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We compare recent MINERvA antineutrino-hydrogen charged-current measurements to phenomeno-
logical predictions of the axial-vector form factor based on fits to all available electron scattering and
deuterium bubble-chamber data and to representative lattice-QCD (LQCD) determination by the PNDME
Collaboration. While there is 1σ–2σ agreement in the cross section with MINERvA data for each bin
in Q2, we identify three regions with different relevance and opportunity for LQCD predictions. For
Q2 ≲ 0.2 GeV2, the phenomenological extractions have large number of data points and LQCD is
competitive, while MINERvA data have large errors. For 0.2 GeV2 ≲Q2 ≲ 1 GeV2, LQCD is competitive
with the MINERvA determination, and both give values larger than from phenomenological extraction. For
Q2 > 1 GeV2, the MINERvA data are the most precise. Our analysis indicates that with improving
precision of MINERvA-like experiments and LQCD data, the uncertainty in the nucleon axial-vector form
factor will be steadily reduced.
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Theoretical and phenomenological predictions of the
(anti)neutrino scattering cross sections on nuclear targets
such as 12C, 16O, and 40Ar are crucial for understanding
results of modern and future neutrino oscillation and cross-
section experiments, such as T2K, NOvA, MINERvA,
MicroBooNE, SBN, Hyper-K, and DUNE [1–14]. In this
paper we discuss the extraction of the nucleon axial-vector
form factor from lattice QCD, MINERvA experiment, and
phenomenological analyses, and provide a comparison
between them. It is a key input in current theoretical
analyses to predict the cross section using nuclear many-
body calculations. Uncertainties in it, together with those
from nuclear effects, are the dominant sources of error that
need to be reduced [15,16].
The phenomenological nucleon axial-vector form factor,

FAðQ2Þ, is extracted mainly from the bubble-chamber data
collected during the decades of 1970 and 1980 [17–21],
and traditionally parametrized by the dipole form with
relatively small uncertainty, see Ref. [22] for a review. The
same data were recently reanalyzed using a z-expansion fit
form for the form factor, and a much more conservative

error estimate was obtained [23]. This latter fit now serves
as a phenomenological benchmark for the evaluation of
charged-current elastic (anti)neutrino-nucleon scattering
cross sections. However, in the extraction of these data,
models were used for including nuclear corrections, con-
sequently there may be unquantified systematics as dis-
cussed in Ref. [23]. Looking ahead, there are no approved
experiments that would improve these data.
This year, the MINERvACollaboration presented a novel

experimental technique for isolating antineutrino scattering
off the hydrogen atoms inside the hydrocarbon molecule,
ν̄μ þ p → nþ μþ, and extracted the nucleon axial-vector
form factor free from nuclear corrections [24]. Only events
with the angle of the final muon θμ ≤ 200, and momentum
1.5 GeV ≤ pμ ≤ 20 GeV, which are also efficiently mea-
sured by the MINOS near-detector located just downstream
of MINERvA, were selected. Charged-current scattering on
hydrogen atoms was separated from the background scatter-
ing off carbon nuclei using kinematics. The direction of ν̄,
muon and scattered neutron from hydrogen target defines a
plane, whereas a neutron coming from ν̄ scattering off carbon
has a broad distribution about such a plane due to nuclear
effects. UsingMonte Carlo simulations of these distributions
allowed the collaboration to separate scattering off hydrogen
versus carbon. This procedure was cross-checked with a
beam of neutrinos instead of antineutrinos, for which there
are no events with scattering off “free” hydrogen as the
relevant charged-current reaction is νμ þ n → pþ μ−.
Over the last few years, a number of LQCD collabora-

tions have presented first-principles calculations of the
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isovector axial-vector form factor, and their results for
GAðQ2Þ≡ −FAðQ2Þ compiled in [25] are reproduced in the
right panel in Fig. 1. They agree amongst themselves, but
disagree with existing evaluations based on the deuterium
data [26]. Of particular note, the results by the PNDME
Lattice-QCD Collaboration have ≲10% uncertainty in the
Euclidean momentum transfer squared region 0 < Q2 <
1 GeV2 [25] and, as discussed below, disagree significantly
with the fits to the deuterium data.
In this paper, we take the PNDME calculation as

representative of the first-principles nucleon axial-vector
form factor, and show that the cross sections obtained using
it are in good agreement with the MINERvA hydrogen data
within theQ2 range of validity of these LQCD calculations.
The salient features of the PNDME calculation, which
demonstrate controls essential for all reliable LQCD
analyses of the axial-vector form factors, are [25]

