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We present a method for analytic continuation of retarded Green’s functions, including Euclidean Green’s
functions computed using lattice QCD. The method is based on conformal maps and construction of an
interpolation function which is analytic in the upper half-plane. A novel aspect of our treatment is rigorous
bounding of systematic uncertainties, which are handled by constructing the full space of interpolating
functions (at each point in the upper half-plane) consistentwith the given Euclidean data and the constraints of
analyticity. The resultingGreen’s function in the upper half-plane has an appealing interpretation as a smeared
spectral function. The bounding constraint applies to these smeared spectral functions.
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I. INTRODUCTION

Current-current correlation functions in QCD encode
fundamental features of hadronic structure. For example,
the hadronic vacuum polarization tensor is defined as the
vacuum expectation value of the commutator of the
electromagnetic currents [1,2],

ρμνðqÞ ¼
1

2π

Z
d4x eiq·xh∅j½jEMμ ðxÞ; jEMν ð0Þ�j∅i; ð1Þ

with ρμνðqÞ ¼ ðqμqν − q2gμνÞρðq2Þ, where ρðq2Þ is the
spectral density. The spectral density is related to the
experimentally measured R-ratio,

ρðsÞ ¼ RðsÞ
12π2

RðsÞ ¼ σðeþe− → hadronsÞ
4πα2=3s

; ð2Þ

where the denominator is the tree-level QED cross section
for eþe− → μþμ− in the massless limit (m2

μ ≪ s). The
experimental data for RðsÞ, reproduced in Fig. 1 from the
compilation of Ref. [3], show a rich resonance structure,
with prominent peaks near the masses of vector resonances.
These resonant peaks are the hadronic structure of the
vacuum polarization.
The hadronic tensor of unpolarized inclusive electron-

proton scattering has a similar form [4],

Wμνðp; qÞ ¼
Z

d4x
4π

eiq·xhpj½jEMμ ðxÞ; jEMν ð0Þ�jpi; ð3Þ

where the external states correspond to a proton with four-
momentum p and q ¼ k − k0 is the momentum transfer
between the initial and final electrons with momenta k and
k0, respectively. The Lorentz covariant decomposition of
the hadronic tensor is given by

Wμν ¼ F1

�
−gμν þ

qμqν
q2

�

þ F2

p · q

�
pμ −

p · qqμ
q2

��
pν −

p · qqν
q2

�
; ð4Þ

where F1 and F2 are so-called structure functions. Similar
to the case of the hadronic vacuum polarization above, F1

and F2 can also be interpreted as spectral densities.
Moreover, as shown in Fig. 2 for F2, the experimentally
measured structure functions exhibit conspicuous resonant
peaks. These structures encode the nonperturbative
response of the proton to electromagnetic probes. To date,
essentially no first-principles understanding (e.g., from
lattice QCD) of the structure functions exists in the
resonance region. For neutrino-nucleon scattering at similar
energies, the analog of Eq. (3) arises with flavor-changing
vector and axial currents. Compared to the electromagnetic
case, the axial structure functions are especially poorly
known. Improved understanding of the axial structure
functions would have important consequences for upcom-
ing neutrino experiments like DUNE.
Euclidean-time analogs of Eqs. (2) and (3) are calculable

using lattice QCD. Extracting a spectral density from a
zero-temperature Euclidean correlation function GEðτÞ
requires inverting a Laplace transform,
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GEðτÞ ¼
Z

∞

0

dω e−ωτρðωÞ: ð5Þ

Lattice QCD calculations provide GEðτÞ at a discrete set of
Euclidean times. This numerical problem is famously diffi-
cult.1 Efforts to solve Eq. (5) have typically focused on the
Laplace transform’s structure as a linear integral equation,
approximated by the discretized linear system GEðτiÞ ¼
KijρðωjÞ where Kij ¼

R
dωe−τiωj and summation is

implied. Suitably regularized linear methods are then
employed to extract the spectral density.Much recent interest
in the lattice community has been generated by the inversion
algorithm of Ref. [10], independently rediscovered and
applied to lattice gauge theory for the first time in
Ref. [11]. The general problem of computing the inverse
Laplace transform has been approached in a broad literature
spanning many fields [12–29]; existing approaches used in
the lattice community have recently been reviewed in
Refs. [30–32].
Equation (5) amounts to analytic continuation, a con-

nection which is particularly clear in frequency space (see
Sec. III below),

GðiωlÞ ¼
Z

β

0

dτ eiωlτGEðτÞ; ð6Þ

where the retarded Green’s function on the left-hand side is
evaluated on the positive imaginary axis. Meanwhile, the
spectral density is related to its imaginary part evaluated on
the positive real axis: ρðωÞ ¼ 1

π ImGðωÞ. Therefore, the task
of analytic continuation is to compute the behavior of GðzÞ
on the real line given finite data on the positive imaginary
axis.
In the present work, we propose a method for solving

this problem which differs from familiar approaches in
three important regards. First, the method is inherently
nonlinear, based on special properties of certain conformal
maps. Second, the method works by constraining the
behavior of Gðωþ iϵÞ directly in the upper half-plane,
with the spectral density arising in the limit ϵ → 0þ. Third,
the method explicitly constructs, at each point in the upper
half-plane, the full space of analytic functions consistent
with the given Euclidean data. Intuitively, one anticipates
that this space ought to be small for points near the
Euclidean data on the positive imaginary axis and large
for points on the real line, where the problem becomes ill
posed. At each point z∈Cþ, this bounding space gives a
rigorous bound on the systematic uncertainty associated
with the analytic continuation.2

The fact that lattice QCD calculations occur in a finite
spatial volume raises important conceptual questions.
Reference [33] has convincingly argued that infinite-
volume spectral densities may, as a matter of principle,
be recovered from finite-volume calculations via the
ordered limiting procedure

ρðωÞ ¼ lim
ϵ→0

lim
L→∞

Z
dω0δϵðω;ω0ÞρLðω0Þ ð7Þ

≡ lim
ϵ→0

lim
L→∞

ρϵLðωÞ; ð8Þ
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FIG. 1. Compilation of experimental data for RðsÞ, reproduced
with permission from Ref. [3].

FIG. 2. Interpolation of experimental data, taken from the
CLAS Physics Database [5], for the structure function F2 in
the resonance region as a function of the momentum transfer Q2

and the invariant mass W of the hadronic system. Large resonant
contributions are clearly visible states including Δð1232Þ
Nð1520Þ, Nð1535Þ, and Nð1720Þ. In Ref. [6], at least a dozen
open channels were used to model the experimental data.

1The mathematical structure of the inverse problem has been
thoroughly analyzed in Ref. [7]. The numerical approach sug-
gested in Ref. [7] has been explored in Ref. [8]. Both works are
discussed accessibly for lattice QCD community in Ref. [9].

2Throughout this work, the upper half-plane is defined in the
usual way as the open set Cþ ≡ fz∈CjImz > 0g, which ex-
cludes the real axis.
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where ρLðωÞ is a finite-volume spectral density, ρϵLðωÞ is a
smeared spectral density, and δϵðω;ω0Þ is a smearing
kernel.3

An important practical upshot is that computing smeared
spectral densities is typically a well-posed, albeit numeri-
cally delicate, problem. Below, we show that analytic
continuation at a finite distance ϵ above the real line has
a natural interpretation in terms of a smeared spectral
density. Essentially, the same point seems to have been
observed in Ref. [34], where the usual iϵ prescription for
computing scattering amplitudes was replaced by a suitable
smearing in a proposal to compute scattering amplitudes
using lattice gauge theory.
Recently, a set of ideas similar to the method we

propose was applied to fermionic thermal Green’s func-
tions in the context of condensed matter problems [35,36].
Bosonic Green’s functions are of particular interest in
lattice gauge theory. One approach to bosonic Green’s
functions has been given in Ref. [37]. The present work
gives an alternative treatment of bosonic Green’s func-
tions. Our rigorous treatment of the uncertainty in the
analytic continuation is another novel feature of the
present work.
The rest of this article is organized as follows. Section II

reviews some well-known analytic properties of thermal
Green’s functions in the upper half-plane. Section III
specializes the results of Sec. II to the case of a finite
spatial volume, where the spectrum is discrete. Section IV
transforms, by suitable conformal maps, the problem of
analytic continuation from the upper half-plane to the open
unit disk. Section V constructs a rational-function approxi-
mation for GðzÞ using the theory of Nevanlinna–Pick
interpolation; Sec. V D collects the technical pieces and
summarizes the complete algorithm for the method.
Section VI provides a recipe for computing GðiωlÞ given
values for GEðτÞ, e.g., from a lattice QCD calculation.
Section VII provides a series of numerical examples
illustrating how the new method works in practice.
Section VIII provides some discussion of the results and
presents our conclusions.

