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We present a novel method to determine on the lattice both the real and imaginary parts of complex
electroweak amplitudes involving two external currents and a single hadron or the QCD vacuum in the
external states. The method is based on the spectral representation of the relevant time-dependent
correlation functions and, by extending the range of applicability of other recent proposals built on the same
techniques, overcomes the difficulties related to the analytic continuation from Minkowskian to Euclidean
time, arising when intermediate states with energies smaller than the external states contribute to the
amplitude. In its simplest form, the method relies on the standard iε prescription to regularize the Feynman
integrals and at finite ε it requires to verify the condition 1=L ≪ ε ≪ ΔðEÞ, where L is the spatial extent of
the lattice and, for any given energy E,ΔðEÞ represents the typical size of the interval around E in which the
hadronic amplitude is significantly varying. In order to illustrate the effectiveness of this approach in a
realistic case, we apply the method to evaluate nonperturbatively the hadronic amplitude contributing to the
radiative leptonic decayDs → lνlγ�, working for simplicity with a single lattice ensemble at fixed volume
and lattice spacing.
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I. INTRODUCTION

In the lattice regularization of QCD, the Wick rotation
from real to imaginary time is a necessary ingredient to
perform numerical simulations based on Montecarlo algo-
rithms. As is well known, this rotation introduces theoretical
and numerical difficulties. A class of problems occurs in the
study of processes withmore than one hadron in the initial or
final state, as firstly pointed out in the seminal paper by
Maiani and Testa [1]. However, even when only a single
hadron or the QCD vacuum appear in the external states, the
analytic continuation from Minkowskian to Euclidean time
may still be problematic. This occurs in particular in
electroweak amplitudes when one or more of the intermedi-
ate states contributing to a given process have energies

smaller than those of the external states. In such a situation,
the physical (Minkowskian) amplitude develops an imagi-
nary part, and the integral over Euclidean time, which is
usually considered on the lattice in order to evaluate the
hadronic amplitude, diverges in the limit of infinite temporal
extension T of the lattice.
In Ref. [2] the problem of overcoming the difficulties

induced by the Wick rotations in numerical simulations of
lattice QCD has been solved, on the theoretical side, by
relying on the spectral representation of the Euclidean
lattice correlation functions and the theoretical connection
between a generic amplitude and Euclidean lattice corre-
lators has been established. More recently, this connection
has been worked out in details in Ref. [3] by considering
spectral densities smeared in energy with Cauchy kernels,
depending upon the smearing parameter ε, which in the
limit ε ↦ 0þ implement the standard i0þ-regularization of
Feynman integrals. In Ref. [4], it is has been suggested that
the limitations imposed by the Maiani-Testa theorem can
also be circumvented by introducing in the Euclidean time
integrals properly smeared theta functions, that allow to
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select the desired energy region even in the large time limit
of the lattice correlation functions.
In this paper, we generalize these spectral densities

techniques to overcome the problem of the analytic con-
tinuation from Minkowskian to Euclidean time arising in
processes containing a single hadron or the QCD vacuum
in the external states. Our proposal relies on the spectral
representation of the hadronic amplitude and on the Hansen-
Lupo-Tantalo (HLT) method of Ref. [5] for evaluating the
spectral function smearedwith a proper kernel. In its simplest
form, as in the case of Ref. [3], the method proposed here
relies on the standard iε prescription to regularize the
Feynman integrals, which allows to write a generic hadronic
amplitudeHðEÞ, which is a function of the energyE, in terms
of its spectral representation in the form

HðEÞ ¼ lim
ε→0

Z
∞

E�

dE0

2π

ρðE0Þ
E0 − E − iε

; ð1Þ

where ρðEÞ is the spectral density and the lower integration
limit E� is such that ρðEÞ ¼ 0 for E < E�. Since the integral
in the spectral representation of Eq. (1) is independent of
time, all the difficulties associated with the analytic con-
tinuation from Minkowskian to Euclidean time are thus
circumvented.
A central ingredient of the proposal is the observation

[3,5,6] that, for finite values of ε, the integral of Eq. (1) can be
computed using theHLTmethodofRef. [5], starting from the
lattice determination of the relevant time-dependent corre-
lation function. Therefore, by performing the calculations at
different values of ε and then extrapolating the results to
ε → 0, one can achieve a lattice determination of both the real
and imaginary part of the hadronic amplitude.
Two observations are now in order. The first one is that

numerical lattice simulations are performed at finite spatial
volume, so that the spectrum gets modified with respect to
the infinite-volume case and the energy levels are discrete.
As it will be shown below [see Eq. (33)], the ε-dependent
kernel in Eq. (1) provides a smearing of the hadronic
amplitude and a necessary requirement is that, for finite
values of ε, the smearing size is larger than the typical
separation of the discrete levels, which corresponds to the
condition ε ≫ 1=L. When this condition is satisfied, finite
volume effects, which are known to be exponentially small
in εL [6], can be safely kept under control.
The second observation is that, in the application of the

HLT method to evaluate the smeared hadronic amplitude,
the smallest values of ε that can be reached depends on both
the finite numbers of discrete lattice points at which the
relevant time-dependent correlation function has been
computed, i.e. on the temporal extension T of the lattice,
and on the statistical accuracy of the lattice data. Clearly, in
order to ensure good control of the extrapolation ε → 0, at
any selected value of the energy E, the condition ε ≪ ΔðEÞ
must be verified, where ΔðEÞ indicates the typical size of
the interval around E in which the hadronic amplitude is

significantly varying. It may then happen that, in a region
where the physical amplitude is rapidly varying, the
condition ε ≪ ΔðEÞ is difficult to be fulfilled, thus hinder-
ing in this region the extrapolation for ε → 0 of the lattice
results. This happens for instance when a resonance of
narrow width Γ contributes to the spectral density. In this
case, in the region of the resonance ΔðEÞ ≃ Γ, and the
condition ε ≪ Γ may require extremely high statistical
accuracy of the lattice data. Even in this case, however, the
lattice determination of the smeared hadronic amplitude at
ε > 0 may still provide valuable information, as discussed
in sect. II B. For instance, if experimental data on the
hadronic amplitude are available, in terms for example of a
model function and experimentally determined parameters,
it is then possible to evaluate from them the smeared
hadronic amplitude at ε > 0, so that a useful comparison
between theoretical and experimental data is still possible.
The method presented in this paper is general, and can be

applied to the determination on the lattice of any hadronic
amplitude involving two external currents and a single
hadron or the QCD vacuum in the initial and final states.
An example of process in which this problem is encountered
is the radiative leptonic decays P → lνlγ�, where P is a
pseudoscalar meson, l is a charged lepton and γ� is a virtual
photon produced off-shell. This process has been recently
studied on the lattice in Ref. [7] (see also [8]), for the case in
which P is a K meson and the virtual photon decays into a
pair of charged leptons, l0þl0−. The hadronic amplitude has
been computed using the standard approach, in terms of a
time-dependent Euclidean correlation function integrated
over the space-time position at which the virtual photon is
emitted. It is found, however, thatwhen thevirtuality k2 of the
photon is such that k2 > 4m2

π , where mπ is the pion mass,
two-pion intermediate states with energies smaller than those
of the external states contribute to the amplitude, and the
integral over the Euclidean time diverges in the infinite T
limit. In the study of Ref. [7], addressing this problem has
been postponed, by performing the numerical simulation at
values of the pion mass larger than the physical value, so that
the condition k2 > 4m2

π is never verified. In this work we
consider the application of the spectral method to the Ds →
lνlγ� decay where, neglecting the quark-line disconnected
contribution and in the infinite-volume limit, the problem of
analytic continuation is present for virtuality k2 above the
two-kaon threshold 4M2

K . For this proof-of-principle calcu-
lation we limit the simulations to a single lattice spacing
a ≃ 0.08 fm and consider a single volume with spatial
extent L ≃ 5 fm.
An alternative method to circumvent the obstacle posed

by the Wick rotation, in processes like those considered
in this paper, has been recently discussed in Ref. [9], in
which it is proposed to subtract explicitly from the finite-
volume Euclidean correlation function the contribution
from all the intermediate states with energy smaller than
that of the external states. In principle, this can be done by
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determining the corresponding energies and matrix ele-
ments from the study of additional two- and three-point
correlation functions. When the contribution of these states
is exactly removed, which in practice can be challenging
due to the presence of statistical errors and finite cutoff
effects, the time integral that is usually considered in the
standard approach is no longer divergent in the T → ∞
limit. The contribution of the subtracted intermediate states
can then be added back to the amplitude, together with an
additional correction term aimed to remove power-law
finite volume effects. In the future, it will be interesting to
compare the effectiveness of the spectral density method
that we propose here with that of the subtraction method of
Ref. [9], in the case of a physical QCD amplitude.
The plan for the remainder of this paper is as follows. In

Sec. II we will discuss the method in more details, by
deriving the result expressed by Eq. (1) and illustrating the
theoretical procedure. The numerical application of the
method to the study of the Ds → lνlγ� decays will be
presented in Sec. III. Finally, we end the paper by briefly
presenting our conclusions and future perspectives.