(i) High statistics: PNDME analyzed 13 ensembles of
2þ 1þ 1-flavors of highly improved staggered
quarks using Wilson-clover valence quarks. The
statistics and range of lattice spacing, 0.057 fm <
a < 0.151 fm, and pion masses, Mπ ≈ 135, 220,
310MeV, allowed the authors to make a careful study
of the various systematics.

(ii) Removal of contributions due to excited states. All
correlation functions calculated on the lattice get
contributions from all excited states that couple to
(i.e., created by) the interpolating operators used.
This problem can be severe for nucleons especially if

towers of multihadron states, starting with the Nπ
states that have masses beginning at ≈1200 MeV
(much smaller than the Nð1440Þ radial excitation) as
Mπ → 135 MeV, make large contributions. This has
been shown to be the case for the axial-vector
channel [31]. The PNDME calculation includes a
detailed analysis to remove contributions of such
excited states.

(iii) Satisfying, to within the expected size of discreti-
zation errors, the partially conserved axial current
(PCAC) relation between the three form factors,
axial-vector FAðQ2Þ, induced pseudoscalar
FPðQ2Þ, and pseudoscalar GPðQ2Þ, obtained after
removing contributions from Nπ excited states.
Since the lattice correlation functions automatically
satisfy the PCAC relation, this is a check of the
decomposition into form factors that relies on the
absence of transition matrix elements to excited
states. It is a necessary requirement that must be
satisfied by all LQCD calculations of the three form
factors. Note that PNDME paper uses the notation
GAðQ2Þ≡ −FAðQ2Þ and G̃PðQ2Þ≡ −FPðQ2Þ=2.

(iv) The data for FAðQ2Þjfa;Mπ ;MπLg obtained at discrete
values of Q2 on each of the thirteen ensembles is
well-fitted using the model-independent z expan-
sion. MπL gives the lattice size L in units of M−1

π .
(v) Extrapolation of the thirteen FAðQ2Þjfa;Mπ ;MπLg to

get the form factor at the physical point, a ¼ 0 and
Mπ ¼ 135 MeV, is carried out for eleven equally
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FIG. 1. Left: Comparison of the nucleon axial-vector form factorGAðQ2Þ ¼ −FAðQ2Þ as a function of the momentum transfer squared
Q2 obtained from (i) fit to the deuterium bubble-chamber data [23] shown by blue solid lines with error band; (ii) fit to recent MINERvA
antineutrino-hydrogen data [24], shown by black dashed lines and turquoise error band; and (iii) lattice QCD result obtained by the
PNDME Collaboration [25] shown by red solid lines without a band. Right: A comparison of LQCD axial-vector form factors from
various collaborations labeled RQCD 19 [27], ETMC 21 [28], NME 22 [29], Mainz 22 [30], and PNDME 23 [25]. The νD [23] band is
the same as the deuterium fit shown in the left panel.
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spaced values of Q2 between 0–1 GeV2 using the
leading-order corrections in fa;Mπ;MπLg. This full
analysis is done within a single overall bootstrap
process and the reasonableness of the resulting error
estimates are discussed. The finite-volume artifacts
are found to be small for MπL≳ 4, which holds for
all but two ensembles.

(vi) All fits to FAðQ2Þ are presented using the z2

truncation of the z expansion. Results with z3

truncation give essentially the same values, indicat-
ing convergence. The z2 results were chosen to avoid
overparametrization as defined by the Akaike In-
formation Criterion [32].

