
Sphaleron rate from a modified Backus-Gilbert inversion method

Claudio Bonanno *

Instituto de Física Teórica UAM-CSIC, c/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,
Cantoblanco, E-28049 Madrid, Spain

Francesco D’Angelo ,† Massimo D’Elia ,‡ Lorenzo Maio ,§ and Manuel Naviglio∥

Dipartimento di Fisica dell’Università di Pisa and INFN Sezione di Pisa,
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We compute the sphaleron rate in quenched quantum chromodynamics (QCD) for a temperature
T ≃ 1.24 Tc from the inversion of the Euclidean lattice time correlator of the topological charge density.
We explore and compare two different strategies: one follows a new approach proposed in this study and
consists in extracting the rate from finite lattice spacing correlators, and then in taking the continuum limit
at fixed smoothing radius followed by a zero-smoothing extrapolation; the other follows the traditional
approach of extracting the rate after performing such double extrapolation directly on the correlator. In both
cases the rate is obtained from a recently proposed modification of the standard Backus–Gilbert procedure.
The two strategies lead to compatible estimates within errors, which are then compared to previous results
in the literature at the same or similar temperatures; the new strategy permits to obtain improved results, in
terms of statistical and systematic uncertainties.
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I. INTRODUCTION

The study of real-time topological transitions in finite
temperature QCD, the so-called sphaleron transitions, has
recently attracted much attention from the theoretical com-
munity due to its connection to several intriguing phenom-
enological aspects of the Standard Model, and beyond.
In particular, an extremely interesting role is played by

the sphaleron rate

ΓSphal ¼ lim
Vs→∞
tM→∞

1

VstM

��Z
tM

0

dt0M

Z
Vs

d3xqðt0M; x⃗Þ
�
2
�

¼
Z

dtMd3xhqðtM; x⃗Þqð0; 0⃗Þi; ð1Þ

where tM is the real Minkowski time and

qðxÞ ¼ 1

32π2
εμνρσTrfGμνðxÞGρσðxÞg ð2Þ

is the QCD topological charge density, expressed in terms
of the gluon field strength Gμν ≡ ∂μAν − ∂νAμ þ i½Aμ; Aν�.
For example, a non-vanishing sphaleron rate drives local

fluctuations in the difference between the left and right
axial quark numbers NL − NR, being qðxÞ coupled to the
divergence of the axial quark current Jμ5 ¼ ψ̄γμγ5ψ due to
the anomalous breaking of Uð1ÞA. When imbalances in the
axial quark number due to sphaleron transitions are created
in the presence of strong background magnetic fields,
such as those generated for short times during heavy-ion
collisions, they lead to the so-called chiral magnetic
effect [1–4], which is one of the most intriguing predic-
tions for the quark-gluon plasma. Another example of the
importance of ΓSphal comes instead from beyond Standard
Model phenomenology. Indeed, the sphaleron rate has been
recently recognized as an essential input for the compu-
tation of the rate of thermal axion production in the early
Universe via axion-pion scattering [5].
Because of such prominent phenomenological role, the

computation of the QCD sphaleron rate at finite temper-
ature has been tackled in recent years in the literature,
although so far just restricting to the quenched case [6–9]
(i.e., the quarkless pure SU(3) gauge theory). Due to the
nonperturbative nature of sphaleron dynamics, being driven
by topological excitations, numerical Monte Carlo (MC)
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simulations on the lattice are a natural tool to compute
ΓSphal. Being the latter based on the Euclidean formulation
of QCD, the real-time definition of ΓSphal in Eq. (1) cannot
be directly used to compute this quantity numerically.
However, using the Kubo formula, one can express the rate
in terms of the slope of the spectral density ρðωÞ in the
zero-frequency limit (here T is the temperature):

ΓSphal ¼ 2T lim
ω→0

ρðωÞ
ω

: ð3Þ

The quantity ρðωÞ is related to the Euclidean topological
charge density time-correlator,

GðtÞ≡
Z

d3xhqðt; x⃗Þqð0; 0⃗Þi; ð4Þ

with t the imaginary Euclidean time, via the following
integral relation [10]:

GðtÞ ¼ −
Z

∞

0

dω
π

ρðωÞ cosh ½
ω
2T − ωt�

sinh½ ω
2T�

: ð5Þ

It is clear that, to extract ΓSphal from lattice simulations, the
main difficulty is constituted by the inversion of Eq. (5) to
obtain ρðωÞ from GðtÞ.
Inverse problems are a general class of problems which

arise in several different intriguing physical contexts (see,
e.g., Refs. [11,12] for recent reviews on the topic), and are
well known to be ill-posed (or at least ill-conditioned).
Despite these mathematical difficulties, in the literature
several different strategies have been devised to find
approximate solutions to inverse problems, such as methods
based on sum rules [13], on Bayesian approaches [14–16],
on perturbative-motivated ansätze of the spectral density
[8,17–19], on the Tikhonov regularization [3,20,21], or on
the model-independent Backus–Gilbert approach [22–28],
which is the one we will adopt in this work.
In general terms, the Backus–Gilbert method allows to

numerically reconstruct the spectral density ρðωÞ in terms
of a linear combination of the values of the correlator GðtÞ
determined on the lattice, whose coefficients are obtained
from the minimization of a suitable functional. The core of
the method, thus, relies on the specific strategy pursued to
fix such coefficients. Here, we will rely on the one recently
introduced in Ref. [25], which is a modification of the
original proposal of Ref. [22]. Although considering also
other approaches to solve the inverse problem in Eq. (5)
goes beyond the scopes of this paper, we stress here that
this method is expected to yield equivalent results with
respect to other proposals. As a matter of fact, the Backus–
Gilbert approach of [25] has been shown to be equivalent,
within the framework of Bayesian approaches, to a
Gaussian Process [29] (see the extended discussion in
Ref. [26] on this point). Also the sum-rule-based method of

Ref. [13] builds on ideas originally developed in [25].
Finally, the original Backus–Gilbert method [22] has been
shown to agree with the Tikhonov regularization [3,21],
while in Ref. [18] the Backus–Gilbert approach of
Refs. [23,24] has been shown to give results consistent
with those obtained by a different strategy, based on the fit
of lattice data to perturbative-inspired models for the
spectral density.
Another aspect that has to be treated with some care

is the lattice determination of the topological charge
density correlator. As a matter of fact, due to UV noise,
it is customary to determine topological quantities from
smoothed configurations obtained from the application of
some smoothing algorithm. After smoothing, UV fluctua-
tions are suppressed up to a scale known as the smoothing
radius, which is proportional to the square root of the
amount of smoothing performed. However, since smooth-
ing modifies short-distance fluctuations, computing GðtÞ
using Eq. (4) from determinations of qðxÞ obtained on
smoothed gauge fields unavoidably modifies the behavior
of the correlator at small times.
A possible strategy to overcome this issue, adopted in

