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Sampling topological quantities in the Monte Carlo simulation of lattice gauge theory becomes
challenging as we approach the continuum limit (@ — 0) of the theory. In this work, we introduce a
conditional normalizing flow model to sample U(1) gauge theory in two dimensions, aiming to mitigate the
impact of topological freezing when dealing with smaller values of the U(1) bare coupling. To train the
conditional flow model, we utilize samples generated by hybrid Monte Carlo method, ensuring that
the autocorrelation in topological quantities remains low. Subsequently, we employ the trained model to
extrapolate the coupling parameter to values where training was not performed. We thoroughly examine the
quality of the model in this region and generate uncorrelated samples, significantly reducing the occurrence
of topological freezing. Furthermore, we propose a retrainable approach that utilizes the model’s own
samples to enhance the generalization capability of the conditional model. This method enables sampling
for coupling values far beyond the initial training region, expanding the model’s applicability.
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I. INTRODUCTION

In the field of lattice theory, Monte Carlo simulation
methods are utilized to sample configurations of the lattice.
These samples are generated based on a distribution deter-
mined by the action of the lattice theory. The choice of the
action parameter value used in generating the lattice samples
determines the computational cost of the simulation. As we
approach the critical region of a lattice system or move
towards the continuum limit of a lattice field theory, the
samples become highly correlated. Within the critical region,
the integrated autocorrelation time, which measures the level
of correlation, increases rapidly and diverges at the critical
point. In a finite-size lattice, the critical point corresponds to
the peak of the autocorrelation curve, leading to a phenome-
non known as critical slowing down [1,2]. This has been a
major problem in the simulation of lattice systems near the
critical region. If proper care is not taken, this may lead to
biased estimation of observable.

Monte Carlo simulation encounters similar difficulties
when exploring the topological sector in lattice gauge
theory, such as U(1) gauge theory in 2D. When we move
towards finer lattices, the topological charge freezes, i.e.,
the hybrid Monte Carlo (HMC) sampling is restricted only
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to one or two topological sectors for a longer simulation
run. This implies a larger integrated autocorrelation time
for topological charge which is well known as topological
freezing. Numerous efforts have been made to mitigate the
impact of critical slowing down in statistical systems and
lattice quantum field theory [3-5]. However, in lattice
gauge theory it still remains a challenging task.

These days, machine learning-based solutions to the
critical slowing down problem has become popular.
Various machine learning algorithms have been applied
for statistical physics, condensed matter problems and
lattice field theory [6-29]. Several generative learning
algorithms have recently been developed to avoid the
difficulty in lattice field theory [30—41]. In the flow-based
approach [30,33] normalizing flow (NF) models are trained
for a action parameter with reverse Kullback-Leibler (KL)
divergence. But this kind of self-learning method has a
major issue of mode collapse which may lead to inefficient
modeling of complicated multimodal distributions [10,36].
In contrast a generative model trained with forward KL are
mode covering and applying the Metropolis-Hastings (MH)
algorithm can produce the correct statistics. In the U(1)
gauge theory, this issue of mode collapse is discussed in
Sec. IVA. In our earlier works [42,43] we presented a
method for sampling lattice configurations near the critical
regions using conditional normalizing flow (C-NF) (condi-
tional normalizing flow has also recently been used in [44])
and conditional generative adversarial network to reduce
the problem of critical slowing down for scalar field theory
and lattice Gross-Neveu model in two dimensions. We have

Published by the American Physical Society


https://orcid.org/0000-0001-7875-8434
https://orcid.org/0000-0002-0558-3132
https://orcid.org/0000-0002-1207-1258
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.074518&domain=pdf&date_stamp=2023-10-30
https://doi.org/10.1103/PhysRevD.108.074518
https://doi.org/10.1103/PhysRevD.108.074518
https://doi.org/10.1103/PhysRevD.108.074518
https://doi.org/10.1103/PhysRevD.108.074518
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SINGHA, CHAKRABARTI, and ARORA

PHYS. REV. D 108, 074518 (2023)

shown that the C-NF model [42] trained in the noncritical
region can produce samples for parameter values in the
critical region. In this work, we propose an application of
equivariant flow to construct a conditional flow model for
sampling U(1) gauge theory in two dimensions. To the best
of our knowledge the conditional flow model, based on the
action parameter, has not been employed in the sampling of
lattice gauge theory.