Raw lattice data with reliable error estimates are
available at discrete values of Q2 over a limited range
of momentum transfer, 0 < Q2 ≲ 1 GeV2. As shown
below, for the calculation of the cross section outside
this range, a robust parametrization of the form factor is
needed to connect to the 1=Q4 behavior (with possible
logarithmic corrections) expected at large Q2 [33,34].
This is typically done by enforcing sum rules [35]. This
has not been done in the PNDME analysis [25]. It is,
therefore, reasonable to make comparisons of the lattice
and the experimental determinations for the (anti)neu-
trino-nucleon charged-current elastic cross sections for

differential distributions only at Q2 ≲Q2
max ≈ 1 GeV2.

For total cross sections with (anti)neutrino energy
Eν ≲Mðτmax þ r2lÞð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=τmax

p Þ≈ 0.84 GeV, where

rl ¼ ml
2M, τmax ¼ Q2

max
4M2 , M is the nucleon mass and ml

is the charged lepton mass, the kinematically allowed
phase space is restricted to momentum transfers
Q2 ≲Q2

max ≈ 1 GeV2.
We present two analyses: the main one is a direct

comparison with the experimental results in Ref. [24].
The second explains, using the total cross sections versus
the (anti)neutrino energy Eν, why it will be important for
DUNE (Eν peaked at 2–3 GeV) to determine FA for
Q2 > 1 GeV2. The reader should, however, keep in mind
two caveats in our analysis: first, we take the results of the
axial-vector form factors at face value, i.e., we do not
address issues of possible unresolved systematics in their
extraction from either experimental data or from LQCD
calculations. Second, total cross sections versus Eν are not
directly measured experimentally due to uncertainty in the
reconstruction of the neutrino energy.
To evaluate the (anti)neutrino-nucleon charged-current

elastic cross sections, we exploit the decomposition of the
unpolarized differential cross section in terms of the
structure-dependent A, B, and C functions [36]:

dσ
dQ2

ðEν; Q2Þ ¼ G2
FjVudj2
2π

M2

E2
ν

�

ðτ þ r2lÞAðν; Q2Þ − ν

M2
Bðν; Q2Þ þ ν2

M4

Cðν; Q2Þ
1þ τ

�

; ð1Þ

with the kinematic variable τ ¼ Q2

4M2, ν ≡ Eν=M − τ − r2l ,
the CKM matrix element Vud, and the Fermi coupling
constant GF. At tree level, the structure-dependent param-
eters A, B, and C are expressed in terms of the nucleon
electric GV

E , magnetic GV
M, axial-vector FA, and induced

pseudoscalar FP isovector form factors as

A ¼ τðGV
MÞ2 − ðGV

EÞ2 þ ð1þ τÞF2
A

− r2l½ðGV
MÞ2 þ F2

A þ 4FPðFA − τFPÞ�; ð2Þ

B ¼ 4ητGV
MFA; ð3Þ

C ¼ τðGV
MÞ2 þ ðGV

EÞ2 þ ð1þ τÞF2
A; ð4Þ

with η ¼ þ1 for neutrino scattering and η ¼ −1 for anti-
neutrino scattering. For deuterium-based calculation,we take
the electromagnetic vector form factors from Ref. [37] and
the axial-vector form factor from Ref. [23] as default fits to
the data below Q2 < 1 GeV2. Extending the fits to Q2 <
3 GeV2 using the same parametrization does not signifi-
cantly change the results in this paper. For total cross

sections, we integrate over the kinematically allowed region
of the momentum transfer Q2

