFlocci) will be to write algebras with simple factors of
smaller rank first, and with uð1Þ factors at the end. For
example the SM gauge algebra is suð2Þ ⊕ suð3Þ ⊕ uð1Þ.
The weights follow the ordering convention of simple

roots as indicated in the Dynkin diagrams of Appendix A.
For an encyclopedic reference on the representations of
Lie algebras and their expression in highest weight form,
see, e.g., [13]. Here are some of the most common ones:

suð2Þ∶ 1 ¼ ð0Þ suð3Þ∶ 1 ¼ ð0; 0Þ
2 ¼ ð1Þ 3 ¼ ð1; 0Þ
3 ¼ ð2Þ 3̄ ¼ ð0; 1Þ

6 ¼ ð2; 0Þ
6̄ ¼ ð0; 2Þ
8 ¼ ð1; 1Þ: ð1Þ

As an explicit example, consider the one-generation
Standard Model with a right-handed neutrino (which we
shall refer to as SMν throughout). This has the fermion
representation Q ⊕ U ⊕ D ⊕ L ⊕ E ⊕ N, where

TABLE I. The optional arguments of SuperFlocci.

Argument Type (Default) Description

Checkpoint String (null) The filename where checkpointed data should be saved. Can be used for long
computations in case of a crash.

CheckpointUpFreq Integer (1000) How frequently (measured in nodes) checkpoints should be carried out in the
upward growth phase.

StartFromCheckpoint Boolean (True) If a checkpoint filename is given, and the file exists, start from saved checkpoint.
ClearDataFreq Integer (1000) How often (measured in nodes) Mathematica cache should be cleared.
SimpleIdealConstraint Integer (∞) An upper limit on the number of simple ideals of nodes generated.
DetailedProgressData Boolean (False) Display detailed progress data (e.g., memory usage) while the code is running.
ExtendedKappaCheck Boolean (True) Determines whether or not pruning described in Sec. V C is carried out.

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-2

https://github.com/jstoobysmith/Superfloccinaucinihilipilification
https://github.com/jstoobysmith/Superfloccinaucinihilipilification
https://github.com/jstoobysmith/Superfloccinaucinihilipilification


Q ¼ ð2; 3Þ1;
U ¼ ð1; 3̄Þ−4;
D ¼ ð1; 3̄Þ2;
L ¼ ð2; 1Þ−3;
E ¼ ð1; 1Þ6;
N ¼ ð1; 1Þ0: ð2Þ

To run SuperFlocci on this example use

out¼ SuperFlocci½fA1; A2; U1g; ff1;1;0;1g;
f0;0;1; − 4g;f0;0;1;2g;f1;0;0; − 3g;
f0;0;0;6g;f0;0;0;0gg�:

The highest weights here correspond, respectively, to the
irreducible representations (irreps) in (2). On a standard
laptop, this example takes only a few seconds to run. In
comparison, the three generation SMν takes of order an
hour, similar to the time taken by Flocci (although
SuperFlocci provides more information).
All the information we might need is contained in the

out variable. This includes the input algebra, the input
representation, semisimple extensions (including projec-
tions Λκ to the input algebra), projection matrices Λρ
between extensions, and timing information. However, for
ease of reading we can use the FlocciOutput function:

FlocciOutput½out�:

This will display a graph (size permitting) of all semi-
simple extensions with edges representing embeddings,
and lists of the maximal and minimal extensions (see
Sec. III B for an explanation of these features). Figure 1
shows the output for this example.
The optional arguments of FlocciOutput are given

in Table III. Suppose that, in addition to displaying the
output, we want to save it to the file output.m and write
LaTeX code to display all generated algebras and embed-
dings. We would accomplish this with

FlocciOutput½out; save −> True;

filename −> “output”; latex −>

f“alltables”;“embeddingsdetail”g�:

Examples of the tables generated by the LaTeX output
can be found in Appendix B. The embedding data comes in
the form of the projection matrix Λκ to the input algebra
and the projection matrices Λρ to the maximal subalgebras
(see Fig. 2). Applying these matrices to the weight system
(generated by the highest weights) of a particular semi-
simple extension, one obtains the weight system of the
input representation and the weight systems of all maximal
subalgebras, respectively.
While SuperFlocci can in principle handle any input

data conforming to the requirements of Sec. III, certain
features of the input require more computation time or
memory. Large input representations, vectorlike sectors in
the input, and singlets are all factors that lead to more
anomaly free combinations of irreps, and thus more
extensions to be checked. Additionally, as the number of
distinct charges assigned to a given weight (coming from
different irreps that share a semisimple weight) increases,
the program slows with a corresponding combinatoric
factor. For example, we were able to run five generations
of the suð5Þ GUT fermion content ð5̄ ⊕ 10Þ⊕5 on a
standard laptop, but not the four generation SM. Finally,
any computation involving the high-rank exceptional alge-
bras will take longer due to their many automorphisms,
which must be hard coded, in contrast with the auto-
morphisms of high-rank classical Lie algebras.

FIG. 1. The output of SuperFlocci, with the one-generation
SMν as input.

TABLE II. Notation for the classical Lie algebras, and uð1Þ,
and their syntax in SuperFlocci.

Dynkin Conventional SuperFlocci

An suðnþ 1Þ An
Bn soð2nþ 1Þ Bn
Cn spð2nÞ Cn
Dn soð2nÞ Dn
E6, E7, E8 E6, E7, E8 E6, E7, E8
F4 F4 F4
G2 G2 G2

uð1Þ U1

SEMISIMPLE UNIFICATIONS OF ANY GAUGE THEORY PHYS. REV. D 108, 075001 (2023)

075001-3



III. DESCRIPTION OF THE INPUT AND OUTPUT

Colloquially, our program finds all semisimple exten-
sions of a given input Lie algebra and fermion representa-
tion. In this section, we want to make this statement more
precise by carefully describing the allowed inputs to the
function SuperFlocci, and its output.
Throughout this section and Sec. V, we will assume basic

knowledge of the theory of Lie algebras.1 We note here that
all Lie algebras throughout this paper are implicitly
assumed to be complexified.

