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We combine gradient flow, step-scaling, and finite-temperature boundary conditions to scale-set
2þ 1þ 1 flavor QCD lattices with physical HISQ quarks at multiple spacings down to
a ¼ 0.01378 fm, such that they represent the same temperature at the percent level and the same quark
mass to a few percent. This preparatory work will allow the evaluation and continuum extrapolation of the
topological susceptibility at up to 1 GeV temperatures with good control over quark-mass effects.
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I. INTRODUCTION

This paper will be about the technical problem of scale-
setting on the lattice at small lattice spacings and with
special attention to precise quark mass determination. But
we will start the Introduction with an explanation of what,
scientifically, we want such scale setting for, and in
particular why it is important to perform the fermion-mass
matching accurately for our application.
The axion is a hypothetical particle in Standard Model

(SM) extensions which solve the strong CP problem [1,2].
In addition, the axion provides a candidate for the dark
matter of the Universe [3–5], thereby solving both a field
theory puzzle and a cosmology puzzle within a single
simple SM extension. It would be valuable to be able to
make a concrete prediction for the relation between the
axion mass and the dark matter axion number density. If the
axion field is made uniform by inflation, this requires
knowledge of its initial angle; however the lack of large
isocurvature fluctuations strongly constrains this case [6].
On the other hand, postinflation physics can give the axion
spatially random initial conditions, leading to complex
network dynamics but eventually to a precise relation
between the axion mass and dark matter density [7–9].
However, to make this connection precise, we need (among
other things) a rather precise determination of the topo-
logical susceptibility of quantum chromodynamics in a

range of temperatures from approximately 400 to
1100 MeV temperature [7,10].
Several lattice studies have investigated the topological

susceptibility of full QCD at high temperatures [11–13], but
only one such study reaches 1000 MeVor higher [14], and
this study uses an indirect method. A second study with
independent techniques would be valuable. Our goal is to
carry out such a study using the reweighting techniques of
Jahn et al. [15,16]. This will require multiple lattices with
temporal extents of Nτ ¼ 8 to 14 (to enable a continuum
extrapolation) at temperatures from around 400 to over
1000 MeV, using 2þ 1þ 1 flavor ensembles. The sus-
ceptibility is a very strong power of the temperature, with
χ ∝ T−8 for 3-flavor QCD at lowest order in perturbation
theory [17]. Therefore the dimensionless susceptibility
which one directly measures on the lattice, χa4, scales
as χa4 ∝ a12, and errors in the lattice spacing are amplified
by a factor of about 12 in the determined susceptibility.
Because the high-temperature topological susceptibility is
proportional to a product of light quark masses [17,18], any
error in the quark mass determination similarly leads to
large errors in the determined susceptibility. Therefore our
goal will be to find a set of lattice parameters which
represent the correct physical point at a set of lattice
spacings representing three temperatures between 400
and 1100 MeV, each with four spacings with Nτ ¼ 8,
10, 12, 14. And our precision goal will be 1% to 2% in the
lattice spacing and at most a few percent in the quark
masses. Because instantons have associated zero modes, it
is important to use a fermionic implementation which does
a good job handling chirality, so we want the scale setting
within the HISQ framework [19].
Scale setting is one of the most important calculations in

lattice QCD since the precision of scale determination sets
the precision of any computed observable. There are two
approaches. One, direct scale setting, involves measuring
one vacuum observable per parameter of the theory.
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For instance, one can use pseudoscalar masses to establish
each quark mass and the Sommer parameter r0 [20], a
pseudoscalar decay constant or a baryon mass such as theΩ
mass as an additional physical scale to fit the coupling
strength. The finest lattice spacing at which such a direct
scale setting has been carried out for 2þ 1þ 1 flavor HISQ
fermions is a ¼ 0.03215 fm [21,22]. This approach
becomes rapidly more challenging as one goes to smaller
lattice spacing, and since we need more than a factor
of 2 finer lattices than this finest known HISQ point, this
approach will not be practical for us.
The alternative is step scaling [23], in which we start

with a lattice where the scale and quark masses have
already been established, and determine the scales for
another lattice as a ratio with respect to these known
values. The matching involved is essentially a UV match-
ing problem and is insensitive to infrared affects. Therefore
one can introduce an IR regularization which eliminates
topology, fermionic zero modes, and long correlation
lengths which would otherwise impede numerical effi-
ciency. This is true so long as the regularization is identical
for all lattices. So for instance, using a finite lattice volume
is acceptable as long as the physical lattice volume is the
same for all systems which are being compared. In the most
modern implementation of this approach [24], one uses a
hypercubic box with Dirichlet boundary conditions in one
direction as an IR regulator, and the squared field strength
after a certain depth of gradient flow [25,26] as the
observable used to match the two lattices. The precise
matching for fermions is not specified in Ref. [24], because
the reference only considers pure glue QCD.
For applications to the UV behavior of the gauge

coupling, the fermion mass renormalization is not particu-
larly important, since all quarks are light compared to the
lattice spacing scale. But for our application the quark mass
matching is important. We will make three changes to the
procedure of [24]:

(i) We will use boxes with a large extent along one
direction, to allow the comparison of physical quark
masses in terms of a meson mass plateau.