II. THERMAL GREEN’S FUNCTIONS
IN THE COMPLEX PLANE

Consider a finite-temperature quantum field theory
defined by an equilibrium density matrix

ρ̂ ¼ 1

Z
e−βH; ð9Þ

with partition function Z, Hamiltonian H, and inverse
temperature β.4 Expectation values are defined with respect
to the density matrix as hO1…Oni≡ Trfρ̂O1…Ong.
Although many applications of interest occur at zero
temperature, the formalism we present holds for arbitrary
temperatures. Moreover, as a matter of principle, lattice
QCD calculations employ large but finite β.
Let A be an operator. We define the following correlation

functions,

G ðtÞ ¼ hAðtÞA†ð0Þi; ð10Þ

G�ðtÞ ¼ ihfAðtÞ; A†ð0Þg�i; ð11Þ

where the commutator (−) arises for bosonic operators,
while the anticommutator (þ) is for fermionic operators.
The Euclidean Green’s function is defined via analytic
continuation to the lower half-plane as

GEðτÞ≡ G ð−iτÞ; ð12Þ

where τ∈R is the Euclidean time. The retarded, or causal,
correlator is defined as

G�ðωÞ≡
Z

∞

0

dt eiωtG�ðtÞ: ð13Þ

Nominally, ω is a real number. When ω is replaced by a
complex number, Eq. (13) defines an analytic function
G�ðzÞ in the upper half-plane, Imz > 0. The retarded
correlator plays a key role in linear response theory [9];
its importance to the current discussion arises from its close
connection to the Euclidean correlator. The Fourier coef-
ficients of the Euclidean correlator are defined as

GðlÞ
E ≡

Z
β

0

dτ eiωlτGEðτÞ; ð14Þ

where the ωl are the Matsubara frequencies, 2lπ=β for
bosons and ð2lþ 1Þπ=β for fermions, with l∈Z. In
Sec. III below, we will rederive the familiar result that

GðlÞ
E ¼ G�ðiωlÞ; l ≠ 0: ð15Þ

In other words, the analytic continuation of the retarded
correlator is the frequency-space Euclidean correlator.
Finally, the spectral density is defined as

ρ�ðωÞ ¼
1

2πi

Z
∞

−∞
dt eiωtG�ðtÞ ð16Þ

3In practical lattice QCD calculations, it may be advantageous
to take the infinite-volume limit directly at the level of Euclidean-
time correlation functions, with all other simulation parameters
held fixed. For brevity, we will usually suppress the volume
dependence in what follows.

4For completeness, the next two sections review standard
definitions and relations between various correlation functions.
Aside from incidental comments, no novelty is claimed. Similar
material can be found with an emphasis on thermal properties,
e.g., in Ref. [9].
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¼ 1

2πi
ðG�ðωÞ −G�ðωÞ�Þ ð17Þ

¼ 1

π
ImG�ðωÞ;ω∈R: ð18Þ

where the second line follows using time-translation
invariance and the reality condition. The final line gives
the familiar result: for diagonal correlators, the spectral
density is the imaginary part of the retarded Green’s
function. Table I summarizes the notation for various
Green’s functions used throughout this work.

III. FINITE-VOLUME GREEN’S FUNCTIONS

The definitions of the preceding section were generic, in
the sense that they made no particular assumption about the
dynamics or spectrum of the theory. We now specialize to
the case of a thermal field theory in a finite spatial volume
V ¼ L3, for which the spectrum is discrete.
Inserting complete sets of states in Eq. (11) gives

G�ðtÞ ¼
i
Z

X
n;m

e−iEnmtjAmnj2ðe−βEm � e−βEnÞ; ð19Þ

where Emn ≡ Em − En and Amn ≡ hmjAjni. Similarly, the
retarded correlator in the upper half-plane z∈Cþ becomes

G�ðzÞ ¼
1

Z

X
n;m

jAmnj2ðe−βEm � e−βEnÞ −1
z − Enm

; ð20Þ

where we have used

Z
∞

0

dteizt e−iEnmt ¼ i
z − Enm

ð21Þ

for Emn ∈R and z∈Cþ. This confirms the statement from
above that G�ðzÞ is analytic in the upper half-plane. To
extract the spectral density, we evaluate the pole in the
upper half-plane at z ¼ ωþ iϵwith ω; ϵ∈R. It follows that

1

π
Im

−1
ðωþ iϵÞ − Enm

¼ 1

π

ϵ

ðω − EnmÞ2 þ ϵ2
ð22Þ

≡ δϵðω − EnmÞ; ð23Þ

where δϵðxÞ is the Poisson kernel, which approaches the
Dirac delta function in the usual distributional sense:

lim
ϵ→0þ

δϵðxÞ ¼ δðxÞ: ð24Þ

Combining this result with Eqs. (18) and (20) confirms that
the spectral density is a discrete sum of delta functions:

ρ�ðωÞ ¼
1

Z

X
n;m

jAmnj2ðe−βEm � e−βEnÞδðω − EnmÞ ð25Þ

¼β→∞X
n

jA0nj2ðδðω − EnÞ � δðωþ EnÞÞ: ð26Þ

For all temperatures, the spectral density is evidently an
even function for fermions and an odd function for bosons.
The second line follows in the zero-temperature limit. At
zero temperature, and for a given fixed set of overlap
factors jA0nj and energies En, the only difference between
ρþðωÞ and ρ−ðωÞ is the relative minus sign on the negative
real line.
Using the Poisson kernel, we define a “smeared” spectral

density via

ρϵ�ðωÞ ¼
Z

dω0δϵðω − ω0Þρ�ðω0Þ: ð27Þ

Substituting the explicit form for the spectral density in
Eq. (25) then gives a useful generalization of Eq. (18),

ρϵ�ðωÞ ¼
1

π
ImG�ðωþ iϵÞ; ð28Þ

which is valid for arbitrary z ¼ ωþ iϵ in the upper half-
plane. It is worth emphasizing that Eq. (28) does not require
ϵ to be small. This result is noteworthy because it says that
the smeared finite-volume spectral function, defined with
the Poisson kernel, is the analytic continuation of the
retarded Green’s function G�ðωÞ. In particular, this for-
mula establishes the close connection between the present
work and recent work in Refs. [11,33,34]. This smearing is
also in the spirit of the classic work of Ref. [38].
It remains to relate the Euclidean Green’s function to the

retarded Green’s function and the spectral density. From
Eqs. (12) and (19), it immediately follows that the spectral
decomposition of GEðτÞ is given by

GEðτÞ ¼
1

Z

X
n;m

e−βEme−EnmτjAmnj2: ð29Þ

From the definition of Fourier coefficients GðlÞ
E in Eq. (14),

it follows that GðlÞ
E ¼ G�ðiωlÞ at the appropriate bosonic or

TABLE I. The different Green’s functions appearing in this
work. Bosonic and fermionic Green’s functions are distinguished
by the sign of the commutator or anticommutator, e.g., G�ðzÞ.
Symbol Description Definition

G ðtÞ Real-time Green’s function Eq. (11)
GEðτÞ Euclidean-time Green’s function Eq. (12)
GðωÞ Retarded Green’s function, ω∈R Eq. (13)
GðzÞ Retarded Green’s function, z∈Cþ Eq. (13)
GðzÞ Retarded Green’s function, z∈D Eqs. (33) and (35)
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fermionic Matsubara frequencies. Finally, comparison with
Eq. (25) delivers the relation between GEðtÞ and the
spectral density

GEðτÞ ¼
Z

∞

0

dωρ�ðωÞ
�
e−ωτ þ e−ωðβ−τÞ

1� e−ωβ

�
ð30Þ

¼β→∞
Z

∞

0

dωρ�ðωÞe−ωτ: ð31Þ

As anticipated in the Introduction, the second line shows
that the zero-temperature Euclidean Green’s function is the
Laplace transform of the spectral density. For large but
finite β, the backward-propagating contribution e−ωðβ−τÞ
should be retained, while the denominator can be safely
neglected. For generic β, the denominator is related to
the Fermi–Dirac (þ) or Bose–Einstein (−) distribution.
The notation in Eq. (31) echoes Eq. (26), where zero-
temperature fermionic and bosonic spectral densities
agree for ω > 0.