A. The input

The input of our program consists of
(i) A finite-dimensional reductive Lie algebra r.
(ii) The highest weights of a fully reducible,

n-dimensional representation r∶r → suðnÞ.2
The condition of “full reducibility” here is to prevent
representations of r akin to the nondiagonalizable repre-
sentation of uð1Þ given by

uð1Þ → suð2Þ∶ λ ↦

�
0 λ

0 0

�
: ð3Þ

We can split the reductive Lie algebra r into the direct sum
s ⊕ aof a semisimple parts andanAbelianparta. Leths be a

chosen Cartan subalgebra of s and h�s its dual. The highest
weights of r as inputted intoSuperFloccimust bewritten
with respect to a given basis, which we now describe. For h�s
we use the basis of fundamental weights with indices as
indicated in the Dynkin diagrams of Appendix A.
We also need a basis for the dual of a, denoted a�. To do

this, we place the following condition on our input: A basis
must exist of a�, which when combined with the basis of
h�s, leads to integer highest weights.
Any such basis can then be used as a valid basis of a. It is

for this reason that the SM hypercharges in Eq. (2) have
been scaled to be integers. This condition is satisfied if we
assume that a is the algebra of a compact Lie group [e.g.,
Uð1Þ rather than R].

B. The output

We now explain the output of SuperFlocci. To do this
consider triples ðg; fβig;ΛκÞ where

(i) g is a semisimple Lie algebra.
(ii) fβig are the highest weights of a n-dimensional

representation.
(iii) Λκ∶ h�g → h�r is a linear transformation (represented

by a matrix).
These are subject to the following conditions:
(1) Λκ must extend to a complete embedding of r into g.
(2) The representation indicated fβig must branch to r

under Λκ (up to equivalence).
(3) The representation fβig must be free of local

anomalies.
We define an equivalence relation on our objects as

follows. We say two triples ðg;Λκ; fβigÞ and ðg0;Λκ0; fβ0igÞ
are equivalent if there exists a linear map Λρ∶hg → hg0
such that there exists a full isomorphism ρ∶ g0 → g,
Λκ ¼ Λκ0Λρ, and on branching β becomes β0.

TABLE III. The optional arguments of FlocciOutput.

Argument Type (Default) Description

display Boolean (True) Whether to display the output.
save Boolean (False) Whether to save the output to a file.
filename String (null) Where to save the output (without an extension—it will be saved as a .m file).
latex String list (null) Create a LaTeX file (with a default name) with customizable information given by the following

options:
“maxtables”: table with all maximal algebras.
“mintables”: table with all minimal algebras.
“alltables”: tables with all algebras.
“embeddingsdetail”: detailed overview of all embeddings.
“tensorproduct”: (requires “embeddingsdetail”): gives all bilinear tensorproducts of
representations.

“onlymaxminembeddings”: (requires “embeddingsdetail”): restricts
“embeddingsdetail” to maximal and minimal embeddings.

“projectiontree”: (requires “embeddingsdetail”): outputs projection matrices between
algebras on same branch of tree (is neglected for “onlymaxminembeddings”).

labelrep Rule list (null) Replacement rules for highest weights to increase readability of LaTeX output. For example, use the
rule list {{1, 1, 0, 1}->“Q”} to replace the left-handed quark representation with the letter Q.

1Namely the notions of: semisimple and reductive Lie alge-
bras, Cartan subalgebras, automorphisms, (highest) weights, and
projections matrices. Those readers who need a refresher are
directed to [15] and references therein.

2Note that as complexified Lie algebras glðnÞ and uðnÞ are
isomorphic. The condition of anomaly freeness ensures r factors
through suðnÞ. One can also argue for uðnÞ using the invariance
of the kinetic term.

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-4



SuperFlocci outputs a directed acyclic graph, often
termed a polytree. For brevity, we will refer to it inter-
changeably as a “tree” or “graph.” The nodes of the graph
are chosen representatives of each equivalence class men-
tioned above. An edge between representatives, ðg;Λκ; βiÞ
to ðg0;Λκ0; β0iÞ, is a corresponding Λρ. However, here ρ can
be any embedding, not just an isomorphism. We will only
provide a minimal subset of edges. All remaining edges can
be obtained through compositions, in the natural manner,
within our subset or with isomorphisms. An example of a
polytree generated in this way can be found in Fig. 4.
The sources of this graph (i.e., those nodes with no edges

into them) are the maximal extensions, and the sinks of this
graph (i.e., those nodes with no edges out of them) are the
minimal extensions.

IV. CHECKS AND EXAMPLES

In this section, we demonstrate that SuperFlocci is
able to reproduce and extend well-known results. We
present the results of running SuperFlocci on a series of
BSM models, we also summarize the results of a scan over
possible extensions of the SM. TheMathematica output for
each of the examples in the text can be found in the GitHub
repository [16].

A. Checks

A number of obvious checks can be performed on
SuperFlocci by using an input where part of the output
is known beforehand. This could be, for example, from a
previously known unifying theory. For these checks, we
stress that the output will include much more than the
sought-after unified theory. It will be a complete list of all
possible semisimple extensions of the input gauge algebra
and particle spectrum as well as the corresponding projec-
tion matrices and all branching patterns between them.
In what follows we go through the various checks of this

sort we performed on SuperFlocci.

1. SM

It is well known that one generation of SM fermions fits
into the 5̄ and 10 representations of SUð5Þ [1]. If instead we
consider SMν, then there are additional embeddings into
suð2Þ ⊕ suð2Þ ⊕ suð4Þ [4] and soð10Þ [2,3]. In Sec. V
we use SuperFlocci to demonstrate not only the existence
of these extensions, but also that these are the only
semisimple extensions.
For two and three generations of SMν, Ref. [7] found that

there are 45 and 340 different extensions with 9 and 24
of them being maximal, respectively. Despite using a
different approach, SuperFlocci exactly reproduces these
results and additionally finds the embeddings between
these extensions.
We further ran SuperFlocci on the three-generation

SM (without additional RHNs). In this case there are

19 embeddings with five of them being maximal (see
Table V). These are all based on suð5Þ.

2. Non-SM gauge algebra

SuperFlocci is not limited to the SM gauge algebra
suð2Þ ⊕ suð3Þ ⊕ uð1Þ but can be used with any reductive
Lie algebra. As a simple check we took the 19 semisimple
extensions of the SM without RHNs as an input and
added three singlets. An example would be to take as
input the algebra suð5Þ with the fermion representation
5̄⊕3 ⊕ 10⊕3 ⊕ 1⊕3. We checked that the result was a strict
subset of the 340 semisimple extensions of SMν.

