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When studied at finite temperature, Yang-Mills theories in 3þ 1 dimensions display the presence of
confinement/deconfinement phase transitions, which are known to be of first order—the SUð2Þ gauge
theory being the exception. Theoretical as well as phenomenological considerations indicate that it is
essential to establish a precise characterization of these physical systems in proximity of such phase
transitions. We present and test a new method to study the critical region of parameter space in non-Abelian
quantum field theories on the lattice, based upon the logarithmic linear relaxation (LLR) algorithm. We
apply this method to the SUð3Þ Yang-Mills lattice gauge theory, and perform extensive calculations with
one fixed choice of lattice size. We identify the critical temperature, and measure interesting physical
quantities near the transition. Among them, we determine the free energy of the model in the critical region,
exposing for the first time its multivalued nature with a numerical calculation from first principles,
providing this novel evidence in support of a first-order phase transition. This study sets the stage for future
high-precision measurements, by demonstrating the potential of the method.
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I. INTRODUCTION

The characterization of phase transitions is a central
topic of study in theoretical physics, both for reasons of
principle and in view of applications. In the proximity of
second-order phase transitions, for critical values of the
control parameters, the correlation length diverges, hence
such systems can be classified in universality classes,
distinguished by the value of quantities that are indepen-
dent of the microscopic details. But this is atypical, while
many important physical systems undergo first-order phase
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transitions, which admit no notion of universality. It is then
essential to specify the details of the theory, and identify
computational strategies optimized to the precise determi-
nation of model-dependent physical observables. The latent
heat is a particularly important example, as it determines
the strength of the transition.
A case in point, within fundamental physics, is provided

by the history of electroweak baryogenesis. One of the
three conditions identified by Sakharov [1] to explain the
matter-antimatter asymmetry in the observable Universe
requires the dynamics to be out of equilibrium. Hence, the
electroweak phase transition should be of first order and
strong enough, if it is to play a central role in these
phenomena. Testing this hypothesis required developing a
program of dedicated calculations. The final outcome of
this challenging endeavor is that electroweak baryogenesis
cannot work within the standard model (SM) of particle
physics; it was demonstrated nonperturbatively [2–8]
that a line of first-order phase transitions ends at a critical
point, and that the transition disappears into a crossover,
except for unrealistically light Higgs boson masses,
mh < Oð70Þ GeV. This result still stands nowadays as
prominent evidence for new physics. (See Refs. [9,10] for
reviews, and also Ref. [11] for a recent nonperturbative
update.)
New physics is also needed to explain the origin of dark

matter, the existence of which is supported by both
observational astrophysics and cosmology. This evidence
motivates proposals postulating the existence of hidden
sectors, comprised of (dark) particles carrying no SM
quantum numbers, feebly coupled to SM particles (see,
e.g., Refs. [12–18]). Hidden sector dark matter scenarios
find concrete realizations as composite dark matter (as, for
example, in Refs. [19–28]) and strongly interacting dark
matter (see, e.g., Refs. [29–36]). Loosely inspired by
quantum chromodynamics (QCD), their microscopic
description consists of new confining gauge theories, with
or without matter field content.
If the new dark sector undergoes a first-order phase

transition in the early Universe, it would yield a relic
stochastic background of gravitational waves [37–42],
potentially accessible to a number of present and future
gravitationalwave experiments [43–60].Model-independent
studies of the properties of such cosmological confinement
phase transitions and their imprint on the stochastic gravi-
tation background may adopt either of two complementary
theoretical strategies for investigation. (See, e.g., Fig. 1 of
Ref. [61] but also Refs. [62–65].) Either one models the
bubble nucleation rates by using the results of direct non-
perturbative calculation of latent heat, surface tension and
other relevant dynamical quantities; or one builds and
constrains an effective description, such as the Polyakov-
loop model [61,63,66–74], or matrix models [62,75–83],
supplementing it by thermodynamic information computed,
again, nonperturbatively.

Either way, one arrives at a characterization of the phase
transition in terms of a set of parameters; critical temper-
ature, Tc, percolation temperature, T�, strength of the
transition, α, inverse duration of the transition, β=H�,
bubble wall velocity, vW , and number of degrees of
freedom after the transition, g�. These are then used as
input in the cosmological evolution, via existing software
packages such as, for example, PTPlot [59], to obtain the
power spectrum of relic stochastic gravitational waves,
h2ΩGW, that can be compared with detector reach.
Hence, the first step towards calculating the power

spectrum of gravitational waves requires precise nonper-
turbative treatment of the dynamics, which can be provided
by numerical simulations of lattice gauge theories. The
finite-temperature behavior of many lattice gauge theories
has been studied in the past; for example, for SUðNcÞ see
Refs. [84–89], for SpðNcÞ see Ref. [90], and for G2 see
Ref. [91–94]. These pioneering works were somewhat
limited in scope, while dedicated high-precision measure-
ments of specific observables, in particular of the latent
heat, present technical challenges. A handful of dedicated
lattice calculations has started to appear, focused on
stealth dark matter with SUð4Þ gauge dynamics [95–97],
or on Spð4Þ gauge theories [98–100]. A complementary
approach to the study of the relevant out-of-equilibrium
dynamics near criticality, bubble nucleation, and bubble
wall velocity makes use of the nonperturbative tools
provided by gauge-gravity dualities [101–104], which
can be generalized to strongly coupled systems exhibiting
confinement and chiral symmetry breaking [105–114]—we
refer the reader to Refs. [115–122] and references therein
for interesting examples along these lines.
The history of the studies of SUð3Þ gauge theories is quite

interesting as a general illustration of how the field has been
evolving. The recent Ref. [123] critically summarizes this
history, discusses the technical difficulties intrinsic to
current state-of-the-art lattice calculations, and addresses
some of the challenges with the extrapolation to the
continuum limit in proximity of the phase transition.
Among the salient points in such history, is the fact that
the pure gauge theory undergoes a first-order phase tran-
sition, which has been accepted for a while [124,125].
Finite-temperature lattice studies of the theory coupled to
heavy quarks have given encouraging results [126–131] but
are still ongoing. More generally, considerable activity is
taking part inQCD, seeRef. [132] for a recent summary. The
thermodynamics of pure SUð3Þ Yang-Mills theories has
been studied intensively [133–145], and we know that the
phase transition is not strong, hence difficult to characterize.
Our interest in the characterization of the confinement/

deconfinement phase transition originates in the ongoing
research programonSpðNcÞ lattice gauge theories [146–155]
and their composite bound states. Our long-term aim is to
measure observable quantities, such as the latent heat at the
transition, which have potential implications for dark matter
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and for stochastic gravitational-wave detection. We approach
this goal by exploiting a recent proposal, which is based
upon the density of states and provides an alternative to
Monte Carlo importance sampling (IS) methods; the loga-
rithmic linear relaxation (LLR) algorithm [156–159]. We
describe the method in the body of the paper. It is worth
mentioning that the literature on finite-temperature studies of
SpðNcÞ gauge theories is rather limited [90], as is the
application of the LLR algorithm: Abelian gauge theories
have been studied in detail [158], while in the non-Abelian
case the properties of SUð3Þ have been investigated at zero
temperature [159], and preliminary finite-temperature results
exist for SUð4Þ [160,161] and SUðNcÞ [162].
We hence take a conservative approach. In this paper, we

apply the LLR algorithm to the best understood SUð3Þ
Yang-Mills theory. We study the theory with one repre-
sentative lattice, to set benchmarks for the future large-scale
task of performing infinite volume and continuum limit
extrapolations. We confirm the presence of a metastability
compatible with the established first-order phase transition
arising in the system, determine the corresponding pseu-
docritical temperature using known definitions, and mea-
sure the discontinuity that leads to the latent heat. Our
results are consistent with other approaches, and we can
achieve the desired precision level. In parallel, we started
also to explore SpðNcÞ Yang-Mills theories, in particular
Spð4Þ, about which we will report in a separate publication.
The paper is organized as follows. We describe the LLR

algorithm and its relation to the density of state in Sec. II.
This section builds upon the method introduced in
Ref. [158], and serves the purpose of setting the notation
and making the exposition self-contained. Section III
summarizes the basic properties of the lattice theory of
interest, and the definitions of the relevant observables. The
main body of the paper consists of Secs. IV and V. This
work sets the stage for our future investigations, discussed
briefly in Sec. VI. We relegate to Appendices A–C
technical details about the algorithm we use, and the tests
we performed to validate it. Some partial, preliminary
results of the research project we report upon in this paper
have been presented in contributions to conference pro-
ceedings [163,164], but here we present updated results,
including a comprehensive and self-contained discussion
of the procedure we follow and an extended set of
observables.