IV. TRANSFORMING GREEN’S
FUNCTIONS TO THE UNIT DISK

As discussed above, the retarded Green’s function is
analytic in the upper half-plane. In a finite volume, Eq. (20)
shows that it consists of a sum of pairs of poles at
ω ¼ �Enm. The associated spectral densities in Eq. (25)
have definite parity: ρþðωÞ is an even function, while
ρ−ðωÞ is an odd function.
The even parity of the fermionic spectral density implies

that the retarded correlator is a function Gþ∶ Cþ → Cþ, a
fact also manifest directly in Eq. (20). In other words, the
retarded correlator satisfies a positivity condition in the
upper half-plane: ImGþðzÞ > 0 for all z∈Cþ. Functions
satisfying this condition are known as Nevanlinna functions
and have been studied extensively in complex analysis.
This property of fermionic Green’s functions was a key
insight in Refs. [35,36]. It will prove useful to define an
associated function on the unit diskD. To this end, and as in
Refs. [35,36], the Cayley transform is defined as the map
C∶ Cþ → D,

CðzÞ ¼ z − i
zþ i

C−1ðζÞ ¼ −i
�
ζ þ 1

ζ − 1

�
: ð32Þ

Here and below, we reserve the variable ζ for complex
numbers in the unit disk; the variable z will be used for
complex numbers in the upper half-plane. The Cayley
transform is summarized visually in Fig. 3. Composition
with the Cayley transform maps the domain and codomain
to D, yielding the desired function Gþ∶ D → D,

GþðζÞ ¼ ðC ○Gþ ○C−1ÞðζÞ: ð33Þ

Since the bosonic spectral density is an odd function,G−
is not a Nevanlinna function.5 Indeed, Eq. (20) shows that
ImG− is positive in the first quadrant and negative in the
second quadrant. By symmetry, ImG− only vanishes in the
upper half-plane along the positive imaginary axis, where
the real part is strictly positive, ReG−ðiyÞ > 0 for y > 0. In
other words, G−∶ Cþ → CnR−, where R− is the negative
real line. This motivates defining a modified transform
C̃∶CnR− → D via

C̃ðzÞ ¼
ffiffiffi
z

p
− 1ffiffiffi

z
p þ 1

; C̃−1ðζÞ ¼
�
1þ ζ

1 − ζ

�
2

; ð34Þ

with the usual branch cut along the negative real line. The
transformation C̃ is summarized visually in Fig. 4. Similar
to the fermionic case, composition with C̃ and the Cayley
transform then yields an associated function on the unit
disk G−∶ D → D:

G−ðζÞ ¼ ðC̃ ○GR− ○C−1ÞðζÞ: ð35Þ

The functions G�ðζÞ are members of the Schur classS ,

S ¼ ff∶D → D̄∶f is analyticg: ð36Þ

The Schur class consists of nonconstant analytic functions
f∶D → D as well as constant functions taking values in D̄.
Viewed as elements of the Schur class, the functions G�ðζÞ
play a key role in the construction of interpolating
functions below.

FIG. 3. Diagramatic representation of the Cayley transform
C∶ Cþ → D and the inverse transform C−1∶ D → Cþ. The real
line is mapped to boundary of the unit disk, while the upper half-
plane is mapped to its interior.

5The method described here for bosonic Green’s functions
differs from the treatment in Ref. [37]. See Sec. V D for a
discussion of differences.
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V. NEVANLINNA INTERPOLATION

The basic idea to constrain an analytic function starting
from an interpolation problem in the complex plane dates
back more than a century, to work from Pick [39] and
Nevalinna [40,41]. Most of the fundamental results needed
for the present work were recently reviewed with modern
terminology and notation in recent lectures by Nicolau [42],
whose discussion we follow closely. Additional technical
details and context are accessibly presented in Refs. [43,44].
To keep the discussion self-contained, we reproduce proofs
for most of the necessary mathematical results. Although
these results arewell known to experts, we think it is valuable
to collect themherewith a consistent notation. The idea to use
Nevanlinna interpolation for fermionic correlators was
recently presented in Refs. [35,36]. To our knowledge,
Refs. [35,36] were the first to apply the recursive approach
to Nevanlinna interpolation, which we also follow, to
problems in field theory.

A. Interpolating function on the disk

In the preceding sections, we showed how the retarded
Green’s functions G�ðzÞ can be transformed into functions
G�ðζÞ∶D → D. We suppose that the Matsubara frequencies
and Euclidean data have been mapped to the sets

fiωlg ↦ fζlg ⊂ D ð37Þ

fG�ðiωlÞg ↦ fwlg ⊂ D ð38Þ

using Eqs. (32) and (34). Figure 5 summarizes the setup for
the Matsubara frequencies, which are mapped to the
interior of the unit disk. The task now is to construct a

rational function fðζÞ∶D → D which interpolates these
points, i.e., satisfying fðζlÞ ¼ wl. By construction, fðζÞ
will be analytic on the unit disk and an element of the
Hardy space H∞ (see, e.g., Ref. [45] for a discussion of
Hardy spaces). To begin, it is useful to establish some
notation. First, Blaschke factors are defined according to

baðζÞ ¼
jaj
a

a − ζ

1 − āζ
a∈Dnf0g; ð39Þ

with b0ðζÞ≡ ζ ¼ idD. Within particle physics, Blaschke
factors play a familiar role in the conformal maps of the
z-expansion used, for instance, in the study of semileptonic
decays of mesons [46–51]. Blaschke factors enjoy several
useful properties relevant for the present discussion. First,
for jaj < 1, Blaschke factors are automorphisms of the unit
disk. Second, they clearly satisfy baðaÞ ¼ 0. Combining
these properties with the maximum modulus principle
means that any analytic function g∶D → D with a zero
at a∈D can be written in the factorized form gðζÞ ¼
baðζÞg̃ðζÞ where g̃ðζÞ∶D → D is another analytic function
[43,44]. Finally, the following matrix notation for Möbius
maps will prove very convenient,

�
aðζÞ bðζÞ
cðζÞ dðζÞ

�
hðζÞ≡ aðζÞhðζÞ þ bðζÞ

cðζÞhðζÞ þ dðζÞ ; ð40Þ

where hðζÞ is a function. One of the chief utilities of this
notation is that function composition corresponds to matrix
multiplication, with the matrix inverse coinciding to the
function inverse.
Let us now apply these ideas to the interpolation

problem, proceeding by induction. For the base case,
imposing fðζ1Þ − w1 ¼ 0 allows one to write

FIG. 5. Mapping the Matsubara frequencies from the upper
half-plane to the unit disk using the Cayley transform defined in
Eq. (32). The blue line a distance ϵ above the real line is mapped
to the blue circle in D. We emphasize that the same mapping to
the disk has been considered, for fermionic correlators, in
Refs [35,36] (cf. Fig. 1 in Ref. [35]).