In U(1) gauge theory, the target distribution for a given
action parameter f can be defined as

P, (n)Ip) = 550, (1

where U, (n) denotes the U(1) link variable field, # denotes
the lattice action parameter and Z is the partition function
defined as Z = 3", e~5(U#), The action parameter /3 is the
conditional parameter, and we train a conditional flow
model on lattice ensembles corresponding to different f
values. We partition the action parameter into two sets /5
and fi5 based on the integrated autocorrelation time (z;,) of
topological charge. f3; corresponds to large f values where
topological freezing is dominant in HMC simulations as
shown in Fig. 1(a) and f¢ corresponds to smaller values of
/ where the 7;,, is small, and hence the samples fluctuate
among different topological sectors as shown in Fig. 1(b).
Due of the lower autocorrelation time, the HMC simulation
cost is minimal in the f set. Hence, we train a C-NF p(Uy)
with HMC samples from p(U, fis).

We train the C-NF model to be a generalised model
over f parameters. The model is then extrapolated to
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FIG. 1. The fluctuation of topological charge for 50k Markov

steps simulated by HMC at (a) f# =7 and (b) f = 3.5.

larger values of g, i.e., in the f; set to generate different
ensembles of lattice configurations. However, the extrapo-
lated model may not provide samples from the true target
distribution. But the exactness can be guaranteed by using
the MH algorithm. Therefore, we use the extrapolated
model p(U(f.)) at large § values as proposal for con-
structing a Markov Chain via an independent MH algo-
rithm [30]. The quality of the extrapolated model may
deteriorate as we move further away from the training
region, particularly for distant # values. In such cases, we
can employ a retrainable method to sample at those f
values. This retrainable method utilizes the model’s own
samples at intermediate S value to enhance the generali-
zation of the C-NF model, enabling better sampling
capabilities at points that are far away from the training set.

II. U(1) GAUGE THEORY

The lattice action for U(1) gauge theory in 1+ 1
dimensions can be written as

S(U) = =B _Re[U,,(n)], (2)

nu<v

where, the plaquette U, is defined as
U;w = Uﬂ(n)Uu(n + la)Uy(n + I;)Uu(n)' (3)

U,(n) can be written in terms of angular variable

as U,(n) = e%". The action is symmetric under the

transformation

U

;4(”) N eia(n) Uﬂ(,,l)e—ia(n-ﬁ—ﬂ)' (4)

In terms of angular variable the plaquette becomes
U,y (n) = ellu+0.042)=0,(n+2)=0,(n)] (5)
= €% (n). (6)

So, the action can be written as

S(U) = =) _ cos6,,(n), (7)
which is symmetric under
0,(n) = a(n) +0,(n) —a(n+ ),

where a(n) €R. (8)

The action in Eq. (7) is used in Eq. (1) for sampling in both
HMC and C-NF model. The observable we calculate here is
the topological charge defined as

0 =5 > arelU, (n)] (9)

where , arg[(U,,] € [~ x]). (10)
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III. C-NF MODEL EMPLOYING
EQUIVARIANT FLOW

In a flow-based model, starting with a gauge symmetric
prior distribution does not guarantee that the resulting
output distribution will also be gauge symmetric. For the
output distribution to maintain gauge symmetry, the flow
transformation must be an equivariant transformation,
meaning it should commute with the gauge transformation.
Implementing such equivariance in a flow-based model is
nontrivial. However, if the flow transformation only affects
the gauge invariant quantity, then the condition mentioned
above is easily satisfied. In such cases, the flow-based
model can maintain gauge symmetry by exclusively trans-
forming the gauge invariant component. In U(1) gauge
theory, the link variable U,(n) are not itself gauge
invariant. For such construction one has to find one to
one correspondence between the gauge invariant quantity
and the link variable. For example, the plaquette variable
P, (n) is one such gauge invariant quantity which can be
used for construction of equivariant flow. We use the
equivariant flow construction following Ref. [33]. In 2D,
the link variables are tensor of shape (2,L,L) and the
plaquette variables are tensor of shape (L, L). The update in
P,, can be translated into update of a single U, using
suitable mask pattern. Note that a single update of a
link variable in 2D will update two adjacent plaquttes.
Therefore, in a coupling layer we need three subclass of
input plaquettes as described below, obtained by suitable
mask namely active, passive and frozen [33]. The active
variables (Py,) are transformed by the coupling layer, the

frozen variable (P}, ) are not transformed by this coupling
layer and the passive variables (Pl,) are those which gets
transformed indirectly due to a link update. We choose the
mask such that the update in the link variable U, is sparse
and hence scalable to larger lattice sizes. We use a total of
32 coupling layers in the C-NF model.