II. THE METHOD

In this section we illustrate the method we are proposing
in more details, deriving the general formalism and dis-
cussing some possible variants in its implementation.
For concreteness, wewill refer to the case of the hadronic

amplitude of the radiative leptonic decays P → lνlγ�,
whose structure-dependent contribution is expressed, at
the lowest-order in the electroweak interactions, by the
following hadronic tensor [7]:

Hμν
W ðkÞ ¼ i

Z
d4x eik·xh0jT½JμemðxÞJνWð0Þ�jPi; ð2Þ

where k ¼ ðE; kÞ is the 4-momentum of the virtual photon
and the initial pseudoscalar meson P is taken at rest.1

The operators Jμem and JνW are the electromagnetic and
weak hadronic currents respectively.
The hadronic tensor Hμν

W ðkÞ can be split in terms of the
contributions coming from the two different times-
orderings, t < 0 and t > 0, where x ¼ ðt; xÞ is the
space-time position at which the electromagnetic current
is inserted:

Hμν
W ðkÞ ¼ Hμν

W;1ðkÞ þHμν
W;2ðkÞ

¼ i
Z

0

−∞
dt

Z
d3x eiEt−ik·xh0jJνWð0ÞJμemðxÞjPi

þ i
Z

∞

0

dt
Z

d3x eiEt−ik·xh0jJμemðxÞJνWð0ÞjPi:

ð3Þ
As discussed in Ref. [7], the analytic continuation from
Minkowskian to Euclidean time presents no problem in the
case of the first time-ordering, expressed by the hadronic
tensor Hμν

W;1ðkÞ. Therefore, in the following, we will
concentrate the discussion on the hadronic tensor
Hμν

W;2ðkÞ, even though the evaluation of the hadronic tensor
Hμν

W;1ðkÞ would proceed, with the spectral method we are
proposing in this paper, in the same way.
In Eq. (3), the hadronic tensor Hμν

W;2ðkÞ is expressed in
terms of the time-dependent correlator

Cμνðt; kÞ ¼
Z

d3x e−ik·xh0jJμemðxÞJνWð0ÞjPi ðt > 0Þ; ð4Þ

so that

Hμν
W;2ðkÞ ¼ i

Z
∞

0

dt eiEtCμνðt; kÞ: ð5Þ

Here we are interested in the spectral representation of the
correlator Cμνðt; kÞ, which can be easily derived:

Cμνðt; kÞ ¼
Z þ∞

−∞
dt0 δðt0 − tÞCμνðt0; kÞ ¼

Z þ∞

−∞
dt0

Z þ∞

−∞

dE0

2π
eiE

0ðt0−tÞCμνðt0; kÞ

¼
Z þ∞

−∞

dE0

2π
e−iE

0t
Z þ∞

−∞
dt0

Z
d3x0 eiE0t0−ik·x0 h0jJμemðx0ÞJνWð0ÞjPi

¼
Z þ∞

−∞

dE0

2π
e−iE

0t
Z

d4x0 eik0·x0 h0jeiP·x0Jμemð0Þe−iP·x0JνWð0ÞjPi

¼
Z þ∞

−∞

dE0

2π
e−iE

0t
Z

d4x0 h0jJμemð0Þe−iðP−k0Þ·x0JνWð0ÞjPi

¼
Z þ∞

−∞

dE0

2π
e−iE

0th0jJμemð0Þð2πÞ4δ4ðP − k0ÞJνWð0ÞjPi; ð6Þ

1With respect to Ref. [7], we are adopting here a different phase convention for the hadronic amplitude, defined by the i in front
of Eq. (2).
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where P represents the 4-momentum operator and
k0 ¼ ðE0; kÞ. Therefore, by defining the spectral density

ρμνðkÞ ¼ h0jJμemð0Þð2πÞ4δ4ðP − kÞJνWð0ÞjPi; ð7Þ
and replacing the lower limit of integration on the rhs of
Eq. (6) with E�, where ρμνðE0; kÞ ¼ 0 for E0 < E�, we
arrive at

Cμνðt; kÞ ¼
Z

∞

E�

dE0

2π
e−iE

0tρμνðE0; kÞ: ð8Þ

Equations (7) and (8) provide the spectral representation
of the correlator Cμνðt; kÞ. While we derived these formulas
for the specific case of the radiative leptonic decays of
mesons, the result is general, and Eqs. (7) and (8) hold in
the same form for any process involving two external
currents. In the remainder of this section, in order to keep
the notation more general, we will indicate the spectral
density simply as ρðEÞ, i.e. by omitting both the Lorentz
indices μ, ν and the dependence on the spatial momentum
k. Similarly, we will indicate the correlation function
Cμνðt; kÞ with CðtÞ and the hadronic tensor Hμν

W;2ðE; kÞ
with HðEÞ, so that Eq. (8) is rewritten as

CðtÞ ¼
Z

∞

E�

dE0

2π
e−iE

0tρðE0Þ: ð9Þ

The spectral representation of the hadronic tensor HðEÞ
is now derived using Eqs. (5) and (9) to obtain

HðEÞ¼ i
Z

∞

0

dteiEtCðtÞ¼ i
Z

∞

0

dt
Z

∞

E�

dE0

2π
e−iðE0−EÞtρðE0Þ

¼ ilim
ε→0

Z
∞

E�

dE0

2π
ρðE0Þ

Z
∞

0

dte−iðE0−E−iεÞt; ð10Þ

where, in the last equality, a factor e−εt, with ε > 0 and
ε → 0, has been introduced in the time integral in order to
ensure the convergence of the integral for t → ∞. Finally,
by performing the integral over time in Eq. (10), one arrives
to the expression

HðEÞ ¼ lim
ε→0

Z
∞

E�

dE0

2π

ρðE0Þ
E0 − E − iε

; ð11Þ

which relates the hadronic amplitude HðEÞ to the spectral
density ρðE0Þ. Eq. (11), which has been anticipated in
Eq. (1), represents the basic ingredient of the method we are
proposing in this paper to evaluate the hadronic amplitude
on the lattice.
It is important to note that Eq. (11) does not depend on

time. Therefore, it can be used to evaluate the hadronic
amplitude through a lattice calculation performed on an
Euclidean space-time, without encountering any difficulty
related to the analytical continuation from real to imaginary
time. The only (trivial) analytic continuation which has to
be considered concerns the relation in Eq. (9) between the

correlator and its spectral density. Once expressed in terms
of the Euclidean time, this relation takes the form

CEðtÞ ¼
Z

∞

E�

dE0

2π
e−E

0tρðE0Þ; ð12Þ

where CEðtÞ denotes the Euclidean correlator.
The structure of the hadronic amplitude HðEÞ which

follows from Eq. (11) is simpler in the case in which all the
internal states contributing to the spectral function ρðEÞ
have energies En > E (so that also E� > E). In this case,
the denominator in the integrand of Eq. (11) has no poles
and the limit ε → 0 can be taken directly, leading to

HðEÞ ¼
Z

∞

E�

dE0

2π

ρðE0Þ
E0 − E

; for E� > E: ð13Þ

Then, by replacing

1

E0 − E
¼

Z
∞

0

dt e−ðE0−EÞt; ð14Þ

which is valid for E0 > E, and using Eq. (12), one arrives at

HðEÞ ¼
Z

∞

0

dt
Z

∞

E�

dE0

2π
e−ðE0−EÞtρðE0Þ

¼
Z

∞

0

dt eEtCEðtÞ; ð15Þ

which expresses the hadronic amplitude in terms of the
Euclidean correlator when all the states contributing to the
spectral function ρðEÞ have energies En > E. Eq. (15) has
been used in Ref. [7] to evaluate the hadronic amplitude on
the lattice, and represents what we refer to in this paper as
the standard approach.
When however one or more states contributing to the

spectral function ρðEÞ have energies En < E, then the
denominator in the integrand of Eq. (11) develops singular-
ities for ε ¼ 0. This implies that the unregularized Euclidean
integral of Eq. (15) is divergent and the Wick rotation from
Minkowskian to Euclidean time could have not been
performed. In this case, however, the regularized spectral
representation of Eq. (11) is still valid, provided that the limit
ε → 0 is taken only after the integral has been evaluated.
Therefore, for finitevalues of ε, the integral of Eq. (11) can be
used to evaluate the hadronic amplitude in a lattice
simulation.
When intermediate states with energies smaller than E

contribute to the spectral function, the hadronic amplitude
HðEÞ becomes complex, due to the presence of the iε term
in the denominator of Eq. (11). Explicitly, its real and
imaginary parts are expressed by2

2In writing down Eqs. (16) and (17), and in the following, we
assume that the spectral density ρðE0Þ is real. If this is not the
case, the formulas describing the separation of the hadronic
amplitude in its real and imaginary part admit a straightforward
generalization.
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ReHðEÞ ¼ lim
ε→0

Z
∞

E�

dE0

2π

� ðE0 − EÞ
ðE0 − EÞ2 þ ε2

�
ρðE0Þ; ð16Þ

ImHðEÞ ¼ lim
ε→0

Z
∞

E�

dE0

2π

�
ε

ðE0 − EÞ2 þ ε2

�
ρðE0Þ: ð17Þ

Our proposal, as in Ref. [3], consists in determining the real
and the imaginary part of the hadronic amplitude by
computing the integrals in Eqs. (16) and (17), at finite
values of ε, using the HLT method of Ref. [5] (see also
Ref. [10]), starting from the results for the Euclidean
correlator CEðtÞ evaluated nonperturbatively on the lattice.
The main ingredients of the HLT method will be summa-
rized in Sec. III, together with the results of an exploratory
numerical calculation. Before coming to that, however, we
further elaborate on the theoretical proposal.