FIG. 4. Diagrammatic representation of the transform
C̃∶CnR− → D and the inverse transform C̃−1∶ D → CnR−.
The branch cut on the negative real line is mapped to the
boundary of the unit disk. The positive real and imaginary axes
are mapped to the indicated solid lines in the interior of the disk.
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fðζÞ − w1

1 − w1fðζÞ
¼ bζ1ðζÞf1ðζÞ ð41Þ

for some f1ðζÞ∈H∞, since the left-hand side is an analytic
function from the disk onto itself with zero at w1. Solving
for fðζÞ gives

fðζÞ ¼ bζ1ðζÞf1ðζÞ þ w1

1þ w1bζ1ðζÞf1ðζÞ
ð42Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jw1j2

p
�

bζ1ðζÞ w1

w̄1bζ1ðζÞ 1

�
f1ðζÞ ð43Þ

≡U1ðζÞf1ðζÞ; ð44Þ

where the normalization of thematrixU1ðζÞ has been chosen
for later convenience so that detU1ðζÞ ¼ bζ1ðζÞ. Imposing
the interpolation condition fðζ2Þ ¼ w2 provides a constraint
on the function f1ðζÞ. Namely, Eq. (41) says that

f1ðζ2Þ ¼
1

bζ1ðζ2Þ
w2 − w1

1 − w̄1w2

≡ wð1Þ
2 : ð45Þ

Thus, a Blaschke factor may be again be factored out to give

f1ðζÞ − wð1Þ
2

1 − w̄ð1Þ
2 f1ðζÞ

¼ bz2ðζÞf2ðζÞ; ð46Þ

in terms of some f2ðζÞ∈H∞. Solving for f1ðζÞ then gives

f1ðζÞ ¼
bζ2ðζÞf2ðζÞ þ wð1Þ

2

1þ w̄ð1Þ
2 bζ2ðζÞf2ðζÞ

≡U2ðζÞf2ðζÞ; ð47Þ

withU2ðζÞ defined analogously toU1ðζÞ.With this result, the
inductive step now becomes obvious. Using all N points,

fðζÞ ¼ U1ðζÞU2ðζÞ � � �UNðζÞfNðζÞ ð48Þ

≡
�
PNðζÞ QNðζÞ
RNðζÞ SNðζÞ

�
fNðζÞ ð49Þ

with fNðζÞ∈H∞. The functions PN , QN , RN , and SN are
called the Nevalinna coefficients. The matrices UnðζÞ are
defined according to

UnðζÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jwðn−1Þ
n j2

q
0
B@ bζnðζÞ wðn−1Þ

n

w̄ðn−1Þ
n bζnðζÞ 1

1
CA; ð50Þ

where wðnÞ
m is the value of fn evaluated at the mth zero:

wðnÞ
m ≡ fnðζmÞ. An explicit formula for wðnÞ

m follows from
imposing the interpolation condition

fðζmÞ ¼ U1ðζmÞ…UnðζmÞwðnÞ
m ¼ wm ð51Þ

wðnÞ
m ¼ U−1

n ðζmÞU−1
n−1ðζmÞ � � �U−1

1 ðζmÞwm: ð52Þ

Since fNðζÞ∈H∞ is an arbitrary function, Eq. (49) actually
parametrizes the full space of possible analytic continuations
of the given finite data. Since freedom generically exists to
include more points in the interpolation, the analytic con-
tinuation is not unique. Remarkably, the size of the solution
space can quantified sharply.
To see this, consider space of solutions to the N-point

interpolation problem evaluated at ζ:

ΔNðζÞ ¼ ffðζÞ∶f∈H∞; fðfζngÞ ¼ fwngg: ð53Þ

The size of this set determines the ambiguity in the analytic
continuation at the point ζ. For fixed ζ∈ D̄, the set can be
written explicitly. The idea is to view Eq. (49) as a function
of the undetermined fNðζÞ∈D. From this viewpoint, it
immediately follows that

ΔNðζÞ ¼ fTN;ζðwÞ∶w∈Dg; ð54Þ

where TN;ζ∶ D → D is the function

TN;ζðwÞ ¼
PNðζÞwþQNðζÞ
RNðζÞwþ SNðζÞ

: ð55Þ

This parametrization makes it clear that ΔNðζÞ is a disk,
since Möbius transformations map circles to circles. As
proven in Appendix, this function is into for all jζj < 1.
Moreover, the function is onto when jζj ¼ 1. We can also
compute the center and radius of the disk ΔNðζÞ. Since
TN;ζð−SNðζÞ=RNðζÞÞ ¼ ∞, the reflection property of
Möbius transformations implies that is ΔNðζÞ centered at

cNðζÞ ¼
PNðζÞð−RNðζÞ=SNðζÞÞ þQNðζÞ
RNðζÞð−RNðζÞ=SNðζÞÞ þ SNðζÞ

ð56Þ

¼ QNðζÞS̄NðζÞ − PNðζÞR̄NðζÞ
jSNðζÞj2 − jRNðζÞj2

: ð57Þ

The radius of ΔNðζÞ can be computed by evaluating the
distance between the center and its boundary. A brief
calculation shows that the radius is given by

rNðζÞ ¼
jBNðζÞj

jSNðζÞj2 − jRNðζÞj2
; ð58Þ

where BNðζÞ ¼ PNðζÞSNðζÞ −QNðζÞRNðζÞ. Collecting all
the results, we see that ΔNðζÞ ⊆ D is a disk of radius rNðζÞ
centered at cNðζÞ. Following the original work Nevanlinna
[40,41], this disk is sometimes known in the complex
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analysis literature as the Wertevorrat.6 The Wertevorrat
ΔNðζÞ rigorously contains the full infinite family of all
possible analytic continuations at each point ζ∈D.

B. Pick criterion

Given distinct ζ1; ζ2;…; ζn ∈D and any
w1; w2;…; wn ∈D, there exists a function in the Schur
class f∈S which interpolates the points fðζiÞ ¼ wi for all
i if and only if the Pick matrix

�
1 − wiw̄j

1 − ζiζ̄j

�
1≤i;j≤n

ð59Þ

is positive semidefinite [39–44]. If this criterion fails to
hold, f ∉ S . For problems of physical interest, we expect
the Pick criterion always to hold, at least if the Euclidean
data are specified with sufficient precision. In practice, the
Pick criterion may not be satisfied by noisy Monte Carlo
data. This observation was also made in Refs. [35,36]. In
this case, the formal bounding guarantees may not hold.
However, we expect the Wertevorrat will likely still provide
quantitatively useful guidance. A promising idea is to apply
a numerical “projection,” in the same spirit at singular value
decomposition (SVD) cuts or shrinkage in standard least-
squares fitting, to restore the Pick criterion. Conceivably,
this step could be done in such a way the projection data
would be statistically consistent with the original data.
Important work on robust spectral reconstructions in the
presence of statistical noise has recently been given
in Ref. [52].

C. Results mapped to the upper half-plane

For physical interpretation, it now remains to translate
the results of the preceding section back to the upper half-
plane. The interpolating functions are readily mapped back
by inverting Eqs. (33) and (35):

Gþ∶ Cþ → Cþ

GþðzÞ ¼ ðC−1
○Gþ ○CÞðzÞ ð60Þ

G−∶Cþ → CnR−

G−ðzÞ ¼ ðC̃−1
○G− ○CÞðzÞ: ð61Þ

Similarly, the Wertevorräte in the upper half-plane are
given by

DNðzÞ≡
� ðC−1

○ΔN ○CÞðzÞ for Gþ
ðC̃−1

○ΔN ○CÞðzÞ for G−
z∈Cþ: ð62Þ

Using the interpolating function, the smeared spectral
density Eq. (28) can be computed via

ρϵ�ðωÞ ¼
1

π
ImG�ðωþ iϵÞ; ð63Þ

using the interpolating function for G�ðzÞ. Since ΔNðζÞ is
an open set, so too is DNðzÞ, by invariance of domain. Let
∂DNðzÞ denote its boundary. The uncertainty in the
smeared spectral density is given by the full width of
the imaginary part of the boundary of the Wertevorrat,

δρϵ�ðωÞ ¼
1

π
½max Im ∂DNðωþ iϵÞ

−min Im ∂DNðωþ iϵÞ�: ð64Þ

The setup for ρϵ�ðωÞ and δρϵ�ðωÞ is summarized in Fig. 6.
Equation (64) has an appealing interpretation for ϵ ¼ 0.