Refs. [6,8], is to perform a double extrapolation of the
correlator: first one performs a continuum extrapolation of
the lattice correlator at fixed smoothing radius; finally, one
extrapolates continuum determinations of GðtÞ toward the
zero-smoothing-radius limit. The latter approach, however,
has the drawback of working only for sufficiently large
Euclidean times t.
Indeed, the range of smoothing radii that can be

considered for the zero-smoothing extrapolation is bounded
from below (as a minimum amount of smoothing is
necessary to ensure that we are correctly identifying the
topological background of the configuration) and from
above (as the smoothing radius needs to be smaller than the
time distance t between the correlated sources). Therefore,
such range closes for smaller values of t. While this fact
does not constitute a total obstruction for the extraction of
ΓSphal from the Backus–Gilbert method (being it related to
the zero-frequency behavior of ρðωÞ=ω, which is domi-
nated by the behavior of GðtÞ at larger times), it makes the
reconstruction of the spectral density noisier, making it
more difficult to obtain reliable results for ΓSphal.
In this work, instead, we propose a different approach,

namely, to move the double extrapolation on the rate. In
practice, we determine the rate from the correlators obtained
at finite lattice spacing and smoothing radius, and then we
perform the double extrapolation outlined earlier directly on
ΓSphal. The main idea behind this strategy is the expectation
that the reconstruction could be more accurate, compared to
the one done on the double-extrapolated correlator, i.e.,
affected by smaller statistical and systematic uncertainties. In
principle, this new approach is less theoretically justified, as
the perturbative argument discussed in Ref. [17] suggests
that the integral relation in Eq. (5) can be distorted for
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asymptotically large frequencies when considering a finite-
smoothing-radius correlator; however, one can heuristically
expect this problem to be less important in the opposite limit
ω → 0, which is the one interesting for the sphaleron rate
computation and related to the infrared (IR) behavior of the
correlator, which is less affected by smoothing.
In particular, it is reasonable to expect that there is a

regime, if smoothing is not excessively prolonged, where
the finite UV cutoff introduced by the nonzero smoothing
radius does not have a significant impact on the obtained
results for ΓSphal, much like what happens, e.g., to the
topological susceptibility computed from the gradient flow
as a function of the flow time. If it is possible to identify
such a regime, one can expect the sphaleron rate to
approach a plateau as a function of the smoothing radius,
which signals an effective separation between the UV scale
of the smoothened fluctuations and the IR scale of the
topological fluctuations relevant to ΓSphal. In the following
we will show that this is indeed the case.
The goal of our work is to compare the two methods here

outlined, in view of an application to the more computa-
tionally demanding case of full QCD. Therefore, we focus
on one value of the temperature, namely T ≃ 1.24Tc ≃
357 MeV, and we perform our study in quenched QCD,
where our results can also be compared with other
independent determinations in the literature.
This paper is organized as follows: in Sec. II we explain

in details our numerical setup, focusing on the computa-
tion of the correlator and on the inversion method to
extract the rate; in Sec. III we present our numerical
results for the rate; in Sec. IV we draw our conclusions
and discuss future perspectives.

II. NUMERICAL SETUP

In this section we will discuss our numerical setup, the
parameters of our simulations and the methods employed to
compute the topological charge density correlators and to
perform their inversion to obtain the sphaleron rate.

A. Lattice action and parameters

We discretize the Euclidean pure-SU(3) gauge action
SYM ¼ ð1=4g2Þ R d4xTrfGμνðxÞGμνðxÞg on a N3

s × Nt lat-
tice with lattice spacing a using the standard Wilson lattice
gauge action

SW ¼ −
β

3

X
n;μ>ν

ℜTr½ΠμνðnÞ�; ð6Þ

where β ¼ 6=g2 is the bare inverse gauge coupling
and ΠμνðnÞ≡UμðnÞUνðnþ μ̂ÞU†

μðnþ ν̂ÞU†
νðnÞ is the

plaquette.
We performed simulations for 4 values of β, correspond-

ing to 4 values of the lattice spacing a, following a line
of constant physics (LCP) where the spatial volume

½aðβÞNs�3 ≃ ½1.66ð2Þ fm�3, the aspect ratio Ns=Nt ¼ 3

and the temperature T ¼ ½aðβÞNt�−1 ≃ 357ð5Þ MeV ≃
1.24ð2Þ Tc were kept fixed for each gauge ensemble.
Scale setting was performed according to the lattice spacing
determinations in units of the Sommer parameter r0
reported in Ref. [30], and all simulations parameters are
summarized in Table I. We also checked that using the
different parameterization of aðβÞ=r0 of Ref. [31] gave
perfectly agreeing results within the ∼1% precision with
which the lattice spacing is determined (see App. A).
Configurations were generated adopting a mixture of the

standard local overrelaxation (OR) [35] and overheat-bath
(HB) [36,37] algorithms, both implemented à là Cabibbo–
Marinari [38], i.e., updating all the three diagonal SU(2)
subgroups of SU(3). In particular, our single MC updating
step consisted of 1 lattice sweep of HB followed by four
lattice sweeps of OR. The measure of the topological
charge density correlator was performed every 20 MC
steps, and the total statistics employed to compute GðtÞ is
reported in Table I.

B. Lattice topological charge density
correlator and smoothing

We discretized the continuum topological charge density
in Eq. (2) using the standard clover definition, which is the
simplest lattice discretization with definite parity:

qLðnÞ ¼
−1
29π2

X�4

μνρσ¼�1

εμνρσTrfΠμνðnÞΠρσðnÞg; ð7Þ

where it is understood that εð−μÞνρσ ¼ −εμνρσ.

TABLE I. Summary of simulation parameters. The scale was
set with a ∼1% accuracy according to the determination of
aðβÞ=r0 in the range 5.7 ≤ β ≤ 6.92 reported in Eq. (2.6) of
Ref. [30]. In order to convert quantities in units of r0 to physical
MeV=fm units, we used the value of the Sommer parameter
r0 ¼ 0.472ð5Þ fm given in Ref. [32]. Finally, to express the
temperature in units of the critical one, we used the latest and to-
date most accurate determination Tc¼287.4ð7ÞMeV [33], con-
verted from w0 into physical units using [34]. The total statistics
collected is expressed in thousands (k), and measures were
collected every 20 MC updating steps (defined in the text).