3. Extending the SM fermion spectrum

Instead of choosing a different gauge algebra we can
extend the fermion spectrum. As has been known for a
long time, if one extends the one-generation SM by
fermions in the vectorlike representations ð2; 1Þ3 ⊕
ð2; 1Þ−3 ⊕ ð1; 3Þ−2 ⊕ ð1; 3̄Þ2 ⊕ ð1; 1Þ⊕2

0 , then the theory
fits into the 27 representation of E6 (see, e.g., [17,18]) and
into the 15 ⊕ 6̄ ⊕ 6̄ representation of suð6Þ ⊂ E6 (see,
e.g., [19–21]).
We can use this information to cross-check SuperFlocci.

Doing so, we find 68 semisimple extensions with 11 of
them being maximal. These are shown in Table VII. The
output contains as expected E6 as a maximal and suð6Þ as a
nonmaximal extension.

4. uð1Þ extensions
uð1Þ extensions are important in BSM model building. If

the uð1Þ originates from a semisimple gauge algebra in the
UV, nontrivial constraints on the model such as anomaly
cancellation or the absence of Landau poles can be
explained. One might therefore consider models with a
semisimple UV completion better motivated from a theo-
retical point of view. Reference [22] found all of the uð1Þ
extensions of SMν that possess a semisimple UV comple-
tion. SuperFlocci complements these results by providing
the ability to explicitly check the existence of a semisimple
completion for uð1Þ extension of any given theory.
Reproducing some of the results of [22] is an additional

nontrivial check of SuperFlocci. As an example let us
consider three generations of SMν with gauged baryon
minus lepton number B − L [23,24]. The resulting 14
maximal embeddings in Table VI agree with the ones in
Table 4 of [22].3 Analogously, the uð1Þ extensions for
which no semisimple completion was found in [22] can be
checked in SuperFlocci and we find perfect agreement.

3Note that Table 4 of [22] gives only a subset of the 14 algebras
that we find. In order to complete the list one has to take into
account equivalence classes of planes. Once this is done the
outputs fully agree.

SEMISIMPLE UNIFICATIONS OF ANY GAUGE THEORY PHYS. REV. D 108, 075001 (2023)

075001-5



B. BSM models

In addition to the above checks, we ran our code on a
series of example BSM models. In each of these cases,
novel semisimple extensions were found.
A summary of the results is presented in Table IV. We

now discuss some notable features.
The addition of a singlet to the three-generation SMν is

model 1 of the list.
Despite having a uð1Þ present, the LR-symmetric

models 2 and 3 both only have one minimal extension
[25,26]. This corresponds to Pati-Salam. The only other
extension in the case of model 2 is the soð10Þ GUT.
Now compare models 4, 5, 6, and 7, which are based on

the suð5Þ GUT with a varying number of generations and
number of RHNs. Note that adding a single RHN gives a
bigger increase in the number of semisimple extensions
than adding a new generation (comparing 5 and 6).
Model 8 in the list corresponds to the fermionic

representations of the minimal-supersymmetric Standard
Model with RHNs (ignoring gauginos), and model 9 to the
4-3-2-1 model [27,28]. Model 10, trinification [29,30], has
two semisimple extensions corresponding to E6 and suð6Þ,
the former being maximal and the latter minimal.

C. Scans

Arguably the most physically relevant application of
SuperFlocci is to find semisimple extensions of the SM
gauge algebra with a fermion spectrum that goes beyond
that of the SM. For this reason, we performed a scan over
5835 anomaly-free extensions of the SMν fermion spec-
trum and provide the results in [16], such that the user can
simply look up the semisimple extensions of their favorite
model. In the scan, we assumed one generation of SM

fermions including a RHN and added up to five additional
BSM particles in representations ða;bÞY under suð2Þ ⊕
suð3Þ ⊕ uð1Þ, where a ¼ 1; 2; 3, b ¼ 1; 3; 6; 8 with their
conjugate representations and −6 ≤ Y ≤ 6. We additionally
restrict the total dimension of the additional representations
to be less than 30.4

We note that we did not perform the scan for three
generations of SMν fermions since already for the SMν

fermion content it takes approximately one hour to run,
compared to a few seconds for one generation. However,
we note that the one-generation results can also be viewed
as the “family universal” three-generation results.
The vast majority of maximal extensions have the same

structure as the semisimple extensions for the SMν particle
content; i.e., the SM gauge algebra is embedded within
suð5Þ, suð2Þ ⊕ suð2Þ ⊕ suð4Þ, or soð10Þ. These often
come with additional symmetries which account for the
added fermions. However, there are a few exceptions. One
of them is the E6 model that we discussed in the previous
section and which is shown in Table VII. Another is the
occurrence of Pati-Salam type algebras of the form

suð2Þ ⊕ suð2Þ ⊕ suðkÞ; k ≥ 4; ð4Þ

TABLE IV. Example BSM models run through SuperFlocci. The fourth column shows the total number of semisimple extensions, the
fifth column shows the number of maximal algebras, and the last column shows the number of minimal algebras. Here SMν indicates the
fermionic content of the one-generation SM with a RHN.

Model Algebra Representation Total Max Min

1 SM plus 1 RNH suð2Þ ⊕ suð3Þ ⊕ uð1Þ SM⊕3
ν ⊕ ð1; 1; 0Þ 587 34 5

2 1-gen
LR-symmetric

suð2Þ ⊕ suð2Þ
⊕ suð3Þ ⊕ uð1Þ

ð2; 1; 3; 1Þ ⊕ ð1; 2; 3̄; 1Þ ⊕ ð2; 1; 1;−3Þ ⊕ ð1; 2; 1; 3Þ 2 1 1

3 LR-symmetric suð2Þ ⊕ suð2Þ
⊕ suð3Þ ⊕ uð1Þ

½ð2; 1; 3; 1Þ ⊕ ð1; 2; 3̄; 1Þ ⊕ ð2; 1; 1;−3Þ ⊕ ð1; 2; 1; 3Þ�⊕3 173 12 1

4 4-gen suð5Þ suð5Þ ½5̄ ⊕ 10�⊕4 156 10 1
5 4-gen suð5Þ

with RHNs
suð5Þ ½5̄ ⊕ 10 ⊕ 1�⊕4 3146 38 1

6 5-gen suð5Þ suð5Þ ½5̄ ⊕ 10�⊕5 567 20 1
7 5-gen suð5Þ

with RHNs
suð5Þ ½5̄ ⊕ 10 ⊕ 1�⊕5 22,820 100 1

8 MSSM suð2Þ ⊕ suð3Þ ⊕ uð1Þ SM⊕3
ν ⊕ ð2; 1;−3Þ ⊕ ð2; 1; 3Þ 1337 40 7

9 4-3-2-1 suð2Þ ⊕ suð3Þ ⊕ suð4Þ ⊕ uð1Þ SM⊕2
ν ⊕ ð2; 1; 4; 0Þ ⊕ ð1; 1; 4̄;−3Þ ⊕ ð1; 1; 4; 3Þ 155 11 3