As argued above, the Wertevorrat actually fills the full unit
disk for boundary values:

jζj ¼ 1 ⇒ ΔNðζÞ ¼ D̄: ð65Þ

Since C−1ðD̄Þ ¼ Cþ, the unsmeared spectral density is
effectively unconstrained by the analytic continuation
procedure:

δρϵ�ðωÞjϵ¼0 ¼ ∞: ð66Þ

In other words, the ill-posed nature of unsmeared spectral
reconstructions is manifest in the Wertevorrat formalism.
However, given Euclidean data GðiωlÞ at sufficiently many
Matsubara frequencies, which amounts to large spatial
volumes, ρϵ�ðωÞ can be constrained tightly for ϵ > 0.

D. Complete algorithm

The method to compute smeared spectral densities ρϵðωÞ
consists of the following steps:

FIG. 6. Mapping the Wertevorrat to Cþ to evaluate the
uncertainty in the smeared spectral density δρϵðωÞ.

6Consider a function f∶A → B with codomain B. In German,
the codomain is referred to as the Zielmenge or Wertevorrat. The
sense is the same: ΔNðζÞ is the set of values into which the
analytic continuation is constrained to fall.
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(1) Compute the Fourier coefficients GðlÞ
E via Eq. (14).

These numbers constitute the Euclidean data.
(2) Map Matsubara frequencies and Euclidean data to

the unit disk using Eq. (32) and/or Eq. (34).
(3) Solve the interpolation problem by computing the

Nevanlinna coefficients, and then compute the
boundary of the Wertevorrat using Eq. (58).

(4) Map the Wertevorrat from the disk back to the upper
half-plane using Eq. (62).

(5) Evaluate the space of smeared spectral densities
using Eq. (64). The true smeared spectral function is
rigorously bounded within this space.

Aside from incidental details, the algorithm is the same
for both fermionic and bosonic quantities. Indeed, apart
from the choice of conformal maps to transform the
problem to the unit disk, all of the arguments from complex
analysis are identical. Operationally, the two cases are
distinguished by the choice of whether to compute Fourier
coefficients using the bosonic or fermionic Matsubara
frequencies in Item 1 above. This observation has a useful
practical consequence.
Recall from Eq. (26) that, for a given set of energies and

overlap factors, the zero-temperature spectral densities
satisfy

ρþðωÞ ¼ sgnðωÞρ−ðωÞ: ð67Þ

In particular, this implies that the smeared spectral densities
converge to the same numerical result,

lim
ϵ→0

ρϵþðωÞ ¼ sgnðωÞ lim
ϵ→0

ρϵ−ðωÞ: ð68Þ

In practice, this means that both the bosonic and fermionic
methods define valid smeared spectral densities for zero-
temperature Green’s functions in the sense of Eq. (8) as
ϵ → 0. The choice of which one to use when analyzing
zero-temperature data therefore becomes a question of
convenience and expediency. In practice, it will likely
prove useful to analyze both and construct the joint limit as
ϵ approaches zero. A numerical example of this idea is
given below.
Another way to see that ρϵ�ðωÞ both define valid smeared

spectral functions at zero temperature, in the sense of
Eq. (8), is to note that experimental data can be smeared
equally well to give ρϵþðωÞ or ρϵ−ðωÞ, which can be
compared to the result of spectral reconstruction.
With all the technical pieces now assembled, it is useful

to highlight some similarities and important differences
with recent work in the literature. The first difference has to
do with the mapping of the Green’s functions to the unit
disk. In Refs [35,36], the insightful observation was made
that fermionic Green’s functions have the Nevanlinna
property (ImGþðzÞ > 0 for all z∈Cþ), which allowed
the problem to be mapped to D with the Cayley transform
in Eq. (32). The present treatment maps fermionic Green’s

functions to the disk in precisely the same way. A new
observation in the present work is that essentially the same
idea holds for bosonic Green’s functions, provided the
conformal map of Eq. (34) is used. In this sense, our
perspective is that the Nevalinna property was a sufficient,
but not necessary, condition to enable the use of the
interpolation techniques for the unit disk in Ref. [35,36]
and Sec. V. Our treatment of bosonic Green’s functions
differs from that of Ref. [37], where an auxiliary fermionic
problem was constructed using the “hyperbolic tangent
trick” [14,53] to enable the use of the Cayley transform.
The hyperbolic tangent trick appears to be related to the
fluctuation dissipation theorem (cf. Eq. (39) in Ref. [9]) and
holds in the unsmeared limit ϵ → 0. It would be interesting
to explore its generalization to generic finite ϵ as well as the
combination with error bounds from the Wertevorrat. Since
fermionic spectral densities are positive for all ω∈R,
reconstructions using the method of Ref. [37] may have
attractive positivity features compared to the method in the
present work.
A second important difference is related to how results

are mapped back to the upper half-plane. Stated briefly, the
algorithm in Refs. [35–37,54] yields a single value for the
smeared spectral function ρϵðωÞ for each z ¼ ωþ iϵ
[essentially via Eq. (28)], while the algorithm in the present
work yields a bounding envelope via Eq. (64). In more
detail, the difference stems from the following observa-
tions. As in Refs. [35–37,54], the fundamental interpolation
function on D is given by an equation like Eq. (49), which
includes an undetermined function fNðζÞ representing the
freedom to include additional input data. In Refs. [35–
37,54], this freedom is exploited in a smoothing step, which
removes spurious oscillations from the resulting spectral
function. The smoothing step constrains the spectral
function to minimize a certain convex functional enforcing
the normalization sum rule (

R
dωρðωÞ ¼ 1) and a notion of

smoothness. To the best of our knowledge, no rigorous
field-theoretic justification exists for the precise form of the
smoothing criterion. The smoothed spectral functions
certainly appear more physical and do seem to agree well
with known results in numerical test cases given in
Refs. [35–37,54]. However, the perspective of the present
work is that the smoothing step introduces an uncontrolled
systematic uncertainty. For applications of interest in lattice
QCD, this systematic uncertainty must be quantified. The
present work takes a conservative stance, using the
Wertevorrat [40–42] to characterize the full space of
possible solutions. The Wertevorrat seems to have been
long understood in the mathematical community. To the
best of our knowledge, the present work is the first to
recognize its role in bounding uncertainty in analytic
continuation in field theory problems. It would be interest-
ing to combine additional physical constraints (e.g., regard-
ing the moments of the spectral functions as mentioned in
Refs. [35,36] and implemented in Ref. [54]) with the novel
interpretation of the Wertevorrat.
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VI. NUMERICAL CALCULATION OF GðiωÞ
A few words are in order about how to compute
GðiωlÞ given numerical data for GEðτÞ. As shown in

Eq. (14), the desired frequency-space data are the Fourier
coefficients of the Euclidean Green’s function. Since lattice
QCD calculations provide Euclidean data for GEðτÞ at
the discrete times τ∈ f0; 1;…β − 1g, it is tempting to
compute the Fourier coefficients with the discrete Fourier
transform,

Z
β

0

dτ eiωlτGEðτÞ≈?
Xβ−1
t¼0

eiωlτGEðτÞ: ð69Þ

For the sake of illustration, let us carry out the bosonic
Matsubara sum for a unit-amplitude Green’s function
saturated by a single state, GEðτÞ ¼ e−mτ þ e−mðβ−τÞ. In
this case, one readily finds