A. Alternative choices of the kernel

In the limit ε → 0, the kernel functions in Eqs. (16) and
(17) lead respectively to the principal value of the integral
and to a delta function, so that

ReHðEÞ ¼ PV
Z

∞

E�

dE0

2π

1

ðE0 − EÞ ρðE
0Þ; ð18Þ

ImHðEÞ ¼
Z

∞

E�

dE0

2π
πδðE0 − EÞρðE0Þ ¼ 1

2
ρðEÞ; ð19Þ

where PV denotes the principal value. It should be then
clear that the spectral representation (11) of the hadronic
amplitude can be expressed in the more general form

HðEÞ ¼ lim
ε→0

Z
∞

E�

dE0

2π
KðE0 − E; εÞρðE0Þ; ð20Þ

where the kernel KðE; εÞ is any complex function that, in
the limit ε → 0, reproduces Eqs. (18) and (19).
The choice made in Eq. (11), corresponds to the Cauchy

kernel

KCðE; εÞ ¼ 1

E − iε
: ð21Þ

An alternative choice of the kernel is obtained by regu-
larizing the time integral in Eq. (10) with a Gaussian factor
expð−ε2t2=2Þ instead of expð−εtÞ. In this way, one obtains
for the hadronic amplitude the expression

HðEÞ ¼ ilim
ε→0

Z
∞

E�

dE0

2π
ρðE0Þ

Z
∞

0

dt e−iðE0−EÞt−ε2t2=2: ð22Þ

The integral over time can be performed analytically and
after a simple algebra one gets, for the real and imaginary
parts of the kernel, the expressions

ReKgðE; εÞ ¼
ffiffiffi
2

p

ε
Dþ

�
Effiffiffi
2

p
ε

�
;

ImKgðE; εÞ ¼
ffiffiffiffiffiffiffi
π

2ε2

r
exp

�
−
�

Effiffiffi
2

p
ε

�
2
�
; ð23Þ

where

DþðxÞ ¼ e−x
2

Z
x

0

ds es
2 ð24Þ

is the so called Dawson function.
In the numerical lattice calculation presented in Sec. III

we find convenient to adopt for the kernel a lattice
discretized version of the Cauchy kernel of Eq. (21).
This kernel depends on the lattice spacing a and, in the
limit ε → 0, it leads for the hadronic amplitude to the
same result obtained on the lattice at finite lattice
spacing with the standard approach (in the region
E < E� where the standard approach is applicable). In
order to derive the expression of this kernel, we start
from the lattice discretized version of Eq. (15), in which
the Euclidean time is restricted to assume multiple
integer values of the lattice spacing, t ¼ an with
n ¼ 1; 2;…; T=ð2aÞ, and the integral over time is thus
replaced by a finite sum. Using

XN
n¼1

xn ¼ xð1 − xNÞ
1 − x

; ð25Þ

we find:

HðEÞ ¼ a
XT=ð2aÞ
n¼1

eaEnCEðanÞ

¼ a
XT=ð2aÞ
n¼1

Z
∞

E�

dE0

2π
e−aðE0−EÞnρðE0Þ

¼ a
Z

∞

E�

dE0

2π

e−aðE0−EÞ

1 − e−aðE0−EÞ ð1 − e−ðE0−EÞT=2ÞρðE0Þ

¼ a
Z

∞

E�

dE0

2π

e−aðE0−EÞ=2

2 sinh ½aðE0 − EÞ=2�
× ð1 − e−ðE0−EÞT=2ÞρðE0Þ: ð26Þ

It can be seen again, from the previous expression, that,
if there are intermediate states contributing to the
spectral function ρ which have energies smaller than
the energy E of the external states, i.e. E� < E, then the
integral in Eq. (26) receives the contribution of terms
which are exponentially large in T, and diverge in the
T → ∞ limit. For E < E�, instead, these terms are
exponentially small, and can be safely neglected for
large T, leading for the hadronic amplitude to the
expression
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HðEÞ ¼ a
Z

∞

E�

dE0

2π

e−aðE0−EÞ=2

2 sinh ½aðE0 − EÞ=2� ρðE
0Þ;

for E < E�: ð27Þ

The comparison between Eqs. (27) and (20) shows
that the lattice evaluation of the hadronic amplitude
with the standard approach for E < E�, i.e. in terms of
the time dependent correlation function, is equivalent, at
finite lattice spacing, to use the spectral method with the
kernel

KLðE; ε ¼ 0Þ ¼ e−aE=2

ð2=aÞ sinh ½aE=2� : ð28Þ

It is then natural to define a lattice version of the kernel at
ε ≠ 0 as

KLðE; εÞ ¼ KLðE − iε; 0Þ ¼ e−aðE−iεÞ=2

ð2=aÞ sinh ½aðE − iεÞ=2� ;

ð29Þ

which reduces to the Cauchy kernel (21) in the continuum
limit3 a → 0. As shown by the above discussion, with this
choice of the kernel the lattice artefacts affecting the
hadronic amplitude obtained with either the standard or
the spectral approach at finite lattice spacing, for E < E�,
are exactly equal (up to exponentially small corrections
vanishing for T → ∞). This feature turns out to be bene-
ficial for the comparison between the results obtained, at
fixed lattice spacing, with the new and the standard method,
in the region E < E� where the latter is applicable.

B. The smeared amplitude

In the region E > E�, where the spectral representation
of the hadronic amplitude requires a regularization, the
integral over energy of Eq. (20) can be only evaluated at
finite values of the smearing parameter ε, and it is only at
the end of the calculation that the extrapolation of the
results at ε → 0 can be eventually performed. Therefore,
the quantity which is directly obtained from the lattice
calculation is the smeared amplitude at finite ε,

HKðE; εÞ ¼
Z

∞

E�

dE0

2π
KðE0 − E; εÞρðE0Þ: ð30Þ

According to Eq. (20), and independently of the specific
choice of the kernel, the smeared amplitude tends to the
physical hadronic amplitude in the limit ε → 0,

HðEÞ ¼ lim
ε→0

HKðE; εÞ: ð31Þ

It is interesting to note that, in the case of the Cauchy
kernel (21), the smeared amplitude

HCðE; εÞ ¼
Z

∞

E�

dE0

2π

ρðE0Þ
E0 − E − iε

ð32Þ

can be directly expressed in terms of the physical amplitude
HðEÞ, i.e.

HCðE; εÞ ¼
Z þ∞

−∞

dE0

2π

2ε

ðE0 − EÞ2 þ ε2
HðE0Þ; ð33Þ

as it can be proven by substituting Eqs. (31) and (32) into
Eq. (33) and using

lim
η→0

1

π

Z þ∞

−∞
dω

ε

ðE − ωÞ2 þ ε2
1

E0 − ω − iη
¼ 1

E0 − E − iε
:

ð34Þ

Eq. (33) clearly shows that the smeared amplitudeHCðE; εÞ
represents in fact a smearing of size ε of the physical
hadronic amplitude HðEÞ. In addition, by providing a
direct relation between the smeared amplitude and the
physical one, independent of the knowledge of the spec-
tral density ρ, Eq. (33) may be also useful in the phenom-
enological analyses of lattice results. Indeed, by having
a model expression for the physical amplitude HðEÞ,
based on theoretical or phenomenological considerations,
Eq. (33) allows to evaluate the model-dependent smeared
hadronic amplitude HCðE; εÞ and to compare it directly
with the results of the lattice calculation at finite ε. An
example of the utility of such analysis in the proximity of a
narrow resonance is discussed in sec. III C.
For illustration, let us consider a simple model of a

resonance of massM and width 2Γ. In this case, the spectral
density reads

ρðEÞ ¼ 2AΓ
ðE −MÞ2 þ Γ2

θðEÞ; ð35Þ

where A is a constant, and the theta function ensures that
the spectral density vanishes for negative energies. For
sufficiently large values of M and small values of Γ, the
effect of the theta function is practically negligible, and for
the sake of simplicity it will be neglected.
The time-dependent Minkowskian correlator for this

model is obtained by integrating the spectral density
ρðEÞ according to Eq. (9), and one finds

3We notice that the lattice Cauchy kernel in Eq. (29) differs
from the continuum kernel by a term of OðaÞ. This introduces an
OðaÞ correction in the amplitude (26), which represents a lattice
discretization of Hμν

W;2. Such an OðaÞ artifact would cancel upon
combining this lattice discretization of Hμν

W;2 with the appropriate
lattice discretization of Hμν

W;1. No OðaÞ artifacts are thus expected
after properly combining the two time orderings contributing to
the physical amplitude in Eq. (3).
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CðtÞ ¼ Ae−iðM−iΓÞt: ð36Þ

The smeared amplitude HCðE; εÞ, defined with the Cauchy
kernel, can be computed in terms of the spectral density
using Eq. (32), and one finds

HCðE; εÞ ¼ −
A

E −M þ iðΓþ εÞ : ð37Þ

As we can see, the effect of the smearing in this case
consists in replacing Γ with Γþ ε. The real and imaginary
parts of the smeared amplitude (37) are given by

ReHCðE; εÞ ¼ −
AðE −MÞ

ðE −MÞ2 þ ðΓþ εÞ2 ;

ImHCðE; εÞ ¼
AðΓþ εÞ

ðE −MÞ2 þ ðΓþ εÞ2 ð38Þ

and are shown, for illustrative purpose, in Fig. 1 for
different values of the smearing size, ranging from ε ¼
0.5 down to ε ¼ 0.
In the limit ε → 0, the smeared amplitude of Eq. (37)

tends to the physical amplitude

HðEÞ ¼ −
A

E −M þ iΓ
: ð39Þ

It can be easily seen that the real and imaginary parts of the
amplitude satisfy

ReHðEÞ ¼ −
AðE −MÞ

ðE −MÞ2 þ Γ2

¼
Z þ∞

−∞

dE0

2π

ρðEþ E0Þ − ρðE − E0Þ
2E0

¼ PV
Z þ∞

−∞

dE0

2π

ρðEþ E0Þ
E0 ; ð40Þ

ImHðEÞ ¼ AΓ
ðE −MÞ2 þ Γ2

¼ 1

2
ρðEÞ; ð41Þ

in agreement with Eqs. (18) and (19). One can also verify
that the smeared amplitude (37) can be obtained directly
from the physical amplitude (39) using Eq. (33).