10 Trinification suð3Þ ⊕ suð3Þ ⊕ suð3Þ ð3; 3̄; 1Þ ⊕ ð3̄; 3; 1Þ ⊕ ð1; 3; 3̄Þ 2 1 1

4Note that for 296 models we were not able to perform the
pruning as described in Sec. V C due to insufficient computa-
tional memory and processing time. We still provide the results
after the steps outlined in Sec. V B for all of these models in a
separate file and note that the resulting list of extensions is a
superset of all true extensions, i.e., no extension is missed. If the
user wishes to skip the pruning step due to memory or time
issues, this can easily be achieved by setting the option
ExtendedKappaCheck in the SuperFlocci function to
False (see Table I).

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-6



with the fermions in the ð2; 1;kÞ ⊕ ð1; 2; k̄Þ representa-
tion. These are only a few examples and the full result can
be found in the GitHub repository.

V. AN EXAMPLE CALCULATION:
THE ONE-GENERATION SM

In this section, we will explain the algorithm by working
out an explicit example. We begin by specifying as an input
(1) a finite-dimensional reductive Lie algebra r (the “gauge
algebra”) and (2) the highest weights of a fully reducible,
n-dimensional representation r∶r → suðnÞ (the “fermionic
representation”). The Lie algebra r can be decomposed
into its semisimple and Abelian parts as r ¼ s ⊕ a. As
our example, we will use the one-generation SMν, that is,
r ¼ suð2Þ ⊕ suð3Þ ⊕ uð1Þ and the highest weights of r
are Q ⊕ U ⊕ D ⊕ L ⊕ E ⊕ N, where these irreps5 were
defined in Eq. (2). The dimension n of this representation
is 16. Note that this was also the example used in Sec. II.
As discussed in Sec. III B, the object that we are trying to

construct is a polytree, i.e., a directed acyclic graph
consisting of vertices (or nodes) and edges (see Fig. 3
for an example). Every node consists of a semisimple
Lie algebra g, a representation β of that algebra, and a
projection matrix Λκ that encodes both the embedding of r
into g (up to equivalence) and how β branches down into r.
This data is shown in Fig. 2. Every edge (which we direct
downwards) connects two nodes, which we may call the
parent (upper) and child (lower) node, and consists of a
projection matrix Λρ. This projection matrix loosely
describes a maximal embedding of the child’s algebra into
the parent’s algebra, and tells one how the parent’s
representation branches into the child’s representation.
That the embedding is maximal means that no other
semisimple subalgebra of the parent’s algebra contains
the child’s algebra. Finally, note that the graph is acyclic
because the property of being a subalgebra is transitive.
At the base of the tree (the sinks) lie the minimal nodes

(or “minimal semisimple extensions”). If the input algebra
is semisimple then the input node will be in the tree, and the

sole minimal node. Since all of the nodes in the tree must
have algebras which are subalgebras of suðnÞ, there must
be maximal nodes. Those nodes that do not branch from
any others in the tree are called maximal, and occupy the
top nodes of the tree (sources of the tree).
The construction of the tree consists of three phases.

First, an auxiliary tree is grown upward from the input
algebra. The nodes of the auxiliary tree differ from those of
the final tree in that Λκ is replaced with a projection matrix
Λα for only s, the semisimple part of r (see Fig. 2). If the
input’s algebra is semisimple then we are done at this point.
Second, the final tree is grafted onto the scaffolding of the
auxiliary tree, and the projection matrices Λκ are con-
structed. Then, a final upward pruning is required to ensure
that the Λκ translate into full algebra embeddings.

A. Growing the auxiliary tree

The algorithm generates the tree recursively, by creating
all possible parent nodes for each existing node (we can
think of s and rjs as forming the base node of the auxiliary
tree). These parent nodes then become child nodes in some
future iteration. First, for a given (child) node, a list of
minimal superalgebras (specified by an algebra and pro-
jection matrix Λρ) of the child’s algebra is produced. Note
that the same algebra may appear multiple times with
different projection matrices.
In our example s ¼ suð2Þ ⊕ suð3Þ. We will do the first

step, and thus g ¼ s. There are 10 minimal superalgebras
of g, with 8 distinct algebras g0:

suð2Þ⊕2 ⊕ suð3Þ suð2Þ ⊕ suð3Þ⊕2

suð3Þ ⊕ suð3Þ suð3Þ ⊕ spð4Þ
suð2Þ ⊕ suð4Þ suð2Þ ⊕ suð6Þ
suð5Þ suð6Þ:

As an example of an algebra with more than one
projection matrix to the base, take the algebra
suð2Þ⊕2 ⊕ suð3Þ. There is an embedding where the SM
suð2Þ embeds via the identity into a single parent suð2Þ
(say, the second), and an embedding where the SM suð2Þ
embeds diagonally into both parent suð2Þ factors. Their
projection matrices are given, respectively, by

Λρ1 ¼

0
B@

0 1 0 0

0 0 1 0

0 0 0 1

1
CA and Λρ2 ¼

0
B@

1 1 0 0

0 0 1 0

0 0 0 1

1
CA:

ð5Þ

Note how the matrix heights and widths reflect the ranks of
the child’s (in this case g ¼ s with rank 3) and parent’s [in
this case suð2Þ⊕2 ⊕ suð3Þ with rank 4] algebras, respec-
tively. This makes sense since the projection matrices map

FIG. 2. A diagram summarizing the projection matrices used
within this paper (right), and their corresponding embeddings (left).

5Strictly, these are equivalence classes of irreps, but we will
simply refer to them as irreps.