II. DENSITY OF STATES

We start by defining the density of states, a quantity that
plays a central role in our calculations, and discussing its
numerical determination. The path integral of a quantum
field theory (QFT), with degrees of freedom expressed by
the field(s) ϕ and Euclidean action S½ϕ�, can be written as

ZðβÞ≡
Z

½Dϕ�e−βS½ϕ�; ð1Þ

where the coupling β (not to be confused with β=H�) has
been exposed. The density of states, ρðEÞ, is the measure of
the hypersurface in field-configuration space spanned by
the fields when the constraint S ¼ E is imposed,

ρðEÞ≡
Z

½Dϕ�δðS½ϕ� − EÞ: ð2Þ

Using the density of states, the path integral of the theory
can be rewritten as

ZðβÞ ¼
Z

dEρðEÞe−βE: ð3Þ

This expression of the path integral is particularly
convenient for observables, OðEÞ, that only depend on
the action, since their expectation value can be reformulated
as a one-dimensional integral,

hOiβ ¼
R
dEρðEÞOðEÞe−βER

dEρðEÞe−βE : ð4Þ

Hence, knowing the density of states provides a route to the
computation of these observables. In addition, as we show
later in this section, using the density of states, one can also
access observables that have a more general dependency on
the fields, not expressible in terms of the action alone.
The density of states can be computed efficiently by using

the linear logarithmic relaxationmethod [156,158,159,165].
The algorithm exposed in this work is based on a variation
of the LLR algorithm with the replica exchange method
introduced in Ref. [165], the key difference being that in
this work we are going to replace the two nonoverlapping
half-shifted replica sequences with a single sequence of
half-overlapping consecutive subintervals. The algorithm
depends on a set of tunable parameters, which we introduce
and describe in this section. For reference, these parameters
are summarized in Table I.
As a first step, we divide an interval of interest,

Emin ≤ E ≤ Emax, into 2N − 1 overlapping subintervals
of fixed width, ΔE ¼ ðEmax − EminÞ=N, where each of
the subintervals but the first and the last have an overlap
of amplitude ΔE=2 with the preceeding and the following
subinterval. As we shall see below, the overlap can be
exploited to ensure the ergodicity of the algorithm. The
subintervals are numbered with an index, n, ranging from
n ¼ 1 (corresponding to central action value Emin þ ΔE=2)
to 2N − 1 (central action Emax − ΔE=2). In each subinterval
1 ≤ n ≤ 2N − 1, the central action is En ¼ Emin þ nΔE=2.
We approximate the density of states, ρðEÞ, with the
piecewise linear function log ρ̃ðEÞ ∼ log ρðEÞ, defined as

log ρ̃ðEÞ≡ anðE − EnÞ þ cn; ð5Þ
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where En − ΔE=4 ≤ E ≤ En þ ΔE=4, for each n. This
choice provides a prescription to deal unambiguously with
the overlapping regions in the subinterval, assigning each
half of the overlap to the subinterval with the nearest central
action. The purpose of the LLR algorithm is to calculate
numerically the an and cn coefficients, assuming continuity
of the function log ρ̃ðEÞ in the interval ½Emin; Emax�.
As a second step, given any observable,OðEÞ, we define

2N − 1 restricted expectation values, ⟪O⟫n, as follows:

⟪O⟫nðaÞ≡ 1
N nðaÞ

Z
EnþΔE

2

En−
ΔE
2

OðEÞρðEÞe−aEdE; ð6Þ

where the normalization factor is given by

N nðaÞ≡
Z

EnþΔE
2

En−
ΔE
2

ρðEÞe−aEdE: ð7Þ

One now sees that if a ¼ an of Eq. (5), then the exponential
factor inside the integrals in these definitions is e−anE ¼
e−anEnþcn=ρ̃, and the constant factor, e−anEnþcn , cancels
between numerator and denominator, so that the weight
factor in the integrals in Eqs. (6) and (7) is just ρðEÞ=ρ̃ðEÞ.
The main idea behind the algorithm is that we consider
ρ̃ðEÞ to be a good approximation of ρðEÞ if such weight
factor, ρðEÞ=ρ̃ðEÞ, for the restricted expectation value in the

interval ½En − ΔE=2; En þ ΔE=2�, is approximately unit.
More generally, we are interested in expectation values,
where we need this factor to be constant (we will deal with
the subinterval-dependent normalization constant below).
Hence, we determine the value of an iteratively, by
imposing the condition,

⟪ΔE⟫nðanÞ ¼
1

N nðanÞ
Z

EnþΔE
2

En−
ΔE
2

ðE − EnÞρðEÞe−anEdE

¼ 0; ð8Þ

for each n. The resulting stochastic equation makes use of
the highly nontrivial information encoded in ρðEÞ. As long
as ΔE is sufficiently small, by Taylor expanding log ρðEÞ
around En in Eq. (8), one sees that

an ¼
d log ρðEÞ

dE

����
E¼En

: ð9Þ

For the third step, we adopt a combination of Newton-
Raphson (NR) and Robbins-Monro (RM) algorithms [166]
to solve iteratively Eq. (8). In a first sequence of iterations,

we start from an initial trial value að0Þn and recursively
update it, using the relation

aðmþ1Þ
n ¼ aðmÞ

n −
⟪ΔE⟫nðaðmÞ

n Þ
⟪ðΔEÞ2⟫nðaðmÞ

n Þ
ð10Þ

¼ aðmÞ
n −

hðE − EnÞ½θðE − En þ ΔE
2
Þ − θðE − En −

ΔE
2
Þ�i

aðmÞ
n

hðE − EnÞ2½θðE − En þ ΔE
2
Þ − θðE − En −

ΔE
2
Þ�i

aðmÞ
n

ð11Þ

≃ aðmÞ
n −

12

Δ2
E

�
ðE − EnÞ

�
θ

�
E − En þ

ΔE

2

�
− θ

�
E − En −

ΔE

2

���
aðmÞ
n

: ð12Þ

TABLE I. Parameters of the LLR algorithm used for the numerical computation of the density of states as formulated in this work for
(2N − 1) overlapping subintervals, each of amplitude ΔE, covering the relevant action interval, ½Emin; Emax�.
Symbol Name/Role Description/Purpose

Emin Minimal action Lower limit of the relevant action interval
Emax Maximal action Upper limit of the relevant action interval
ΔE Amplitude of subintervals Controls the local first-order expansion of log ρðEÞ
m̄ Number of NR steps Enables to refine the initial guess for the an
m̃ Number of RM updates Controls the tolerance on the convergence of the an
nTh Number of thermalization steps per RM update Controls decorrelation between two RM updates
nM Number of measurements per RM update Controls the accuracy of the expectation values in Eq. (14)
nP Number of action-constrained updates per RM update nTh þ nM
nS Number of RM updates between swaps Ensures ergodicity of the algorithm
nR Number of determinations of the an Enables to estimate statistical errors
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The above relation finds the root using one NR iteration.
In the last step, the approximation consists of assuming the
validity of a second-order expansion for the density of
states in the action interval we are considering, which has
been used to express the denominator of the correction term
in closed form. The purpose of the initial NR iterations is to
set up a convenient starting point for the more refined RM
algorithm. This proves to be convenient, especially when

insufficient prior knowledge is available on an. In these
cases, even with rough initializations, for suitable choices
of m̄, m̄ steps of the NR algorithm allows us to approach a

value aðm̄Þ
n ∼ an, in proximity of the true value of an. We

then refine the process, by defining a new trial initial value

að0Þn ≡ aðm̄Þ
n and recursively updating it using the modified

relationship

aðmþ1Þ
n ¼ aðmÞ

n −
α

mþ 1

⟪ΔE⟫nðaðmÞ
n Þ

⟪ðΔEÞ2⟫nðaðmÞ
n Þ

ð13Þ

≃ aðmÞ
n −

α

mþ 1

�
12

Δ2
E

��
ðE − EnÞ

�
θ

�
E − En þ

ΔE

2

�
− θ

�
E − En −

ΔE

2

���
aðmÞ
n

: ð14Þ

This defines the RM step, which differs from the NR one
by the damping factor α=ðmþ 1Þ of the calculated cor-
rection term. While not a strict requirement of the algo-
rithm, for convenience we fix the positive constant to
α ¼ 1. Again, Eq. (14) is obtained using a quadratic
approximation of the density of states for a closed-form

computation of ⟪ðΔEÞ2⟫nðaðmÞ
n Þ, which assumes that the

action interval is sufficiently small for the approximation to
be sufficiently accurate. While the validity of this approxi-
mation is not crucial in the NR steps, since they are only
used to refine the initialization, it is more important to
verify its accuracy for the RM steps, since the latter
determine the values of the an used in the calculation of
the observables. The check is performed by verifying that
with the obtained values of the an the action is uniformly
distributed in the subinterval n (i.e., its histogram is flat
within a predetermined tolerance), with the dynamics being
compatible with a random walk. Since ΔE is a parameter of
the calculation, it is always possible to restrict the sub-
interval width so that the quadratic approximation holds.
The right-hand sides of Eqs. (12) and (14) are evaluated

by computing ordinary ensemble averages through impor-
tance sampling methods, in which the action is restricted
to a small interval, and the weight redefined according to
Eq. (6). The restriction can be done by rejecting update
proposals that lead the action outside the subinterval of
interest or—as we will do in this work—imposing con-
straints in the update proposals, so that each new trial value
for the field variables to be updated, automatically respects
the subinterval constraint (see Appendix A for further
details). The recursion converges to an in the limitm → ∞.
We truncate the recursion at step m̃ and repeat the process

from the start ensuring different random evolutions for aðmÞ
n ,

changing the initialization of the random number sequences
used in the process of generating the restricted averages.