C. The ε-expansion

As already discussed in the Introduction, the smallest
values of the smearing size ε that can be reached in the
numerical calculation of the smeared hadronic amplitude
with the HLT method depend on both the number of
discrete lattice times at which the relevant correlation
function CðtÞ is known, i.e. on the temporal extension
T of the lattice, and on the statistical accuracy of the
lattice data. In order to have good control of the final
extrapolation to ε → 0, it is then instructive to understand
the ε-dependence of the smeared hadronic amplitude
HKðE; εÞ. We present here this analysis for the case of
the Cauchy kernel (21). Since the lattice kernel of Eq. (29)
reduces to the Cauchy kernel in the limit a → 0, the same
results will be also valid for the lattice kernel up to finite
lattice artefacts vanishing for a → 0.
Let us consider the smeared hadronic amplitude of

Eq. (32). By noting that the spectral density vanishes for
E < E�, we can replace the lower integration limit in
Eq. (32) with−∞. We can then make the change of variable
ω ¼ E0 − E and obtain, for the real and imaginary parts of
the smeared amplitude, the expressions

ReHCðE; εÞ ¼
Z þ∞

−∞

dω
2π

�
ω

ω2 þ ε2

�
fðωÞ; ð42Þ

ImHCðE; εÞ ¼
Z þ∞

−∞

dω
2π

�
ε

ω2 þ ε2

�
fðωÞ; ð43Þ

where we have put, for brevity, fðωÞ ¼ ρðEþ ωÞ.
In the real part of the smeared amplitude, the kernel is an

odd function of ω. Therefore, Eq. (42) can be rewritten in
the form:

FIG. 1. The real (left) and imaginary (right) part of the smeared amplitude HCðE; εÞ of Eq. (37) (in arbitrary units) for the single
resonance model, for different values of ε and Γ ¼ 0.1. The curve corresponding to ε ¼ 0 represents the physical amplitude.
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ReHCðE; εÞ ¼
Z þ∞

−∞

dω
2π

�
ω

ω2 þ ε2

�
1

2
ðfðωÞ − fð−ωÞÞ

¼
Z þ∞

−∞

dω
2π

�
ω2 þ ε2 − ε2

ω2 þ ε2

�
fðωÞ − fð−ωÞ

2ω

¼
Z þ∞

−∞

dω
2π

fðωÞ − fð−ωÞ
2ω

−
Z þ∞

−∞

dω
2π

�
ε2

ω2 þ ε2

�
fðωÞ − fð−ωÞ

2ω
: ð44Þ

The first term on the right-hand side (rhs) of Eq. (44) is independent of ε and provides, as expected, the principal value of the
integral of fðωÞ=ω, i.e. the real part of the physical amplitude. The second term represents instead the correction for finite
values of ε. By reintroducing fðωÞ ¼ ρðEþ ωÞ, we thus obtain

ReHCðE; εÞ ¼ PV
Z þ∞

−∞

dω
2π

ρðEþ ωÞ
ω

− ε

Z þ∞

−∞

dω
2π

�
ε

ω2 þ ε2

�
ρðEþ ωÞ − ρðE − ωÞ

2ω
: ð45Þ

A similar manipulation can be carried out for the imaginary part the smeared amplitude. In this case, the kernel in Eq. (43) is
an even function of ω and we can write:

ImHCðE; εÞ ¼
Z þ∞

−∞

dω
2π

�
ε

ω2 þ ε2

�
1

2
ðfðωÞ þ fð−ωÞÞ

¼ 1

2

Z þ∞

−∞

dω
2π

�
ε

ω2 þ ε2

�
ðfðωÞ þ fð−ωÞ − 2fð0Þ þ 2fð0ÞÞ

¼ 1

2
fð0Þ þ 1

2
ε

Z þ∞

−∞

dω
2π

�
1

ω2 þ ε2

�
ðfðωÞ þ fð−ωÞ − 2fð0ÞÞ; ð46Þ

or, by reinserting fðωÞ ¼ ρðEþ ωÞ,

ImHCðE; εÞ ¼
1

2
ρðEÞ þ 1

2
ε

Z þ∞

−∞

dω
2π

�
1

ω2 þ ε2

�
ðρðEþ ωÞ þ ρðE − ωÞ − 2ρðEÞÞ: ð47Þ

Again, the first term on the rhs of Eq. (47) is independent of
ε and provides the imaginary part of the physical hadronic
amplitude. The second term represents the correction for
finite values of ε.
We can rewrite Eqs. (45) and (47) in a more compact and

explanatory form as

ReHCðE;εÞ ¼ReHðEÞ− ε

Z þ∞

−∞

dω
2π

�
ε

ω2þ ε2

�
ρ½1�ðE;ωÞ;

ð48Þ
ImHCðE;εÞ ¼ ImHðEÞ

þ 1

2
ε

Z þ∞

−∞

dω
2π

�
ω

ω2þ ε2

�
ωρ½2�ðE;ωÞ; ð49Þ

where we have defined the functions

ρ½1�ðE;ωÞ ¼ ρðEþ ωÞ − ρðE − ωÞ
2ω

;

ρ½2�ðE;ωÞ ¼ ρðEþ ωÞ þ ρðE − ωÞ − 2ρðEÞ
ω2

: ð50Þ

It is useful to note that the ε-dependent correction term in
the real part of the smeared amplitude is expressed as an

integral with the same kernel of the imaginary part, and vice
versa. For small values of ε, Eqs. (45) and (47) can thus be
expanded iteratively in powers of ε. In particular, at the
leading order in ε and by assuming that the first derivative
of ρðωÞ at ω ¼ E exists, one finds

ReHCðE; εÞ ¼ ReHðEÞ − 1

2
ερ0ðEÞ þOðε2Þ; ð51Þ

ImHCðE; εÞ ¼ ImHðEÞ þ 1

2
ε

Z þ∞

−∞

dω
2π

ρ½2�ðE;ωÞ þOðε2Þ:

ð52Þ

An immediate consequences of Eq. (51) is that the OðεÞ-
correction to the real part of the smeared amplitude
vanishes in the region E < E�, where the spectral density
ρðEÞ, and therefore also its derivative ρ0ðEÞ, vanish.
It is instructive to look at the ε-expansion of the smeared

amplitude in the case of the one-resonance model discussed
in the previous subsection, for which the smeared ampli-
tude HCðE; εÞ is given by Eq. (37). It can be seen that the
ratio betweenHCðE; εÞ and the physical amplitudeHðEÞ in
this model can be written in the form
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HCðE; εÞ
HðEÞ ¼

�
1þ iε

ðE −MÞ − iΓ
ðE −MÞ2 þ Γ2

�
−1

¼
�
1þ iε

ΔðEÞ e
−iϕðEÞ

�
−1
; ð53Þ

where

ΔðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −MÞ2 þ Γ2

q
; tanϕðEÞ ¼ Γ

E −M
: ð54Þ

It is then clear from Eq. (53) that the ε-expansion of
HCðE; εÞ is effectively an expansion in powers of the
dimensionless parameter ε=ΔðEÞ, and a fast convergence
of the expansion is thus expected for ε ≪ ΔðEÞ. Note that
the energy ΔðEÞ is related to the logarithmic derivative of
the hadronic amplitude by���� ∂ logðHðEÞÞ

∂E

���� ¼
���� 1

HðEÞ
∂HðEÞ
∂E

���� ¼ 1

ΔðEÞ ; ð55Þ

implying that ΔðEÞ is the size of the interval in which the
amplitude HðEÞ varies by Oð100%Þ,���� ∂HðEÞ

∂E

����ΔðEÞ ¼ jHðEÞj: ð56Þ

Therefore, the condition ε ≪ ΔðEÞ, which we had antici-
pated in the Introduction as the requirement for a good
convergence of the ε-expansion, can be read in general,
beyond the specific model we are now discussing, by
formally defining ΔðEÞ from Eq. (55).
Looking at the expansion of the real and imaginary parts

of the smeared amplitude in the one-resonance model, we
find, at the leading order,

ReHCðE; εÞ ¼ −
AðE −MÞ

ðE −MÞ2 þ ðΓþ εÞ2

¼ ReHðEÞ þ 2AðE −MÞΓ
½ðE −MÞ2 þ Γ2�2 εþOðε2Þ

ð57Þ

ImHCðE; εÞ ¼
AðΓþ εÞ

ðE −MÞ2 þ ðΓþ εÞ2

¼ ImHðEÞ þ A½ðE −MÞ2 − Γ2�
½ðE −MÞ2 þ Γ2�2 εþOðε2Þ

ð58Þ

which can be seen to be in agreement with the general result
of Eqs. (51) and (52). In terms of ΔðEÞ and ϕðEÞ of
Eq. (54), the previous expression can be written in the
simple form

ReHCðE; εÞ ¼ ReHðEÞ þ A
sin ð2ϕðEÞÞ

ΔðEÞ2 εþOðε2Þ ð59Þ

ImHCðE; εÞ ¼ ImHðEÞ þ A
cos ð2ϕðEÞÞ

ΔðEÞ2 εþOðε2Þ; ð60Þ

which show again that the ε-expansion is effectively an
expansion in powers of the dimensionless ratio ε=ΔðEÞ.

