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A model with a half-boson degree of freedom per lattice site in one dimension is developed. The boson is
protected from developing a gap by translation symmetry; while the left movers are at zero quasimo-
mentum, the associated right movers are at the midpoint of the quasimomentum period. The model has
different properties depending on if a periodic lattice has an even or an odd number of sites and similar
features are found for open boundary conditions. A special case of the nonlinear half-boson model where
even and odd lattice sites contribute differently to the Hamiltonian gives rise to the Toda chain and a more
symmetric generalization of the Toda chain is found. Upon periodic identifications of the half-bosons
degrees of freedom under a shift, the total Hilbert space has a finite dimension and can be encoded in
finitely many qubits per unit length. This way one finds interesting critical-spin chains, examples of which
include the critical Ising model in a transverse magnetic field and the 3-state Potts model at criticality.
Extensions to higher dimensions are considered. Models obtained this way automatically produce
dynamical systems of gapless fractons.
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I. INTRODUCTION

Euclidean lattice gauge theories à la Wilson [1], based
on a path-integral formulation of quantum field theories,
have been extremely successful in solving various prob-
lems in quantum field theory that are relevant for the theory
of the strong interactions (see for example [2,3]). There
are many situations where a determination of answers to
important physical questions with such setups is essentially
impossible. These situations are present in most examples
for the real-time evolution of physical systems. In a path-
integral formulation of real-time evolution, the action is
imaginary and the contributions between different configu-
rations cancel each other out. This is called the sign
problem. These effects are physical; in quantum mechanics
amplitudes can cancel each other out and this can be
observed directly in interference experiments. These arise
because the standard Hilbert space formulation of quantum
mechanics is based on the complex numbers. Different
states can be superposed with each other with arbitrary
phases to give rise to such phenomena in practice.
On a quantum computer, at least in principle, these sign

problems are solved. The quantum memory of such a
computer is a Hilbert space itself, so it already encodes the
possibility of superposition between different states. Recent

advances on quantum control have made the idea of
practical quantum computers feasible for some simulation
tasks in the near future. They are currently constrained in
that they should not involve too many degrees of freedom
(qubits). Computations on quantum computers are based on
Hamiltonian methods rather than path integral methods.
One manipulates the states in the quantum memory by
solving the Schrödinger equation

i∂tjψi ¼ ĤðtÞjψi ð1Þ

from some initial state jψ0i. The computation is performed
in the manipulation of the Hamiltonian HðtÞ.1 It is the
advent of quantum computers in the near future that has
renewed the interest in Hamiltonian methods in quantum
field theory applied to particle physics questions.
With a view towards a real time quantum computation in

the near future, low-dimensional field theories on a lattice
should be studied first. Qubit degrees of freedom are more
akin to bosons rather than fermions. After all, qubit
operations at different locations commute with each other
rather than anticommute. Is it possible to simulate relativ-
istic field theories of bosons in such a situation? The usual
problem is that bosons naturally develop a gap; the mass
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1In practice one approximates a desired physical setup with the
limitations placed on the instantaneous form ofH that is given by
the quantum platform one is encoding the problem in. More
precisely, evolutions for small times with a particular instanta-
neousH give rise to quantum gates (discrete time step operations)
that are combined to approximate a desired output.
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term for the bosons is relevant and is usually generated by
interactions with other fields. This is usually solved by fine-
tuning the lattice Hamiltonian and working in the limit
where the excitations above the ground state have low
energy relative to the natural scale set by the lattice. One
should also worry that bosons admit arbitrary occupation
numbers and naively require an infinite Hilbert space
locally. This is actually more of an issue about the infrared
physics than the UV scale (the lattice cutoff). Local large
occupation numbers should cost a lot of energy, so a
truncation in local energy should be doable with a finite
local Hilbert space at a site. This does not forbid the
collective low-energy excitations from having large occu-
pation numbers.
The purpose of this paper is to identify a new class of

gapless boson theories that arise from imitating a trick that
is used to study fermions on a lattice and to avoid doublers.
This is the idea of staggered fermions [4], where different
pieces of the degrees of freedom of a fermion reside at
different lattice sites. This is why the bosonic degrees of
freedom described here will be called staggered bosons.
The main idea to consider is that in a Hamiltonian

formulation of a single bosonic degree of freedom one
usually has both a coordinate x and its canonical conjugate
p. From the point of view of phase space x and p are just
different coordinates and there is a canonical transforma-
tion x → p; p → −x that can turn them into each other. If
we are to split these degrees of freedom between different
sites, there should be a single bosonic q variable at each
site, rather than two and the Poisson bracket commutation
relations between nearest neighbors should differ from
zero. Basically, in this paper a model of a boson with a half
degree of freedom per lattice site is proposed. In one
dimension the model gives rise to gapless degrees of
freedom that are automatically protected from developing
a mass.
If we consider systems with a half-fermion degree of