This yields a Gaussian-distributed set of final values aðm̃Þ
n ,

with average an and standard deviation proportional to
1=

ffiffiffiffi
m̃

p
, hence trading a truncation systematics with an error

that can be treated statistically.
Restricting the averages to subintervals leads to ergo-

dicity problems. To ensure ergodicity, we use the fact that at
any given RM step the values of the actions in neighboring
intervals have a finite probability of being in the over-
lapping region. When that happens, we can propose a
Metropolis step that swaps the configurations in the two
subintervals,

Pswap ¼ min ð1; eðaðmÞ
n −aðmÞ

n−1ÞðE
ðmÞ
n −EðmÞ

n−1ÞÞ: ð15Þ

For these swap moves to be possible, simulations in the
subintervals need to run in parallel, with the synchroniza-
tion implemented by a controller process. This can be easily
implemented with standard libraries such as the Message
Passing Interface (MPI). However, even with this prescrip-
tion, residual ergodicity problems can derive from the fact
that Emin and Emax would otherwise be hard-action cutoffs.
The resulting lack of ergodicity is prevented by extending
the action range outside the ½Emin; Emax� interval with two
truncated Gaussians, one peaked at Emin þ ΔE=2 and
truncated at Emin þ ΔE, providing a prescription for dealing
with E < Emin, and the other peaked at Emax − ΔE=2 and
truncated at Emax − ΔE accounting for moves covering
E > Emax. Ergodicity is recovered by choosing those
truncated Gaussians to coincide with the Boltzmann factors
associated with βupper and βlower—the values of β at which
the average actions correspond to Emin þ ΔE=2 and to
Emax − ΔE=2. Appendix B describes how this is achieved
in practice.
In our implementation, we propose a swap move

between all neighbor intervals having energies in the
overlapping regions after a fixed number, nS, of RM
updates. Each RM update consists of nP ¼ nTh þ nM
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action-constrained updates. The nTh updates decorrelate the
configurations between RM updates, then nM configura-
tions are used for the calculation of expectation values in
equation Eq. (14). This sequence of steps is repeated until
we have performed m̃ RM updates. As discussed previ-
ously, this process leads to a determination of the an for all
values of n. Repeating it with different random number
sequences, we get Gaussian distributed values of an, which
can be used in a bootstrap analysis to provide a determi-
nation of the statistical uncertainty on observables.
Having determined the values of interest for an, con-

tinuity of ρ̃ðEÞ at the boundaries of the subintervals requires

cn ¼ c1 þ
ΔE

4
a1 þ

ΔE

2

Xn−1
k¼2

ak þ
ΔE

4
an; ð16Þ

for all values of n > 1, and with the summation taking
effect only when the upper index is bigger or equal to the
lower one, i.e. for n ≥ 3. This conditions leaves the value of
c1 as a free parameter. c1 can be fixed by imposing a known
global normalization condition. For instance, for β ¼ ∞,
the density of states must be equal to the number of
degenerate vacua of the system. Nevertheless, in applica-
tions where the knowledge of the value of the path integral
per se is not interesting, as is the case of observables
expressed as ensemble averages, the normalization of the
density of states can be fixed arbitrarily. In these cases, for
simplicity, we choose c1 ¼ 0.
Having discussed the rationale for the various compo-

nents of the method, for convenience, we now provide a
summary of the algorithm:

(i) Divide the interval ½Emin; Emax� in 2N − 1 half-
overlapping subintervals of amplitude ΔE, cen-
tered at energies E1 ¼ Emin þ ΔE=2, …, En ¼
Emin þ nΔE=2, …, E2N−1 ¼ Emax − ΔE=2. Define
two half-Gaussians for prescribing rules for accept-
ing/rejecting moves outside the interval ½Emin; Emax�,
with the correct Boltzmann distribution.

(ii) Repeat nR times with different random sequences:
(1) Initialize the values of an.
(2) Perform m̄ steps of the NR algorihm, Eq. (11).
(3) Repeat m̃ times:

(a) Perform nP action-constrained updates (see
Appendix A).

(b) Update an according to the RM prescription,
Eq. (14).

(c) Repeat (a) and (b) nS times.
(d) Propose a configuration swap according to

Eq. (15).
Note that the swap step implies that the determination of an
happens in parallel in the calculation, and requires a
synchronization of the parallel processes. The parameters
used in the algorithmare referenced inTable I. This algorithm
provides nR statistically independent determinations of an,

and, consequently, of cn, up to a prescription for fixing c1, as
described earlier in this section.
As shown in Ref. [158], the use of the LLR algorithm

introduces a ΔE-dependent systematic error. Therefore,
finite volume estimates of the quantities above can only
be obtained after an extrapolation towardsΔE ¼ 0 has been
performed. We devote Appendix C to a discussion of this
process, for the lattice parameters adopted in this study.
We conclude by observing that the LLR method enables

us to compute also canonical ensemble averages at cou-
pling β of observables B½ϕ� that have a dependency on the
field ϕ not leading to an explicit dependency on the action,
using the formula [158],

hB½ϕ�iβ ¼
1

ZðβÞ
X2N−1

n¼1

ΔE

2
ρ̃ðEnÞB̃½ϕ�; ð17Þ

where

B̃½ϕ� ¼ ⟪B½ϕ� exp ð−βS½ϕ� þ anðS½ϕ� − EnÞÞ⟫nðanÞ: ð18Þ

III. LATTICE SYSTEM

We compute ensemble averages with the distribution in
the partition function of Eq. (1), by discretizing the degrees
of freedom on a lattice. We focus on the action, S, of a four-
dimensional Yang-Mills theory with non-Abelian gauge
group SUðNcÞ in Euclidean space, discretized as

S ¼
X
p

�
1 −

1

Nc
ReTrðUpÞ

�
; ð19Þ

which enters Eq. (1) with bare lattice coupling constant
β ¼ 2Nc

g2
0

, related to the bare gauge coupling g20. The

summation runs over all the elementary plaquette variables,
Up, on the four-dimensional grid. Sampling of the link
variables, U, representing the discretized gauge potential,
entering the construction of the plaquette, are discussed in
Appendix A. The measure is the product of integrals over
the links.
We use hypercubic lattices with Ṽ=a4 ¼ NT × N3

L points
and isotropic lattice spacing a, in both temporal and spatial
directions. We adopt periodic boundary conditions for the
link variables in all directions. The thermodynamic temper-
ature of the SUðNcÞ Yang-Mills theory is T ¼ 1

aNT
. The

lattice spacing, a, is dynamically controlled by the coupling,
β, through the nonperturbative beta function of the theory,
hence knowing β we can determine the temperature, T.
The order parameter for confinement is the Polyakov

loop, lp, defined as
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lp ≡ 1

NcN3
L

X
x⃗

Tr
YNT−1

k¼0

U0ðk0̂; x⃗Þ; ð20Þ

with 0̂ the unit vector in the time direction. For T < Tc, the
system lies in its confined phase, hlpiβ ¼ 0. For T > Tc it
lies in its deconfined phase, hlpiβ ∈ZNc

, and the ZNc

symmetry of the action, Eq. (19), is spontaneously broken.
As the phase transition is of first order, it is characterized

by a discontinuity in the first derivative of the free energy
with respect to the temperature T, for T ¼ Tc, that is recast
in terms of the internal energy (density), defined as

εðTÞ≡ κT2

V
∂ lnZðTÞ

∂T
; ð21Þ

where κ is the Boltzmann constant, which we set to κ ¼ 1,
and V ¼ N3

La
3 is the spatial volume. At the phase tran-

sition, two distinct equilibrium states exist, with energies
equal to ϵþ and ϵ−. The magnitude of the discontinuity
across the transition, Lh ≡ jεþ − ε−j, is known as latent
heat. At exactly T ¼ Tc, the system exhibits macroscopic
configurations characterized by the presence of separating
surfaces, on either side of which the order parameter has
different values, and hysteresis can be observed in the
evolution of the system. The configurations on either side
of the transition have equal free energy, hence the rate of
tunnelling is the same in either direction, giving rise to
phase coexistence.
Yet, even when T ≃ Tc the physical system can still

tunnel between the confined and deconfined phases, as the
finiteness of the lattice system allows for metastable states
to be physically realized in portions of the space, though
they have finite lifetime. These phenomena present stan-
dard lattice algorithms with intrinsic difficulties, as the
finiteness of the system implies that ensemble averages
have nontrivial contaminations from metastable states,
which ultimately smoothen the aforementioned nonanaly-
ticity characterizing the transition. For example one still
finds that the susceptibility of the Polyakov loop,

χlðβÞ≡ hjlpj2iβ − hjlpji2β; ð22Þ

is expected to be maximal at T ¼ Tc, though finite, and
establishing the existence of a first-order phase transition
requires nontrivial studies of the finite-volume scaling of
χl. As we will see, the LLR algorithm removes this
difficulty, as it allows to access individually the physically
stable and unstable states in configuration space, hence
removing the practical problems due to tunneling and their
effects on ensemble averaging.
Our aim is to characterize the phase transition in the

SUð3Þ Yang-Mills theory, and ultimately determine the
quantities Tc and Lh, extrapolated to infinite volume and to
the continuum limit. In the body of this paper, we take a

first step in this direction, by studying a fixed lattice with
NT ¼ 4 and NL ¼ 20.