(ii) We will attempt to use information from a range of
gradient flow depths, rather than a single gradient
flow depth, to simultaneously achieve high statistics
and to measure and extrapolate away lattice-spacing
effects.

(iii) We will use thermal, rather than Dirichlet, boundary
conditions in one direction. This restores lattice
translation invariance, which improves statistics.
But the main reason has to do with our familiarity
with thermal boundary conditions, and we feel that
Dirichlet boundaries would also be a good choice.

In the next section we will lay out our procedure for step-
scaling with finite-temperature boundary conditions in the
simplified case of pure-glue QCD, which will allow us to
test it in a context where accurate results are already known.

Then in Sec. III, we will present our analysis of scale setting
with 2þ 1þ 1 flavors of HISQ fermions. We end with
some brief conclusions and outlook.

II. METHODOLOGY AND PURE-GLUE TEST

The QCD coupling varies with scale, shrinking in the
UV and growing large in the IR [27,28]. A particularly
clean way to measure this is to consider the gauge fields
after the application of gradient flow. Gradient flow is an
operation on the gauge fields defined through a gauge-
covariant diffusion equation [26,29],

∂τfBνðx; τfÞ ¼ DμGμν; Bμðx; 0Þjτf¼0 ¼ Aμ: ð1Þ

The covariant derivative Dμ and the field strength tensor
Gμν are defined as

Gμν ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν�
DμX ¼ ∂μX þ ½Bμ; X�: ð2Þ

The partial derivative ∂τf is with respect to a dimensionful
parameter τf which is understood as the flow time/depth. At
leading perturbative order, gradient flow is equivalent to
convolution with a Gaußian [26],

Bμðx;τfÞ¼
Z

d4yKðx−yÞAμðyÞ; KðzÞ¼ e−z
2=4τf

ð4πτfÞ2
; ð3Þ

or, in momentum space,

Bμðp; τfÞ ¼ AμðpÞe−p2τf : ð4Þ

The expectation value of the squared field strength Et ≡
TrGμνGμν=2 is then dominated by the most UV scale where
fields retain their fluctuations, p ∼ 1=

ffiffiffiffi
τf

p
, and a leading-

order calculation shows that [26]

hEti¼
3ðN2

c−1Þg2
2

Z
d4p
ð2πÞ4e

−2τfp2 ¼ 24

128π2
g2

τ2f
: ð5Þ

This expression can be used to define the gauge coupling at
the scale μ ¼ 1=

ffiffiffiffiffiffi
8τf

p
in the gradient-flow scheme,

g2flowðτfÞ≡ 128π2τ2f hEti
24

: ð6Þ

The relation between this coupling and the MS coupling
g2ðμ̄Þ is known to NNLO [30], and it indicates that g2flowðτfÞ
is quite close to g2ðμ̄ ¼ 1=

ffiffiffiffiffiffi
8τf

p Þ. Evaluating hEti can
therefore be thought of as a way of mapping out the scale
dependence of the gauge coupling, with a specific value of
g2flow determining a unique physical scale 1=

ffiffiffiffiffiffi
8τf

p
, in

vacuum and in the continuum.
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To match the scales between two lattices, one can in
principle choose a specific value of g2flow, find the flow
depth τf in lattice units which it takes to achieve this value,
and equate these two τf values. This is the philosophy used,
for instance, in Refs. [26,31], and we illustrate it in Fig. 1.
There are two potential issues with this approach. First,
lattice artifacts contaminate the results on different lattices
by different amounts. Second, the approach requires a
volume large enough to see large-volume vacuum behavior.
The former problem can be handled approximately by
choosing a combination of action, gradient flow method-
ology, and lattice observable which minimizes a2 and even
a4 errors—though it is difficult to do so beyond leading
perturbative order. Therefore, we will show how to use the
result over a range of flow depths to capture and eliminate
such spacing errors. The latter problem can be solved by
introducing a finite box size as an IR regulator and ensuring
that precisely the same box size is used for each lattice. The
relation between τ2f hEti and scale is then dependent on this
box size and does not represent a universal curve in QCD,
but it can nevertheless be computed at one known lattice
spacing and used to relate to another lattice spacing. This
approach is nearly universal in step-scaling calculations,
which frequently use Dirichlet boundary conditions in one
direction. We will use thermal boundary conditions instead.
We will now describe how we handle each problem in a
little more detail.