III. THE NUMERICAL APPLICATION

In this section we present the application of the spectral
method to a realistic numerical calculation. We consider the
radiative leptonic decay Ds → lνγ� and aim to calculate
the hadronic tensor Hμν

W;2 defined in Eqs. (4) and (5), with
P ¼ Ds. We perform the calculation for several value of the
energy of the virtual photon, which cover both the region
E < E�, where the standard approach based on Eq. (15) is
also applicable, and the region E > E� where instead
the Euclidean integral of Eq. (15) becomes divergent for
T → ∞ and we rely on the new method based on the
spectral representation.
For the present study, we make use of a single ensemble

generated by the Extended Twisted Mass Collaboration
(ETMC) employing the Iwasaki gluon action and Nf ¼
2þ 1þ 1 flavors of Wilson-Clover twisted-mass fermions
at maximal twist [11]. A detailed description of the ETMC
ensembles can be found in Refs. [12,13], while essential
information on the ensemble we have used in the present
work is collected in Table I. In what follows, we only
consider the case in which the initial meson is at rest, i.e. we
always work in the decaying hadron’s reference frame.
Moreover, we choose the virtual photon three-momentum
to be in the lattice z-direction, namely k ¼ ð0; 0; kzÞ. For
each value of the photon momentum, the Euclidean
correlator in Eq. (4) can be determined from the following
Euclidean three-point function4 computed on a finite L3 × T
lattice (see Fig. 2 for a diagrammatic representation)

TABLE I. Parameters of the single ETMC ensemble used in this work. We give the lattice spacing a, the pion massMπ , the Ds meson
mass MDs

, the lattice extent L, the number of gauge configurations analyzed Ng, and the number Ns of random stochastic sources that
have been used for each inversion of the Dirac operator. The random sources we used are randomly distributed over time, diagonal in
spin and dense in the color.

Ensemble β V=a4 a (fm) Mπ (MeV) MDs
(GeV) L (fm) Ng Ns

cB211.072.64 1.778 643 · 128 0.07957 (13) 140.2 (0.2) 1.990 (3) 5.09 300 4

4We compute here only the quark-line connected part of the
correlation function in Eq. (61), and thus neglect the contribution
from the disconnected diagram, which vanishes in the limit of
exact SU(3) flavor symmetry (see Ref. [14] for more details).
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Mμν
W ðt; tW; kÞ≡ hJμemðtþ tW; kÞJνWðtWÞϕ†

Ds
ð0ÞiLT; t > 0;

ð61Þ

where ϕ†
Ds
ð0Þ is an interpolating operator, with vanishing

three-momentum and located at Euclidean time zero,
having the same quantum number of the Ds meson, while
tW is the fixed time where the weak current JνW is inserted,
which must be chosen large enough to ensure the domi-
nance of the ground state.5 The e.m. current inserted at time
tþ tW carries three-momentum k. In the limit of large tW
one has

Mμν
W ðt; tW; kÞ ¼

hDsð0Þjϕ†
Ds
j0i

2MDs

e−MDs tW · ðCμν
W;Eðt; kÞ þ…Þ;

ð62Þ

where the dots represent terms that are exponentially
suppressed at large tW , and Cμν

W;Eðt; kÞ is the Euclidean
correlator, which is related to the spectral density ρμνW ðE0; kÞ
in Eq. (7) through the relation

Cμν
W;Eðt; kÞ ¼

Z
∞

E�

dE0

2π
e−E

0tρμνW ðE0; kÞ; ð63Þ

[see Eq. (12)]. Starting from Eq. (62), the Euclidean
correlator is determined exploiting the fact that the pre-
factor multiplying Cμν

W;Eðt; kÞ in Eq. (62) can be com-
puted from the knowledge of the two-point function
of the Ds meson (see Refs. [7,14] for more details on
this point).

We considered three different values of the photon spatial
momentum, jkzj=MDs

≃ 0.1, 0.25, 0.35. These momenta,
which are not integer multiple of 2π=L, have been obtained
imposing twisted boundary conditions for the strange and
charm (valence) quark fields in the ẑ direction, as explained
in Ref. [14]. We averaged Cμν

W;E between opposite photon
momenta �kz, exploiting the symmetry properties of the
three-point correlation function in Eq. (61) under k → −k.
The (correlated) average between opposite momenta turns
out to be beneficial in reducing the gauge noise at small
values of the momentum, particularly in the vector channel.
Weuse anOðaÞ improvedmixed action lattice setupbasedon
maximally twisted clover Wilson quarks [15], for which the
details of the Nf ¼ 2þ 1þ 1 sea quark sector are given in
Ref. [16]. In the valence we employ Osterwalder-Seiler
quarks with flavor diagonal action, choose rc ¼ −rs ¼ �1
for the charm and strange Wilson parameters, and adopt a
point-like discretization of the weak and electromagnetic
current

JνWðt; xÞ ¼ JνVðt; xÞ − JνAðt; xÞ
¼ ZAs̄ðt; xÞγνcðt; xÞ − ZVs̄ðt; xÞγνγ5cðt; xÞ; ð64Þ

Jμemðt; xÞ ¼ 2

3
ZVc̄ðt; xÞγμcðt; xÞ −

1

3
ZVs̄ðt; xÞγμsðt; xÞ;

ð65Þ
and we have dropped from Jμem the contributions of flavors
other than charm and strange, as they do not contribute to the
connected part of the correlation function in Eq. (61). Note
that with twisted-mass fermions at maximal-twist and
rc ¼ −rs, the renormalization constants (RCs) to be used
for the flavored (cs) currentsJνV and J

ν
A inEq. (64) are chirally

rotated with respect to the ones of standardWilson fermions,
and the vector (JνV) and axial-vector (JνA) currents renorm-
alize respectivelywith themultiplicativeRCsZA andZV . The
flavor diagonal components of the e.m. current inEq. (65) are
instead renormalized by ZV. For the ensemble used in the
present study the two RCs are given by ZV ¼ 0.70638ð2Þ
and ZA ¼ 0.7428ð3Þ [17].
The spectral density ρμνW in Eq. (7) can be separated into

two contributions, ρμν;sW and ρμν;cW , corresponding to the
emission of the virtual photon from the strange or from the
charm quark-line. The two contributions can be easily
obtained by plugging in Eq. (7) the s̄γμs or the c̄γμc part of
the electromagnetic current in Eq. (65) in place of the total
Jμem. The intermediate states contributing to ρμν;cW are vector
charmonium resonances, the lightest of which is the J=Ψ
resonance (MJ=Ψ ∼ 3.1 GeV), while those contributing to
ρμν;sW are vector ss̄ states, the lightest of which is the ϕ
meson, which then decays via strong interactions mainly
into KþK− states. In the Ds meson reference frame, the
largest possible photon energy E allowed in theDs → lνγ�
decay, is clearly given by MDs

(neglecting the small lepton
mass). Since MJ=Ψ > MDs

> E, the charm contribution to

FIG. 2. Graphical representation of the three-point Euclidean
function in Eq. (61). The interpolator of the Ds meson ϕ†

Ds
is

placed at Euclidean time 0, the weak current JνW at time tW and the
electromagnetic current at time tþ tW . In the figure we show only
the contribution where the virtual photon γ� is emitted from the
strange quark s, but the analogous diagram with the photon
emitted from the charm quark c is clearly present as well.

5We have chosen two different values of tW ≃ 1.75; 2.0 fm,
and checked the stability of the results with respect to these two
choices. All the following results correspond to the choice
tW ≃ 1.75 fm.
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the hadronic tensor Hμν
W;2ðE; kÞ can be computed from the

knowledge of the corresponding Euclidean correlator using
the standard approach based on Eq. (15), without encoun-
tering the problems related to the analytic continuation.
Instead, the spectral density for the strange component,
ρμν;sW ðE0; kÞ, becomes nonzero at the two-kaon threshold
E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

K þ jkj2
p

, in the infinite-volume limit. However,
with the typical spatial volumes adopted in numerical
simulations, including the one used in the present work,
the smallest relative momentum that can be carried by
the KþK− pair (which must be in a J ¼ 1 state) is such
that its energy is larger than the ϕ-resonance mass
Mϕ ∼ 1019 MeV, which is thus effectively a stable hadron.

In this case one clearly has E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ϕ þ jkj2
q

, and for

E > E� we can use our approach based on the calcula-
tion of the smeared amplitudes. Since the charm-quark
contribution can be computed using the standard approach,

in the following wewill discuss the results corresponding to
the strange-quark contribution only. To keep the notation
compact, however, we will continue to use ρμνW , Cμν

W;E

without the superscript “s,” although it is understood that
in all the following results the charm-quark contribution
has been omitted.