IV. METHODOLOGY

In this section, we provide precise relations between the
values of the two main observables, critical temperature,
Tc, and latent heat, Lh, and the density of states, ρðEÞ, or,
rather, its numerical estimate ρ̃ðEÞ.
When studying a lattice theory by Monte Carlo sam-

pling, a typical signal of tunneling between vacua is the
presence of hops in the simulation-time evolution of the
value of the action per plaquette, up, defined as

up ≡ a4

6Ṽ

X
p

1

Nc
ReTrðUpÞ: ð23Þ

Thanks to the relation E ¼ 6Ṽð1 − upÞ=a4, the (partial)
distribution function, PβðupÞ, can be expressed as a
function of E ¼ S, and defined in terms of the density
of states ρðEÞ as follows:

Pβ

�
up ¼ 1 −

a4

6Ṽ
E

�
¼ ρðEÞ e

−βE

ZðβÞ ; ð24Þ

where ZðβÞ is the partition function, Eq. (3). In proximity
of the critical region of parameter space, for a system that
undergoes a first-order phase transition between two
possibly local vacua, we expect that the distribution
function display a characteristic double-peak structure.
The two values of the energy, E� ¼ 6Ṽð1 − up�Þ=a4, at
which PβðupÞ is maximal, determine the energy of the two
phases. On a finite volume Ṽ, we define the critical
temperature T ¼ Tc (and hence β ¼ βc, as we are keeping
the volume fixed while changing the coupling β) as the
temperature at which the system tunnels between configu-
rations in different phases with the same rate in either
direction. Hence, the peaks must have equal height, and the
relation

PβcðupþÞ ¼ Pβcðup−Þ ð25Þ

can be used to determine the critical coupling βc.
As the temperature, T, of the gauge theory is a function

of β, we recast the derivative with respect to T in Eq. (21) as
a derivative with respect to β, following Ref. [86]. Direct
calculation of the energy density requires the computation
of Karsch coefficients [167], which is outside the scope of
this work. However, assuming a vanishing pressure gap, as
motivated by Ref. [145], the latent heat can be related to the
plaquette jump, Δhupiβc ¼ jupþ − up−j, via

Lh

T4
c
¼ −

�
6N4

t a
∂β

∂a
Δhupiβ

�
β¼βc

; ð26Þ
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where að∂β=∂aÞ can be calculated by setting the scale—see
the discussion leading to Eq. (35) of Ref. [86]. In this work
we focus on the calculation of the plaquette jump.
We define the effective potential, WβðEÞ, as

WβðEÞ≡ − loghδðS − EÞiβ ¼ − logPβðEÞ: ð27Þ

At criticality,WβðEÞ displays two degenerate minima at the
values of E of the equilibrium states of the two coexisting
phases.1

The quantum system defined in Eq. (1) can be said to
have internal energy E and entropy s ¼ log ρðEÞ, following
the prescription of the microcanonical ensemble. We then
define a temperature t as 1=tðEÞ≡ ∂s=∂E, in analogy with
thermodynamics, and the free energy F as the Legendre
transform

FðtÞ≡ E − ts: ð28Þ

All the quantities mentioned above can be estimated
from the approximate density of states ρðEÞ ≃ ρ̃ðEÞ. In
particular, thanks to Eq. (5), the entropy for E ≃ En is

sðE ≃ EnÞ ¼ c1 þ
ΔE

4
ða1 þ anÞ

þ ΔE

2

Xn−1
k¼2

ak þ anðE − EnÞ; ð29Þ

and the corresponding temperature is hence

t ¼ 1

an
: ð30Þ

The computation of sðEÞ (and of FðtÞ), is affected by an
ambiguity on the value of c1, as mentioned at the end of
Sec. II. This ambiguity can in principle be fixed by
requiring that sðEÞ be positive for all E and vanish as t → 0.
Our estimate ρ̃ is obtained by computing the sequence of

values fang2N−1
n¼1 using the LLR algorithm, as outlined in

Sec. II. The LLR parameters chosen for this work are
shown in Table II. Note that in the specific application
studied here NR iterations were considered unnecessary,
hence m̄ ¼ 0. Once ρ̃ is known, all relevant observables are
known as well, by using the relations reported in this
section.
There are two further numerical details worth discussing

here, before we move onto presenting our results. Firstly,
the LLR algorithm requires trial initial an vales. We have
computed the average action for evenly spaced β values.

Linearly fitting this and inverting can give an initial
estimate for the relation between an and En. The guess
is then refined through a small number of RM iterations.

The starting values fað0Þn g have been thus set for each
energy interval over the relevant energy range of the
system. The preliminary runs are also useful to locate
the energy ranges ½Emin; Emax� that are relevant to the study
of the phase transition. On the basis of preliminary analyses
we set a4Emin=ð6ṼÞ ≈ 0.44 and a4Emax=ð6ṼÞ ≈ 0.46.
Second, for each n, the coefficient an is obtained by

truncating the sequence faðmÞ
n g of RM updates at a value of

m for which we expect the asymptotic 1=
ffiffiffiffi
m

p
behavior of

the standard deviation to have set in. Due to the centrality
of this behavior for the correct working of the algorithm,
the corresponding test is the first numerical result we report
in the next section.

V. RESULTS

In order to verify the convergence of the Robbins-Monro

algorithm, we study the distribution of the value of aðmÞ
n ,

for each energy interval, as a function of the iteration

TABLE II. The LLR parameters used for this study.

Parameter m̄ m̃ nTh nM nS nR

Value 0 500 200 500 1 20

FIG. 1. Twenty histories of aðmÞ
n as they are updated through

500 RM iterations, in different colors. This example is for a
system with energy interval size a4ΔE=ð6ṼÞ ¼ 0.0007, and the
interval centered at up ¼ 0.540676. The inset shows the distri-
bution of the final an values.

1If we replace E, which depends on up, with the extremal
hEiβ ¼ 6Ṽ

a4 ð1 − hupiβÞ, for each β, then WβðhEiβÞ is independent
of β, and is a pure functional of the response function hEiβ. In
other words, this is the Legendre transform of the logarithm of the
partition function ZðβÞ, in which β is the external source.
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number, m. An example of this process is displayed in
Fig. 1, for the energy interval centered at a4En=ð6ṼÞ ¼
0.459324 ðup ¼ 0.540676Þ, with a4ΔE=ð6ṼÞ ¼ 0.0007.
The figure shows in different colors twenty independent
Robbins-Monro trajectories. The trajectories are charac-
terized by large oscillations at small m, followed by
convergence to a common value at largem. The distribution
of the asymptotic behavior of the final values has standard
deviation that scales as ∼1=

ffiffiffiffi
m

p
. On the basis of extensive

test runs, we identified m̃ ¼ 500 iterations of the RM
algorithm as providing a good estimate of an. We verified
that by this stage the twenty final estimates are normally
distributed around their average value.
To extrapolate our results towards the ΔE → 0 limit, we

vary the number of subintervals 2N − 1, and repeat the

process of computing the estimates of aðmÞ
n . The corre-

sponding values of a4ΔE=ð6ṼÞ, and of the intervals
analyzed, are reported in Table III.
In Fig. 2, we show our measurements of an, with their

uncertainty, as a function of up ¼ 1 − a4En=ð6ṼÞ. The
different curves show the results for several different values
of ΔE. For ΔE sufficiently small [a4ΔE=ð6ṼÞ ≤ 0.0030], a
characteristic limiting shape starts to emerge in an as a
function of up, with the presence of one local minimum,
one local maximum, and an inflection point between them.
The resulting noninvertibility of anðupÞ is closely related to
the qualitative features of PβðupÞ, as discussed in Sec. IV,
and to the presence of a first-order phase transition. Setting
ΔE to smaller values, the curve anðupÞ becomes smoother,
which reduces the magnitude of the systematic error due to
ΔE itself.
The probability distribution of the average plaquette is

obtained from Eq. (24). Estimates of PβðupÞ are displayed
in Fig. 3. The solid blue lines are our results, obtained using
the LLR method. We compare them directly with the
orange dashed lines obtained by using the standard impor-
tance sampling approach. Agreement between the two is
evident, yet small discrepancies are visible in the neighbor-
hood of the maxima and of the local minimum of PβðupÞ.
We show a number of examples displaying a single peak,

but for β ¼ 5.69187 two peaks of similar height are
present. As explained in Sec. IV, this is the expected signal
of a first-order phase transition.
As discussed in Sec. II, after each RM update, configu-

ration swaps are considered, to ensure ergodicity of the
algorithm. Figure 4 shows the evolution of the full set of
fang2N−1

n¼1 against the RM iteration, m. Following the track
of the colors on the diagram shows how the configurations

TABLE III. The values of ΔE used for this analysis, for each
choice of the number of intervals, 2N − 1, in the energy range
½Emin; Emax�. The four-dimensional lattice has space-time volume
Ṽ=a4 ¼ 4 × 203. Numerical values have been rounded to four
decimal places for convenience.

2N − 1 a4

6Ṽ
ΔE

a4

6Ṽ
Emin

a4

6Ṽ
Emax

8 0.0063 0.4374 0.4659
15 0.0030 0.4380 0.4619
28 0.0015 0.4387 0.4604
55 0.0007 0.4391 0.4601
108 0.0004 0.4394 0.4598

FIG. 2. Measurements of an, plotted against up at the center of
the energy intervals. Errors are estimated by bootstrapping over
20 repeats. Each value of an is the final result of 500 iterations of
the Robins-Monro algorithm, for a lattices with Ṽ=a4 ¼ 4 × 203.
The different curves/colors refer to different choices of ΔE—see
Table III—with the roughest results corresponding to the largest
choices of ΔE. The bottom panel is a detail of the top one,
focusing on the region in which anðupÞ is not invertible.
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are swapped. The clustering of values around an ∼ 5.692 is
due to noninvertibility of anðupÞ in the critical region. The
diagram shows that, although in general terms there is an
appreciable rate of exchange of configurations, it appears to
be less probable to exchange configurations across the two
different phases.