Xβ−1
τ¼0

eiωlτGEðτÞ ¼
ð1 − e−βmÞ sinhðmaÞ
coshðmaÞ − cosðωlaÞ

; ð70Þ

where the implicit dependence on the lattice scale has been
made explicit on the right-hand side. Trying to interpret the
right-hand side as GþðiωlÞ is immediately problematic.
Due to the periodicity of the denominator, the right-hand
side is not analytic in the upper half-plane. Indeed, besides
the expected pair of poles on the real axis, spurious poles
also appear in the upper half-plane with offsets at
�maþ 2πiZ. Nevertheless, the continuum limit has the
correct analytic structure,

lim
a→0

a
ð1 − e−βmÞ sinhðmaÞ
coshðmaÞ − cosðωlaÞ

¼ 2m
m2 þ ω2

: ð71Þ

This observation immediately suggests a solution,
namely, constructing a better approximation to the integral
of Eq. (14). Since GEðtÞ is smooth and monotonic for
t∈ f0; β=2g, it can safely be interpolated, and this inter-
polation can be used to evaluate Eq. (14) numerically on a
finer grid. In practice, it is advantageous to construct an
interpolation of logGEðtÞ, e.g., with a simple polynomial
spline, since the logarithm is slowly varying. For example,
Fig. 7 shows the result of this procedure for a range of grid
refinements with N ∈ β=a × f1; 2; 5; 25g total points. By
interpolating, continuumlike values for G�ðiωlÞ can be
obtained, at least for low frequencies. For a given lattice
spacing, estimating the high-frequency components
(ωla ≫ 1) remains difficult from a practical perspective,
since essentially all information about these compo-
nents will have already decayed away by the first
Euclidean time.

VII. NUMERICAL EXAMPLES

This section presents numerical examples of the algo-
rithm described in Sec. V D. In each case, the exact spectral
density will specified. For simplicity, the zero-temperature
limit will be used. It will be convenient to express the
spectral density as a sum of arbitrarily close delta functions
via Eq. (26). When the spectral density is evaluated
numerically on a fine, uniform grid in energy with spacing
ΔE, the spectral weights are given by

jA0nj2 ¼
Z

EnþΔE

En

dωρðωÞ; ð72Þ

where En is the nth energy in the grid. The retarded Green’s
function evaluated at the Matsubara frequencies then

follows directly from Eq. (20). These values for GðlÞ
E ¼

G�ðiωlÞ provide the starting data for the numerical
examples.

A. Discrete spectral features: Isolated poles

Consider a Green’s function consisting of three isolated
poles with masses m∈ f0.2; 0.5; 0.8g and unit residues.
The corresponding spectral function on the positive real
axis is

FIG. 7. Numerical evaluation of the Fourier coefficients GðlÞ
E

using different interpolation densities, using a Euclidean corre-
lator GEðτÞ ¼ e−mτ þ e−mðβ−τÞ with β ¼ 96 and m ¼ 0.25. To
avoid many overlapping points, results are shown for every third
Matsubara frequency. The different markers show different
interpolation refinements. The blue circles at the top are the
result of the discrete Fourier transform of Eq. (70) and exhibit the
expected pathology for large ωl. For an interpolation refinement
of 25β=a (red stars), all Fourier coefficients agree with the exact
continuum results with subpercent precision.
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ρðωÞ ¼ δðω − 0.2Þ þ δðω − 0.5Þ þ δðω − 0.8Þ: ð73Þ

Using this spectral function as input, Euclidean data were
generated along the imaginary-frequency axis at the
Matsubara frequencies with β ¼ 64. The corresponding
reconstructions are shown for a variety of smearing widths
in Fig. 8. The upper (lower) panel shows the fermionic
(bosonic) reconstruction. In all cases, the exact result for
the smeared spectral function lies within the rigorous
bounding envelope of the Wertevorrat. In the fermionic
case, the width of the bounding envelope is too small to see
visibly.

B. Extended spectral features: Gaussians

Consider a spectral function on the positive real axis
consisting of a sum of Gaussians

ρðωÞ ¼
X
i

1ffiffiffiffiffiffi
2π

p
σi
exp

�
−
ðω − μiÞ2

2σ2i

�
; ð74Þ

where μ ¼ f0.25; 0.75g and σ ¼ f0.1; 0.1g. Using this
spectral function as input, Euclidean data were generated
along the imaginary-frequency axis at the Matsubara
frequencies with β ¼ 48.
The corresponding reconstructions are shown for a

variety of smearing widths in Fig. 9. The upper (lower)
panel shows the fermionic (bosonic) reconstruction. In all
cases, the exact result for the smeared spectral function lies

within the rigorous bounding envelope of the Wertevorrat.
Figure 10 shows an example of how the bosonic and
fermionic reconstruction may be used together to recon-
struct their shared liming value of ρ�ðωÞ, cf. Eq. (68).

C. R-ratio

A parametrization of the experimental data for RðsÞ is
given in Ref. [2] in terms of a phase-space factor (with a
nontrivial branch cut) and Breit-Wigner curves with
masses, widths, and amplitudes chosen to match data in
the Particle Data Group. The concrete formula for RðsÞ is
taken to be

RðsÞ ¼ θð ffiffiffi
s

p
− 2mπÞθð4.4mπ −

ffiffiffi
s

p Þ

×
1

4

�
1 −

4m2
π

s

�
3=2

ð0.6473þ f0ð
ffiffiffi
s

p ÞÞ

× θ
ffiffiffi
s

p
− 4.4mπθðM3 −

ffiffiffi
s

p Þ
�X

i ¼ 12fið
ffiffiffi
s

p Þ
�

þ f3ð
ffiffiffi
s

p Þ þ 3

��
2

3

�
2

þ 2

�
1

3

�
2
�
θð ffiffiffi

s
p

−M3Þ;

ð75Þ

where fið
ffiffiffi
s

p Þ ¼ CiΓ2
i =ð4ð

ffiffiffi
s

p
−MiÞ2 þ Γ2

i Þ. The present
example uses same parametrization and numerical input
values as Ref. [2].

FIG. 8. Smeared spectral reconstructions of spectral density
with delta functions at ω∈ f0.2; 0.5; 0.8g and with β ¼ 64. The
upper (lower) panel shows fermionic (bosonic) reconstructions
for several smearing widths. The dotted lines show the location of
the exact result for each smearing width. The exact results lies
within bounding envelope of the Wertevorrat.

FIG. 9. Smeared spectral reconstructions of a spectral density
consisting of a pair of Gaussians, Eq. (74). Euclidean data were
generated with β ¼ 48. The upper (lower) panel shows fermionic
(bosonic) reconstruction for several smearing widths. The dotted
lines shows the location of the exact result for each smearing
width. In all cases, the exact result lies visibly within the
bounding envelope of the Wertevorrat.
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Numerical Euclidean data were generated using this
parametrization as input for the spectral density with
β ¼ 96. The energy range of the problem was rescaled to
lie in the unit interval. This rescaling places the peak for the
ρð770Þ at ωa ≈ 0.25, which amounts to a lattice spacing of
a ≈ 0.07 fm, a typical cutoff scale appearing in recent
calculations of the anomalous magnetic moment of the
muon [55–64].
The corresponding reconstructions are shown for a

variety of smearing widths in Fig. 11. The upper (lower)
panel shows the fermionic (bosonic) reconstruction.
The two peaks from the ρð770Þ=ωð782Þ and the
ϕð1020Þ are clearly identified in both reconstructions.
In all cases, the exact result for the smeared spectral
function lies within the rigorous bounding envelope of
the Wertevorrat.
A reconstruction of RðsÞ from lattice QCD data using the

method of Ref. [11] was recently given in Ref. [65], where
the authors also compared to experimental results including
statistical uncertainties. We hope to conduct a similar test
soon using the present method with correlation functions
computed using lattice QCD as well as the actual exper-
imental data.