A. The HLT method

The general expression in Eq. (30) for the hadronic
amplitude allows for the application of the HLT method
developed in Ref. [5] for the evaluation of the smeared
amplitudes (see also Refs. [10,18] for two recent applica-
tions). In this subsection, we summarize the main ingre-
dients of the procedure. The goal is to find, for nonzero
value of the smearing parameter ε, the best approximation
of the kernelKðE0 − E; εÞ entering the representation of the
smeared hadronic tensor6

Hμν
W;2ðE; k; εÞ≡

Z
∞

E�

dE0

2π
KðE0 − E; εÞρμνW ðE0; kÞ; lim

ε→0
Hμν

W;2ðE; k; εÞ ¼ Hμν
W;2ðE; kÞ; ð66Þ

in terms of the basis function fe−aE0ngn¼1;…;nmax
, namely

Re½KðE0 − E; εÞ� ≃
Xnmax

n¼1

gRn ðE; εÞe−aE0n; Im½KðE0 − E; εÞ� ≃
Xnmax

n¼1

gInðE; εÞe−aE0n; ð67Þ

where a is the lattice spacing and the dimension of the exponential basis nmax is typically chosen to be equal to the number
of discrete lattice times at which the Euclidean correlator Cμν

W;Eðt; kÞ is known,7 in our case nmax ¼ ðT=2 − tWÞ=a. In this
way, once the coefficients gRn and gIn are known, the smeared hadronic tensor Hμν

W;2ðE; k; εÞ can be obtained, from the
knowledge of Cμν

W;Eðt; kÞ only, via

Hμν
W;2ðE; k; εÞ ¼

Z
∞

E�

dE0

2π
ðKRðE0 − E; εÞ þ iKIðE0 − E; εÞÞρμνW ðE0; kÞ

≃
Xnmax

n¼1

ðgRn ðE; εÞ þ igInðE; εÞÞ
Z

∞

E�

dE0

2π
e−aE

0nρμνW ðE0; kÞ ¼
Xnmax

n¼1

ðgRn ðE; εÞ þ igInðE; εÞÞCμν
W;Eðan; kÞ; ð68Þ

where KR=I are the real/imaginary part of the kernel function. As discussed thoroughly in Ref. [5], the problem of finding

the coefficients gR=In presents a certain number of technical difficulties. Any determination of the smeared hadronic tensor
Hμν

W;2ðE; k; εÞ based on Eqs. (67) and (68) will be inevitably affected by both systematic errors (due to the inexact
reconstruction of the kernels) and statistical uncertainties (due to the fluctuations of the correlator Cμν

W;E), which need to be

simultaneously kept under control. If we were only concerned with systematic errors, the best coefficient gR=In could be
obtained by minimizing the quadratic form8

6With respect to Eq. (30) we have dropped the suffix K from the definition of the smeared hadronic tensor to lighten the notation. In
what follows all the results have been obtained using the lattice kernel in Eq. (29).

7Due to the periodicity of the lattice in the temporal direction, for tþ tW > T=2 the around-the-world contributions from time
orderings different than the one considered, contaminate our determination of Cμν

W;Eðt; kÞ. For this reason, we do not consider times
t > T=2 − tW , where the electromagnetic current is placed in the second half of the lattice.

8In Eq. (69), Eth < E� is an adjustable algorithmic parameter. In all the results that will be shown its value has been set to
Eth ¼ 0.9E�. However, we checked the stability of the results by repeating the analysis using different values of Eth.
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AR=I½g� ¼
Z

∞

Eth

dE0
����
Xnmax

n¼1

gne−aE
0n − KR=IðE0 − E; εÞ

����
2

;

g ¼ ðg1;…; gnmax
Þ; Eth ≤ E�: ð69Þ

However, for small values of ε, the coefficients resulting
from the minimization of AR=I½g� turn out to be very large in
magnitude and oscillating in sign, strongly amplifying the
statistical errors of the correlator Cμν

W;E when the smeared
hadronic tensor is evaluated using Eq. (68).
The HLT method developed in Ref. [5], provides a

regularization mechanism to this problem, enabling to find
an optimal balance between statistical and systematic
errors. This is achieved by minimizing a linear combination

WR=I½g�≡ AR=I½g�
AR=I½0�

þ λB½g�; ð70Þ

of the norm-functional AR=I½g� of Eq. (69) and of the error-
functional

B½g� ¼ Bnorm

Xnmax

n1;n2¼1

gn1gn2Covðan1; an2Þ; ð71Þ

where Cov is the covariance matix of the Euclidean lattice
correlator Cμν

W;E, and λ is the so-called trade-off parameter.
Bnorm is a normalization factor introduced to render
dimensionless the parameter λ. In the absence of statistical
errors, the functional in Eq. (70) reduces to that in Eq. (69),

up to an irrelevant multiplicative factor. Instead, in the
presence of statistical errors, the functional B disfavors
coefficients g leading to too large statistical uncertainties
in the reconstructed hadronic amplitude. The balance
between having small systematic errors (small AR=I½g�)
and small statistical errors (small B½g�) depends on the
tunable parameter λ. Its optimal value λopt is determined by
monitoring the reconstructed smeared hadronic tensor for
different λ. The optimal value is then chosen in the
statistically-dominated regime, where λ is sufficiently
small that the systematic error due to the kernel recon-
struction is smaller than the statistical error (therefore, in
this region, the results are stable under variations of λ
within statistical uncertainties), but large enough to still
have reasonable statistical errors. An illustrative example of
this stability analysis is given in Fig. 3 in the case W ¼ V
and for a fixed photon energy E > E�, where in our case

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ϕ þ jkj2
q

. The rightmost vertical line appearing in

each of the two plots of Fig. 3, corresponds to the chosen
optimal value λopt, while the rightmost corresponds to the
value λsyst determined imposing

B½gλsyst �
AR=I½gλsyst �

¼ κ
B½gλopt �

AR=I½gλopt �
; ð72Þ

and we choose κ ¼ 10. The difference between the recon-
structions obtained using λ ¼ λopt and λ ¼ λsyst is added
as a systematic uncertainty in the final error (see the

FIG. 3. The real (bottom figure) and imaginary (top figure) part of H12
V ðE; k; εÞ in lattice units, for ε ≃ 0.3MDs

, photon momentum
jkj ≃ 0.1MDs

, and fixed photon energy E ≃ 1.2 GeV, as a function of the ratio AR=I½g�=AR=I½0� indicating the quality of the kernel
reconstruction obtained employing different values of λ. The plot shows an example of our stability analysis. The rightmost and leftmost
vertical lines correspond to the reconstructions obtained using λ ¼ λopt and λ ¼ λsyst, respectively, see text for details.
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Supplementary Material of Ref. [10] for more details on
this point).

B. Smeared hadronic amplitudes
from the HLT method

We now present our determination of the real and imagi-
nary part of the smeared hadronic tensor Hμν

W;2ðE; k; εÞ. As
discussed in Sec. III A, the statistical uncertainties increase
for decreasing values of the smearing parameter ε, and with
the current statistical precision of the Euclidean correlator
the smallest value of ε we can reach for E > E� is
ε ≃ 100 MeV. Since in this work we are mainly interested
to study the effectiveness of the method, rather than
giving results of immediate phenomenological application
(which will be part of future studies), we discuss here only
the results relative to the vector channel W ¼ V. We
mention however that the analysis and the results in the
axial channel display the same qualitative features as the
vector case. For the same reason, all the results shown
correspond to a single value of the photon three-momentum
jkzj ¼ MDs

=10, since the same qualitative behavior has
been observed for all the other simulated photon momenta.
With the photon momentum directed along the z–axis,

only the component H12
V;2 ¼ −H21

V;2 is different from zero,
and is proportional to the vector form factor FV (see e.g.
Refs. [7,14] for the full form factor decomposition of Hμν

W ).
To keep a reader-friendly notation, and in analogy with
what has been done in Sec. II, in the following we will
indicate C12

V;Eðt; kÞ with CEðtÞ, H12
V;2ðE; k; εÞ with HðE; εÞ,

H12
V;2ðE; kÞ with HðEÞ, and ρ12V ðE; kÞ with ρðEÞ.
In Fig. 4 we show our determination of the real (bottom

three plots) and imaginary (top three plots) part of HðE; εÞ
as a function of the dimensionless parameter E=MDs

,
for different values of the smearing parameter ε in the
energy range ε∈ ½0.1; 0.6� GeV. For both Re½HðE; εÞ� and
Im½HðE; εÞ�, from top to bottom, we show results at
progressively smaller values of the smearing parameter
ε. The third and last plots contain, for Im½HðE; εÞ� and
Re½HðE; εÞ� respectively, the results on the entire range of ε
we explored, with the exception of ε ¼ 50 MeV which for
E > E� ≃ 0.53MDs

turns out to have too large statistical
errors. The uncertainties shown in all the plots include the
systematic errors due to the kernel reconstruction, esti-
mated following the procedure described in the previous
section.
As it is clear from the plots of Fig. 4, the reconstructed

smeared amplitudes display the same qualitative features
observed in the model of Fig. 1, with the imaginary part
showing a clear peak, and the real part the typical behavior
of the regularized principal part of 1=ðE − E�Þ, in cor-
respondence of the energy E� of the ϕ meson. In the
lowest plot of Fig. 4, we also show for comparison the
determination of Re½HðEÞ� obtained using the standard
approach based on Eq. (15), which as already discussed,

it is equivalent to apply the spectral method directly with
ε ¼ 0 and can be used only for E < E�. As the figure
shows, for E < E�, our data for Re½HðE; εÞ� get closer and
closer to the result of the standard approach as the smearing
size is reduced. This point will be further discussed in more
details in the next subsection.
In each of the plots of Fig. 4 the transparent bands

correspond to the vector-meson dominance (VMD) pre-
diction, where one assumes the dominance of the contri-
bution from the lightest intermediate state. This is obtained
by approximating the Euclidean correlator CEðtÞ with its
lowest-lying exponential, namely