A. Critical T and latent heat

The importance of the measurement of the critical value
βc and of the position of the peaks of PβcðupÞ (upþ and
up−) is explained in Sec. IV. In proximity of the transition at
each value of β, a double Gaussian function can be fitted to
PβðupÞ, using the location of the local maxima and the
width of the peaks as fitting parameters. The best-fit
parameters are functions of β. An estimate of βc can then
be obtained by solving the equation jPþ − P−j ¼ 0, where
Pþ ¼ PβðupþÞ and P− ¼ Pβðup−Þ, with the bisection
method. The numerical values of up� and βc can then
used for the calculation of the latent heat through Eq. (26).
A representative example of the numerical results

obtained from the LLR method, displaying also a fitted
double Gaussian, is displayed in Fig. 5. The agreement
between the numerical and fitted curves is very good, with
small deviations only appearing at the boundaries of the
interval of up depicted in the plot, which are not of primary
importance in the fitting procedure.

FIG. 4. The trajectories of the set fang2N−1
n¼1 are shown for 500

Robbins-Monro updates for a single run with configuration
swaps included, for a4ΔE=ð6ṼÞ ¼ 0.0007. The colors are deter-
mined by the energy interval that a given lattice system started in
and follow them as they are exchanged between energy intervals.

FIG. 5. The double-peak structure of the plaquette probability
distribution, PβðupÞ, for β ¼ βc ¼ 5.69196 tuned to the critical
point for this specific LLR run, when the two peaks have equal
height. A double Gaussian fitted at the peaks of the plots is shown
in magenta (dashed), and compared with the blue (solid) line
representing the LLR numerical results. We also show explicitly
the location of the two peaks.

FIG. 3. The probability distribution, PβðupÞ, computed with
LLR method with a4ΔE=Ṽ ¼ 0.0007 and Ṽ=a4 ¼ 4 × 203 (solid
blue), compared to the same probability distribution computed
with the standard lattice method based upon importance sampling
(dashed orange). The probability density for different values of
the coupling β are shown, from left to right: β ¼ 5.68000,
β ¼ 5.68500, β ¼ 5.69000, β ¼ 5.69187, β ¼ 5.69500, and
β ¼ 5.70000.
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Our estimates of βc and hΔupiβc , for each choice of ΔE,
are displayed in Figs. 6 and 7. The numerical values are
reported in Table IV. We perform a linear fit of the behavior
of both βc and hΔupiβc as a function of Δ2

E. These fits are
displayed in Figs. 6 and 7.We found the χ2 of the linear fit to
be much less than 1. The origin of its smallness lies in the
large error in the determination of βc at fixed ΔE. Several
contributions to the errors of βc havebeen carefully analyzed
and accounted for, except for those originating from the
correlation between different subintervals (leading to cor-
relations across each set of an) and the error on the fit of the
doubleGaussian itself. Calculations in different subintervals
would indeed be completely independent, were it not for
the configuration swapping, which is necessary to achieve
ergodicity in the sampling of configuration space. Since
canonical observables, such as PβðupÞ, are determined
from several values of an, they are affected by these

autocorrelations. In order to approximately quantify the
magnitude of these effects on the final estimate of βc, we
have computed this quantity from only half the an estimates,
i.e. only computed using the nonoverlapping odd numbered
energy intervals fa2n−1; E2n−1gNn¼1. The coarsest example in
the plot (a4ΔE=Ṽ ¼ 0.0015) has also been treated separately
as it only contains a small number of intervals in the critical
region. Extrapolations both including and excluding this
point have been carried out, as well as an extrapolation using
the points with only half the energy intervals. All extrap-
olations agree with one another within errors.

B. Thermodynamic potentials

As discussed in Sec. IV, the LLR algorithm, through the
estimation of ρðEÞ, allows us to estimate the thermody-
namic potentials of the bulk system. We focus our attention
on the free energy, F, defined in Eq. (28), the entropy,

FIG. 6. Estimates of the critical coupling βc as a function of the
square of the energy interval, Δ2

E. The black crosses show the
values of the critical coupling determined for each of the 20
repeats when all of the energy intervals are used in the
determination of the plaquette distribution. The orange circles
are the mean values of the black crosses and the error is found by
bootstrapping them. The orange dashed line and triangle is a
ΔE → 0 extrapolation of the two finest results when all intervals
are included, while the green dashed line shows the extrapolation
of all three points. The blue circles show results when only the
odd numbered intervals are used fa2n−1; E2n−1gNn¼1, an extrapo-
lation to the ΔE → 0 limit is shown by the blue line and the blue
triangle. The coarsest point included in this graph only contains a
small number of intervals in the critical region, making the
double-peak structure in the plaquette distribution difficult to
resolve. All three final extrapolations are compatible with each
other within errors.

FIG. 7. Estimates of the plaquette jump at the critical point, the
difference between the plaquette values at the two peaks of the
plaquette distribution when the double-peak structure has peaks
of equal height, as a function of the square of the energy interval,
Δ2

E. The orange circles are the values found when all energy
intervals are used to calculate the plaquette distribution, the error
was found with a bootstrap procedure. The orange dashed line
and triangle is an extrapolation of the two finest results when all
intervals are included to the ΔE → 0 limit, while the green dashed
line shows the extrapolation of all three points. The blue circles
show results when only the odd numbered intervals are used
fa2n−1; E2n−1gNn¼1, an extrapolation to the ΔE → 0 limit is shown
by the blue line and the blue triangle. The coarsest point included
in this graph only contains a small number of intervals in the
critical region, making the double peak structure difficult to
resolve. All three final extrapolations are compatible with each
other within errors.
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s, defined in Eq. (29), and the (microcanonical) temper-
ature, t, in Eq. (30). As we showed explicitly in Fig. 2,
anðupÞ and therefore tðEÞ is not globally invertible. Yet, we
can study how F evolves as a function of t, by piecewise
inverting tðEÞ ↔ EðtÞ.
In order to best expose the behavior ofFðtÞ, we consider a

subtracted free energy, defined as f ¼ a4ðFðtÞ þ ΣtÞ=ðṼÞ.
The constant Σ, as we anticipated after Eq. (30), reflects the
existence of an arbitrary additive constant in s, which we are
now removing, with an approximate numerical procedure.
The subtracted free energy is displayed in Fig. 8, as a

TABLE IV. The values of the critical coupling, βc, and the
difference between the peaks of the probability distribution at this
coupling, Δhupiβc , for different energy interval sizes ΔE. The
table shows results obtained in two ways. Either all intervals are
included or only the odd intervals, fa2n−1; E2n−1gNn¼1. The
symbol ‘→0’ is used to denote the result of an extrapolation.
The table contains three extrapolations. An extrapolation using
the results when only odd intervals are considered, an extrapo-
lation when all points with all the intervals are used and an
extrapolation of the two finest interval sizes when all intervals are
used. See also Ref. [86].

a4ΔE

6Ṽ
βc Δhupiβc

Odd intervals 0.0007 5.69188(4) 0.00254(3)
Odd intervals 0.0004 5.69185(3) 0.00257(2)
All intervals 0.0015 5.69193(4) 0.00237(4)
All intervals 0.0007 5.69188(3) 0.00258(2)
All intervals 0.0004 5.69186(2) 0.00258(2)
Odd intervals →0 5.69184(4) 0.00258(2)
All intervals all points →0 5.69186(3) 0.00258(2)
All intervals 2 points →0 5.69186(2) 0.00261(2)

FIG. 8. The (subtracted) free energy, f, as a function of the
(discretized, microcanonical) temperature t ¼ 1=an. f is defined
in the main body of the text. The dots (with errors) represent the
values of f corresponding to the center of each energy interval
used in the LLR algorithm, while the solid line is reconstructed
by piecewise linearly interpolation of anðupÞ. The color coding of
the points and solid lines are chosen to match those in the inset,
displaying our numerical results for anðupÞ. In black we show the
regions of t for which f is single valued, in blue we show the
(meta)stable solutions within the region where f is multivalued,
and in red the unstable (tachyonic) branch of solutions. The dots
follow a colormap in the value average plaquette, with darker
colors corresponding to smaller up.

FIG. 9. Top panel: an (¼ 1=tn) against up at the center of the
energy intervals, in close proximity of the critical region. Middle
panel: the reconstructed plaquette distribution, PβðupÞ, at critical
coupling βc ¼ 5.69187. Bottom panel: quantum effective poten-
tial for the plaquette at the critical coupling. The red line in the top
plot shows the critical value of the coupling and its relation to the
microcanonical temperature, an. The magenta (vertical, dashed)
lines show the locations at which the red line intersects the
curve anðupÞ.
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function of (discretized) t ¼ 1=an. For the purpose of
producing this figure, Σ has been calculated as the average
of the entropy over the interval of (microcanonical) temper-
atures displayed in the plot which would correspond to the
average gradient of the curve. This rough estimate is not
equivalent to imposing the third law of thermodynamics
(limt→0 s ¼ 0), but suffices for our current purposes, and
allows us to avoid the expensive process of repeating the
LLR procedure for choices of En that lie far away from the
critical region.
In Fig. 8, the uncertainty in the numerical extraction of

an affects both axes of the plot. The values of f corre-
sponding to the piecewise linear interpolation are repre-
sented in the main plot as colored lines. The plot clearly
shows the multivalued nature of the free energy, the
location of the temperature corresponding to criticality in
the thermodynamic limit, and details about stable, meta-
stable and tachyonic branches of configurations of the
system. The discontinuity in the first derivative is located at
tc ≃ 0.175690, which is the temperature at which the
system undergoes a first-order phase transition.
The relation between different branches of FðtÞ and

physical stability is illustrated in Fig. 9. The inverse temper-
ature an is displayed as a function of up ¼ 1 − a4En=6Ṽ in
the top panel. The plaquette probability distribution at the
critical point, PβcðupÞ, is depicted in the middle panel. The
corresponding effective potential is plotted in the bottom
panel. While the two configurations corresponding to
maxima ofPβcðupÞ are both absoluteminima of the effective
potential, a third configuration, corresponding to a local
minimum of the probability, is a local maximum of the
effective potential.