D. Toy model of interacting scalars

Following Refs. [11,33], consider a toy model of interact-
ing scalar particles π,K, andϕwithmasses 3mπ<2mK<mϕ

and interacting via the Lagrangian L ¼ gπ
6
ϕðxÞπ3ðxÞþ

gK
mϕ

2ϕðxÞK2ðxÞ. In Ref. [33], a correlation function was

considered corresponding to the finite-volume spectral
density

ρLðEÞ ¼
g2Km

2
ϕ

2ðmπLÞ3
X
p

δðE− 2EKðpÞÞ
4E2

KðpÞ

×
g2π

48m3
πL6

X
p;q

δðE−EπðpÞ−EπðqÞ−Eπðpþ qÞ
EπðpÞEπðqÞÞEπðpþ qÞÞ ;

ð76Þ

where E2
π ¼ m2

π þ p2 (and similarly for EK) and the
momenta sums run over all the finite-volume momenta p ¼
2π
L n with n∈N3. In the infinite-volume limit, the discrete
poles coalesce into characteristic kinematic factors involving
multiparticle branch cuts. For example, the two-body con-
tribution from the first sum in Eq. (76) is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K=E
2

p
θðE − 2mKÞ. The infinite-volume limit of

Eq. (76) is given explicitly in Refs. [11,33].
For the numerical test, the particle masses are taken to be

mπ ¼ 0.066, mK ¼ 3.55mπ , and mϕ ¼ 7.3mπ as in
Ref. [33]. The volume and temporal extent used are L ¼
64 and β ¼ 2L. Since three-particle interactions are sup-
pressed by the volume, we neglect them (gπ ¼ 0) and for
simplicity set gK ¼ 1. The input spectral density for the
numerical reconstruction is therefore the first line of Eq. (76).
The corresponding bosonic reconstructions are shown

for smearing widths ϵ∈ f0.2; 0.225; 0.25g in Fig. 12.

FIG. 11. Smeared spectral reconstructions of a parametrization
of experimental data for the R-ratio. Euclidean data were
generated with β=a ¼ 96. The smearing choices ϵ are described
in the main text. In both cases, the exact result lies visibly within
the bounding envelope from the Wertevorrat. In both cases, the
spectral peaks from the ρð770Þ=ωð782Þ and from the ϕð1020Þ are
clearly visible.

FIG. 10. Example extrapolation to zero smearing width for the
Gaussian example of Eq. (74) for fixed energy. The data points
shows reconstructions for ρϵ�ðωÞ. The solid curve shows the result
of a polynomial fit imposing Eq. (68). The black star shows the
exact result from Eq. (74).
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The vertical lines on the horizontal axis show the locations
of the finite-volume energy levels appearing in the sum in
Eq. (76), with the height proportional to the relative spectral
weights. Nearly two dozen finite-volume energy levels are
present in the reconstruction region (ω∈ ½0; 1�, in the same
units used for the particle masses) shown in Fig. 12. As in
the other numerical examples, the exact result for the
smeared spectral function lies within the rigorous bounding
envelope of the Wertevorrat.

VIII. CONCLUSIONS

This work has presented a method for numerical analytic
continuation, which is closely related to recent work in
Refs. [35–37,54]. The main application we have in mind is
extracting spectral densities from Euclidean data (e.g.,
computing using lattice QCD). One of our main insights
is that evaluating a Green’s function in the upper half-plane,
Eq. (28), amounts to a smearing prescription in the spirit of
Eq. (8). The general formalism is valid for generic
(diagonal) thermal Green’s functions. As a proof of con-
cept, we presented numerical examples of the method in a
few simplified systems. Important work on robust spectral
reconstructions in the presence of statistical noise has
recently been given in Ref. [52].
A key distinguishing feature of our method from recent

work in Refs. [35–37,54] is the rigorous bounding envelope
of the Wertevorrat, which quantifies the systematic uncer-
tainty of the analytic continuation at each point z in the

upper half-plane. The Wertevorrat parametrizes, by explicit
construction, the full space of functions consistent with
input Euclidean data and with the known causal structure of
Green’s function in the upper half-plane. For any point
z ¼ ωþ iϵ∈Cþ, the bounds from theWertevorrat translate
immediately to a bound on the smeared spectral density
ρϵðωÞ via Eq. (64). As emphasized in Sec. V C, the bound
trivializes on the real line (ϵ → 0); i.e., no constraint is
present for the unsmeared spectral density.
Another attractive feature of the method is the ease of

including additional information, be it experimental or
theoretical, to constrain the spectral reconstructions. For
example, when calculating the inclusive structure functions
in the resonance region, it might be desirable to constrain
the behavior around the elastic scattering peak with lattice
QCD data from simpler three-point correlation functions.
Likewise, guidance from perturbation theory may usefully
constrain and stabilize reconstructions at high energies.
Regardless of the precise source of the constraint, all that is
required is to translate the constraints to the upper half-
plane and include them numerically in the interpolation
problem. Moreover, additional data from any constraints
can be specified wherever they are known most precisely,
including just above the real line and not necessarily on the
imaginary-frequency axis. As with the general method
itself, all constraints are included nonparametrically.
Recent work has also explored the inclusion of constraints,
especially moments of the spectral function [35,36,54].
Looking beyond applications in lattice QCD, the prob-

lem of computing inverse Laplace transforms arises in
many fields. For instance, in nuclear theory, Green’s
function Monte Carlo is often used to infer nuclear
electroweak response functions from their Laplace trans-
forms, the so-called Euclidean response functions [66,67].
It would be interesting to explore the application of the
ideas explored in this paper to other domains.
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APPENDIX: TECHNICAL MATERIAL

Lemma 1. Let w; z∈C with w̄z ≠ 1. If jzj < 1 and
jwj < 1, then j w−z

1−w̄z j < 1. If jzj ¼ 1 or jwj ¼ 1, then
j w−z
1−w̄z j ¼ 1.

FIG. 12. Smeared spectral reconstructions for a toy model of
interacting scalars. Finite-volume data were generated with L ¼
64 and β ¼ 2L ¼ 128. In both cases, the exact result lies visibly
within the bounding envelope from the Wertevorrat. The vertical
lines on the horizontal axis show the locations of the finite-
volume energy levels appearing in the sum in Eq. (76), with the
height proportional to the relative spectral weights.
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Proof.—The proof is by calculation. Take the polar
decomposition z ¼ reiφ. Then,

���� w − z
1 − w̄z

���� ¼
���� we

−iφ − r

1 − we−iφr

����; ðA1Þ

so it suffices to take z ¼ r∈R. This amounts to determin-
ing when

w − r
1 − w̄r

w̄ − r
1 − wr

≤ 1

⇔ ðw − rÞðw̄ − rÞ ≤ ð1 − wrÞð1 − w̄rÞ:

Taking w ¼ jwjeiθ, the previous inequality reduces to

jwj2 þ r2 ≤ 1þ jwj2r2:

The inequality is clearly satisfiedwhen both r<1 and jwj<1.
The equality holds when either r ¼ 1 or jwj ¼ 1 ▪.
The preceding lemma has immediate consequences for

the interpolation problem in Sec. V. For fixed z∈ D̄, the
map Un;z∶ D → D defined by

Un;zðwÞ ¼
wðn−1Þ
n þ bznðzÞw

1þ wðn−1Þ
n bznðzÞw

ðA2Þ

is clearly into. The lemma also shows that jbznðzÞj ¼ 1

when jzj ¼ 1. Therefore, when jzj ¼ 1, Un;z is actually
onto; i.e., the image of Un;z is the full open disk. The
composition properties of Möbius transformations show,
by induction, that the same is true for Eq. (55).

[1] T. Aoyama et al., The anomalous magnetic moment of the
muon in the standard model, Phys. Rep. 887, 1 (2020).

[2] D. Bernecker and H. B. Meyer, Vector correlators in lattice
QCD: Methods and applications, Eur. Phys. J. A 47, 148
(2011).

[3] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
αðm2

ZÞ, Eur. Phys. J. C 80, 241 (2020), published under the
terms of the Creative Commons CC-BY license; Eur. Phys.
J. C 80, 410(E) (2020).