A. Lattice spacing effects

A detailed study of tree-level lattice spacing corrections
was performed in Ref. [32]. The paper studied effects of
three choices on hEti, namely, the choice of the lattice
action used to generate the ensemble, the choice of action

and procedure in carrying out the gradient flow, and the
choice of observable used to measure Et. At leading order
the effect of the fermion implementation does not enter into
a bosonic variable such as Et and is therefore not
considered. Therefore one expects lattice-spacing effects
to appear at even powers of the lattice spacing,

hEtilatt ¼ hEticont
�
1þ a2

τf
C1 þ

a4

τ2f
C2 þO

�
a6

τ3f

��

Rlatt ≡ hEtilatt
hEticont

¼
�
1þ a2

τf
C1 þ

a4

τ2f
C2 þ…

�
: ð7Þ

Here we introduce Rlatt as the ratio, which describes lattice-
continuum effects.
Improving the action and observable follows well-known

procedures [33]. Improving the gradient flow procedure
requires slightly more than using an improved definition of
Gμν in Eq. (2), as recently explained in Ref. [34]. The full
procedure is called Zeuthen flow, and we have implemented
it in addition to Wilson flow for our analysis. This subtlety
was discovered after the work of Ref. [32]. But recently the
C1 and C2 coefficients for different combinations of action,
flow, and operator choices, including Zeuthen flow, were
computed in [35] and are listed in the Table I.
In analyzing pure-glue QCD we will use the Wilson

action, and will therefore be most interested in the W-Z-W
combination, but HISQ fermions are paired with Lüscher-
Weisz-type improved gauge actions, and therefore our
analysis of full QCD will use the last two combinations
in the table.

B. Thermal corrections

Introducing an IR regulator, such as a small box with
nontrivial boundary conditions, changes g2flowðτfÞ from its
vacuum value. Provided that all simulations are performed
with precisely the same IR regulator, this does not matter;
we can still match different lattice spacings to establish
their ratio. However, we do not know the lattice spacing

FIG. 1. Cartoon showing the matching of coupling g2flowðτf=a2Þ
for two lattices of bare coupling and spacing (β1, a1) and (β2, a2).
A given g2flow value is crossed at different flow depths as measured
in lattice units. These should coincide with the same physical
flow depth. Therefore, the rescaling of the horizontal axis needed
to make the curves overlap determines the squared lattice
spacing ratio.

TABLE I. The improvement coefficients C1 and C2 in terms of
the generating action, the flow procedure, and the observable.
The label W means Wilson, C is Clover, Z is Zeuthen flow, iC is
improved Clover and LW is Lüscher Weisz.

Action-flow-observable C1 C2

W-W-W 1
8

3
128

W-W-C − 1
24

− 1
512

W-Z-W 0 101
3840

W-W-LW 13
72

13
384

W-Z-LW 1
18

17
768

W-Z-iC 1
18

− 7
512

LW-Z-iC 0 − 3
120

LW-Z-LW 0 101
3840
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ratio a priori—in fact, this is the whole point—so until we
converge to the correct parameters, the different lattices we
study will generically not have precisely the same IR
regulation. For instance, if two lattices are supposed to have
a factor-of-2 lattice spacing ratio, we might study one on an
8 × 323 box and the other on a 16 × 643 box. But if the true
ratio turns out to be 1.89 rather than 2.00, then these will
represent different physical temperatures and therefore
different expected g2flowðτfÞ values at large τf . Therefore
it is good to determine everything we can about the box-
size effects on hEti, to take them into account in the
matching, and to stick to a range of τf values where the
effects are not large.
With this in mind, we will calculate the thermal

corrections to hEti. Wewill do so first at lowest perturbative
order, where the corrections prove to be exponentially small
for small τfT2. But at higher orders in the coupling there are
polynomial in τfT2 effects, which we will also be able to
determine. Since we are interested in infrared effects here,
we will work in the continuum.
At the free theory level, the expectation value of the field

strength with thermal boundary conditions is

hEtiðTÞ ¼ 12g2T
X

p0¼2πnT

Z
d3p
ð2πÞ3 e

−2τf ðp2
0
þp2Þ: ð8Þ

This can be evaluated using the Poisson summation
formula, leading to1 [36]

hEtiðTÞ ¼ hEtiðT ¼ 0Þ
X
n∈Z

e−n
2=8τfT2

: ð9Þ

Provided that 8τfT2 ≪ 1, this result is exponentially close
to 1. We name the ratio of the thermal to the vacuum
squared field strength,

RT≡ hEtiðTÞ
hEtiðT¼0Þ ; RT;LO¼1þ2

X∞
n¼1

e−n
2=8τfT2

: ð10Þ

This result is shown in Fig. 2. If a spatial extent
is comparably small to the time extent, the full
correction is a product of this correction times a factor
for each space direction, with the length L playing the role
of 1=T.
We see that the thermal effects are negligible up to

τfT2 ∼ 0.02 and become important after τfT2 ∼ 0.04 hitting
the 20% level at τfT2 ∼ 0.05. Therefore we will typically
avoid flow values larger than τfT2 ¼ 0.03, so that these
corrections remain small.
Besides these effects, there are effects at higher order in

the coupling which are only polynomially suppressed in the

temperature, R ∼ g2ðτfT2Þ2. To see this, consider the
relation between hEi and the trace anomaly,

ϵ − 3P ¼ T
V
d lnZ
d ln μ

¼ 1

g4
dg2

d ln μ
hEi: ð11Þ

The thermal contributions to the pressure have a known
perturbative expansion at high temperatures,