SEMISIMPLE UNIFICATIONS OF ANY GAUGE THEORY PHYS. REV. D 108, 075001 (2023)

075001-7



the parent weight system to the child weight system. The
rows and columns of projection matrices are ordered
according to our convention. For example, the first two
columns of the matrices in Eq. (5) correspond to the
parent suð2Þ factors, while the last two correspond to the
suð3Þ factor.
For each minimal superalgebra, there are seven steps to

find the representations that will form parent nodes. Each
candidate may lead to zero, one, or several representations.
We will follow the steps of the algorithm for the minimal
superalgebra consisting of g0 ¼ suð2Þ⊕2 ⊕ suð3Þ and
Λρ1. The steps are as follows6:

U1: Generate all irreps (labeled by their unique highest
weight) of the minimal superalgebra g0 with dimen-
sion less than or equal to n (in our case 16). There are
85 such irreps.

U2: Keep only those highest weights whose projection
under Λρ is present in the weight system of the child
representation.7 There are now 31 such irreps.

U3: Now keep only those irreps whose entire weight
system, once projected down, is contained within the
child weight system (taking weight multiplicities into
account). There are now six such irreps: (1; 1; 1),
(2; 1; 1), (1; 2; 1), ð1; 1; 3̄Þ, ð2; 1; 3̄Þ, and (1; 2; 3). Note
that we included the singlet.

U4: From the remaining irreps, construct all representa-
tions of dimension exactly n that project down to
exactly the child weight system8 and satisfy anomaly
cancellation (see, e.g., [31]). For our case, there are
three such representations:

ð1; 2; 1Þ ⊕ ð1; 2; 3Þ ⊕ ð2; 1; 1Þ ⊕ ð2; 1; 3̄Þ;
ð1; 2; 1Þ ⊕ ð1; 2; 3Þ ⊕ ð2; 1; 1Þ ⊕ ð1; 1; 3̄Þ⊕2;

ð1; 2; 1Þ ⊕ ð1; 2; 3Þ ⊕ ð1; 1; 1Þ⊕2 ⊕ ð2; 1; 3̄Þ:

One immediately sees that each representation is
composed of irreps that branch down to the left-
handed leptons, left-handed quarks, right-handed
leptons, and right-handed quarks, respectively.

U5: For each remaining n-dimensional representation,
check whether it is possible to assign charges under a
to each g0 weight such that (1) under projection the

charges assigned to the s weights correspond exactly
to the rweights of the input representation, and (2) the
assignments are hg0 ⊕ a anomaly free. Of the three
representations in the last step, only the first passes
this test.

U6: For each remaining n-dimensional representation,
check that the weights of each irrep can be grouped
into s-irreps with constant a charge.

U7: Finally, the automorphisms of the minimal super-
algebra are used to put the remaining representations
which we now denote β0 and projection matrices Λρ
and Λα0 ¼ Λα ∘Λρ into a unique form. This step is
ultimately related to finding a representative of the
equivalence classes representing nodes, as discussed
in Sec. III B.

If a node, specified by ðg0; β0;Λα0Þ is not already present
in the tree, it is added. However, the node may already be
present. It is for this reason that the object we are
constructing is not technically a tree, but rather a polytree,
since branches can join back up with others.
Once no more nodes can be created, the auxiliary graph

is complete. The graph for our example at this stage of the
algorithm is given in Fig. 3. If the input algebra is
semisimple, this is the full graph and we stop.

B. Grafting the final tree

We must now produce a new graph from those nodes of
the auxiliary graph, in which Λα extends to embeddings
of the full (reductive) input algebra into g. Note that for a
single semisimple embedding of the auxiliary tree, there
may be multiple reductive embeddings. The algorithm
begins at the top of the auxiliary tree and works down-
wards, with four steps being applied at each node.

FIG. 3. The auxiliary tree of the one-generation SMν.

6Strictly speaking, U5 and U6 are not required to form the
auxiliary graph containing simply the embeddings of s, since
they involve the charges of r under a. However, if a node in the
auxiliary tree fails to satisfy either of these criteria, the corre-
sponding final tree nodes and their parents will not fulfil them
either. Consequently, we greatly reduce computation time by
adding these steps to the upward tree generation.

7Note that this step serves only to speed up the algorithm since
the same irrep eliminations would be performed by U3.

8Rather than being a set, the weight system is a multiset: the
number of instances of each weight is important. The projection
must not only produce the correct weights but also the correct
multiplicity of each weight.

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-8



D1: The algorithm attempts to extends Λα to a Λκ by
adding extra rows for each uð1Þ factor in the input
algebra. The entries of these new rows are constrained
so that β projects to representations with the correct
input uð1Þ charges. There may be zero, one, or several
solutions.

D2: It now checks which solutions are related by
automorphisms of g, and creates one node in the final
tree for each equivalence class (see Sec. III B).

D3: If there are no solutions, it stops working on the
current node of the auxiliary tree, and will skip all
nodes below it in the auxiliary tree, which are
guaranteed to have no solutions.

D4: For each newly created node (if any) in the final tree,
check for all parents p that Λκp ¼ Λκ ∘Λρ, up to
automorphism (see Sec. III B). If true, create an edge
between them.

As an example, take the maximal algebra from the
auxiliary tree, soð10Þ. The steps of the last section yield

Λα ¼

0
BB@

1 0 0 0 0

0 0 −1 −1 −1
0 0 0 0 1

1
CCA: ð6Þ

One can check that the projection of the weight system
given by the highest weight (0, 0, 0, 1, 0) (the 16 irrep)
yields the semisimple weights of the input representation.
The full weights of the input representation [including uð1Þ
charges] can be obtained by extending Λα with one of the
two following rows:

ð3; 6; 8; 2; 4Þ;
ð−3;−6;−4;−4;−2Þ:

These two choices turn out to be related by automorphism,
so one node in the final tree is created.
Once all nodes of the auxiliary tree have been processed,

one has the final tree which “sits on top” of the auxiliary
tree. In general, some regions of the auxiliary tree will be
absent in the final tree. At the same time, some auxiliary
nodes will correspond to many final tree nodes. The graph
at this stage is given in Fig. 4.

C. Pruning the final tree

The final step is to ensure the projection matrix implies
the existence of an embedding (this is one of the conditions
for a node in Sec. III B). This is true for semisimple
algebras, but not in general for reductive algebras, though
exceptions are not common. An exemplary input repre-
sentation for the SM gauge algebra which produces
projection matrices that do not correspond to an embedding
is the one-generation SMν with additional vectorlike
fermions in the ð1; 8Þ4 ⊕ ð1; 8Þ−4 representation.
The problem can arise when one attempts to extend the

embedding of the Cartan subalgebra (given by the projection
matrix) to an embedding of the full algebra. One parametrizes
the embeddings of the non-Cartan generators with unknown
parameters. Since commutation relations in the imagemust be
satisfied, this gives a set of polynomial equations that is
quadratic in these parameters. We do not actually need a
solution, rather we simply need to know if a solution exists.
We use a Gröbner basis analysis to carry this out.
All of the projection matrices in our example can be

extended to full reductive embeddings. Therefore, the final
tree takes the form of Fig. 4.