[4] A. V. Manohar, An introduction to spin dependent deep
inelastic scattering, in Lake Louise Winter Institute: Sym-
metry and Spin in the Standard Model (1992), arXiv:
hep-ph/9204208.

[5] V. V. Chesnokov, A. A. Golubenko, B. S. Ishkhanov, and
V. I. Mokeev, CLAS database for studies of the structure of
hadrons in electromagnetic processes, Phys. Part. Nucl. 53,
184 (2022).

[6] A. N. H. Blin, W. Melnitchouk, V. I. Mokeev, V. D. Burkert,
V. V. Chesnokov, A. Pilloni, and A. P. Szczepaniak, Reso-
nant contributions to inclusive nucleon structure functions
from exclusive meson electroproduction data, Phys. Rev. C
104, 025201 (2021).

[7] G. Cuniberti, E. De Micheli, and G. A. Viano, Reconstruct-
ing the thermal Green functions at real times from those at
imaginary times, Commun. Math. Phys. 216, 59 (2001).

[8] Y. Burnier, M. Laine, and L. Mether, A Test on analytic
continuation of thermal imaginary-time data, Eur. Phys. J. C
71, 1619 (2011).

[9] H. B. Meyer, Transport properties of the quark-gluon
plasma: A lattice QCD perspective, Eur. Phys. J. A 47,
86 (2011).

[10] F. Pijpers and M. Thompson, Faster formulations of the
optimally localized averages method for helioseismic in-
versions, Astron. Astrophys. 262, L33 (1992).

[11] M. Hansen, A. Lupo, and N. Tantalo, Extraction of spectral
densities from lattice correlators, Phys. Rev. D 99, 094508
(2019).

[12] H. Shinaoka, J. Otsuki, M. Ohzeki, and K. Yoshimi,
Compressing Green’s function using intermediate represen-
tation between imaginary-time and real-frequency domains,
Phys. Rev. B 96, 035147 (2017).

[13] J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, Sparse
modeling approach to analytical continuation of imaginary-
time quantum Monte Carlo data, Phys. Rev. E 95, 061302
(2017).

[14] E. Itou and Y. Nagai, Sparse modeling approach to obtaining
the shear viscosity from smeared correlation functions,
J. High Energy Phys. 07 (2020) 007.

[15] J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, Sparse
modeling in quantum many-body problems, J. Phys. Soc.
Jpn. 89, 012001 (2020).

[16] J. Li, M. Wallerberger, N. Chikano, C.-N. Yeh, E. Gull, and
H. Shinaoka, Sparse sampling approach to efficient ab initio
calculations at finite temperature, Phys. Rev. B 101, 035144
(2020).

[17] N. Chikano, J. Otsuki, and H. Shinaoka, Performance
analysis of a physically constructed orthogonal representa-
tion of imaginary-time Green’s function, Phys. Rev. B 98,
035104 (2018).

[18] S. Shi, L. Wang, and K. Zhou, Rethinking the ill-posedness
of the spectral function reconstruction—Why is it funda-
mentally hard and how artificial neural networks can help,
Comput. Phys. Commun. 282, 108547 (2023).

[19] S. Y. Chen, H. T. Ding, F. Y. Liu, G. Papp, and C. B. Yang,
Machine learning spectral functions in lattice QCD,
arXiv:2110.13521.

[20] L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M.
Urban, S. J. Wetzel, N. Wink, and F. P. G. Ziegler, Spectral
reconstruction with deep neural networks, Phys. Rev. D 102,
096001 (2020).

BERGAMASCHI, JAY, and OARE PHYS. REV. D 108, 074516 (2023)

074516-14

https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1140/epja/i2011-11148-6
https://doi.org/10.1140/epja/i2011-11148-6
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://arXiv.org/abs/hep-ph/9204208
https://arXiv.org/abs/hep-ph/9204208
https://doi.org/10.1134/S1063779622020241
https://doi.org/10.1134/S1063779622020241
https://doi.org/10.1103/PhysRevC.104.025201
https://doi.org/10.1103/PhysRevC.104.025201
https://doi.org/10.1007/s002200000324
https://doi.org/10.1140/epjc/s10052-011-1619-0
https://doi.org/10.1140/epjc/s10052-011-1619-0
https://doi.org/10.1140/epja/i2011-11086-3
https://doi.org/10.1140/epja/i2011-11086-3
https://doi.org/10.1103/PhysRevD.99.094508
https://doi.org/10.1103/PhysRevD.99.094508
https://doi.org/10.1103/PhysRevB.96.035147
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1103/PhysRevE.95.061302
https://doi.org/10.1007/JHEP07(2020)007
https://doi.org/10.7566/JPSJ.89.012001
https://doi.org/10.7566/JPSJ.89.012001
https://doi.org/10.1103/PhysRevB.101.035144
https://doi.org/10.1103/PhysRevB.101.035144
https://doi.org/10.1103/PhysRevB.98.035104
https://doi.org/10.1103/PhysRevB.98.035104
https://doi.org/10.1016/j.cpc.2022.108547
https://arXiv.org/abs/2110.13521
https://doi.org/10.1103/PhysRevD.102.096001
https://doi.org/10.1103/PhysRevD.102.096001


[21] K. Zhou, L. Wang, L.-G. Pang, and S. Shi, Exploring QCD
matter in extreme conditions with machine learning,
arXiv:2303.15136.

[22] T. Lechien and D. Dudal, Neural network approach to
reconstructing spectral functions and complex poles of
confined particles, SciPost Phys. 13, 097 (2022).

[23] L. Wang, S. Shi, and K. Zhou, Reconstructing spectral
functions via automatic differentiation, Phys. Rev. D 106,
L051502 (2022).

[24] A. P. Valentine and M. Sambridge, Gaussian process
models—I. A framework for probabilistic continuous in-
verse theory, Geophys. J. Int. 220, 1632 (2019).

[25] L. Del Debbio, T. Giani, and M. Wilson, Bayesian approach
to inverse problems: An application to NNPDF closure
testing, Eur. Phys. J. C 82, 330 (2022).

[26] A. Candido, L. Del Debbio, T. Giani, and G. Petrillo,
Inverse problems in PDF determinations, Proc. Sci.
LATTICE2022 (2023) 098.

[27] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J.
Turnwald, J. M. Urban, N. Wink, and S. Zafeiropoulos,
Reconstructing QCD spectral functions with Gaussian
processes, Phys. Rev. D 105, 036014 (2022).

[28] J. M. Pawlowski, C. S. Schneider, J. Turnwald, J. M. Urban,
and N. Wink, Yang-Mills glueball masses from spectral
reconstruction, arXiv:2212.01113.

[29] J. Horak, J. M. Pawlowski, J. Turnwald, J. M. Urban, N.
Wink, and S. Zafeiropoulos, Nonperturbative strong coupling
at timelike momenta, Phys. Rev. D 107, 076019 (2023).

[30] A. Rothkopf, Inverse problems, real-time dynamics and
lattice simulations, EPJ Web Conf. 274, 01004 (2022).

[31] A. Rothkopf, Bayesian inference of real-time dynamics
from lattice QCD, Front. Phys. 10, 1028995 (2022).

[32] J. Bulava, The spectral reconstruction of inclusive rates,
Proc. Sci. LATTICE2022 (2023) 231.

[33] M. T. Hansen, H. B. Meyer, and D. Robaina, From deep
inelastic scattering to heavy-flavor semileptonic decays:
Total rates into multihadron final states from lattice
QCD, Phys. Rev. D 96, 094513 (2017).

[34] J. Bulava and M. T. Hansen, Scattering amplitudes from
finite-volume spectral functions, Phys. Rev. D 100, 034521
(2019).

[35] J. Fei, C.-N. Yeh, and E. Gull, Nevanlinna analytical
Continuation, Phys. Rev. Lett. 126, 056402 (2021).

[36] J. Fei, C.-N. Yeh, D. Zgid, and E. Gull, Analytical
continuation of matrix-valued functions: Carathéodory for-
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