freedom per lattice site one is usually in a system of
Majorana fermions. Majorana fermions enjoy rich topo-
logical features, as shown by Kitaev [5]. I show that
staggered bosons also have interesting topological features
that are not shared by regular bosons and which share some
similarities with Majorana fermions. Some interesting
systems like the Toda chain can also be expressed easily
in terms of half boson degrees of freedom. Another fact I
show is that upon gauging discrete translation symmetries
of these bosons, for the simplest Hamiltonians one finds
critical spin chains. Moreover, when one pushes these ideas
to higher dimensions, one naturally lands in gapless field
theories associated to fractons.
These facts makes the staggered boson idea an interest-

ing source of nontrivial examples of interacting field
theories with nontrivial critical behavior.
The paper is organized as follows. In Sec. II the chiral

boson in one dimension is studied as an example of a

system with half a bosonic degree of freedom to motivate
the lattice Hamiltonians that follow afterwards. Next, in
Sec. III, the basic model of the half boson is proposed and
the dispersion relation is studied. In Sec. IV topological
features of the model are studied. These include the
protected nature of zero modes, the number of zero modes
in finite lattices (open and periodic) and the dependence of
these on the number of sites. Also the parity symmetry and
construction of the model as projections from regular
bosons are considered. Finally, it is noticed that the infrared
degrees of freedom of the half boson are protected against a
particular coupling to noise in the model (this is an absence
of Anderson localization for the low-frequency modes). In
Sec. V more general nonlinear models are considered. It is
shown that the Toda chain and some of its generalizations
can be constructed directly in this framework. If one
considers periodic identifications of the bosonic degrees
of freedom, one find systems with a reduced algebra that
described spin chains with finitely many qubits per unit
length. These turn out to be nontrivial critical spin chains
that include the Ising model in a transverse magnetic field
at criticality. The critical 3-state Potts model and some other
systems with conserved Zn charges. Higher-dimensional
generalizations are considered and the simplest model is
shown to lead to a gapless fracton system. I then conclude.

II. THE CHIRAL BOSON

The purpose of this section is to start with a simple
example of a continuous field theory that describes a half
boson; the chiral boson in 1þ 1 dimensions. This model
arises naturally in many areas of physics like the quantum
Hall effect [6,7], and even as sectors in the gauge/gravity
duality [8]. The idea here is to motivate the precise structure
of a Poisson bracket structure that will arise in lattice
examples later on.
Consider a field theory of a single chiral boson in one

dimension. The equations of motion read ∂tϕ ¼ c∂xϕ with
c the speed of light. The most general solution of the partial
differential equation is ϕðx; tÞ ¼ ϕðxþ ctÞ and this repre-
sents a degree of freedom of a boson moving to the left at a
fixed speed, which we call the speed of light. In contrast, a
regular massless boson would have degrees of freedom that
satisfy the second-order wave equation

∂
2
tϕ ¼ c2∂2xϕ: ð2Þ

The regular boson is a linear combination of a left-moving
boson and a right-moving boson; we can split the solutions
of the equation of motion into left and right movers and use
only half of the solutions. In a certain sense, we can say that
a chiral boson is only half a boson degree of freedom rather
than a full boson. The full-boson degree of freedom has a
simple Lagrangian from which the equations of motion can
be derived
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L ¼
Z

dx

�
1

2
ð∂tϕÞ2 −

1

2
ð∂xϕÞ2

�
: ð3Þ

We can ask the question if there is a Lagrangian that
produces the chiral-boson equations of motion starting
from ϕ alone, without using any additional fields? A
slightly different formulation is the following; the
Hamiltonian formulation of (3) has two local degrees of
freedom; ϕðxÞ and its canonical conjugate πðxÞ, with local
commutation relations fϕðxÞ; πðx0Þg ¼ δðx − x0Þ. Is there a
Hamiltonian formulation that uses only a half of the
degrees of freedom of the regular boson and produces
the correct dynamics?
It turns out that there is such a description. In that case

we also need to consider the Poisson bracket of the fields
fϕðxÞ;ϕðx0Þg, which should vanish for spatially separated
x, x0, should be local and also antisymmetric. A Poisson
bracket that satisfies the required antisymmetry properties
is the following:

fϕðxÞ;ϕðx0Þg ¼ ∂xδðx − x0Þ ¼ −∂x0δðx − x0Þ: ð4Þ

This is a classical form of a Uð1Þ Kac-Moody algebra,
where the boson ϕ ≃ J is the classical field associated to the
current. The δ0 commutation is the anomaly of the Uð1Þ
current algebra.
On general functionals FðϕÞ; GðϕÞ we write their