VI. OUTLOOK

With this paper, we set the basis of a systematic research
program that exploits the properties of the LLR method to
yield future high-precision measurements characterizing
lattice gauge theories in proximity of the confinement/
deconfinement phase transition.2 The method is powerful
and promises to yield information that is difficult to access
otherwise, as it modifies Monte Carlo sampling by restrict-
ing it to arbitrarily small energy windows. It hence provides
numerical access to the details of the physics in regions of
parameter space exhibiting all the typical features of first-
order phase transitions: phase coexistence, metastability
and/or instability of multiple branches of solutions, non-
invertibility and/or multivaluedness of some state function.
We showed how the information from these energy-

bound Monte Carlo feeds into recursive relations (e.g., an
implementation of the Robbins-Monro algorithm) that can
determine the density of states for any interesting range of

energies. And we provided explicit relations between the
density of states and observables such as the critical
temperature and the latent heat. Furthermore, we found
that the results for the density of states can be recast in
terms of an effective free energy and an effective potential
that exhibit with spectacular level of resolution the details
of the physics near the transition.
We restricted this study to the SUð3Þ lattice Yang-Mills

theory, and performed it with one choice of lattice param-
eters, fixing NL ¼ 20 and NT ¼ 4. The trademark of the
LLR algorithm is that we found clear evidence of the first-
order nature of the transition, without the need of a finite-
volume study, and an extrapolation of the scaling to large
volumes. The physically interesting observables need to be
extrapolated to the continuum and infinite-volume limits,
with dedicated, extensive numerical work, which would
allow for a direct comparison with results that use different
numerical techniques. In the future we plan to repeat the
process with larger values of both NT and NL, which will
provide us with control over lattice systematics.
We plan to apply this process to other theories, in

particular those based on the sequence of symplectic
groups Spð2NÞ, which might play an important role in
models of dark matter, and hence in the physics of the early
Universe, by yielding a potentially detectable stochastic
background of gravitation waves. In particular, the precise
measurement of the effective potential, WβðuPÞ, the results
of which are exemplified in Fig. 9, can be used to obtain a
precise determination not just of the parameter, α, control-
ling the strength of the phase transition, but also of the
inverse duration of the transition, β=H�. The latter is
challenging to estimate from first principle, yet it is
necessary in the calculation of the power-spectrum of
stochastic gravitational waves, h2ΩGW.
There are still some limitations to what we are able to do

at this stage of development of this technique, and we
would like to address them in the future. The first such
challenge has to do with scalability and parallelization of
the algorithm and software: the attentive reader will
certainly be aware of the fact the energy constraint we
are imposing is globally defined on the whole lattice
configuration, a constraint that cannot be immediately
parallelized, because it requires communication between
different parallel subprocesses. This obstruction can be
circumvented by partitioning the system in domains, and
allowing for the information about the total energy to be
shared across processes living in separate domains. But
optimization of this process is a nontrivial open problem.
Related to scalability is also the fact that when we tested the
algorithm on larger volumes, we found a weakening of the
transition, which makes it more difficult to detect. Whether
this is an intrinsic feature of the algorithm, or a conse-
quence of the choice of theory—SUð3Þ is believed to
undergo a weak first-order phase transition—is an open
problem.

2See Refs. [160–162] for early results of studies that use a
similar approach.
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Finally, a more conceptual set of questions arises in view
of applications; we showed that we can compute an
effective potential, without the need to build an intermedi-
ate effective field theory treatment based on simplifying
assumptions for the functional dependence on the order
parameter. It would be useful to understand how this feature
can be exploited for phenomenological purposes. For
example, is the detailed knowledge of the effective poten-
tial going to improve current understanding of the ampli-
tude of gravitational waves arising in the early Universe?
All these and other interesting questions are left for what

we foresee to become an interesting and original research
program, which we are planning to develop in the near- and
long-term future.

Research Data Access Statement—The data generated
for this manuscript can be downloaded from Ref. [168].
The simulation code can be found from Ref. [169].
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APPENDIX A: CONSTRAINT-PRESERVING
UPDATE PROPOSALS

In this appendix, we present our strategy for sampling
random configurations from the probability density

dPcðUÞ ∝ dPðUÞθðE − En−1ÞθðEnþ1 − EÞ; ðA1Þ

where dPðUÞ is the unconstrained probability density
associated to the link variable U, and the θ functions that
implement the energy constraints, En−1¼En−ΔE=2≤E≤
EnþΔE=2¼Enþ1.
The problem of sampling dPðUÞ has been elegantly

solved in Ref. [171] for the gauge group SUð2Þ, and then
generalized to SUðNcÞ gauge groups in Ref. [172]. In the
case Nc ¼ 2,

dPðUÞ ∝ dU exp



−
β

2
Re½TrðUU⊔Þ�

�
; ðA2Þ

whereU⊔ is the staple aroundU, anddU is theHaarmeasure
of the gauge group. Any SUð2ÞmatrixUp=k ¼ UU⊔=k can
be parametrized as Up=k ¼ u0I2 þ iu⃗ · τ⃗, where τ⃗ are the
Pauli matrices, uμ are real numbers satisfying the normali-
zation

P
μ u

2
μ ¼ 1 and k≡ detðU⊔Þ. The matrix Up=k is

obtained by first sampling u⃗ uniformly on a sphere of radiusffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p
, and then u0 from the probability distribution

dP̃ðu0Þ ∼ du0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

q
exp fβ k u0g: ðA3Þ

We determine u0 as

u0 ¼
1

βk
log

�
e−βk þ ξðeβk − e−βkÞ
; ðA4Þ

where 0 ≤ ξ ≤ 1 is a uniform random variable, and then
perform an accept-reject step to correct for the presence of
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p
in Eq. (A3).

We further generalize these ideas to take into account, in
the Monte Carlo evolution, the presence of the constraints
En−1 ≤ E ≤ Enþ1. Consider the variation in the total energy
E due to the update of a specific link variable. Let Ei (Ef)
be this energy contribution before (after) the update. The
energy constraints after the update are

En−1 ≤ E − Ei þ Ef ≤ Enþ1: ðA5Þ

SinceEf ¼ 2ðd − 1Þ − ku0, whered is the number of space-
time dimensions, the above constraint can be expressed as
umin < u0 < umax where

umin ¼ max

�
2ðd − 1Þ þ ðE − Enþ1Þ − Ei

k
;−1

�
; ðA6Þ

umax ¼ min

�
2ðd − 1Þ þ ðE − En−1Þ − Ei

k
; 1

�
: ðA7Þ

These constraints can be enforced on the random
sampling of u0 by setting
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u0 ¼
1

βk
log

�
eβkumin þ ξðeβkumax − eβkuminÞ

�
; ðA8Þ

where, as in Eq. (A4), 0 ≤ ξ ≤ 1 is sampled uniformly,
and an accept-reject step is performed to correct for the
presence of the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p
.

The constrained heat-bath algorithm outlined above can
be generalized to SUðNcÞ gauge groups following the
Cabibbo-Marinari process suggested in Ref. [172]. The
contribution of each SUð2Þ subgroup of a SUðNcÞ link
variable to the total energy of the system is additive. Thus,
the constraint can be solved independently for each SUð2Þ
subgroup of each link variable. It is easy to show that the
constrained probability density of U is invariant under
U → αkU, where αk is an element of one of the SUð2Þ
subgroups of SUðNcÞ.

APPENDIX B: FURTHER TECHNICAL DETAILS
ON THE ALGORITHM AND PARALLELISM

To improve the scalability of the LLR algorithm when
moving to larger lattice sizes, domain decomposition was
implemented, in which the full lattice is split into sub-
domains, which can be processed separately. The restricted
heat-bath updates, discussed in Appendix A, require prior
knowledge of the total action of the system and will change

it’s value. Therefore, the restricted heat-bath update cannot
occur in multiple subdomains simultaneously.
To circumvent this issue, in this work, domain decom-

position is instead built out of a combination of restricted
local heat-bath updates and the inherently microcanonical
over-relaxation updates. This ensures the value of the total
action is only changed in one subdomain at a time. If we
have a lattice with ND subdomains, during each sweep, one
domain is updated with a local heat-bath update, while the
other ND − 1 subdomains use the over-relaxation. After
each sweep, the subdomain using the local heat-bath update
is changed. One full lattice update is completed once each
subdomain has been updated once using local heath bath.
Therefore, for each full update, each subdomain undergoes
one local heat-bath update and ND − 1 over-relaxation
updates. For this work we use ND ¼ 4.
As discussed in Sec. II, there is a residual ergodicity

problem, due to hard energy cutoffs at the boundaries Emin
and Emax. To avoid these problems, in the boundary
intervals the boundary cutoffs are removed, allowing
configurations in the first and final intervals to freely move
into energies E < Emin and E > Emax, respectively. This is
done by simply replacing Enþ1 (En−1) in Eq. (A6) with
6Ṽ=a4 (0) in the final (first) interval.