Ns Nt β a=r0 L=r0 r0T Statistics

36 12 6.440 0.09742(97) 0.8554(86) 3.507(35) 80k
42 14 6.559 0.08364(84) 0.8540(85) 3.513(35) 10k
48 16 6.665 0.07309(73) 0.8551(86) 3.508(35) 16k
60 20 6.836 0.05846(58) 0.8553(86) 3.508(35) 5k

Nt β a [fm] L [fm] T [MeV] T=Tc

12 6.440 0.04598(67) 1.655(24) 357.6(5.2) 1.244(18)
14 6.559 0.03948(58) 1.658(24) 357.0(5.2) 1.242(18)
16 6.665 0.03450(50) 1.656(24) 357.5(5.2) 1.244(18)
20 6.836 0.02759(40) 1.656(24) 357.6(5.2) 1.244(18)
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To obtain the correlator in dimensionless physical units,
we measured the time profile QLðntÞ of the lattice topo-
logical charge QL

QLðntÞ ¼
X
n⃗

qLðnt; n⃗Þ; QL ¼
X
nt

QLðntÞ; ð8Þ

and computed

GLðtTÞ
T5

¼ N5
t

N3
s
hQLðnt;1ÞQLðnt;2Þi; ð9Þ

where the physical time separation between the sources is
given by

tT ¼
� jnt;1 − nt;2j=Nt; jnt;1 − nt;2j ≤ Nt=2;

1− jnt;1 − nt;2j=Nt; jnt;1 − nt;2j> Nt=2:
ð10Þ

Note that it is sufficient to compute the correlator up to
tT ¼ 0.5, as GLðtTÞ ¼ GLð1 − tTÞ.
The topological charge profiles entering Eq. (9) are

computed after smoothing, in order to ensure that we
consider only correlations of fluctuations of physical
origin. Indeed, the lattice topological charge QL in Eq. (8)
renormalizes multiplicatively as follows [39,40]:

QL ¼ ZQðβÞQ; ð11Þ

where Q is the continuum integer-valued topological
charge. Moreover, the two-point function of the lattice
topological charge density contains short-distance UV
artefacts, leading for instance to the appearance of additive
renormalizations in higher-order cumulants of the topo-
logical charge distribution [41,42], which become domi-
nant in the continuum limit, overcoming the physical
signal. Being such effects related to fluctuations on the
scale of the UV cutoff, which are dumped by smoothing,
computing the lattice topological charge density correlator
on smoothed configurations removes such renormaliza-
tions, ensuring that one is correctly considering only
correlations of physical relevance.
Several smoothing algorithms have been adopted in the

literature, such as cooling [43–49], stout smearing [50,51]
or gradient flow [52,53]. All choices give consistent results
when properly matched to each other [49,54,55].
In this work we choose cooling for its simplicity and

numerical cheapness. One cooling step consists in a
sweep of the lattice where we align each link UμðnÞ to
its local staple. Iterating the cooling steps drives the Wilson
action (6) closer to a local minimum, thus dumping UV
fluctuations while leaving the global topological content of
the field configuration unaltered.
We recall that, while in the continuum GðtÞ < 0 for

every t > 0 because of reflection positivity [40,56–61],
on the lattice this property is violated for smaller time

separations, because the sources entering in the lattice
correlator are smoothed. As a matter of fact, the lattice
correlator GL is negative only when the time separation
between the sources is larger that the smoothing radius;
otherwise, it will be positive. Of course, after the
double extrapolation (i.e., continuum limit followed by
zero-smoothing limit), the negativity of the correlator is
recovered.

C. Inversion method

Once the correlation function GðtÞ is computed, Eq. (5)
has to be inverted to extract the spectral function ρðωÞ
and then compute the sphaleron rate using Eq. (3). Let us
rewrite Eq. (5) as:

GðtÞ ¼ −
Z

∞

0

dω
π

ρðωÞ
fðωÞK

0
tðωÞ; ð12Þ

where fðωÞ is an arbitrary function, and where we
redefined the basis function as

K0
tðωÞ≡ fðωÞ cosh½ω=ð2TÞ − ωt�

sinh½ω=ð2TÞ� : ð13Þ

In the case of Backus–Gilbert techniques, one constructs
the estimator ρ̄ðωÞ of the spectral function as:

ρ̄ðω̄Þ ¼ −πfðω̄Þ
X1=T
t¼0

gtðω̄ÞGðtÞ; ð14Þ

where gt are unknown coefficients to be determined. The
advantage of this formulation is that we can set fðωÞ ¼ ω
and ω̄ ¼ 0, so that we are able to directly estimate from the
correlator the ratio ρðωÞ=ω in the limit ω → 0:

�
ρ̄ðω̄Þ
ω̄

�
ω̄¼0

¼ −π
X1=T
t¼0

gtð0ÞGðtÞ: ð15Þ

This is, apart from an overall factor, the sphaleron rate
according to the Kubo formula (3).
Combining Eqs. (12) and (14), one obtains the following

relation between the estimator ρ̄ðω̄Þ and the physical
spectral function ρðωÞ:

ρ̄ðω̄Þ
ω̄

¼
Z

∞

0

dωΔðω; ω̄Þ ρðωÞ
ω

; ð16Þ

where

Δðω; ω̄Þ ¼
X1=T
t¼0

gtðω̄ÞK0
tðωÞ ð17Þ

is the so-called resolution function.
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From Eq. (16) it follows that, assuming a resolution
function normalized to 1, if Δðω; ω̄Þ has a sharp peak
around ω̄ as a function of ω, then ρ̄ is a good approximation
of the actual spectral function ρ. This is particularly evident
in the limit in whichΔðω; ω̄Þ tends to a Dirac delta-function
δðω − ω̄Þ: in this case the relation ρ̄ðω̄Þ ¼ ρðω̄Þ holds
exactly. Clearly, in a real calculation the resolution function
will have a peak of finite width around ω̄. Thus, the
estimator ρ̄ðω̄Þ will actually be an average of the spectral
function over such a region around ω̄. This means that the
larger the width of the resolution function is, the less
faithfully we are able to reconstruct the actual spectral
density ρ from ρ̄. It is therefore clear that the strategy used
to fix the shape of the resolution function in terms of the
unknown gt coefficients plays a crucial role in determining
the quality of our estimation of the spectral density via ρ̄.
To compute the coefficients gt, we apply the modified

Backus–Gilbert regularization method recently proposed
in [25]. This approach consists in minimizing a functional
depending on the difference between the resolution func-
tion Δðω; ω̄Þ and some chosen target function δðω; ω̄Þ,
whose shape is fixed on the basis of physical consider-
ations. Since such procedure is typically extremely noisy,
it is customary to regularize it by adding to the minimized
functional a term related to the statistical error on the
reconstructed quantity.
In our case, the functional F½gt� that is minimized to

determine gt takes the following form:

F½gt� ¼ ð1 − λÞAα½gt� þ
λ

C
B½gt�; λ∈ ½0; 1Þ; ð18Þ

where C is a normalization factor proportional to the square
of the value of the correlator in a fixed point (here we used
C ¼ GðtT ¼ 0.5Þ2), λ is a free parameter whose role will be
discussed later, and Aα and B are suitable functionals
depending on gt.
The functional Aα is related to the distance between the

resolution and the given target function δðω; ω̄Þ:

Aα½gt� ¼
Z

∞

0

dω½Δðω; ω̄Þ − δðω; ω̄Þ�2eαω; α < 2: ð19Þ

As proposed in [26], the square distance between Δðω; ω̄Þ
and δðω; ω̄Þ is further multiplied by an exponentially
growing factor to promote larger frequencies in the integral
defining Aα½gt�. This is justified by the known one-loop
perturbative result for ρðωÞ, which predicts that ρðωÞ
diverges as a power-law in ω at large frequencies [62].
In our analysis we used α ¼ 2−, i.e., α ¼ 1.99.
The second functional is proportional to the uncertainty

on the final quantity (i.e., the spectral density):

B½gt� ¼
X1=T
t;t0¼0

Covt;t0gtgt0 ; ð20Þ

where Covt;t0 ¼ h½GðtÞ − hGðtÞi�½Gðt0Þ − hGðt0Þi�i denotes
the covariance matrix of the correlator.
As proposed in [4], we used the pseudo-Gaussian target

function

δσðω; ω̄ ¼ 0Þ ¼
�

2

σπ

�
2 ω

sinhðω=σÞ ; ð21Þ

which depends on the free parameter σ, the smearing width,
related to the width of the target function. The choice of σ
directly reflects on the width of the resolution function
obtained after the minimization procedure outlined above,
and thus on the quality of our estimation of the spectral
function. Choosing larger values of σ will yield smaller
errors on the rate, as coefficients gt will have smaller
fluctuations, but the results will also be less physically
reliable. On the other hand, the more peaked the target
function is chosen, the noisier our determination of the rate
will be. In our analysis, we chose σ=T ¼ 1.75, but we also
checked that choosing other values gave compatible results
for the rate within the errors, so that any systematics related
to the choice of the smearing width is well under control
(more details on this point can be found in Appendix B).
Therefore, we fixed σ=T ¼ 1.75 for all analyzed ensem-
bles, meaning that we used such value both for the
correlators we obtained at finite lattice spacing and for
the one obtained in the continuum limit. For this value of
the width of the target function, the observed relative
deviation at the peak between the resolution and the target
function was at most of ∼5% for λ ¼ 0.
Once ρðω̄Þ=ω̄jω̄¼0 is obtained from the Backus-Gilbert

inversion method, we compute the sphaleron rate using
Eq. (3). We do so for several values of the free parameter
λ∈ ½0; 1Þ appearing in the functional (18). When λ → 0,
i.e., when we neglect the regulator term B½qt�, statistical
errors on the sphaleron rate explode, since the inversion
problem defining ρ is ill-posed, and coefficients gt
will have sizeable fluctuations. As λ is increased, the
inversion problem gets regularized and errors on ΓSphal

decrease. However, when λ → 1, we are neglecting the
contribution of the functional Aα, and the resulting
resolution function we get from our minimization pro-
cedure is practically unconstrained, and can vary sizeably
even upon a small variation of λ. Therefore, in this
regime, the result of our inversion cannot be trusted from
a physical point of view, and will be dominated by
systematic effects. Therefore, to provide a correct esti-
mation of the sphaleron rate, we chose λ in order to
stay within the statistically dominated region, and we
included any observed systematic variation of the rate
within this region in our final error budget.
More precisely, this is the procedure we have followed to

estimate our final error on the rate. First, we compute the
sphaleron rate as a function of the quantity
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d½gt�ðλÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
A0½gt�
B½gt�

s
; ð22Þ

where the statistical error on ΓSphal was computed, for each
value of d½gt�ðλÞ, from a bootstrap analysis carried over
Oð1000Þ bootstrap resamplings. According to our previous
discussion, it is clear that, when d½gt�ðλÞ is small, we are
reasonably within the statistically dominated regime.
Then, we select a point in the statistically dominated

region, corresponding to a value d½gt�ðλ1Þ ≪ 1, whose
central value will be the central value of our final estimate
of ΓSphal, and whose statistical error will be the statistical
error on our determination of the rate.
Finally, we select a second point deeper in the sta-

tistically dominated regime d½gt�ðλ2Þ < d½gt�ðλ1Þ to esti-
mate possible systematics. More precisely, we compute a
systematic error which is proportional to the difference
between the central values of the rates obtained for λ1 and
λ2 (according to Eqs. (37) and (38) of [26]). In the end, the
final error on ΓSphalðλ1Þ is obtained summing in quadrature
the systematic and the statistical errors.

III. NUMERICAL RESULTS FOR THE
SPHALERON RATE

In this section we will show and discuss our results
for the sphaleron rate, obtained by using two different
strategies: the standard one, based on the inversion of the
double-extrapolated time correlator of the topological
charge density; and the new one, proposed in this paper,
which consists of performing the double extrapolation
directly on the sphaleron rate itself, obtained from the
inversion of finite-lattice-spacing and finite-smoothing-
radius correlators. In both cases, we make use of the
modified Backus–Gilbert method described in Sec. II C.

A. Rate from the double-extrapolated correlator

Let us start by discussing our result for the sphaleron rate
obtained from the inversion of the double-extrapolated
correlator.
The first step is, of course, to extrapolate the lattice

correlator GLðtTÞ=T5 toward the continuum limit at fixed
smoothing radius. To do so, with our setup it is sufficient to
keep ncool=N2

t fixed for each lattice spacing. As a matter of
fact, the relation between the smoothing radius rs in lattice
units and the number of cooling steps ncool is given by [54]:

rs
a
≃

ffiffiffiffiffiffiffiffiffiffiffi
8ncool
3

r
: ð23Þ

Therefore, ncool=N2
t ∝ ðrsTÞ2. Since ncool can only assume

integer values, in order to keep ncool=N2
t fixed for each

ensemble we performed a spline cubic interpolation of our
correlators at noninteger values of ncool.