PðTÞ ¼ ðAþ Bg2ðμ ¼ πTÞ þ…ÞT4; ð12Þ

where the coefficients ðA; BÞ and higher order terms can be
found, for instance, in Refs. [37–39]. The trace of the stress
tensor is related to the pressure via

ϵ − 3P ¼ T
dP
dT

− 4P ¼ BT4
∂g2

∂ ln μ
: ð13Þ

Combining with Eq. (11), we find

hEtiðTÞ ¼ hEtiðT ¼ 0Þ þ g4BT4;

RT ¼ RT;LO þ 8π2g2

9
ðτfT2Þ2 ðfor pure glueÞ: ð14Þ

Here we used the standard pure-glue expression for B
from [37]. In the presence of light fermions the correction is
multiplied by 1þ 5nf=12 with nf the number of species
with m < πT [40]. We also assume that the thermal-to-
vacuum difference in hEi is not influenced by gradient
flow, which will work until the leading-order corrections
we discussed above begin to play a role.
Combining these corrections, we account for lattice-

spacing and thermal effects by using

FIG. 2. Thermal corrections RT;LOðτfT2Þ from Eq. (10).

1This result does not directly appear in the reference, but can
be found by combining the reference’s Eqs. (3.3) and (3.4).
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g2flowðτfÞ ¼
128π2

24τ2f

hEtiT;latt
RlattRT

þ ðhigher orderÞ: ð15Þ

In practice we apply the two corrections as additive shifts,
that is, we use 1þ ðRlatt − 1Þ þ ðRT − 1Þ rather than
RlattRT .

C. Application to pure-glue QCD

Our procedure for scale setting is then the following:
(1) Choose a reference lattice-spacing which is already

known.
(2) Choose a box size which will be an integer number

of lattice spacings in each direction.
(3) Choose a second desired lattice spacing such that the

same box will also be an integer number of spacings
in each direction.

(4) Make a first estimate (based on extrapolating known
results) for the coupling β to use with this lattice.

(5) Measure g2flow, including spacing and temperature
corrections, for each spacing in this box.

(6) Choose a range of τf values where each g2flow result
should be relatively free of lattice-spacing and
temperature effects.

(7) Determine the flow-rescaling which causes the g2flow
results to most accurately overlap in our τf window,
and therefore determines the true ratio of lattice
spacings.

(8) If the lattice spacing ratio is too far from the desired
value, the volumes are inequivalent. In this case we
make an improved β estimate and repeat the pro-
cedure.

Before applying this procedure in 2þ 1þ 1 flavor QCD,
we will first test it in the pure-glue case, where it is not
necessary to match quark masses and where precise scale
setting has already been established. Since the most
accurate scale setting has been performed for the Wilson
action [41,42], we will also use this action choice.
To test our procedure, we choose a reference lattice with

lattice coupling β1, corresponding to a spacing a1, such that
a lattice with temporal extent Nτ ¼ 10 will correspond to a
temperature of T ¼ 4.1Tc. We then try to identify what
lattice couplings β2, β3 will be at the same temperature on
lattices of temporal extent Nτ ¼ 12, 14. We adopt as our
“guess” for the correct β2, β3 the values determined by the
pocket formula provided in Ref. [42]. We then choose
lattices with aspect ratios larger than 3, such that finite-
volume effects are expected to be small. The specific
parameters are shown in Table II.
We then evaluate g2flow at a range of gradient flow depths

for each lattice. The result for lattices B1, B2 is shown in
Fig. 3. The figure shows g2flow from Eq. (6), without the
lattice-spacing and thermal corrections described in
Eq. (15), for two lattices. The lattice B2 clearly has a
smaller coupling value, and the scale dependence of the
coupling is also manifest. The turn-off towards zero at very

small τf represents strong lattice effects; for small τf the
integral in Eq. (5) is dominated by p-values which are
absent on the lattice since the lattice p is restricted to a
Brillouin zone. Ignoring this region, a rescaling of τf for B2
relative to B1 brings the two curves into approximate
agreement. Specifically, if we compare g2flow for B1 at flow
depth τf1 ¼ Ka21 with g2flow for B2 at flow depth τf2 ¼
s2Ka22 we find them to agree, for a range of K at a fixed s
value. This implies that the physical scales are the same,
a21 ¼ s2a22 or s ¼ a1=a2.
The complication, also illustrated in Fig. 3, is that the

curves never agree completely over awide range. At small τf
the lattice spacing effects are important, while at large τf the
error bars are larger and thermal effects come into play.
What we want is the s value which optimally rescales the
flow depths such that the agreement is optimized over a
range of τf values. We now outline our procedure for
doing so.
We generate a set of gauge field configurations for each

lattice B1; B2; B3. For each generated configuration we
measure g2flow at a discrete series of flow depths τfi. These
are corrected for spacing and temperature effects using
Eq. (15). We will fit using the data within a flow range
τf > 1.0a2 and τf < 0.04=T2, both for the coarser (smaller-
Nτ) lattice. While we determine the statistical errors for
each g2flowðτfÞ value, these will be highly correlated between
nearby τf values, so the errors are always determined
by breaking the Markov-chain data streams into blocks,
larger than the autocorrelation time at the largest τf we use,
and applying the jackknife method to the full fitting
procedure.
One complication is that we want to compare

g2flowðB1; τf1Þ to g2flowðB2; τf2 ¼ s2τf1Þ with s a real-valued
fitting parameter. But we have only determined g2flowðτfÞ at
discrete values, and for generic s values these will not “line
up” between the two datasets. To handle this, rather than
comparing g2flowðB1Þ to g2flowðB2Þ directly, we will compare
each to a model for g2flow. Specifically, we define g