Poisson brackets as follows:

fF;Gg ¼
Z

dxdx0
δF

δϕðxÞ
δG

δϕðx0Þ fϕðxÞ;ϕðx
0Þg: ð5Þ

The Hamiltonian for the chiral boson is given by

H ¼ 1

2

Z
cϕðxÞ2dx; ð6Þ

we then find that the equation of motion is

ϕ̇ðxÞ ¼ fϕðxÞ; Hg ¼ −c
Z

ϕðx0Þ∂x0δðx − x0Þdx0

¼ c
Z

∂x0ϕðx0Þδðx − x0Þ ¼ c∂xϕðxÞ; ð7Þ

where to go from the top line to the bottom line we integrate
by parts.
Classical Poisson structures of these type arise from

direct computation in both Quantum Hall [9] and gravity
examples [10] (these are very useful for the semiclassical
description of excitations around a background field
configuration [11]).
There are now some interesting features that the degrees

of freedom of (4) and (6) satisfy that the corresponding full
boson in (3) does not. The main feature I want to highlight
is that the full-boson degree of freedom admits a local

relevant deformation, quadratic in the fields, that gaps the
system. This is the mass deformation. For the chiral half
boson, the Hamiltonian is already the most relevant
quadratic function of the fields ϕ. It admits no such
deformation. We also restrict ourselves to the algebra of
the ϕ directly.
There are many ways to argue that the chiral boson is

protected. The simplest one is to argue that the chiral boson
has a central charge ðcL; cRÞ ¼ ð1; 0Þ that produces a
gravitational anomaly. Anomaly matching to the infrared
prevents the bosons from developing a mass. This is
different than a protection mechanism for (3) that would
require ϕ to be a Goldstone boson for a spontaneously
broken symmetry. The anomaly is more robust.
Now, we find that the system that leads to (7) has a first-

order differential equation of motion. This is very similar to
fermion degrees of freedom that satisfy a Dirac equation,
rather than bosons. The natural question that we ask is if
there is a discretized version of the Poisson bracket (4),
which only has one degree of freedom ϕðnÞ at each site but
no natural notion of πðnÞ at the same site. This is the model
we will explore in the next section. After that model is
found, one can ask what similarities with the chiral bosons
survive the discretization and if there are new features that
are intrinsic to this discretization that make it more
interesting in its own right.

III. THE MODEL

When we have a boson at each lattice site, we usually
have two canonical conjugate variables xi, pi at each site
(these are usually, x, ẋ in a Lagrangian formalism), with
Poisson bracket fx; pg ¼ 1. A local Hamiltonian will then
be a sum of terms where the variables xi, pi appear in terms
that include only a finite number of nearby sites. In the
Hamiltonian formalism, xi, pi can be treated as equivalent
types of variables; one can always do a canonical trans-
formation xi → pi; pi → −xi that reveals that it is only the
labels x, p that distinguish them. Obviously, if the
Hamiltonian has a special form, the x, p might also be
distinguished by how they appear in the Hamiltonian. This
is a property of the dynamics under consideration, not the
Poisson bracket itself.
These variables are not intrinsically distinct as math-

ematical objects, sowe can label them by qi;1; qi;2 and forget
that one is called a position and the other one is called a
momentum. We think of them as a set of phase space
variables instead, without any additional interpretation.
The full Poisson bracket is then

fqi;α; qj;βg ¼ δijϵα;β; ð8Þ

where ϵαβ is the totally antisymmetric tensor in two
dimensions.
We want to go to a staggered model where the notion of

the variables x, p become distributed over a lattice and only
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half of them survive at a lattice site, giving a half-boson
rather than a full-boson degree of freedom. What does it
mean to have a half boson per lattice site? We should think
of this property as only having a single real qi variable per
site, rather than two. Obviously, any Poisson bracket
fqi; qig ¼ 0must vanish because of antisymmetry. A naive
generalization of (8) with bosons that commute at different
sites would vanish identically. Such a system would not
evolve in time under Hamiltonian equations of motion.
However, we can consider a more general Poisson

bracket that is not ultralocal; we can ask that fqi; qjg ¼
Ωij is an antisymmetric constant tensor, with nonvanishing
elements up to some set of nearby sites. In the continuum
limit, such terms would become local. The simplest such
Poisson bracket that is also translation invariant is given by

fqi; qjg ¼ δi;j−1 − δi;jþ1: ð9Þ

In this way, qiþ1 is like a momentum for qi. There is a
second model where we change all the signs. We will call
the one above left moving, and the other one right moving.
We will see that these are equivalent in the end. This
nomenclature will become more obvious after we write a
Hamiltonian. This is similar to a discretization of the
derivative of the Dirac delta function that we encountered
in the previous section in (4).
Consider the following quadratic Hamiltonian inspired

by the chiral boson (6)