CEðtÞ ≃ Ae−E0t; ð73Þ

and the spectral density with a single delta function

ρðEÞ ¼ 2πAδðE − E0Þ; ð74Þ

where in our case E0 corresponds to the energy of the ϕ
meson. The VMD approximation simply corresponds to
the one-resonance model in Eq. (35) with M ¼ E0, in the
limiting case Γ ¼ 0. Both the amplitude A and the energy
E0, are determined through a standard effective mass/
residue analysis of the lattice correlator CEðtÞ. We observe
that the VMD model works rather well, reproducing the
main qualitative features of the full result. However,
important differences can be appreciated as well. For the
real part, we observe that the lattice data up to E ≃ 0.6MDs

are shifted downwards w.r.t. the VMD prediction. This shift
can be understood assuming that all intermediate states jni
but the lightest, have energies En ≫ E. In this case, in the
limit ε ¼ 0 one has9

Re½HðE < E0Þ� ¼
A

E0 − E
þ
X∞
n¼1

An

En − E
≃

A
E0 − E

þ
X∞
n¼1

An

En
¼ A

E0 − E
þ const; ð75Þ

where An ≡ h0jJ1emjnihnjJ2V jDsi=2En. Therefore, for
E ≪ En, the dependence on the energy E of the heavier
intermediate states contributions can be neglected, and the
full result appears to be approximately shifted by a constant
with respect to the pure VMD prediction.
The presence of contributions from intermediate states

other than the ϕmeson, can also be observed in the plots of
the imaginary part of HðE; εÞ, where one expects to
observe a peak, smeared over an energy interval ε, in
correspondence of any of the energies En of the inter-
mediate states. From Fig. 4 it can be noticed that our data

9In writing down Eq. (75) we are assuming to be in a finite
volume where the spectral density is always a sum of isolated
delta peaks. This is not the case in the infinite-volume limit due to
the presence of continuum multiparticle states.
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FIG. 4. The real (bottom three plots) and imaginary (top three plots) part of HðE; εÞ in lattice units for different values of ε=MDs
, as a

function of E=MDs
. In each plot, the colored bands correspond to the prediction of the VMD model of Eq. (73). The two vertical dashed

lines correspond to the position of the ϕð1019Þ and ϕð1680Þ resonances. The black data points labeled with ε ¼ 0 std. correspond to the
determination of Re½HðEÞ� obtained using the standard approach based on Eq. (15).
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for Im½HðE; εÞ�, unlike the VMD predictions, do not go to
zero after the ϕ-meson peak, thus signalling the presence of
intermediate states lying in an interval ofOðεÞ around E. In
the case at hand, a sizeable contribution to the spectral
density is expected in correspondence of the ϕð1680Þ
resonance [19] which has a mass of 1680� 20 MeV
and a total decay width of 150� 50 MeV. The posi-
tion of the ϕð1680Þ is indicated by the rightmost vertical
dashed line in the plots of Fig. 4. Although the present
statistical accuracy of the Euclidean correlator CEðtÞ
does not allow us to determine HðE; εÞ with reasonable
errors for ε≲ 100 MeV, the presence of a second peak in
Im½HðE; εÞ�, in correspondence to the position of the
ϕð1680Þ resonance can be appreciated in the second and
third plot of Fig. 4.
Finally, we notice that for E < E�, while the imaginary

part of HðEÞ is exactly zero, this is not true for the smeared
amplitude HðE; εÞ, since KIðE0 − E; εÞ is a smeared delta
function at nonvanishing ε. Therefore, the imaginary part of
the convolution integral in Eq. (20) receives contributions
from the region E0 > E�, also for E < E�. In the next
subsection, wewill come back to this point and discuss how
vanishing imaginary parts are recovered for E < E� in the
limit ε → 0.

C. The limit of vanishing ε

We now turn into the discussion of the extrapolation
of the real and imaginary part of HðE; εÞ to vanishing
smearing parameter ε. Let us start from values of E below
the threshold E�, where we expect to recover the standard
result based on Eq. (15), with the imaginary part being
exactly zero. Based on the analysis of the ε-expansion in
Eqs. (51) and (52), one expects the corrections to the ε ¼ 0
limit to be described by a polynomial in ε, containing both
even and odd powers. However, as already pointed out in
Sec. II C, since for E < E� the spectral density ρðEÞ is
exactly zero, its derivative ρ0ðEÞ vanishes as well in this
region, and for this reason, following Eq. (51), the
expansion of the real part of HðE; εÞ is expected to start
at Oðε2Þ.
In order to extrapolate to vanishing ε, we thus employ the

following fourth-order polynomial fit Ansatz

HðE; εÞ ¼ H̄ðEÞ þD1ðEÞεþD2ðEÞε2 þD3ðEÞε3
þD4ðEÞε4; ð76Þ

where H̄ðEÞ and fDiðEÞgi¼1;…;4 are complex-valued free
fit parameters. Following the previous discussion, we
always set Re½D1ðE < E�Þ� ¼ 0. For each value of the
photon energy E considered, we performed several fits by
either including or excluding some of the higher order fit
coefficients DiðEÞ, or by imposing cuts to the data. The
results of the extrapolation are shown in Fig. 5 for two
different values of the virtual photon energy E ≃ 0.14MDs

and E ≃ 0.32MDs
. As the figure shows, below the threshold

we are able to recover through the extrapolation the
expected results, i.e. vanishing imaginary parts and the
standard approach result of Eq. (15) for the real part, which
is shown as a red data point at ε ¼ 0 in Fig. 5. Moreover,
the fact that we find no evidence for theOðεÞ term in the fit
to Re½HðE; εÞ� below threshold, and the data approach the
ε → 0 limit quadratically, validates numerically the asymp-
totic expansion obtained in Sec. II B.
Around and above the threshold, the extrapolation to

vanishing ε deserves instead more discussion. The analysis
of the ε–behavior of the smeared amplitude HðE; εÞ in the
model of Eq. (35) with a single Breit-Wigner resonance
of width 2Γ, shows that a polynomial extrapolation can
generally be trusted only if the smearing ε is smaller than Γ
or if the energy E is sufficiently far from the resonance, i.e.
jE −Mj ≫ ε, with M being the position of the resonance
peak. This is expressed by the condition ε ≪ ΔðEÞ, where
ΔðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −MÞ2 þ Γ2

p
. This implies that a polynomial

extrapolation in ε, in an energy region close to a very sharp
resonance, is generally out of reach, as it requires to
compute HðE; εÞ at extremely small values of ε, where
the statistical errors are typically too large for the meas-
urement to be of any use. In the case at hand, the spectral
density ρðEÞ has, in the infinite-volume limit, a sharp peak
in correspondence of the ϕ resonance which has a decay
width of about 5 MeV. The smallest amount of smearing ε
we can afford with the present statistical accuracy is instead
of order Oð100 MeVÞ. This implies that in a region of size
100–200 MeV around E� ≃ 0.53MDs

, a polynomial ε → 0

extrapolation cannot be performed.
In Fig. 6 we show the dependence on the smearing

parameter ε of the real and imaginary part of HðE; εÞ for a
single value of the virtual photon energy very close to the
peak of the ϕ resonance. As the figure shows, and as
expected from the previous discussion, around the thresh-
old the ε dependence is not mild. Upon decreasing ε the
smeared hadronic tensor keeps growing in modulus until
the error become very large and ε cannot be reduced further.
Even though in this region we are far from the scaling
regime where the ε-dependence is polynomial, we can still
obtain useful information at the price of introducing some
model dependence in the results. For instance, we can
consider the one-resonance model introduced in Eq. (35).
Around the position of the ϕ resonance we expect that this
model provides a reasonable description of the lattice data,
therefore we can fit our data forHðE; εÞ using the Ansatz in
Eq. (37) with M and Γ fixed to their physical values,
namely M ≃ 0.53MDs

and Γ ≃ 2.5 MeV. As Eq. (37)
shows, the introduction of a finite ε in the model, simply
corresponds to the shift Γ → Γþ ε. It is then also clear that
with values of ε of orderOð100 MeVÞ, as those used in the
present analysis, a value of Γ ≃ 2.5 MeV cannot be
determined from a fit of the data. In the case of the fit
to Re½HðE; εÞ�, following the discussion in the previous
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FIG. 5. Extrapolation to vanishing ε of the real (bottom two plots) and imaginary (top two plots) part ofHðE; εÞ for two fixed values of
the dimensionless variable E=MDs

. The different bands correspond to extrapolations performed employing polynomials in ε of different
degree. Nmeas is the number of data points used in a given fit, and when Nmeas ≠ Ntot ¼ 10, the Ntot − Nmeas measurements at the largest
values of ε have been excluded. In the fits to Re½HðE; εÞ�, the fit parameter Re½D1ðEÞ� has been fixed to zero. In the bottom two plots the
red data points at vanishing ε corresponds to the result obtained using the standard approach based on Eq. (15). Results are given in
lattice units.
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section, we also introduce in the Ansatz an additional con-
stant fit parameter whose role is to account, in an effective
way, for heavier states contributions [see the discussion
around Eq. (75)]. The result of the χ2–minimization are
shown by the yellow-orange bands in Fig. 6. The fit yields a
reduced χ2 smaller than unit, and effectively reproduces the
ε-behavior of the lattice data.

Away from the ϕ-resonance peak the situation is dif-
ferent. This case is illustrated in Fig. 7 where we show the
ε-dependence for a virtual photon energy E ≃ 0.72MDs

,
which is sufficiently far from the ϕ-resonance peak that
the condition ε ≪ ΔðEÞ ≃ 0.2MDs

is fulfilled for some of
the simulated values of the smearing parameter. As Fig. 7
shows, given the relatively large statistical uncertainty

FIG. 6. The real (bottom plot) and imaginary (top plot) part ofHðE; εÞ as a function of the smearing parameter ε for a fixed value of the
energy very close to the position of the ϕ-resonance peak. The yellow-orange bands correspond to the fit performed employing the one-
resonance model of Eq. (37) (see text for details). Results are given in lattice units.