VI. CONCLUSION

SuperFlocci is a versatile and user-friendly program to
find all semisimple extensions to theories of arbitrary gauge
algebra and (local) anomaly-free fermion representation.
The program returns not only all semisimple extensions,
but also detailed information about the embeddings of the
input algebra into these extensions, the embeddings of
extensions into each other, and the branching structure of
their fermion representations. As an example application
of the program, we performed a scan of 5835 extensions to
the fermion content of the one-generation SMν. Beyond
extending the fermion content of the SM, we believe
SuperFlocci will be useful for those searching for GUTs
of BSM theories with an extended gauge algebra.

ACKNOWLEDGMENTS

We thank Ben Allanach, Joe Davighi, Mijo Ghosh,
Ben Gripaios, Alessandro Podo, and Eric San for helpful
discussions. The authors are supported in part by the NSF
Grant No. PHY-2014071. A. G. is also supported by the
NSERC PGS-D fellowship. M. R. is also supported by a
Feodor-Lynen Research fellowship awarded by the
Humboldt Foundation.

APPENDIX A: DYNKIN DIAGRAM
CONVENTION

We follow the same convention in labelling our simple
roots as in [13] (which is different from Flocci [7]). As
mentioned within the main text, all weights used within our
program should be written within this convention.

FIG. 4. The final tree of the one-generation SMν. Notice the
presence of the usual SMν extensions: soð10Þ, Georgi-Glashow,
and Pati-Salam. Their representations are 16, 10 ⊕ 5̄ ⊕ 1, and
ð2; 1; 4Þ ⊕ ð1; 2; 4̄Þ, respectively.

SEMISIMPLE UNIFICATIONS OF ANY GAUGE THEORY PHYS. REV. D 108, 075001 (2023)

075001-9



Dynkin diagram for An:

Dynkin diagram for Bn:

Dynkin diagram for Cn:

Dynkin diagram for Dn:

Dynkin diagram for E6:

Dynkin diagram for E7:

Dynkin diagram for E8:

Dynkin diagram for F4:

Dynkin diagram for G2:

APPENDIX B: TABLES

This appendix contains tables generated by SuperFlocci
for inputs specified in Sec. IV.

TABLE V. All maximal and minimal algebras for three generations of SM fermions without RHNs. The gauge algebra is suð2Þ ⊕
suð3Þ ⊕ uð1Þ and the input representation ½ð2; 3; 1Þ ⊕ ð1; 3̄;−4Þ ⊕ ð1; 3̄; 2Þ ⊕ ð2; 1;−3Þ ⊕ ð1; 1; 6Þ�⊕3.

Maximal

Algebra Fermion representations corresponding to β

1 suð2Þ⊕2 ⊕ suð5Þ ð1; 3; 10Þ ⊕ ð3; 1; 5̄Þ
2 suð2Þ⊕2 ⊕ suð5Þ ð1; 1; 5Þ ⊕ ð1; 2; 5Þ ⊕ ð3; 1; 10Þ
3 suð2Þ⊕2 ⊕ suð5Þ ð1; 1; 10Þ ⊕ ð1; 2; 10Þ ⊕ ð3; 1; 5̄Þ
4 suð5Þ⊕3 ð1; 1; 5̄Þ ⊕ ð1; 1; 10Þ ⊕ ð1; 5̄; 1Þ ⊕ ð1; 10; 1Þ ⊕ ð5̄; 1; 1Þ ⊕ ð10; 1; 1Þ
5 suð2Þ⊕2 ⊕ suð5Þ⊕2 ð1; 1; 1; 5̄Þ ⊕ ð1; 1; 1; 10Þ ⊕ ð1; 2; 10; 1Þ ⊕ ð2; 1; 5̄; 1Þ

Minimal
6 suð5Þ 5̄⊕3 ⊕ 10⊕3

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-10



TABLE VI. All maximal and minimal algebras for three generations of SMν extended by a gauged uð1ÞB−L. The gauge algebra
is suð2Þ ⊕ suð3Þ ⊕ uð1Þ ⊕ uð1Þ and the input representation ½ð2; 3; 1; 1Þ ⊕ ð1; 3̄;−4;−1Þ ⊕ ð1; 3̄; 2;−1Þ ⊕ ð2; 1;−3;−3Þ ⊕
ð1; 1; 6; 3Þ ⊕ ð1; 1; 0; 3Þ�⊕3.

Maximal

Algebra Fermion representations corresponding to β

1 suð2Þ ⊕ soð10Þ (3; 16)
2 suð2Þ ⊕ soð10Þ⊕2 ð1; 1; 16Þ ⊕ ð2; 16; 1Þ
3 soð10Þ⊕3 ð1; 1; 16Þ ⊕ ð1; 16; 1Þ ⊕ ð16; 1; 1Þ
4 suð4Þ ⊕ spð6Þ⊕2 ð4̄; 6; 1Þ ⊕ ð4; 1; 6Þ
5 suð2Þ⊕2 ⊕ suð12Þ ð1; 2; 12Þ ⊕ ð2; 1; 12Þ
6 suð2Þ⊕3 ⊕ suð4Þ ⊕ spð6Þ ð1; 1; 1; 4; 6Þ ⊕ ð1; 1; 2; 4̄; 1Þ ⊕ ð2; 2; 1; 4̄; 1Þ
7 suð2Þ⊕3 ⊕ suð4Þ⊕2 ð1; 1; 1; 4; 6Þ ⊕ ð1; 1; 2; 4̄; 1Þ ⊕ ð2; 2; 1; 4̄; 1Þ
8 suð4Þ⊕2 ⊕ spð6Þ ð4̄; 6; 1Þ ⊕ ð4; 1; 6Þ
9 suð2Þ⊕3 ⊕ suð4Þ ⊕ spð6Þ ð1; 1; 1; 4; 6Þ ⊕ ð1; 1; 2; 4̄; 1Þ ⊕ ð2; 2; 1; 4̄; 1Þ
10 suð2Þ⊕2 ⊕ suð4Þ ⊕ spð4Þ ⊕ soð10Þ ð1; 1; 1; 1; 16Þ ⊕ ð1; 1; 4; 4; 1Þ ⊕ ð2; 2; 4̄; 1; 1Þ
11 suð2Þ⊕4 ⊕ suð4Þ ⊕ soð10Þ ð1; 1; 1; 1; 1; 16Þ ⊕ ð1; 1; 2; 2; 4; 1Þ ⊕ ð2; 2; 1; 1; 4̄; 1Þ
12 suð2Þ⊕2 ⊕ suð8Þ ⊕ soð10Þ ð1; 1; 1; 16Þ ⊕ ð1; 2; 8; 1Þ ⊕ ð2; 1; 8̄; 1Þ
13 suð4Þ ⊕ spð4Þ⊕2 ⊕ soð10Þ ð1; 1; 1; 16Þ ⊕ ð4̄; 4; 1; 1Þ ⊕ ð4; 1; 4; 1Þ
14 suð2Þ⊕2 ⊕ suð4Þ ⊕ spð4Þ ⊕ soð10Þ ð1; 1; 1; 1; 16Þ ⊕ ð1; 1; 4; 4; 1Þ ⊕ ð2; 2; 4̄; 1; 1Þ