2
fitðτfÞ to

be a few-parameter piecewise-cubic Hermite spline func-
tion. Define s0 to be the expected value of the lattice-
spacing ratio. The optimal s value is the one which best
allows g2fit to match g2flowðτf1Þ ¼ g2fitðτf ¼ τf1Þ and to fit
g2flowðτf2Þ ¼ g2fitðτf ¼ τf2=s2Þ. Therefore, in comparing, say,
lattice B1 with lattice B2, we define a chi square value
which is

TABLE II. Input lattice parameters at temperature T ¼ 4.1Tc in
pure glue lattice QCD.

Lattice β a (fm) Nτ Nx × Ny × Nz Ntrajs

B1 7.30916 0.01675(67) 10 36 × 32 × 32 6400
B2 7.46275 0.01396(56) 12 40 × 32 × 36 6400
B3 7.59354 0.01196(48) 14 48 × 48 × 48 6400
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χ2 ¼
X

τi ∈ ½τmin;τmax�

Δτi
τi

ðg2flowðB1; τiÞ − g2fitðτiÞÞ2
σ2B1;τi

þ
X

τi ∈ ½s2
0
τmin;s20τmax�

Δτi
τi

ðg2flowðB2; τiÞ − g2fitðτi=s2ÞÞ2
σ2B2;τi

;

ð16Þ

that is, the chi square compares the deviation of g2flow
measured on B1 to a spline fit and the deviation of g2flow
measured on B2 to the same spline after a τ-rescaling. The
fit is optimized over both the rescaling s and the parameters
of the spline fit. The factor Δτ=τ, with Δτ the spacing
between the measured τ values, accounts for the high
degree of autocorrelation between g2flow at nearby flow
depths. In addition, rather than using the coefficientsC1, C2

of Eq. (7) as given in the table, we instead include C1 as a
fitting parameter with a weak prior favoring the leading-
order value, and neglect C2.
We have carried out this procedure twice, with two

choices of observable. We always use the Wilson action
and the improved Zeuthen flow. But we apply the pro-
cedure once using the Wilson observable and once using
the improved-clover observable. Table I shows that the
former case has C1 ¼ 0, while in the latter case the
corrections from the Wilson action are uncorrected and
C1 ¼ 1=18. The results using each action choice are listed
in Table II. The fits are performed on all pairs of generated
lattices from Table II. The relevant scale ratio of the pairs
are already known from Ref. [41] and are denoted by the
input scale ratio sinput. In our fitting procedure, the spline is
initialized from the data on one or the other of the two
lattices. Therefore as a first check of the procedure, we
establish the consistency of fits under the exchange of the
two ensembles in a pair. This is shown in the first two lines

of Table III with ensembles B1 and B2. We see that the
procedure is robust against this difference.
The determined value of the parameter C1 is surprisingly

close to its leading-order estimate. This suggests that
tailoring the action-flow-observable combination to have
small C1, C2 is a viable strategy. We will use this approach
in the next section. The table also indicates that the
combination Wilson-Zeuthen-Wilson gives larger final
deviations in the determined scale ratio. Based on examin-
ing the final fitted curves, we believe that this is because of
the larger a4 corrections which occur in this case. With our
choice of τf > 1.0a2, such corrections are not yet negligible
at the lowest edge of our flow range, and our failure to
account for them systematically biases our results. This
implies that it may be necessary to try to tune away a4

effects, and/or to account for them in the fit. We will do so
in the next section.

III. EXTENSION OF MILC SCALE SETTING

Our eventual goal, as explained in the Introduction, is to
study the topological susceptibility of QCD in the temper-
ature range 400–1100 MeV. To do so we will choose three

FIG. 3. Coupling after gradient flow, defined in Eq. (6) without lattice spacing or thermal corrections, for the B1; B2 lattices. Left:
expressing τf in units of the lattice spacing. Right: rescaling τf for the B2 lattice (and therefore the x-axis) to optimize the overlap of the
two curves.

TABLE III. Fit results for the lattices B1, B2 and B3 with
Zeuthen flow and the observables iC (improved Clover), W
(Wilson).