H ¼
X
i

1

2
q2i ; ð10Þ

with the most local form possible and that is also translation
invariant and a positive function; it is a sum of squares.
The equations of motion can be readily found

q̇n ¼ fqi; Hg ¼ qnþ1 − qn−1: ð11Þ

We see that the Poisson bracket itself is providing a
dynamical coupling between neighbors. This is in contrast
to other models where the coupling to the neighbors arises
from the specific form of the Hamiltonian. In the Eq. (11)
we get an equation of motion that looks like a discrete
version of the derivative. A naive continuum limit would
then give us

ϕ̇ ¼ 2∂xϕ; ð12Þ

which is a left-chiral boson with speed of light c ¼ 2. It is
this property that makes the naming convention for the left-
moving Poisson bracket. The factor of 2 arises due to
conventions qnþ1 − qn−1 ≃ qðxþ 1Þ − qðx − 1Þ ∼ 2∂xq for
slowly varying bosons and plays the role of the speed of
light. The main idea here is that in the continuum long-
wavelength approximation the system becomes relativistic.

This feature arose automatically from the Poisson bracket
without any fine tuning. This suggests that the dynamics
enjoys some form of protection of the infrared dynamics
that distinguishes it from other field theories. A lot of this
paper is devoted to understanding this physics.

A. The dispersion relation

The system that was presented above is translation
invariant and has linear equations of motion. It also has
a conserved energy (the Hamiltonian) that is bounded from
below. The system is stable and should therefore admit a
decomposition into harmonic oscillators where the solu-
tions are plane waves. Let us write a possible such plane-
wave solution

qn ¼ expðikn − iωtÞ: ð13Þ

Our goal is compute the dispersion relation ωðkÞ. Putting
this ansatz in (11) we find that

−iω ¼ expðikÞ − expð−ikÞ; ð14Þ

so that

ωðkÞ ¼ −2 sinðkÞ: ð15Þ

Notice that there are two zeros; one at k ¼ 0 and the other
one at k ¼ π. The quasimomentum k is periodic with
period 2π. The left mover is at k ¼ 0, and it is left moving
because the group velocity is negative ∂kωjk¼0 ¼ −2.
Similarly, at k ¼ π we find a second zero of the dispersion
relation. That one is a right mover, as ∂kωjk¼π ¼ 2.
There should be no surprise that the model actually has a

right mover. The Nielsen-Ninomiya theorem [12] as relates
to the dispersion relation that is polynomial (or smooth)
predicts doublers. Basically, if ωðkÞ is periodic, continuous
and if there is a crossing of zero at some value, there must be
another crossing at some other value. This is as true for
bosons as it is for fermions. Alternatively, one can say that
since in theUV there is a lattice cutoff, theUV central charge
cL − cRmust vanish (there are no degrees of freedombeyond
the cutoff scale). Anomaly matching then predict that if there
is a sector with cL ¼ 1, there must be an accompanying
sector with cR ¼ 1 to cancel the gravitational anomaly (see
also the discussion in [13], which shows that any lattice flow
must have a nontrivial conformal boundary state).
What is interesting about this model is that in Eq. (15)

there is no square root appearing in the dispersion relation;
ωðkÞ is a single-valued function of k, rather than a double-
valued function of k, like one would obtain for a regular
boson. This suggests that the gap can not be lifted by the
following topological argument; any small deformation of
ωðkÞ needs to maintain the crossings of zero as in some
regions ωðkÞ > 0 and in others ωðkÞ < 0. The left- and
right-moving bosons are located at these crossings;
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topology in the dispersion relation prevents the gap from
forming and the left and right movers from mixing with
each other in the infrared: they are located at different
values of k so they cannot scatter into each other.
Let us now make the right mover more explicit. Consider

a new set of variables q̃i ¼ ð−1Þiqi. If we work with q̃
instead of the q, the Poisson bracket changes sign (the
nearest neighbors of the even sites get a sign change,
whereas the even variables do not). As we see the right
mover is also part of the discrete model of the half boson.
The naive continuum expressed in (12) fails only because it
implicitly assumes that q does not change very much from
neighbor to neighbor. A better way to take the continuum is
to assume that we have both a slowly varying q superposed
with a slowly varying q̃; we keep all the oscillator degrees
of freedom that give rise to a small ωðkÞ, no matter what the
value of k is. The slowly varying q̃ is Neel-ordered relative
to the slowly varying q functions in the q variables, so they
are independent degrees of freedom in the IR (smallω limit,
as opposed to small k).
In this way we have both the left mover and the right

mover bosons appear as independent infrared continuum
degrees of freedom.