Minimal
15 suð2Þ ⊕ suð4Þ⊕2 ð1; 4; 6Þ ⊕ ð2; 4̄; 1Þ⊕3

16 suð2Þ⊕2 ⊕ suð4Þ ð1; 2; 4Þ⊕3 ⊕ ð2; 1; 4̄Þ⊕3

TABLE VII. All maximal and minimal algebras for one generation of SM fermions plus fermions in the vectorlike ð2; 1Þ3 ⊕
ð2; 1Þ−3 ⊕ ð1; 3Þ−2 ⊕ ð1; 3̄Þ2 ⊕ ð1; 1Þ⊕2

0 representation of suð2Þ ⊕ suð3Þ ⊕ uð1Þ.
Maximal

Algebra Fermion representations corresponding to β

1 suð2Þ⊕2 ⊕ suð5Þ ð1; 1; 10Þ ⊕ ð1; 1; 5Þ ⊕ ð1; 2; 1Þ ⊕ ð2; 1; 5̄Þ
2 E6 27
3 suð2Þ ⊕ suð5Þ ⊕ soð10Þ ð1; 1; 10Þ ⊕ ð1; 5̄; 1Þ ⊕ ð1; 10; 1Þ ⊕ ð2; 1; 1Þ
4 spð10Þ ⊕ soð10Þ ð1; 1Þ ⊕ ð1; 16Þ ⊕ ð10; 1Þ
5 suð5Þ ⊕ spð12Þ ð1; 12Þ ⊕ ð5̄; 1Þ ⊕ ð10; 1Þ
6 suð5Þ ⊕ soð12Þ ð1; 12Þ ⊕ ð5̄; 1Þ ⊕ ð10; 1Þ
7 soð11Þ ⊕ soð10Þ ð1; 16Þ ⊕ ð11; 1Þ
8 suð2Þ⊕2 ⊕ suð5Þ ⊕ spð8Þ ð1; 1; 1; 8Þ ⊕ ð1; 1; 5̄; 1Þ ⊕ ð1; 1; 10; 1Þ ⊕ ð2; 2; 1; 1Þ
9 suð4Þ ⊕ suð5Þ ⊕ spð6Þ ð1; 1; 6Þ ⊕ ð1; 5̄; 1Þ ⊕ ð1; 10; 1Þ ⊕ ð6; 1; 1Þ
10 suð4Þ ⊕ suð5Þ ⊕ spð6Þ ð1; 1; 6Þ ⊕ ð1; 5̄; 1Þ ⊕ ð1; 10; 1Þ ⊕ ð6; 1; 1Þ
11 spð4Þ ⊕ spð6Þ ⊕ soð10Þ ð1; 1; 16Þ ⊕ ð1; 6; 1Þ ⊕ ð5; 1; 1Þ

Minimal
12 suð3Þ⊕3 ð1; 3; 3Þ ⊕ ð3̄; 3̄; 1Þ ⊕ ð3; 1; 3̄Þ
13 suð5Þ ⊕ spð6Þ⊕2 ð1; 1; 6Þ ⊕ ð1; 6; 1Þ ⊕ ð5̄; 1; 1Þ ⊕ ð10; 1; 1Þ
14 suð2Þ⊕2 ⊕ suð5Þ ⊕ spð6Þ ð1; 1; 1; 1Þ⊕2 ⊕ ð1; 1; 1; 6Þ ⊕ ð1; 1; 5̄; 1Þ ⊕ ð1; 1; 10; 1Þ ⊕ ð2; 2; 1; 1Þ
15 suð2Þ⊕2 ⊕ suð4Þ ⊕ suð5Þ ð1; 1; 1; 1Þ ⊕ ð1; 1; 1; 5̄Þ ⊕ ð1; 1; 1; 5Þ ⊕ ð1; 2; 4; 1Þ ⊕ ð2; 1; 4̄; 1Þ
16 suð2Þ⊕2 ⊕ suð4Þ ⊕ suð5Þ ð1; 1; 1; 1Þ⊕2 ⊕ ð1; 1; 1; 5̄Þ ⊕ ð1; 1; 1; 10Þ ⊕ ð1; 1; 6; 1Þ ⊕ ð2; 2; 1; 1Þ
17 suð5Þ 1⊕2 ⊕ 5̄⊕2 ⊕ 10 ⊕ 5
18 suð2Þ⊕2 ⊕ suð4Þ ⊕ spð6Þ ð1; 1; 1; 1Þ ⊕ ð1; 1; 1; 6Þ ⊕ ð1; 2; 4; 1Þ ⊕ ð2; 1; 4̄; 1Þ ⊕ ð2; 2; 1; 1Þ
19 suð2Þ⊕2 ⊕ suð4Þ ð1; 1; 1Þ ⊕ ð1; 1; 6Þ ⊕ ð1; 2; 4Þ ⊕ ð2; 1; 4̄Þ ⊕ ð2; 2; 1Þ

SEMISIMPLE UNIFICATIONS OF ANY GAUGE THEORY PHYS. REV. D 108, 075001 (2023)

075001-11



[1] H. Georgi and S. L. Glashow, Unity of All Elementary
Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

[2] H. Fritzsch and P. Minkowski, Unified interactions of
leptons and hadrons, Ann. Phys. (Leipzig) 93, 193 (1975).