Moreover, in order to compute the continuum limit of
GðtTÞ, we also need the same physical time separation tT
for each lattice spacing. Therefore, for each value of ncool,
we also interpolated the correlators obtained on coarser
lattices to the values of tT obtainable on the finest one. Also
in this case, we did a spline cubic interpolation of the
correlators, similarly to what has been done in Ref. [8].
In Fig. 1, we show the behavior of the tT and ncool-

interpolated correlators for ncool=N2
t ≃ 0.069 as a function

of tT for all explored lattice spacings. Moreover, in Fig. 1
we also show the comparison between the correlators
obtained for ncool=N2

t ≃0.069 for β¼6.440 on a 363×12

and a 483 × 12 lattice. Results fall on top of each other,
thus we assume that our results obtained on lattices with
aspect ratio 3 and spatial extent of ∼1.66 fm do not suffer
for significant finite size effects.
To take the continuum limit, we will assume standard

Oða2Þ ¼ Oð1=N2
t Þ corrections and we will fit our data

FIG. 1. Top: determinations of the correlator GLðtTÞ for
ncool=N2

t ≃ 0.069 for all explored values of the lattice spacing.
Bottom: comparison of the correlators obtained at β ¼ 6.440 for
ncool=N2

t ≃ 0.069 on a 363 × 12 and on a 483 × 12 lattices. Lines
connecting the points have been plotted just to guide the eye.
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for different values of β according to the following fit
function:

GLðtT;Nt;
ncool
N2

t
Þ

T5
¼
GðtT; ncoolN2

t
Þ

T5
þ c

�
tT;

ncool
N2

t

�
1

N2
t
þo

�
1

N2
t

�
;

ð24Þ

where c is a constant factor that, in principle, depends both
on the time separation of the sources in the correlator and
on the smoothing radius.
Examples of the continuum limit of GLðtT;Nt;ncool=N2

t Þ
for two values of tT according to fit function (24) are shown
in Fig. 2. We observe that results at our 3 finest lattice
spacings can be reliably fitted with a linear function
in 1=N2

t . Compatible extrapolations within the errors are
obtained fitting all available points and including further
1=N4

t corrections, cf. Fig. 2. Therefore, in what follows we
employed the extrapolations obtained with the first fit as
our estimates of the continuum limit of the correlator.
Once the correlator is extrapolated toward the continuum

limit, there is a residual dependence on the smoothing
radius rs. In Ref. [8] it was shown, using the gradient
flow formalism, that the dependence of the continuum-
extrapolated correlator is linear in the flow time τflow ∝ r2s .
Given that the linear relation τflow=a2 ¼ ncool=3 [54] holds
for the Wilson action in the pure SU(3) gauge theory, we
thus expect to observe a linear dependence on ncool=N2

t of
our continuum-extrapolated correlator.1 Therefore, our final
double-extrapolated correlatorGðtTÞ=T5 is obtained from a
linear fit in ncool=N2

t according to the fit function:

GðtT; ncoolN2
t
Þ

T5
¼ GðtTÞ

T5
þ c̃ðtTÞ ncool

N2
t
; ð25Þ

where c̃ is a constant factor depending on the value of the
time separation tT.
When performing such zero-cooling extrapolation of

GðtT; ncool=N2
t Þ, we fixed the fit range following these

prescriptions. For the upper bound, we chose nðmaxÞ
cool in order

to ensure that rsT < tT, i.e., cf. Eq. (23):

nðmaxÞ
cool

N2
t

≲ 3

8
ðtTÞ2: ð26Þ

For our largest time separation tT ¼ 0.5, we could
extend our linear fit region up to ncool=N2

t ≃ 0.090, corre-
sponding, respectively, to ncool ≲ 13, 18, 24, 37 for
Nt ¼ 12, 14, 16, 20.

For the lower bound, we choose nðminÞ
cool in order to ensure

that the topological susceptibility2 a4χ ¼ hQ2i=ðN3
sNtÞ has

reached a plateau (as a function of ncool=N2
t ) for all

the explored values of β, cf. Fig. 3. In our case, it turns
out that ncool=N2

t ¼ 0.012 is a reasonable lower bound,
corresponding, respectively, to ncool ≳ 1, 2, 3, 4 for
Nt ¼ 12, 14, 16, 20.
These prescriptions were chosen to ensure that we did

enough cooling so as to correctly identify the correct
topological charge for all the lattice configurations, but
at the same time that we did not do too much cooling so as
to make the sources in the correlator overlap onto
each other.

FIG. 2. Examples of the continuum extrapolation at fixed
ncool=N2

t of the correlator for two different values of tT.

1See also Refs. [63,64], where a linear behavior on ncool is
observed in 2d CPN−1 models for, respectively, the continuum
limit at fixed smoothing radius in physical units of the topological
susceptibility χ and of the topological susceptibility slope χ0.

2The topological susceptibility was computed using the
so-called α-rounded lattice charge, i.e., defining Q ¼
round½αQLðncoolÞ�, where QLðncoolÞ is the definition in Eq. (8)
computed after ncool cooling steps and α is found by minimizing
the mean squared difference between αQLðncoolÞ and
round½αQLðncoolÞ� [65,66].
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However, a drawback of this procedure is that, when tT
approaches 0, the fit range becomes narrower and narrower,
eventually closing. As a matter of fact, for time separations
tT ≤ 0.2 we could not perform a reliable zero-cooling
extrapolation. Therefore, we could only compute the
double-extrapolated correlator for tT > 0.2.
In Fig. 4 we show examples of the zero-cooling extra-

polation for two values of tT, while in Fig. 5 we show
our complete double-extrapolated correlator GðtTÞ=T5.
Our final correlator turns out to be negative in all cases
as expected, and in overall good agreement with the
double-extrapolated correlator obtained for the same
temperature in Ref. [6], where the gradient flow was used

as smoothing method to define the lattice topological
charge density.
We can now invert our double-extrapolated correlator

to obtain the sphaleron rate using the inversion method
outlined in Sec. II C. Obtained results are reported in Fig. 6
as a function of the parameter d½gt�ðλÞ.
As it can be appreciated, the fact that it is possible to

reconstruct the double-extrapolated correlator only for
tT > 0.2 leads to a noisy reconstruction of the sphaleron

FIG. 3. Behavior of the topological susceptibility as a function
of the number of cooling steps for the four explored lattice
spacings. The dashed line denotes the minimum value of ncool=N2

t
employed for the zero-cooling extrapolation.

FIG. 4. Examples of the zero-cooling extrapolation of the
correlator GðtT; ncool=N2

t Þ for two different values of tT.

FIG. 5. Comparison of the results for the double extrapolated
correlator GðtTÞ=T5 obtained in this work with those reported in
Ref. [6] at the same temperature and using the gradient flow as
smoothing method.