− ≤ Q2 ≤ Q2þ

Q2
� ¼ 2ME2

ν

M þ 2Eν
− 4M2

M þ Eν

M þ 2Eν
r2l

� 4M2Eν

M þ 2Eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

Eν

2M
− r2l

�

2

− r2l

s

: ð5Þ

A direct comparison of the MINERvA measurement
[24,38] with predictions starting with Eq. (1) for the
antineutrino-hydrogen elastic differential cross sections,
averaging over the incoming NUMI flux, and putting cuts
on the recoil muon scattering angle θμ ≤ 200 and momen-
tum 1.5 GeV ≤ pμ ≤ 20 GeV is shown in Fig. 2 using the
axial-vector form factors from (i) the bubble-chamber data
[23], and (ii) LQCD [25]. We identify three regions of the
momentum transfer with different significance of form
factors from LQCD and existing measurements. At low
momentum transfers Q2 ≲ 0.2 GeV2, LQCD predictions
and fits to the deuterium bubble-chamber data are in good
agreement. In this region, the experimental errors in the
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measurement on hydrogen byMINERvA are large, whereas
the errors in the deuterium bubble-chamber data are smaller,
and therefore provide a benchmark. However, we remind the
reader of the unresolved uncertainty due to the use of models
for nuclear corrections in the extraction of form factors from
the deuterium data as discussed in Ref. [23].
Looking ahead, calculations of FA using the current

LQCD methodology will improve rapidly in this region as
more simulations are done closer toMπ ¼ 135 MeV, a → 0
and on larger volumes. Over time, we expect lattice results in
this regionwill bewell characterized by the axial charge [39],
(preciselymeasured already), the axial charge radius, and fits
with a low-order z expansion.
In the second region of momentum transfer, 0.2 GeV2≲

Q2 ≲ 1 GeV2, the axial-vector form factor from LQCD
leads to the smallest errors and the predicted differential
cross section lies above the hydrogen and deuterium values.
The difference between lattice and deuterium values is due
to the smaller FA from the latter as illustrated in Fig. (20) of
Ref. [25], which is reproduced in Fig. 1 (right). Assuming
no new deuterium data, no further checks against it are
anticipated. Future improvements in both the hydrogen data
and lattice calculations will provide robust cross-checks in
this region.
In the third region with momentum transfers

Q2 ≳ 1 GeV2, current LQCD data have large statistical
errors and systematic uncertainties due to discretization
errors and removing excited state contributions. It is
unlikely that LQCD data in this region, coming mostly
from simulations with Mπ ≳ 300 MeV [25], will improve

anytime soon. Without precise data in this region from
simulations withMπ ∼ 135 MeV, imposing the asymptotic
1=Q4 behavior using sum rules will be weighted heavily by
data at Q2 ≲ 0.5 GeV2. This will result in an inherent
uncertainty in lattice estimates of FA and loss of predictive
power as discussed next. We, therefore, anticipate that
improvements in MINERvA and follow on experiments
will provide the best results in this region.
To determine the significance of the difference between

the MINERvA differential cross sections and the predic-
tions using the form factors extracted from either LQCD or
the deuterium data, a χ2 test was performed. For this, we
used fifteen Q2 bins (with Q2 ≲ 1 GeV2) and the full
covariance matrices. In determining the predictions using
the form factors, we ignored the flux uncertainties.
Comparing MINERvA-LQCD (MINERvA-deuterium),
we found χ2 ¼ 11 (12), respectively, for the 15 degrees
of freedom, showing that both differences are statistically
insignificant. Performing a similar comparison between the
LQCD and deuterium predictions, we encountered a
singular covariance matrix since both the form factors
were obtained from a few-parameter fit. We examined four
cases—keeping 3–6 degrees of freedom and in each
dropped the small eigenvalues of the combined covariance
matrix—and found the same χ2=d:o:f ≈ 6. This implies
≈2.5σ tension between the LQCD and fits to the deuterium
data.
Keeping in mind the second caveat stated above, we