The link update in a coupling layer happens in two steps,
in the first step, we take care of translating P, to U, and
the second step corresponds to the actual flow in the P, (n)
variable. For the second step, we use the noncompact
projection (NCP) flow [45]. In NCP flow, we use fully
convolutional layers to transform the frozen variables of the
coupling layers. We have used 48 such coupling layers, and
each coupling layer has three hidden convolutional neural
networks with a number of filters 16, 32, 16. We use
LeakyReLU activation in the hidden layers. Since we use
coupling layers the conditional parameters can be concat-
enated to frozen variables and passed through the neural
network, which is evaluated in the forward direction only.

IV. NUMERICAL EXPERIMENTS AND RESULTS

In this section, we present the details of our numerical
experiment and the resulting outcomes. We outline the

training and sampling processes and the dataset preparation
used to train the C-NF model.

A. Mode collapse in U(1) gauge theory

In the literature, there are several flow-based works
which try to accelerate the sampling of lattice field theory
using reverse KL (RKL) divergence. However, one major
disadvantage RKL comes with is the mode-collapsing
behavior. On the other hand, flow-based models trained
using forward KL (FKL) are mode covering. In this section,
we investigate the problem of mode collapse in a flow-
based model for U(1) gauge theory. We train two flow-
based models g (U, ®) and g5 (U, ¥) using RKL and FKL
divergence, respectively. After training both models to 50%
effective sample size (ESS), we estimate the negative log-
likelihood (NLL). Two kinds of NLL for the flow models
are used for the investigation, namely £; and L,,

Ly = Eypwp) log q(U, ©)], (11)

where ¢(U, ©) is either trained with the FKL or RKL and
the expectation E is taken over samples generated from
the true distribution (e.g., HMC simulation). This type of
NLL is best suited for detecting mode collapse in a
generative model.

Ly = Eyg, e llog p(U|B)], (12)

where in this case, the expectation is taken over the samples
generated from the model itself and the expectation of
p(U) is estimated. This metric alone is not sufficient to
investigate the mode collapse as explained in the Appendix.
However, by the combination of £, and £,, one can detect
the mode collapse.

For HMC L, = £, and is given by

[’hmc = Ex~p(U\/}) [IOg p(Uﬂ)] (13)

We have estimated all three NLL types, £, £,, and L;,,,,.
shown in the Table I. We see that the £, is quite high for
the RKL and highly deviates from the £,,,.. For RKL,
L is 270.61, which is quite higher than the £, (196.88).
This indicates that the RKL model has not explored the
distribution’s parameter space as HMC does. Hence, RKL
generates samples in a specific region of the distribution,

TABLE I. Comparision of the different NLL types. For HMC
L, and L, are equal.

NLL comparison

Model El £2
RKL [34] 270.611 196.882
FKL 199.715 196.982
HMC 196.666

074518-3



SINGHA, CHAKRABARTI, and ARORA

PHYS. REV. D 108, 074518 (2023)

leading to the disagreement in £, and £;. On the other
hand, for the FKL, £ is low and very close to the Lp,,,..
Moreover, £, and £, are also quite close (196.98 and
199.71) for FKL. More discussions on this issue are given
in the Appendix.

Note that an RKL model alone is sufficient to observe the
mode collapse, and one can use the method [34] for U(1)
gauge theory to check the large disagreement of £, and £,.
The observed difference remains constant while training,
even if we increase the ESS. This is what one expects in an
online training process.

B. Training dataset

To train the C-NF model, we generate 10 different
ensembles of lattice configurations, each corresponding
to a different value of g = fg: {1.0,1.5,1.8,2,2.2,2.5,
2.8,3,3.2,3.5}. We choose the training dataset such that
there is no topological freezing. The largest value of S is
3.5, where integrated autocorrelation time is ~23.45. The
behavior of topological charge is shown in the Fig. 1(b) for
Ps = 3.5. For larger f the topological freezing sets in as
shown in Fig. 1(a). To prepare training ensembles, we
employ HMC simulation and adjust the HMC parameter
for each pg value to achieve an acceptance rate of
approximately ~85%. We have used a nonuniform ensem-
ble size for each fs. For the largest value of ¢, we generate
15,000 samples and as we move to the next lower g we
reduce ensemble size by 500. We perform all the numerical
experiments on a 16 x 16 lattice.