Lattice 1 Lattice 2 sobs sinput C1 Obs

B1 B2 1.208(8) 1.1998(9) 0.0498(17) iC
B2 B1 1.210(5) 1.1998(9) 0.0498(17) iC
B1 B3 1.414(10) 1.4005(8) 0.0326(31) iC
B2 B3 1.167(7) 1.1672(7) 0.0526(36) iC
B1 B2 1.249(9) 1.1998(9) 0.0019(18) W
B1 B3 1.465(9) 1.4005(8) 0.0041(6) W
B2 B3 1.187(5) 1.1672(7) 0.0069(11) W
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target temperatures, and we will design lattices (β and mq
combinations) at the physical point and at a set of lattice
spacings corresponding to Nτ ¼ 8, 10, 12, 14 at each
desired temperature. The two finest 2þ 1þ 1 flavor MILC
lattices to be precisely scale-set [21,22] are shown in
Table IV. The scale ratio of these two lattices happens to
be a1=a2 ≃ 8=14. Therefore we can choose a temperature
T ¼ 435 MeV for which these known lattices correspond
to the Nτ ¼ 8 and Nτ ¼ 14 lattices; we only need to
determine the Nτ ¼ 10, 12 lattices which lie between
them. Going to higher temperatures, we will also inves-
tigate T ¼ 682 MeV, for which the finer MILC lattice has
Nτ ¼ 9, and T ¼ 1022 MeV, for which the finer MILC
lattice has Nτ ¼ 6. This provides three temperatures which
span the range over which the topological susceptibility
plays an important role in determining the axion production
efficiency [7,10]. However, Nτ ¼ 9 cannot be simulated
with staggered quarks and Nτ ¼ 6 is too small to provide
reliable lattice results; therefore in establishing the lattice-
scale matching for these two choices, we will investigate
temperatures which are half as hot as the target temperature,
corresponding to the use of double the Nτ value which we
intend to employ in the eventual topology simulations. This
will also be important when we match mc values, as we
need mc ≳ πT. For this reason, we will target the scale
determination of the lattices listed in Table V.

We will proceed in two steps. First we will determine the
lattice inverse gauge coupling β for each desired lattice
using the same technique as in the previous section and an
educated guess for the quark masses. Second, we will tune
the quark masses. The mass ratios ms=mc and ml=ms
should remain fixed at high energy scales, since the running
of the quark mass depends on the difference in anomalous
dimension between the ψ̄ψ operator and the ψ̄=Dψ operator,
which depends only on the operator structure which is
common between quark types. This argument should apply
provided all quarks obey mqa ≪ 1, which is true in the
lattice-spacing range we consider. Therefore we fix the
quark masses to the ratios determined by Ref. [22],

mc

ms
¼ 11.783ð1Þ ms

ml
¼ 27.3: ð17Þ

We then only need to matchmc values between lattices. We
will do this by measuring the Ds spatial correlator mass on
the reference lattice and tuning the valence mc on all other
lattices to reproduce it. Note that the Ds spatial correlator
mass is temperature dependent; but we always compare
lattices which are at the same temperature, so this should be
a common effect, provided that we use the same lattice
geometry in each case. Because the correlator mass
involves measuring correlation functions over a wide range
of separations, we use lattices with a large extent along one
axis. For the large-Nτ cases, numerical expediency forces
us to use rather small extents in the other spatial directions;
but again, as long as these are the same for all lattices, the
effects should be common and should scale out.
Since we will be extending the MILC scales, we employ

the same gauge and fermionic action used by them [19].
We state them here for completeness. We use the Nf ¼
2þ 1þ 1 HISQ fermionic action, where the gauge links
are Fat7 smeared along with a Naik term characterizing a
derivative improvement with a third nearest neighbor term.
The charm quark is implemented in the same way as the
lighter quarks. The gauge action is one-loop Symanzik and
tadpole improved using the plaquette to determine the u0
factor. The action includes planar Wilson loops with
terms of type 1 × 1 and 1 × 2 and a parallelogram-type
1 × 1 × 1 term.

A. Tuning of gauge coupling

In Table V, we list the temperatures and target lattices
which we will consider. We also present the β and mc
values which emerge from our matching, and two param-
eters which describe the rational hybrid Monte-Carlo
algorithm: ϵ is the trajectory evolution step and τ is the
total length of the trajectory. The labels in bold indicate the
reference parameters (listed in Table IV). We always use a
box length of at least 6Nτ in the z-direction in order to have
a sufficiently long direction for a reliable computation of
the screening mass in that direction, which will be relevant

TABLE IV. Lattice parameters for two lattices, as determined
by the MILC collaboration [22]. Note that the β ¼ 7.28 case was
calculated at an unphysically heavy pion mass.

β a (fm) amc

6.72 0.05662(13) 0.2679(1)
7.28 0.03215(13) 0.1333(1)

TABLE V. Lattice parameters for the scale setting calculation.
Values in bold are known from [4,5]; Other parameters are final
results of the calculation.