FIG. 10. For one LLR run with a4ΔE=6Ṽ ¼ 0.0007, the
distribution of measured average plaquette values for all intervals
is plotted for configurations restricted to a given energy interval,
updated with a fixed value of an. Within the plaquette range,
a4Emin=6Ṽ ≤ 1 − up ≤ a4Emax=6Ṽ, the distribution is approx-
imately flat, while the boundary intervals have Gaussian tails
allowing configurations to escape the energy boundaries, resolv-
ing the residual ergodicity problems.

FIG. 11. The vacuum expectation value of the average plaquette
for different couplings calculated using the LLR method for
different a4ΔE=ð6ṼÞ sizes, and compared to the measurement
from importance sampling methods (black triangles). In both
cases the lattice size is Ṽ=a4 ¼ 4 × 203. The dots are at a
coupling with a direct comparison to the importance sampling.
The solid lines are a finer scan around the critical region,
containing 1000 points evenly spaced between 5.690 and
5.695. The errors on this line are calculated by bootstrapping
over the repeats and are represented by the dashed curves.
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Due to the removal of the hard energy cutoffs, the
boundary intervals are no longer symmetric about the
center of the interval. In this case, Eq. (13) cannot be used
to update a1 and a2N−1. Instead, we assume the boundaries
are away from the critical region and the interval width is
small, so the function EnðanÞ is approximately linear.
In this case we approximate, a1 ¼ 2a2 − a3 and a2N−1 ¼
2a2N−2 − a2N−3.
The sampled energy distribution of the boundary inter-

vals are expected to be Gaussians centered at E2N−1 and E1,
with hard cutoffs at E2N−2 and E2, respectively. The
sampled plaquette distribution for all intervals, therefore,
should be approximately flat within Emin ≤ E ≤ Emax with
Gaussian tails on the boundaries. These expectations are
confirmed by Fig. 10.

APPENDIX C: ΔE → 0 LIMIT

In the calculation of the observables there is a systematic
error which is proportional to the size of the energy interval
squared, Δ2

E, see Ref. [158]. To accurately represent an

expectation value and its error, we require that this
systematic error be smaller than the statistical error, arising
from repeating the determination of fang2N−1

n¼1 . To ensure
ΔE is sufficiently small, in this section we analyze the
ΔE → 0 limit for the average plaquette, the specific heat,

CVðβÞ≡ 6Ṽ
a4

ðhu2piβ − hupi2βÞ; ðC1Þ

the Binder cumulant,

BLðβÞ≡ 1 −
hu4piβ
3hu2pi2β

; ðC2Þ

the ensemble average of the absolute value of the Polyakov
loop, hjlpjiβ, and the Polyakov-loop susceptibility, χlðβÞ.
We also take this limit for the maximum of the specific heat

CðmaxÞ
V and the minimum of the Binder cumulant BðminÞ

L .
The observables calculated from the LLR method are

compared against expectation values measured on a lattice
of the same size (Ṽ=a4 ¼ 4 × 203) but obtained using

FIG. 12. The specific heat for different couplings calculated
using the LLR method for different values of a4ΔE=ð6ṼÞ sizes,
and compared to the measurement from importance sampling
methods (black triangles). In both cases the lattice size is
Ṽ=a4 ¼ 4 × 203. The dots are at a coupling with a direct
comparison to the importance sampling. The solid lines are a
finer scan around the critical region, containing 1000 points
evenly spaced between 5.690 and 5.695. The errors on this line
are calculated by bootstrapping over the repeats and are repre-
sented by the dashed curves. The extrema of the curve for all
a4ΔE=ð6ṼÞ sizes are shown by the vertical dashed lines, with the
corresponding error represented by the shaded region. The
extrema of all but the coarsest interval sizes overlap.

FIG. 13. The Binder cumulant for different couplings calcu-
lated using the LLR method for different values of a4ΔE=ð6ṼÞ
sizes, and compared to the measurement from importance
sampling methods (black triangles). In both cases the lattice size
is Ṽ=a4 ¼ 4 × 203. The dots are at a coupling with a direct
comparison to the importance sampling. The solid lines are a finer
scan around the critical region, containing 1000 points evenly
spaced between 5.690 and 5.695. The errors on this line are
calculated by bootstrapping over the repeats and are represented
by the dashed curves. The extrema of the curve for all a4ΔE=ð6ṼÞ
sizes are shown by the vertical dashed lines, with the correspond-
ing error represented by the shaded region. The extrema of all but
the coarsest interval sizes overlap.
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FIG. 14. The relative change for the vacuum expectation value
of the average plaquette calculated between the LLR method and
IS method results is shown at different couplings. In both cases
the lattice size is Ṽ=a4 ¼ 4 × 203. The colored dots show the
results for different values of a4ΔE=ð6ṼÞ. The errors were found
by using bootstrap methods to calculate the error on LLR and
importance sampling results separately, then propagating them.

FIG. 15. The relative change for the specific heat calculated
between the LLR method and IS method results is shown at
different couplings. In both cases the lattice size is Ṽ=a4 ¼
4 × 203. The colored dots show the results for different values of
a4ΔE=ð6ṼÞ. The errors were found by using bootstrap methods
on the LLR and importance sampling results separately, then
propagating them.

FIG. 16. The maximum value of the specific heat calculated
using the LLR method for couplings around the critical region,
containing 1000 points evenly spaced between 5.690 and 5.695,
is plotted against the ða4ΔE=ð6ṼÞÞ2 value it was calculated at.
The errors on each point are found by bootstrapping the repeats.
The black dot shows the limit of ða4ΔE=ð6ṼÞÞ2 → 0 and its
errors, found by a linear fit. The lattice size is Ṽ=a4 ¼ 4 × 203.

FIG. 17. The minimum value of the Binder cumulant calculated
using the LLR method for couplings around the critical region,
containing 1000 points evenly spaced between 5.690 and 5.695,
is plotted against the ða4ΔE=ð6ṼÞÞ2 value it was calculated at.
The errors on each point are found by bootstrapping the repeats.
The black dot shows the limit of ða4ΔE=ð6ṼÞÞ2 → 0 and its
errors, found by a linear fit. The lattice size is Ṽ=a4 ¼ 4 × 203.
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standard importance sampling methods. The lattice was
updated using 1 local heat bath update followed by 4 over-
relaxation updates. At each coupling value, 500,000
measurements were taken, and the errors were computed
using bootstrap methods.
The observables with explicit dependence on the energy,

hupiβ, CVðβÞ, and BLðβÞ, are calculated using Eq. (4). The
integral is computed over the entire possible energy range of
the system. Since, the contribution from energy outside the
range relevant for the problem is exponentially suppressed,
the limits of the integral can be replaced with Emin and
Emax. We then take the piecewise log-linear approximation
for the density of states, ρðEÞ → ρ̃ðEÞ, giving

hOiβ ¼
1

Zβ

X2N−1

n¼1

Z
EnþΔE=4

En−ΔE=4
dEρ̃ðEÞOðEÞe−βE: ðC3Þ

Using Eqs. (5) and (16), and taking all terms with no
explicit E dependence outside the integral gives

hOiβ ¼
X2N−1

n¼1

ρ̃ðEnÞe−βEn

Zβ

Z
ΔE=4

−ΔE=4
dEOðEþ EnÞeEðan−βÞ:

ðC4Þ

By analytically solving the integral, inputting the desired
coupling β and the obtained fang values, we can therefore
gain a numerical value for the expectation values.
The Polyakov loop and susceptibility depend on the

configuration of the lattice (ϕ) rather than explicitly on the
action, therefore they are calculated using Eq. (17). After
the an values are found, a set of energy-restricted updates
are carried out with an remaining fixed at its final value. On
these configurations the action, S½ϕ�, and observables of
interest, B½ϕ�, are calculated, giving access to the expect-
ation value B̃½ϕ�.

FIG. 18. The vacuum expectation value of the absolute value of
the Polyakov loop for different couplings calculated using the
LLR method for different values of a4ΔE=ð6ṼÞ, and compared to
the measurement from importance sampling methods (black
triangles). In both cases the lattice size is Ṽ=a4 ¼ 4 × 203.
The dots are at a coupling with a direct comparison to the
importance sampling. The solid lines are a finer scan around the
critical region, containing 100 points evenly spaced between
5.690 and 5.695. The errors on this line are calculated by
bootstrapping over the repeats and are represented by the dashed
curves. For the values determined with the LLR method, the
calculation requires measurements of the Polyakov loop on a set
of configurations found using the restricted energy updates, with
an fixed to its final value. For these calculations 40,000 fixed an
measurements were performed on all the intervals.

FIG. 19. The Polyakov-loop susceptibility for different cou-
plings calculated using the LLR method for different values of
a4ΔE=ð6ṼÞ, and compared to the measurement from importance
sampling methods (black triangles). In both cases the lattice size
is Ṽ=a4 ¼ 4 × 203. The dots are at a coupling with a direct
comparison to the importance sampling. The solid lines are a finer
scan around the critical region, containing 100 points evenly
spaced between 5.690 and 5.695. The errors on this line are
calculated by bootstrapping over the repeats and are represented
by the dashed curves. For the values determined with the LLR
method, the calculation requires measurements of the Polyakov
loop on a set of configurations found using the restricted energy
updates, with an fixed to its final value. For these calculations
40,000 fixed an measurements were performed on all the
intervals. The extrema of the curve for all a4ΔE=ð6ṼÞ sizes
are shown by the vertical dashed lines, with the corresponding
error represented by the shaded region. The extrema of all interval
sizes overlap.