FIG. 7. The real (bottom plot) and imaginary (top plot) part of HðE; εÞ as a function of the smearing parameter ε for a value of the
energy above the position of the ϕ-resonance peak, for which ΔðEÞ ≃ 0.2MDs

. The yellow-orange and gray bands correspond
respectively to the results of a constant and linear fit in the region ϵ ≲ 0.15MDs

. Results are given in lattice units.
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of the present determination, we observe practically no
dependence on ε within the errors. For these value of
energy the extrapolation can be trusted, and in Fig. 7 we
show, the results of a constant and linear extrapolation in
the region ε=MDs

≲ 0.15, which are indicated in the figure
by the yellow-orange and gray bands, respectively. In the
following, in order to be conservative, we will use the
results obtained in the linear extrapolation as our final
determination.
We now present the results of the extrapolation of the

smeared hadronic amplitude to vanishing ε. As we dem-
onstrated and discussed earlier, for energies E < E�, the
smearing parameter ε can be reduced as desired, and
the results of the spectral method converge to those of
the standard approach of Eq. (15) in the limit ε → 0.
Instead, above the threshold, where only the spectral
method can be used, the current statistical accuracy of
our lattice correlator CEðtÞ limits the minimum amount of
smearing we can reach to order Oð100 MeVÞ. Therefore,
within an energy region of few hundreds MeV around the
resonance, a polynomial extrapolation is currently not
possible, and in this region we rely on the Breit-Wigner
model of Eq. (39) to perform the ε → 0 extrapolation, as
discussed above in the text.

A polynomial, model-independent, extrapolation of
the data, is instead possible for energies that are sufficiently
far from sharp resonances. For this reason, we performed
a linear extrapolation of our data for Re½HðE; εÞ� and
Im½HðE; εÞ� only for photon energies E≳ 1.2M ≃
0.65MDS

, employing in the fit for each energy, only those
values of the smearing satisfying ε≲ 0.7 × ΔðEÞ, where
ΔðEÞ=MDs

≃ jE −Mj=MDs
≃ jE=MDs

− 0.53j, neglecting
the very small width of the ϕ resonance.
The results of the extrapolations to vanishing ε are shown

in Fig. 8. In the figure, the orange band represents the area
around the ϕ resonance where no polynomial extrapolation
has been attempted. In this region we perform instead the
extrapolation assuming that the ε-dependence of the data is
described by the one-resonance Breit-Wigner model in
Eq. (37) with Γ ≃ 2.5 MeV, M ≃ 0.53MDs

(see Fig. 6 and
the corresponding text for additional details regarding the
extrapolation). As shown in the figure, the results of the
extrapolation obtained using the Breit-Wigner model
smoothly connect with the ones obtained through a poly-
nomial extrapolation, at the border of the region indicated
by the orange band. For E > 0.65MDs

, our results still have
significant errors; however, we stress that this is a fairly
low-statistics calculation of CEðtÞ, and the uncertainties of

FIG. 8. Results of the extrapolation ε → 0 of the real (bottom plot) and imaginary (top plot) part of HðE; εÞ (red data points). The
orange band indicates the region where the extrapolation to vanishing ε has been performed assuming that the ε-dependence of the lattice
data is described by the Breit-Wigner model in Eq. (37), with M ¼ 0.53MDs

and Γ ≃ 2.5 MeV (see Fig. 6). The blue curves, which are
given to guide the eyes, correspond to the prediction of the Breit-Wigner model of Eq. (39), in which the amplitude A has been
determined from the fit of the lattice data. Results are given in lattice units.
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the spectral method we propose are systematically improv-
able by computing the Euclidean correlator with increasing
precision.

IV. CONCLUSIONS

We have presented a novel method to determine, by
means of Euclidean lattice calculations, the real and
imaginary parts of complex electroweak amplitudes
involving two external currents and a single hadron or
the QCD vacuum in the external states. In this situation a
direct analytic continuation of the relevant time-dependent
correlation functions from Minkowskian to Euclidean
spacetime is not possible, and this hinders a straightfor-
ward application of the traditional lattice techniques
employed to evaluate HðEÞ. The method we propose
bypasses the obstacle posed by the appearance of non-
analyticities, by rewriting the hadronic amplitude HðEÞ as
a convolution integral involving the underlying spectral
density ρðEÞ [see Eq. (11)]. As well known, the latter is
related to the Euclidean correlator CEðtÞ, our lattice input,
through an inverse Laplace transform. The convolution
integral in Eq. (11) that defines the hadronic amplitude
HðEÞ in terms of the spectral density, develops singular-
ities in correspondence of any of the energies of the
intermediate states, and we devise to regularize the
singularities employing the Feynmann iε prescription,
in the same spirit of other recent proposals built on the
same technique [3]. We have shown analytically that the
introduction of a finite regulator ε produces a smearing of
the physical hadronic amplitude HðEÞ over an energy
radius ε. The resulting smeared amplitude at nonzero ε,
which we indicated in the text with HðE; εÞ, can be then
evaluated using the HLT method developed in Ref. [5].
The method allows to determine, from the knowledge of
the Euclidean correlator CEðtÞ only and with controlled
errors, the convolution between spectral densities and
smooth, nonsingular, kernel functions.
We have studied in detail the issue of the ε → 0

extrapolation of the smeared amplitude HðE; εÞ, which
needs to be performed in order to recover the physical
amplitude HðEÞ. We have found that in order to be able to
perform a controlled ε → 0 extrapolation, two conditions
must simultaneously be met: on the one hand side it is
required that on a finite lattice of linear extent L the
simulated values of ε must be much larger than the typical
separation between the discrete energy levels En of the
corresponding finite-volume Hamiltonian. This is para-
metrically expressed by the condition εL ≫ 1. On the other
hand side, in order to ensure a smooth behavior in ε, it is
necessary that for any fixed value of the energy E
considered, the typical size of the interval around E in
which HðEÞ is significantly varying must be smaller
than ε. This is expressed by the condition ε ≪ ΔðEÞ,
where ΔðEÞ is the logarithmic derivative of the hadronic
amplitude HðEÞ. We have verified this explicitly in an

exactly-solvable model with the spectral density given by a
single Breit-Wigner resonance of mass M and decay width
2Γ. In this model, the criterion for a smooth ε–convergence
assumes the simple form ε ≪ ΔðEÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE −MÞ2 þ Γ2
p

.
In a nutshell, the criterion states that the extrapolation to
vanishing ε is expected to be smooth away from the region
where sharp resonances are present in the spectral den-
sity ρðEÞ.
To study the effectiveness of the spectral method, we

have considered its application to the calculation of the
relevant matrix elements describing the radiative leptonic
decay P → lνγ�, where l is a charged lepton, γ� a virtual
photon, and in our case P ¼ Ds. This decay channel is
challenging as it develops the nonanalyticity problem when
the offshellness

ffiffiffiffiffi
k2

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − jkj2

p
of the virtual photon γ�

exceeds the threshold for vector-meson production. In our
case, this occurs in correspondence of the production of the
ϕ resonance, i.e. when

ffiffiffiffiffi
k2

p
≃Mϕ. We have applied the

spectral method, computing the relevant Euclidean cor-
relation functions on a single gauge ensemble produced
by the ETMC with Nf ¼ 2þ 1þ 1Wilson-clover twisted-
mass fermions. The HLT method has been used to
reconstruct the smeared amplitudes for arbitrary photon
energies E, and for three fixed values of the photon
momentum jkj ≃ 0.2; 0.5; 0.7 GeV, as measured in the
Ds meson rest frame. The present statistical accuracy of
the Euclidean correlator allowed us to reconstruct the
smeared amplitudes HðE; εÞ for values of the smearing
parameter ε≳ 100 MeV. The real and imaginary parts of
the smeared amplitudes have been compared with the VMD
predictions, finding overall a good qualitative agreement.
The differences we observed can be attributed to the
contributions of heavier states, which are not captured
by the VMD model.
As for the ε extrapolation, we showed that for photon

energies below the threshold we are able to recover,
through the polynomial extrapolation, the result of the
standard approach. As expected, the extrapolation turned
out to be more involved around the position of the sharp ϕ
resonance. In this case, we have found numerically that, in
agreement with our theoretical analysis, the simulated
values of ε are far away from the scaling region where
the corrections to the ε ¼ 0 limit can be described by a
polynomial of low degree in ε. In this energy region,
however, useful physical information can still be extracted
from the data, employing a model of the hadronic ampli-
tude HðEÞ with parameters that can be determined through
a fit to the lattice data for HðE; εÞ. For photon energies
sufficiently above the position of the ϕ-resonance peak,
instead, the lattice data did not show a significant
ε-dependence, and we carried out a linear ε-extrapolation.
In this energy region the relative statistical uncertainties are
large. However, we stress that this is only a proof-of-
principle calculation, and that the errors of the spectral
method we propose can be systematically improved by
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evaluating the relevant Euclidean correlation functions with
higher statistical accuracy.
In the future, we plan to extend this calculation to other

pseudoscalar mesons P, and perform a reliable continuum
limit extrapolation. In light of our findings, the ideal
channels to target with the spectral method are the kaon
decaysK → lνγ�, which have been studied in Ref. [7] with
unphysical pion masses. Indeed, in this case no sharp
resonances are present in the spectral density, which is
dominated by the contribution from the broad ρ resonance.
This will give us more control on the ε → 0 extrapolation,
possibly allowing us to determine the hadronic amplitude
over the whole phase space.
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