T(MeV) Lattice βtuned amc ϵ τ

435(1) 8 × 162 × 64 6.720 0.2679(1) 0.045 1.47
10 × 202 × 72 6.950 0.1994(13) 0.04 1.20
12 × 242 × 96 7.130 0.1636(13) 0.04 1.20

341(2) 18 × 182 × 120 7.280 0.1333(1) 0.04 1.00
16 × 162 × 96 7.150 0.1432(30) 0.06 1.08
20 × 202 × 120 7.390 0.1107(25) 0.05 1.11
24 × 242 × 144 7.600 0.0884(45) � � � � � �
28 × 282 × 168 7.715 0.0827(17) 0.025 1.25

511(2) 12 × 122 × 72 7.280 0.1333(1) 0.04 1.20
16 × 162 × 96 7.600 0.0884(45) 0.04 1.20
20 × 202 × 120 7.820 0.0760(35) 0.035 1.47
24 × 242 × 144 8.045 0.0697(46) 0.035 1.47
28 × 282 × 168 8.220 0.0559(17) 0.025 1.25
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for the quark mass tuning. The lattice with β ¼ 7.6, with
a ¼ ð3=4Þ times the reference value, appears for both the
second and third temperature; we only use the 511 MeV
temperature in establishing its parameters.
The gauge coupling tuning begins with an initial guess for

the gauge coupling and charm quark mass ðβ; mcÞ which
will correspond to the desired lattice spacing. We note that
the target lattice spacing is known since the temperature and
temporal extent Nτ is fixed. Our initial guess is based on a
rational-function extrapolation of the known 2þ 1þ 1-
flavor MILC scale setting values [43,44]. We then choose
two values 1% separated in β which bracket this value,
which we will scale set and then interpolate to find the
optimal β value. We will then repeat the scale setting at this
optimal β value as a final check. In each case themc mass is
varied along with β using the rational-function relation
which we establish from the prior scale setting.
We perform the scale setting itself using the same

procedure as in the last section, but with the following
modifications. First, we choose a combination of action,
flow, and observable such that bothC1 andC2 vanish at tree
level. Specifically, we use the 1-loop tadpole improved
gauge action which is standard for HISQ and is described
above, together with improved (Zeuthen) flow. And we use
a linear combination of the Lüscher-Weisz and improved-
clover observables, chosen using the last two lines of
Table I such that C2 cancels,

t2hEi ¼ 96t2hEiLW þ 101t2hEiiC
197

: ð18Þ

We have considered three ways of treating the variables
C1, C2. In the first approach, we include them as fitting
parameters, allowing them to vary independently in each
matching between two lattices. These fits reveal that both
C1 and C2 are small, generally consistent with zero. Also,
for a given choice of lattice action, C1, C2 should be

functions of the lattice coupling parameter β, which varies
very little between our different lattices. Therefore, even if
nonzero, we should expect C1, C2 to be almost the same
across all simulations. So a second approach is to treat them
as fitting parameters which are common across every fit—
thereby reducing the number of fitting parameters which
must be considered. Doing so, we find that both parameters
are indeed small and consistent with zero. This suggests a
third procedure; simply assuming that the lattice improve-
ment was successful and that their values are 0. Somewhat
surprisingly, our results both for scale ratios and for their
errors are almost the same in each of these procedures.
Therefore, conservatively, we have adopted the fits in
which we include C1, C2 as fitting variables.
Another change we make involves the τfT2 range we use

in the matching. For the second and third temperatures
listed in Table V, the small space extent along two axes
means that the thermal correction RT calculated in Eq. (14)
cannot be trusted. Rather, there is a correction of the same
form as Eq. (10) associated with time and with each small
space extent. We choose a limit τfT2 ≤ 0.03, where
Eq. (10) indicates a correction smaller than 1%, to control
these geometry-induced errors. (In these space directions
we apply periodic boundary conditions for both the gauge
fields and the fermionic fields, in contrast to the antiperi-
odic boundaries for fermions in the time direction.)
To illustrate the way we interpolate to get to the optimal

gauge coupling, consider Fig. 4. The figure shows a
comparison of the 511 MeV lattices with Nτ ¼ 12 and
Nτ ¼ 20. On the left, we rescale based on the box size, and
see that two β values for theNτ ¼ 20 lattice are respectively
above and below the reference lattice. By measuring the
required rescaling in each case and interpolating, we
estimate that β ¼ 7.820 at Nτ ¼ 20 will be a good match
for the reference lattice. This proves correct, as seen in the
right panel. One also observes that the curves at small τfT2

differ due to differing lattice-spacing effects. At the largest

FIG. 4. Tuning of the gauge coupling at T ¼ 511 MeV, comparing lattices with Nτ ¼ 12 and Nτ ¼ 20. Left panel: two β values at
Nτ ¼ 20, one too low and one too high, give incompatible results for g2flow when the flow is scaled according to the target lattice spacing
ratio. Right panel: a β value interpolated based on the other results gives a good match.
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τfT2 values the lattices also differ, but the statistics are
poorer here, and it is also beyond our cutoff τfT2 < 0.03
where geometry effects may come into play.