FIG. 6. Results for the rate ΓSphal as a function of d½gt�, defined
in Eq. (22), extracted from the double extrapolated correlator. The
square and diamond points represent, respectively, our choices
for λ1 and λ2, see discussion below Eq. (22) for more details. The
full point and the shaded area represent our final result for ΓSphal.
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rate, which suffers from quite large errors, especially for
small values of d½gt�. We quote as our final result:

ΓSphal

T4
¼ 0.079ð25Þ; T ≃ 1.24Tc: ð27Þ

This result, depicted as a round point and as a uniform
shaded area in Fig. 6, is indeed compatible with all the other
results for the rate at smaller/larger values of d½gt�ðλÞ,
and any variation observed in the central value of the rate
as a function of d is much smaller than the errors on the
points, signalling that our reconstruction is stable as a
function of the regulator λ defining our minimized func-
tional in Eq. (18).
Let us now comment how our result in Eq. (27) compares

with the result of Ref. [6]. Although the central value is
∼33% smaller, our number is compatible within errors
with the one reported in Ref. [6] for the rate at the same T,
ΓSphal=T4 ¼ 0.12ð3Þ, obtained applying the standard
Backus–Gilbert method [22].

B. Double extrapolation of the sphaleron rate

In this section, we follow a different strategy to
compute the sphaleron rate; namely, we extract ΓSphal;L

from the correlators GLðtTÞ obtained at finite lattice
spacing as a function of ncool, using the same inversion
method of Sec. II C, with the aim of postponing the double-
extrapolation of the correlator directly onto the rate itself.
A first bonus feature of this approach is that no time
interpolation of the correlators is now needed in the double-
extrapolation procedure.
In Fig. 7 we show examples of the results obtained from

the modified Backus–Gilbert for all available values of Nt

and for approximately the same value of ncool=N2
t . As it can

be seen, the reconstruction of the sphaleron rate from lattice
correlators is more stable compared to the one obtained
from the double extrapolated one, cf. Fig. 6. In Fig. 8 we
collect our results for the rate at finite lattice spacing as a
function of ncool for every Nt explored.
Once ΓSphal;Lða; ncoolÞ is determined, we can perform

the continuum limit at fixed smoothing radius ðrsTÞ2 ∝
ncool=N2

t according to the fit function:

ΓSphal;L

T4

�
Nt;

ncool
N2

t

�
¼ ΓSphal

T4

�
ncool
N2

t

�
þ k

�
ncool
N2

t

�
1

N2
t
;

ð28Þ

where k is a constant factor depending on the value
of ncool=N2

t .
Also in this case, in order to keep ncool=N2

t fixed, we
have performed a spline cubic interpolation of our results of
ΓSphal;L=T4 as a function of ncool. Examples of continuum
extrapolations of ΓSphal;L for a few values of ncool=N2

t are
shown in Fig. 9. Interestingly enough, unlike what has been

observed for the topological charge density correlator, we
observe a very mild dependence of the sphaleron rate on the
lattice spacing. As a matter of fact, it is possible to obtain an
excellent best fit of our data with a linear function in 1=N2

t
using all available values of Nt, and results obtained
restricting such fit to our three finest lattice spacings turn
out in excellent agreement within the errors. Our con-
tinuum extrapolations of ΓSphal as a function of ncool=N2

t are
shown in Fig. 10.
Before discussing further our results for the sphaleron

rate, let us first make a comment about the ncool

FIG. 7. Results for the rate ΓSphal;L as a function of d½gt�,
defined in Eq. (22), extracted from the finite lattice spacing
correlators and for, respectively, ncool ¼ 10, 14, 18, 28 for
Nt ¼ 12, 14, 16, 20. Square and diamond points represent,
respectively, our choices for λ1 and λ2, see discussion below
Eq. (22) for more details. The full points and the shaded areas
represent our final results for ΓSphal;L.

FIG. 8. Results for ΓSphal;L=T4 as a function of ncool for all the
explored lattice spacings.
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interpolation. From Fig. 8, we observe that the ncool
dependence of ΓSphal;L is pretty mild, in particular for
small values of ncool, thus, it is reasonable to believe that
the rate will vary only little upon the ncool interpolation. To
check this assumption, we have also performed our
continuum extrapolation at fixed smoothing radius in
the following way: given a value of ncool for the lattice
with the smallest temporal extent Nt ¼ 12, the corre-
sponding (integer) value n0cool for another temporal extent
Nt is given by n0cool ¼ round½ncoolðNt=12Þ2� [cf. Eq. (23)]
where round½x� denotes the closest integer to x. Results
obtained with this approximation are shown in Fig. 10 as
square points. As it can be appreciated, no difference is
observed in the final continuum extrapolation for the
sphaleron rate compared to the ones obtained interpolat-
ing in ncool (round points). Therefore, we can conclude
that, although in principle being a better approximation to
keep ncool=N2

t fixed among different lattices with different
temporal extents Nt, in the end not even the ncool
interpolation is needed with this approach.
Let us now discuss the dependence of our results in

Fig. 10 on the cooling radius. We observe that ΓSphal does
not show a sizeable dependence on the smoothing radius
for small enough values of ncool=N2

t , and in particular it
approaches a plateau for ncool=N2

t ≲ 0.045, see Fig. 10. As
already discussed in the Introduction, this behavior is
perfectly reasonable, since smoothing is expected to only
modify the high-frequency components of the spectral
density. Thus, being ΓSphal related to the zero-frequency
limit of ρðωÞ=ω, one can expect this quantity to become
insensitive to the value of the smoothing radius, as long
as the UV cutoff introduced by the smoothing radius
is sufficiently separated from the typical IR scale of
the relevant topological fluctuations contributing to the
sphaleron rate.

In order to check that this is what is actually happening,
it is interesting to take a look at the behavior of the
correlator of the topological charge density as a function of
the number of cooling steps. In Fig. 11 (bottom panel) we
compare correlators obtained for Nt ¼ 20 and for smooth-
ing radii chosen within the range 0.015≲ ncool=N2

t ≲
0.045, corresponding to the plateau observed in Fig. 10.
As it can be appreciated, varying the smoothing radius
changes sizeably the short-distance behavior of the corre-
lator, as expected, while it has a much smaller impact on the
long-distance tail of the correlator, leading to very small
variations for tT ≥ 0.4. On the other hand, the correlator
obtained for the largest smoothing radius considered in our
study, corresponding to ncool=N2

t ≃ 0.09, sensibly deviates
from those obtained at smaller smoothing radii even up to
tT ¼ 0.5, cf. Fig. 11. In this case, the smoothing radius is
so large that it has a visible impact on the long-distance
behavior of GðtÞ, and this reflects in a smaller value of the
sphaleron rate, cf. Fig. 10.
With the purpose of verifying the reliability of our

determinations of the correlators in the range of smoothing
radii where ΓSphal exhibits a plateau, we also checked that,
in the same range, the determination of the topological
background is already well defined and stable. The result of
this study is shown in the top panel of Fig. 11, where we
show the quantity:

Dh
QðncoolÞ −Q



nðrefÞcool

�i
2
E

ð29Þ

FIG. 9. Continuum extrapolation of the sphaleron rate at fixed
smoothing radius ðrsTÞ2 ∝ ncool=N2

t for a few values of ncool=N2
t .