[3] H. Georgi, The state of the art—gauge theories, AIP Conf.
Proc. 23, 575 (1975).

[4] J. C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974).

[5] J. Davighi, A. Greljo, and A. E. Thomsen, Leptoquarks with
exactly stable protons, Phys. Lett. B 833, 137310 (2022).

[6] J. Davighi and J. Tooby-Smith, Electroweak flavour uni-
fication, J. High Energy Phys. 09 (2022) 193.

[7] B. C. Allanach, B. Gripaios, and J. Tooby-Smith, Semi-
simple extensions of the Standard Model gauge algebra,
Phys. Rev. D 104, 035035 (2021).

[8] W. de Graaf, Lie Algebras: Theory and Algorithms (Elsevier
Science, New York, 2000).

[9] M. Lorente and B. Gruber, Classification of semisimple
subalgebras of simple lie algebras, J. Math. Phys. (N.Y.) 13,
1639 (1972).

[10] B. Gruber and M. Samuel, Semisimple subalgebras of
semisimple lie algebras: The algebra (su (6)) as a physically
significant example, in Group Theory and Its Applications
(Elsevier, New York, 1975), pp. 95–141.

[11] E. B. Dynkin, Maximal subgroups of the classical groups,
Tr. Mosk. Mat. Obs. 1, 39 (1952).

[12] E. Dynkin, Semisimple subalgebras of semisimple Lie
algebras, Mat. Sb. 72, 349 (1952).

[13] R. Feger, T. W. Kephart, and R. J. Saskowski, LieART 2.0: A
Mathematica application for lie algebras and representation
theory, Comput. Phys. Commun. 257, 107490 (2020).

[14] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.108.075001 for more de-
tails.

[15] J. Tooby-Smith, Arithmetical, geometrical, and categorical
forays into particle physics, Ph.D. thesis, Cambridge Uni-
versity, 2021, 10.17863/CAM.72061.

[16] A. Gomes, M. Ruhdorfer, and J. Tooby-Smith, Superflocci
GitHub repository (2023), https://github.com/jstoobysmith/
Superfloccinaucinihilipilification.

[17] F. Gursey, P. Ramond, and P. Sikivie, A universal gauge
theory model based on E6, Phys. Lett. 60B, 177 (1976).

[18] J. L. Hewett and T. G. Rizzo, Low-energy phenomenology
of superstring inspired E6 models, Phys. Rep. 183, 193
(1989).

[19] M. Fukugita, T. Yanagida, and M. Yoshimura, NN oscil-
lation without left-right symmetry, Phys. Lett. 109B, 369
(1982).

[20] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, T. Li, and J. W.
Walker, SU(6) GUT origin of the TeV-scale vectorlike
particles associated with the 750 GeV diphoton resonance,
Phys. Rev. D 94, 036006 (2016).

[21] A. Hartanto and L. T. Handoko, Grand unified theory
based on the SU(6) symmetry, Phys. Rev. D 71, 095013
(2005).

[22] J. Davighi and J. Tooby-Smith, Flatland: Abelian extensions
of the standard model with semi-simple completions, J.
High Energy Phys. 09 (2022) 159.

[23] A. Davidson, B − L as the fourth color within an
SUð2ÞL × Uð1ÞR × Uð1Þ model, Phys. Rev. D 20, 776
(1979).

[24] R. N. Mohapatra and R. E. Marshak, Local B-L Symmetry
of Electroweak Interactions, Majorana Neutrinos and Neu-
tron Oscillations, Phys. Rev. Lett. 44, 1316 (1980).

[25] R. N. Mohapatra and J. C. Pati, “Natural” left-right sym-
metry, Phys. Rev. D 11, 2558 (1975).

[26] G. Senjanovic and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[27] H. Georgi and Y. Nakai, Diphoton resonance from a new
strong force, Phys. Rev. D 94, 075005 (2016).

[28] L. Di Luzio, A. Greljo, and M. Nardecchia, Gauge lep-
toquark as the origin of B-physics anomalies, Phys. Rev. D
96, 115011 (2017).

[29] K. S. Babu, X.-G. He, and S. Pakvasa, Neutrino masses and
proton decay modes in SUð3Þ × SUð3Þ × SUð3Þ trinifica-
tion, Phys. Rev. D 33, 763 (1986).

[30] A. de Rújula, H. Georgi, and S. L. Glashow, in Fifth
Workshop on Grand Unification (World Scientific,
Singapore, 1984), p. 88.

[31] N. Yamatsu, Finite-dimensional lie algebras and their
representations for unified model building, arXiv:1511
.08771.

GOMES, RUHDORFER, and TOOBY-SMITH PHYS. REV. D 108, 075001 (2023)

075001-12

https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1063/1.2947450
https://doi.org/10.1063/1.2947450
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1016/j.physletb.2022.137310
https://doi.org/10.1007/JHEP09(2022)193
https://doi.org/10.1103/PhysRevD.104.035035
https://doi.org/10.1063/1.1665888
https://doi.org/10.1063/1.1665888
https://doi.org/10.1016/j.cpc.2020.107490
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
http://link.aps.org/supplemental/10.1103/PhysRevD.108.075001
https://doi.org/10.17863/CAM.72061
https://github.com/jstoobysmith/Superfloccinaucinihilipilification
https://github.com/jstoobysmith/Superfloccinaucinihilipilification
https://github.com/jstoobysmith/Superfloccinaucinihilipilification
https://doi.org/10.1016/0370-2693(76)90417-2
https://doi.org/10.1016/0370-1573(89)90071-9
https://doi.org/10.1016/0370-1573(89)90071-9
https://doi.org/10.1016/0370-2693(82)91092-9
https://doi.org/10.1016/0370-2693(82)91092-9
https://doi.org/10.1103/PhysRevD.94.036006
https://doi.org/10.1103/PhysRevD.71.095013
https://doi.org/10.1103/PhysRevD.71.095013
https://doi.org/10.1007/JHEP09(2022)159
https://doi.org/10.1007/JHEP09(2022)159
https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.94.075005
https://doi.org/10.1103/PhysRevD.96.115011
https://doi.org/10.1103/PhysRevD.96.115011
https://doi.org/10.1103/PhysRevD.33.763
https://arXiv.org/abs/1511.08771
https://arXiv.org/abs/1511.08771