C. Training and sampling

In the C-NF model, the input lattice configurations
are tensors with a shape of (2,16,16). These tensors are
concatenated with their corresponding ensemble labels or
conditional parameters, denoted as 1. The tensor 1 has the
same shape as the lattice configurations, (2,16,16), with all
elements set to identity. It implies that all masking patterns
will be applied to the condition tensors along with the
lattice configurations.

During training, we randomly select a batch from any
value of fg. We use a batch size of 512 to calculate the
gradient at each iteration, and the model weights are
updated after every 10 iterations. The C-NF model is
trained using forward KL divergence and an Adam opti-
mizer with an initial learning rate of 0.001. Increasing the
ESS of the C-NF model can be challenging and may reach a
plateau during the training. We incorporate a decay of
learning rate of 0.5 at intervals of 25,000 training iterations.
We have found this approach effective in increasing the
ESS for the C-NF model. It’s important to note that the
C-NF model may exhibit overfitting and perform well only
for the training f values. To overcome this, we condition
only every fourth coupling layer allowing for better
generalization and performance on unseen f values. We
stop the training when the ESS reach above 30% and the

increment is less than 3% for next 5000 consecutive
iterations. Note that, with further training or a more
optimized architecture, one can potentially achieve a higher
ESS. However, our objective is to assess the sample quality
as we extrapolate for large f values. While training, we also
monitor the acceptance rate periodically after every 10,000
iterations in the MH algorithm. At the end of training, we
achieve an acceptance rate of approximately 65% in the
training region.

After training, we extrapolate the model for large f
values, f; = {5.5,6,6.5,7,7.5}. Using the extrapolated
model, we generate proposals for the MH step in order to
construct a Markov chain. For each value of 5, we generate
an ensemble consisting of 10° lattice configurations.
Once training is over, the flow-based model enables us
to efficiently generate such large ensembles without any
significant challenges.

D. Results

We calculate different observables on the ensemble
generated from the C-NF model. In Fig. 2 we have shown
the integrated autocorrelation time for HMC and C-NF
model calculated for a topological charge. During the
estimation of observables on the ensemble, we consider
every 20th configuration to reduce any effect of autocorre-
lation. We see that for HMC simulation, the effect of
topological freezing increases rapidly as we move towards
larger . Since the generation in the C-NF model is
inherently uncorrelated, the autocorrelation depends on
the acceptance rate in MH step. There is a massive gain as
we move towards larger # where we have not trained the
model. In the extrapolated region, the acceptance rate in
the MH step is almost constant. This indicates that our
model has learned the conditional distribution very well.
In Fig. 3, we show that the acceptance rate is between 60%
to 50% for the extrapolated parameter values in fS;.

104 5
3 C-NF
1+ Hmc

103 4

= 102+

101-§

100 ‘ T T T T T T
5.0 55 6.0 6.5 7.0 7.5

B.

FIG. 2. Integrated autocorrelation time calculated form the
C-NF model and HMC simulation. The solid (green) line
represents 7;,, in the HMC simulation and dashed (orange) line
represents 7;,; in C-NF.
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FIG. 3. Acceptance rate calculated from the extrapolated C-NF
model for different § values. The acceptance rate shows a very
small decline over a wide range of nontraining values of f.

This allows one to store a single model and generate
ensembles at multiple  values.

Figure 4 shows the fluctuation of topological charge with
the Monte Carlo Markov chain (MCMC) time. We see clear
freezing in the HMC Markov chain. In contrast, the C-NF
model has reduced it significantly. This is a significant gain
one can obtain from a flow-based model.