FIG. 10. Dependence of the continuum-extrapolated sphaleron
rate on the smoothing radius ðrsTÞ2 ∝ ncool=N2

t . The full round
point and the shaded area represent our final result for ΓSphal=T4.
The full triangle and starred points represent, respectively, the rate
obtained from the inversion of the double-extrapolated correlator,
and the one computed in Ref. [6] at the same temperature, but
adopting the standard Backus–Gilbert method and using the
gradient flow as smoothing method.
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as a function of ncool. Here, nðrefÞcool is defined as the
number of cooling steps corresponding to approximately
ncool=N2

t ≃ 0.045, i.e., the upper bound of the range we are
interested in, while ncool varies down to values correspond-
ing approximately to ncool=N2

t ≃ 0.015, i.e., the lower
bound of the range we are interested in. As it can be
observed from Fig. 11, the quantity in Eq. (29) is in the
worst case ∼10−2, meaning that, upon varying the number

of cooling steps within the range 0.015≲ncool=N2
t ≲0.045,

the fraction of configurations whose assigned topological
charge varies is at most the ∼1% of the whole ensemble
(as in all the explored cases we observed jΔQj ¼ 0; 1).
Therefore, our determinations of the correlator in the range
of smoothing radii where ΓSphal is flat, are taken in a regime
where IR topological fluctuations are well defined.
In the light of this discussion, in this case we do not

perform any zero-cooling extrapolation, and simply take
the value of the plateau exhibited by the sphaleron rate for
small cooling radii (corresponding to the range
0.015≲ ncool=N2

t ≲ 0.045) as our final result for ΓSphal.
Such result is depicted in Fig. 10 as a shaded uniform
area and as a full round point in ncool=N2

t ¼ 0, and
corresponds to:

ΓSphal

T4
¼ 0.060ð15Þ; T ≃ 1.24Tc; ð30Þ

where the central value and the uncertainty are chosen
taking into account the central values of the points on the
plateau, their error bars and the residual observed
variability.
We would like to stress that considering instead a

zero-smoothing extrapolation, which also involves larger
values of ncool=N2

t , would not be well justified within our
approach, in view of the sizable distortions of the correlator
affecting such values and of the absence of a sound
theoretical framework [17] to perform such extrapolation.
Looking for a plateau as a function of ncool=N2

t is instead, as
long as such plateau is actually observed and well defined,
more solid and sound.
The result in Eq. (30) turns out to be compatible with the

one found from the inversion of the double extrapolated
correlator illustrated in Sec. III A, ΓSphal=T4 ¼ 0.079ð25Þ,
but has a smaller relative uncertainty. Moreover, also this
result points toward a smaller central value for the sphaleron
rate compared to the one reported in Ref. [6] at the same
temperature, ΓSphal=T4 ¼ 0.12ð3Þ, even if it is still compat-
ible with it within less than two standard deviations.
We can also compare our results with the recent

determination of Ref. [9], where a completely different
strategy to compute ΓSphal from quenched lattice simula-
tions was pursued. The smallest temperature explored
in that work is T ≃ 1.3 Tc, which is very close but not
exactly equal to the one studied here, T ≃ 1.24 Tc.
However, our result turns out to be in perfect agreement
with the one reported in that paper at that temperature:
ΓSphal=T4 ¼ 0.061ð2Þ.

IV. CONCLUSIONS

In this work we have computed the sphaleron rate
ΓSphal in quenched QCD for a temperature T ≃ 1.24 Tc ≃
357 MeV from lattice numerical Monte Carlo simulations

FIG. 11. Top panel: study of the stability of the topological
charge, assessed from the mean-square-difference between the
determinations of Q after ncool cooling steps with respect to Q

determined for a reference number of cooling steps nðrefÞcool . In
all cases ncool was varied within 0.015≲ ΓSphal ≲ 0.045,

and nðrefÞcool =N
2
t ∼ 0.045, corresponding to: [2, 6] for Nt ¼ 12

(nðrefÞcool ¼ 7), [3, 8] for Nt ¼ 14 (nðrefÞcool ¼ 10), [4, 11] for Nt ¼
16 (nðrefÞcool ¼ 12) and [6, 17] for Nt ¼ 20 (nðrefÞcool ¼ 19). Bottom
panel: comparison of the lattice correlators obtained for Nt ¼ 20

and for smoothing radii chosen in the range 0.015≲ ncool=N2
t ≲

0.04, corresponding to the plateau observed for our continuum
results for ΓSphal as a function of ncool=N2

t , cf. Fig. 10. For the
sake of comparison, we also show the correlator obtained for
ncool=N2

t ≃ 0.09, and the double-extrapolated correlator com-
puted in Sec. III A, depicted as a uniform shaded area.
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using the modified Backus–Gilbert method proposed by the
Rome group to invert the integral relation between the
Euclidean topological charge density time correlator and
the spectral density, whose zero-frequency limit is directly
related to ΓSphal.
We have followed two strategies. The first one is similar

to what has been already done in the past, namely, we have
performed a double extrapolation of the topological charge
density correlator (continuum limit at fixed smoothing
radius in physical units followed by zero-smoothing limit)
and then extracted the rate from the inversion of such
double-extrapolated correlator. The second method,
instead, consists in extracting the rate directly from the
inversion of finite-lattice-spacing correlators, in order to
postpone the double extrapolation directly on the rate itself.
The two methods give consistent results, but we find that

the second is preferable for various reasons. First, it
eliminates both the need of interpolating in tT (as the rate
is extracted from finite lattice spacing correlators) and in
ncool (as the rate depends very mildly on the smoothing
radius, so that no difference is observed upon interpolating
our results for the rate in ncool, rather than just taking the
result for the integer ncool closest to the reference smoothing
radius). Second, the inversion to reconstruct ρðωÞ is found to
be less noisy compared to the one performed on the double-
extrapolated correlator. Finally, we find that the rate is
affected by smaller lattice artifacts, and that it is practically
insensitive to the value of the smoothing radius for small
enough values of ncool. In the end, thus, the second strategy
turns out to be simpler and computationally cheaper, and
finally yields a smaller error compared to the first one.
As we have already discussed in the Introduction, one