LUCINI, MASON, PIAI, RINALDI, and VADACCHINO PHYS. REV. D 108, 074517 (2023)

074517-18



Figures 11–13 show the results for hupiβ, CVðβÞ, and
BLðβÞ, respectively. In all cases the LLR results appear to
converge to the curve obtained for the smallest interval. The
results for the two smallest interval sizes are clearly
consistent with each other.
The results for the smallest interval size follow the

general trend of the values found using importance sam-
pling. By plotting the relative change between expectation
values of these observables and the importance sampling
counterparts, Figs. 14 and 15, we see they are generally
consistent within two standard deviations.
As discussed in Sec. V, for the smaller interval sizes the

structure of anðEnÞ is not invertible, giving rise to a
probability distribution, PβðupÞ, with a characteristic dou-
ble-peak structure. However, for a4ΔE=ð6ṼÞ ¼ 0.0063, the
interval size is not sufficient to resolve this structure. As can
be seen from the plots Figs. 11, 12, and 13, the behavior of
the expectations of this ensemble is different. The peaks in
the specific heat and the dip of the Binder cumulant are
much shallower and the change in the plaquette much
slower, making it consistent with a weaker transition or
even a second order transition.

The location of the extrema of the specific heat andBinder
cumulant, in the limit ofΔE → 0, are shown in Figs. 16 and
17, respectively. A linear fit has been taken in ða4ΔE=6ṼÞ2,
and the results have been extrapolated to ΔE ¼ 0. In both
cases, the phase transition appears to become stronger as the
critical region becomes better resolved with decreasing ΔE.
In both plots the two smallest interval sizes appear to be
consistent with each other and the extrapolation.
The results for hjlpjiβ and χlðβÞ are shown in Figs. 18

and 19. The relative change between LLR and impor-
tance sampling results are shown in Figs. 20 and 21.
Once more, the results converge to those of the smallest
interval size and show good agreement with importance
sampling ones. For these observables, the discrepancy
between the largest interval and the others is small.
We report in Table V the values of the pseudocritical

couplings identified by the extrema of the observables
discussed in this appendix and by the equal height of the
peaks in the energy distribution for the two finest values of
ΔE. Our results show consistency across the definitions we
have studied and good agreement between the values at the
two ΔE for fixed observable.

FIG. 20. The relative change in the vacuum expectation value of
the absolute value of the Polyakov loop, calculated between the
LLR method and the IS method results, is shown at different
couplings. In both cases the lattice size is Ṽ=a4 ¼ 4 × 203. The
colored dots show the results for different values of a4ΔE=ð6ṼÞ.
The error is found by using bootstrap methods on LLR and
importance sampling results separately, then propagating them.
For the values determined with the LLR method, the calculation
requires measurements of the Polyakov loop on a set of
configurations found using the restricted energy updates, with
an fixed to its final value. For these calculations 40,000 fixed an
measurements were performed on all the intervals.

FIG. 21. The relative change in the Polyakov loop susceptibil-
ity, calculated between the LLR method and importance sampling
(IS) method results, is shown at different couplings. In both cases
the lattice size is Ṽ=a4 ¼ 4 × 203. The colored dots show the
results for different values of a4ΔE=ð6ṼÞ. The error is found by
using bootstrap methods on LLR and importance sampling
results separately, then propagating them. For the values deter-
mined with the LLR method, the calculation requires measure-
ments of the Polyakov loop on a set of configurations found using
the restricted energy updates, with an fixed to its final value. For
these calculations 40000 fixed an measurements were performed
on all the intervals.
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In summary, all the tests reported in this appendix show that when the energy interval is small enough—
a4ΔE=ð6ṼÞ ¼ 0.0007 and 0.0004—there is no discernible difference with the results of the extrapolation to zero interval,
and general agreement is found with importance sampling.

[1] A. D. Sakharov, Violation of CP invariance, C asymmetry,
and baryon asymmetry of the universe, Pis’ma Zh. Eksp.
Teor. Fiz. 5, 32 (1967).

[2] K. Kajantie, M. Laine, K. Rummukainen, and M. E.
Shaposhnikov, Is there a hot electroweak phase transition
at mH ≳mW?, Phys. Rev. Lett. 77, 2887 (1996).

[3] F. Karsch, T. Neuhaus, A. Patkos, and J. Rank, Critical
Higgs mass and temperature dependence of gauge boson
masses in the SU(2) gauge Higgs model, Nucl. Phys. B,
Proc. Suppl. 53, 623 (1997).

[4] M. Gurtler, E.-M. Ilgenfritz, and A. Schiller, Where the
electroweak phase transition ends, Phys. Rev. D 56, 3888
(1997).

[5] K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and
M. E. Shaposhnikov, The universality class of the electro-
weak theory, Nucl. Phys. B532, 283 (1998).

[6] F. Csikor, Z. Fodor, and J. Heitger, Endpoint of the hot
electroweak phase transition, Phys. Rev. Lett. 82, 21
(1999).

[7] Y. Aoki, F. Csikor, Z. Fodor, and A. Ukawa, The endpoint
of the first order phase transition of the SU(2) gauge Higgs
model on a four-dimensional isotropic lattice, Phys. Rev. D
60, 013001 (1999).

[8] M. D’Onofrio and K. Rummukainen, Standard model
cross-over on the lattice, Phys. Rev. D 93, 025003 (2016).

[9] M. Laine and K. Rummukainen, What’s new with the
electroweak phase transition?, Nucl. Phys. B, Proc. Suppl.
73, 180 (1999).

[10] D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak
baryogenesis, New J. Phys. 14, 125003 (2012).

[11] O. Gould, S. Güyer, and K. Rummukainen, First-order
electroweak phase transitions: A nonperturbative update,
Phys. Rev. D 106, 114507 (2022).

[12] M. J. Strassler and K. M. Zurek, Echoes of a hidden valley
at hadron colliders, Phys. Lett. B 651, 374 (2007).

[13] K. Cheung and T.-C. Yuan, Hidden fermion as milli-
charged dark matter in Stueckelberg Z0 model, J. High
Energy Phys. 03 (2007) 120.

[14] T. Hambye, Hidden vector dark matter, J. High Energy
Phys. 01 (2009) 028.

[15] J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, Hidden
charged dark matter, J. Cosmol. Astropart. Phys. 07 (2009)
004.

[16] T. Cohen, D. J. Phalen, A. Pierce, and K. M. Zurek,
Asymmetric dark matter from a GeV hidden sector, Phys.
Rev. D 82, 056001 (2010).

[17] R. Foot and S. Vagnozzi, Dissipative hidden sector dark
matter, Phys. Rev. D 91, 023512 (2015).

[18] G. Bertone and D. Hooper, History of dark matter, Rev.
Mod. Phys. 90, 045002 (2018).

[19] E. Del Nobile, C. Kouvaris, and F. Sannino, Interfering
composite asymmetric dark matter for DAMA and
CoGeNT, Phys. Rev. D 84, 027301 (2011).

[20] A. Hietanen, R. Lewis, C. Pica, and F. Sannino, Composite
Goldstone dark matter: Experimental predictions from the
lattice, J. High Energy Phys. 12 (2014) 130.

[21] J. M. Cline, W. Huang, and G. D. Moore, Challenges for
models with composite states, Phys. Rev. D 94, 055029
(2016).

[22] G. Cacciapaglia, C. Pica, and F. Sannino, Fundamental
composite dynamics: A review, Phys. Rep. 877, 1 (2020).

[23] N. A. Dondi, F. Sannino, and J. Smirnov, Thermal history
of composite dark matter, Phys. Rev. D 101, 103010
(2020).

[24] S. Ge, K. Lawson, and A. Zhitnitsky, Axion quark nugget
dark matter model: Size distribution and survival pattern,
Phys. Rev. D 99, 116017 (2019).

[25] V. Beylin, M. Y. Khlopov, V. Kuksa, and N. Volchanskiy,
Hadronic and hadron-like physics of dark matter, Sym-
metry 11, 587 (2019).

TABLE V. The values of the coupling, β, that correspond to the maximum of the specific heat, βðCðmaxÞ
V Þ, the

minimum of the binder cumulant, βðBðminÞ
L Þ, and the maximum of the Polyakov loop susceptibility, βðχðmaxÞ

l Þ, found
by measuring the observables at a β values evenly spaced between 5.690 and 5.695. Measurements were carried out
at 1000β values for CV and BL, while for χl 100 values were scanned. These pseudocritical couplings are compared
with the value presented in Sec. V, for the critical coupling, βc. These results are for a SUð3Þ lattice of size
Ṽ=a4 ¼ 4 × 203, using the LLR method with interval sizes a4ΔE=ð6ṼÞ ¼ 0.0007 and 0.0004.

a4ΔE

6Ṽ
βðCðmaxÞ

V Þ βðBðminÞ
L Þ βðχðmaxÞ

l Þ βc

0.0007 5.69198(3) 5.69194(3) 5.69170(3) 5.69188(3)
0.0004 5.69197(2) 5.69193(2) 5.69170(2) 5.69186(2)
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