nevertheless show, in Fig. 3 (top), results for total neutrino-
neutron and antineutrino-proton charged-current elastic
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FIG. 2. Antineutrino-hydrogen charged-current elastic cross-section data of MINERvA Collaboration [24] is compared in the left
figure with theoretical prediction based on the vector form factor fit of Ref. [37] and axial-vector form factor fit of Ref. [23], shown by
the shorter dark blue bins, and with prediction based on the PNDME LQCD axial-vector form factor in Ref. [25], shown by the red bins.
Kinematic cuts in the MINERvA measurement are placed on the muon scattering angle θμ ≤ 200 and momentum
1.5 GeV ≤ pμ ≤ 20 GeV. The thickness of the bin size in the panels represents the error, and the fifteenth bin is not distinguished.
The two right panels zoom into the region 0.2 GeV2 ≲Q2 ≲ 1 GeV2 where LQCD predictions have the smallest errors, and the region
Q2 ≳ 1 GeV2 where errors in LQCD calculations become large.
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cross sections based on the fits to the experimental data [23]
and the lattice determinations after the integration of Eq. (1)
over theQ2 range in Eq. (5). In the region Eνμ ≲ 0.84 GeV,
there is reasonable agreement (1σ–2σ) with the ordering
PNDME > hydrogen> deuterium in accordwith the pattern
inFA shown in Fig. 1. ForEνμ ≳ 0.84 GeV, one goes beyond
the applicability of the lattice data [25], and its predictive
power fails. The right panel illustrates that theuncertainties in
the antineutrino-proton cross sections using PNDME result
are even larger, which can be traced to a close-to-singular
structure of the covariance matrix for the axial-vector form
factor reported in Ref. [25]. The possibility that the range of
validity of the LQCD-based predictions can be enlarged by
imposing the asymptotic 1=Q4 behavior through sum rules
needs to be checked.
Figure 3 (bottom) shows the same analysis but with

FAðQ2Þ set to zero for Q2 > 1 GeV2. Now the results for
neutrino cross sections agree for the full range of Eνμ . The
LQCD result for antineutrinos continues to show larger
uncertainty for the reason mentioned above.
To summarize, we have compared (anti)neutrino-nucleon

charged-current elastic cross sections based on fits to the
well-known deuterium bubble-chamber data and new mea-
surements by theMINERvACollaborationwith a theoretical
analysis using a representative LQCD calculation of the

nucleon axial-vector form factor. We have identified three
regions ofQ2 inwhich to assess the strengths andweaknesses
of experimental measurements and lattice calculations.
We anticipate that LQCD will provide the best estimates
for the axial-vector form factor for Q2 ≲ 0.2 GeV2. The
reason is that with the current LQCD method, as the lattice
size is increased at fixed a or as a is decreased, the value of
Q2

max at which data with good statistical precision can be
obtained shrinks to Q2

max ≲ 0.2 GeV2. Over the region
0.2 GeV2 ≲Q2 ≲ 1 GeV2, both LQCD and antineutrino
on hydrogen experiments will provide increasingly precise
data that will lead to growing confidence in both. For
Q2 > 1 GeV2, experimental measurements are the best
near-term option since novel lattice methodology is needed
to control the systematics that grow with Q2.
We anticipate significant progress in LQCD data over the

next five years due to increase in both statistics thatwill allow
control over excited states contributions through the inclu-
sion of three or more states in the spectral decomposition of
correlation functions [25,31], and the values of fa;Mπg at
which simulations are done, which will improve the chiral-
continuum fits used to remove the associated systematics.
However, to reach percent-level accuracy, novel methods
[40,41] are needed to removeboth excited-state contributions
and discretization errors with requisite precision.
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FIG. 3. Top: Neutrino-neutron and antineutrino-proton total charged-current elastic cross sections are shown versus the muon type
(anti)neutrino energy Eνμ in the left and right panels, respectively. The prediction based on the deuterium bubble-chamber data is shown
by the blue solid line and error band. The fit to recent MINERvA antineutrino-hydrogen data (labeled hydrogen fit) is shown by black
dashed lines and turquoise error band. These are compared with the calculated result (red solid lines) using the PNDME axial-vector
form factor and integrated over the full kinematic range. Bottom: Same but including contributions only from the momentum transfers
below Q2 ≲Q2

max ≈ 1 GeV2, i.e., FAðQ2Þ is set to zero for Q2 > 1 GeV2.
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