should be careful in applying the second method, since
according to perturbative arguments [17] the integral
relation in Eq. (5) could be distorted when considering
the correlator at finite smoothing radius. However, as we
have argued above, this problem is expected to be less
relevant to the ω → 0 regime involved in the sphaleron rate.
As an effective way to check that this is indeed the case, we
have verified the existence of an extended range of values of
the smoothing radius in which the continuum extrapolated
sphaleron rate is practically constant within errors, then
taking our final determination for the rate from this plateau.
We consider the existence of this plateau, over which also
the topological background is stable, as a solid, even if
heuristic, evidence for a well defined separation between the
ultraviolet (UV) cutoff scale and the physical scale of
fluctuations relevant to the sphaleron rate, which makes
our approach justified; the same conclusion is reached also
looking at the long-distance tails of the correlators, that
appear to be practically unaffected by cooling in the same
range where we observe a plateau for the sphaleron rate.
Therefore, in conclusion, while the first standard

method, based on the double-extrapolated correlator, is
surely better founded from a theoretical point of view, it is

affected by uncertainties which could make it of difficult
application in contexts, like full QCD with physical quark
masses, where the increased computational demand makes
statistics significantly poorer compared to the quenched
case. The second method that we have proposed, instead,
even if justified a posteriori based on the observation of a
well defined plateau for the sphaleron rate as a function of
the smoothing radius, provides a more precise probe, which
could reveal useful in applications to the case of full QCD.
We find our final result for the rate, quoted in Eq. (30), to

be smaller but compatible within the errors with the one
reported in Ref. [6] for the same temperature, which was
obtained inverting the double-extrapolated correlator, but
using the gradient flow as smoothing method and using the
standard Backus–Gilbert inversion technique to compute
ΓSphal. We stress however that the possible (mild) tension is
likely not related to the different smoothing procedure, since
we also find that our double-extrapolated correlator is in
perfect agreement with the one computed in Ref. [6] at the
same T. Finally, perfect compatibility is found with the result
obtained for the sphaleron rate at T ≃ 1.3 Tc in Ref. [9],
where a completely different method to extract the rate was
pursued (based on the computation of the susceptibility of
the so-called “sphaleron topological charge”).
Our present results can be considered as a basis for a

future application of the new strategy proposed in this
paper to the computation of the sphaleron rate in full
QCD at finite temperature, being this quantity of great
interest both for studying the properties of the quark-
gluon plasma and for obtaining intriguing predictions
about axion phenomenology.
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APPENDIX A: SCALE SETTING

In this work the lattice spacing was determined in units
of the Sommer scale r0 using the ∼1% determinations of
aðβÞ=r0 of Ref. [30], which allowed us to define a LCP
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where the volume and the temperature are kept fixed at
the percent level.
In order to check for possible systematics in such

procedure, we also performed a different scale setting
according to the results of Ref. [31], which employs a
different parametrization to interpolate lattice determina-
tions of aðβÞ=r0. Although these two scale settings are not
completely independent, as [31] uses lattice spacing results
of [30] for β < 6.2 and, most importantly, for β > 6.5
(the range where the three finest lattice spacings employed
here fall), it is still worth checking that setting the scale
in a different way gives agreeing results within the typical
error on a=r0.
The results of these two different scale setting procedure

are summarized in Fig. 12, where we compare the results

for aðβÞ=r0, L=r0, r0T, and T=Tc. Note that, for both scale
setting procedures, r0T was converted into T=Tc using
the same critical temperature Tc ≃ 287 MeV. As it can be
appreciated, any observed deviation is smaller than the
∼1% error, i.e., it stays within the quoted precision for the
lattice spacing.

APPENDIX B: CHOICE OF THE SMEARING
WIDTH OF THE TARGET FUNCTION

As discussed in Sec. II C, the choice of the target
function is a fundamental ingredient to assess the quality

FIG. 12. Comparison of two different scale setting procedures,
performed according to results of Ref. [30] (round points) and
Ref. [31] (square points). The values along the LCP of L=r0 ¼
3.51ð4Þ, r0T ¼ 0.855ð9Þ and T=Tc ¼ 1.24ð2Þ, determined from
the scale setting used in this work, are represented as shaded areas.

FIG. 13. Dependence of the sphaleron rate on the smearing
width in physical units σ=T in the range 1.5 ≤ σ=T < 2 for all
available lattice spacings and for approximately the same value of
the smoothing radius rsT ∝ ncool=N2

t ≃ 0.035. In the last panel
from the top we also show the determination of the rate from the
double-extrapolated correlator as a function of the smearing
width. Shaded areas represent the value for σ=T ¼ 1.75, which is
the smearing width adopted in this work.
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of the reconstruction of the spectral density via the
modified Backus–Gilbert inversion method we applied in
this work.
On general theoretical grounds, it can be shown, for

sufficiently small smearing widths, that the dependence of
the reconstructed quantity on σ for an even target function
in ω=σ can be expanded in powers of σ2 [27,67,68]:

ΓSphalðσÞ ¼ ΓSphalð0Þ þ k̃σ2 þOðσ4Þ: ðB1Þ

In Fig. 13 (top panels), we show how the rate depends on
the choice of the smearing width σ for all available lattice
spacings, and for a single value of ncool=N2

t ≃ 0.035, which
was chosen so as to stay well within the region where we
observe a plateau in the continuum limit of ΓSphal as a
function of the smoothing radius, cf. Fig. 10. In the
bottom panel of Fig. 13 we also show the σ-dependence
of the spahleron rate obtained from the inversion of the
double-extrapolated correlator in the same ranges of
smearing widths.
As expected, as the target function gets more peaked, the

errors increase, since the reconstruction becomes noisier.
On the other hand, increasing the width of the target
function diminishes the errors, as the spectral density is
smeared over a larger region. Although in principle
choosing too large values of σ could potentially introduce
undesired systematic effects in the sphaleron rate, we do
not observe any sizeable systematic effect on our results
for the sphaleron rate when varying the width of the target
function in the range 1.5 ≤ σ=T < 2. These findings are
compatible with the theoretical expectation that, for an even
target function like ours, cf. Eq. (21), linear corrections in σ
exactly vanish. Similar behaviors have also been observed
in other works adopting the method of [25] to obtain other
reconstructed quantities [27,67,68].

In conclusion, thus, being our determinations of
ΓSphal=T4 essentially independent of σ=T within the
explored range, we took the results obtained for σ=T ¼
1.75 (full points in Fig. 10) as our final results for the
sphaleron rate. As it can be seen from Fig. 10, such choice
always yields a safe and conservative estimate of the error
in all cases.
Finally, in Fig. 14, we show the obtained resolution

function Δðω; ω̄ ¼ 0Þ for Nt ¼ 20 and for the same
smoothing radius used in Fig. 10, and we compare it with
the chosen target function δσðω; ω̄ ¼ 0Þ in Eq. (21),
with σ=T ¼ 1.75. As it can be appreciated, the obtained
reconstruction is excellent, as any relative difference
between the obtained resolution function and the target
one is in this case at most of ∼2.5%.
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