B. Tuning of charm quark mass

In tuning the charm quark mass, we use a similar
approach of trying several trial valence masses and com-
paring the resulting (thermal spatial-screening) meson
masses to a reference meson mass. We use the screening
mass of the Ds meson, because thermal effects obscure the
influence of the light quark masses, and the Ds is a flavor-
nondiagonal charm-containing pseudoscalar. The reference
meson masses are measured on the reference configurations
shown in bold in Table IV. In tuning the charm quark mass,
we use the same gauge configurations generated in the
confirmation run which uses an initial guess from the
rational function approximation for the charm quark mass.
We then choose five quark masses in a 10% mass range
around this central value. The strange quark masses are
chosen correspondingly, using Eq. (17). We then compute
the Ds meson screening mass at each mc mass, scale them

to mDs
=T, and fit them to a linear function of mc. We then

match this fit to the reference mDs
=T to determine the right

physical mc and its error. As a check, we perform the same
procedure using the unphysical Dc meson, a cc̄ state in
which disconnected diagrams are ignored. The operators
for the Ds and Dc mesons in the continuum are

DsðxÞ ¼ c̄iαðxÞðγ5ÞαβsiβðxÞ
DcðxÞ ¼ c̄iαðxÞðγ5ÞαβciβðxÞ; ð19Þ

where the labels c and s correspond to the charm and strange
spinors respectively. Spin indices are in Greek and color
indices are in Latin. For the HISQ action, the spinor will be
one component, and the γ5 will be replaced with the its
staggered analogue. In computing the correlation functions,
we employ a wall source in the screening direction and in
order to guarantee sufficient statistics, we use twelve source
slices spaced evenly in the screening direction.We employ a
two-exponential fit to account for contamination from
higher mass states. We illustrate the procedure in Fig. 5,

TABLE VI. Final results of the scale setting including the tuning of bare coupling and charm quark mass.

Target T (MeV) βtuned amphys
c s 104C1 104C2 χ2=dof a (fm) u0 T (MeV)

435(1) 6.950 0.1994(13) 1.2496(71) −20ð36Þ 0.3(6) 5=45 0.04531(26) 0.89111(7) 435(2)
7.130 0.1636(13) 1.4954(48) −8ð56Þ 0.1(9) 3.6=35 0.03786(12) 0.89508(4) 434(2)

341(2) 7.150 0.1432(30) 0.8867(22) −7ð4Þ 0.07(2) 3.06=61 0.03626(9) 0.89527(5) 340(1)
7.390 0.1107(25) 1.1173(40) 4(50) 0.0(4) 5.81=75 0.02877(10) 0.89981(3) 342(1)
7.715 0.0827(17) 1.542(11) 24(27) 0.2(3) 136=114 0.02084(15) 0.90528(1) 340(2)

511(2) 7.600 0.0884(45) 1.3394(23) −14ð4Þ 0.2(3) 8.3=49 0.02400(4) 0.90310(5) 513(1)
7.820 0.0760(35) 1.660(16) −78ð86Þ 0.8(9) 1.1=65 0.01936(19) 0.90691(3) 509(5)
8.045 0.0697(46) 2.010(23) 73(123) 0(1) 35=104 0.01599(18) 0.91023(2) 514(5)
8.220 0.0559(17) 2.343(18) −2ð70Þ 0.0(6) 69=128 0.01372(11) 0.91261(1) 513(4)

FIG. 5. Tuning of the charm quark mass mc at Nτ ¼ 20 and T ¼ 511 MeV. Left panel: Effective mass of the correlation function for
the Dc meson (averaged over sources). The green band is the correlated two-exponential fit to the data. The data have clear correlations
between data points, so the errors are computed via a bootstrap resampling of our configurations. Right panel: Matching of the fit to the
Dc correlator (green band) to the reference Dc mass (blue band). The overlap region provides the charm mass with uncertainties.
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which shows the charm-quark measurement and the inter-
polation to the physical charm mass for the Nτ ¼ 20,
β ¼ 7.82 case. We use bootstrap resampling to compute
the errors, since this properly treats the rather large auto-
correlations between the mass at nearby separations, which
are visible in Fig. 5. The autocorrelations make it difficult to
interpret a chi square test, since this is usually expressed in
terms of the number of uncorrelated degrees of freedom.
With the tuning of the charm quark mass and the

coupling done, we perform a final matching run in order
to confirm the final scale ratio. The results are listed in
Table VII. We find that the C1, C2 ratios are indeed small
and consistent with 0, and that the final uncertainties in the
scale are within the desired tolerance of 1% to 2%.

IV. CONCLUSIONS AND OUTLOOK

In order to determine the topological susceptibility of
QCD with precision to 1 GeV temperatures, we need
accurate scale setting within a 2þ 1þ 1 flavor lattice
gauge action which treats fermion chirality relatively
well—in our case, the HISQ framework—with a precision
of 1%–2% and down to lattice spacings of a ¼ 0.014 Fermi
or a−1 ¼ 14 GeV. And we need a precise determination of

the quark masses on these lattices. We have done so by
using step scaling, matching physical scales by matching
gradient-flowed field strengths and matching quark masses
by using Ds meson masses. Infrared issues are handled
using thermal boundary conditions with temperatures
between 341 and 511 MeV. We have shown how to use
thermal boundary conditions and to use a range of gradient-
flow depths, simultaneously allowing precision and control
of lattice-spacing effects.
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