E. Retraining method for distant § values

If we want to extrapolate the model far away from the
training region, the acceptance rate may decrease. This is
due to the lack of good generalization for the conditional
model over a wide range of f values. For example, if we
want to generate samples for f =9, then the MH accep-
tance rate drops to ~30%. We address this issue by utilizing
samples from nontraining regions of f values. For extrapo-
lation at # =9, first, we generate samples from the C-NF
model for an intermediate /3, say f§ = 6, where the accep-
tance rate is ~55%. We add these newly generated samples
and retrain the C-NF model using forward KL for 10,000
iterations along with the previously used samples.
We reduce 50% samples for each ff € fg. This will improve
the generalization of the C-NF model for larger f values.

— CNF

Topological Charge, Q
o

20000 30000 40000 50000

tmc

0 10000

FIG. 4. Topological freezing is shown for 50,000 Markov
chains in both the HMC simulation and the C-NF model. A
significant gain from the C-NF model in reducing the effect of
topological freezing is clearly visible.

We observed an increase in acceptance rate with the
retraining up to ~40% for f = 9. Note that if f is not too
far from the training region and the ESS does not fall off
drastically, retraining is not required.

V. SUMMARY AND CONCLUSION

Based on our previous work, it has been observed that the
conditional flow model has proven to be successful when
applied to scalar and Gross-Nevue models. Building and
testing the conditional flow-based model on gauge theory is
crucial to advance further in the development of lattice QCD.

In the simulation of U(1) gauge theory using the MCMC
method, the correlation between the samples becomes
stronger as lattice spacing decrease i.e.,  increases. As
p reaches higher values, a phenomenon called topological
freezing is observed in the MCMC simulation. To tackle
this issue, we have developed a conditional flow-based
model (C-NF) specifically designed for sampling the U(1)
gauge theory in 2D when f is large. This model takes /5 as a
conditioning parameter and is trained using ensembles of
values where there are low autocorrelations and minimal
effects of topological freezing. The training process con-
tinues until the ESS for the training ensembles reaches
approximately 30%.

Once the training is completed, we employ the model to
generate samples for larger f values using the Metropolis-
Hastings algorithm. The quality of the extrapolated model
depends on how well it has learned a generalized distri-
bution over the f parameter. We achieve an acceptance rate
of approximately 50-60% in the MH algorithm across a
wide range of f values that were not included in the training
data. For # = 7.5, the acceptance rate in the MH algorithm
is approximately 52%. However, as f increases further,
the acceptance rate gradually decreases. In such cases, if
necessary, one can use a retrainable method for sampling
points far beyond the training region. This method utilizes
the model’s samples at intermediate  values to improve the
conditional generation of samples.

While the conditional flow model has shown effective-
ness in certain cases, it is generally not scalable for
sampling high-dimensional distributions. One possible
future direction is to tackle the challenging task of con-
structing a conditional flow model for sampling high-
dimensional lattice gauge theory.
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APPENDIX: MODE COLLAPSE
IN A FLOW MODEL

Let us examine a multimodal target distribution, denoted
as p(x), which encompasses two modes as illustrated in
Fig. 5. To represent this distribution, we employ an NF
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FIG. 5. Mode collapse in a flow model.

model denoted as ¢(x, ®). This NF model can be trained
using either forward KL or reverse KL divergence.

We examine two types of NLL metrics to investigate
mode collapse in the NF model, aiming to determine which
one is more effective in identifying a mode collapse.

We use HMC as our baseline for studying the mode
collapse phenomenon.

In £2, samples are drawn from the distribution p(x),
where x ~ p(x), and the density is subsequently estimated
using the NF model. In other words, we are estimat-
ing Ex ~ p(x)[log g(x, ©)].

When there is no mode collapse, the model generates
samples in both modes and as a result, E,. ,(,[log g(x, ©)]
aligns with L,

Now, consider the scenario in which mode collapse
occurs. Since the model learns only a single mode, ¢(x, ®)
becomes substantially elevated at that specific mode,
as illustrated in Fig. 5. Consequently, £; will be notably
higher compared to the situation where all modes are
learned. Therefore, this serves as a suitable metric for
identifying mode collapse.

In £,, samples are generated from the trained NF model
and the expectation value of log p(x) is estimated. If we
assume there is no mode collapse, then the model will
generate samples x ~ ¢(x) in both modes and E,[log p(x)]
will match with £,,... If there is a mode collapse, the model
will generate samples only in a single mode. But the
estimate E, [log p(x)] will still match with £, as the
estimated quantity is log p(x). Thus it does not serve as a
good metric for mode collapse detection.
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