IV. TOPOLOGY

So far, I have described a simple model of dynamics on a
lattice, where at each site there is a single bosonic degree of
freedom, rather than a pair of conjugate degrees of freedom.
The Poisson bracket is described by a nearest-neighbor
nontrivial commutation relation. I will now show that this
model predicts various interesting features that can be
associated with topological features. First, the half boson
stays massless if we deform the quadratic Hamiltonian and
keep translation invariance. Essentially, the left and right
movers are not allowed to hybridize. I will also show that
the model described above has a nontrivial parity symmetry
and I will explore its consequences.

A. Protected massless bosons

As I have shown, the simplest model of half bosons
produces a gapless quantum-field theory in the infrared. I
want to show that this result extends to the most general
stable quadratic Hamiltonians that are local up to s nearest
neighbors. Essentially, this gives a proof that the left and
right movers are not allowed to hybridize if we preserve
translation invariance. The argument is rather simple. A
term in the Hamiltonian including qi would have terms
with up to qi−s;…; qiþs, of the general form

qi

�Xs

t¼−s
atqiþt

�
: ð16Þ

where the at are real, as we are assuming that the q are real
variables. It is also the case that at ¼ a−t, as both of these

arise from the same term qkqkþt for k ¼ i or k ¼ i − t. We
also need some positivity condition to be determined later.
The equation of motion follows:

q̇n ¼
�Xs

t¼−s
atqnþtþ1

�
−
�Xs

t¼−s
atqnþt−1

�
: ð17Þ

Now we solve for the dispersion relation by using the
plane-wave ansatz, qn ¼ expðikn − iωtÞ to get

−iω ¼
Xs

t¼−s
at½expðikðtþ 1ÞÞ − expðikðt − 1ÞÞ� ð18Þ

¼ 2i sinðkÞ
�
a0 þ

Xs

t¼1

2at cosðktÞ
�
: ð19Þ

This shows that there are always zeros of the dispersion
relation at k ¼ 0; π, no matter what we do. This is slightly
stronger than the continuity argument presented in the
previous section: indeed, these are the only zeros and they
have fixed location. The two zeros at k ¼ 0 and k ¼ π
cannot hybridize as they are at a different value of the
quasimomentum. Basically, they have different eigenvalues
with respect to translation symmetry. This means that the
massless modes are protected by symmetry considerations.
Finally, the positivity condition we need is that the

function

fðkÞ ¼
�
a0 þ

Xs

t¼1

2at cosðktÞ
�

> 0; ð20Þ

for all k. In particular this implies that a0 > 0, so that the
Hamiltonian can be considered as a continuous deforma-
tion of the one presented in the previous section.
The most natural way to write the Hamiltonian is to go

directly to a momentum basis. Let us expand the qx as
follows:

qx ¼
Z

2π

0

dk
2π

expðikxÞck: ð21Þ

Inverting the Fourier transform, we get that

ck ¼
X
x

qx expð−ikxÞ: ð22Þ

When we compute the Poisson brackets of these, we
get that
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fck; ck̃g ¼
X
x;x0

expð−ikxÞ expð−ik̃x0Þðδx;x0þ1 − δx;x0−1Þ

¼
X
x

expð−ikx − ik̃xÞðexpð−ik̃Þ − expðik̃ÞÞ:

≡ δðkþ k̃Þð2iÞ sinðkÞ: ð23Þ

If we quantize, we find that the c mode at k and the one at
(−k) become raising and lowering operators. Basically,
quantizing replaces Poisson brackets by commutators, with
an extra factor of i. In the quantization, the extra factor of i
appearing on the right-hand side disappears.
Which ak; a−k acts as a lowering operator and which

one is acting as a raising operator is completely determined
by the sign of sinðkÞ in the commutation relations. The
Hamiltonian is then proportional to

H ∝
Z

2π

0

dkfðkÞckc−k; ð24Þ

with fðkÞ real and polynomial in expðikÞ as described in
(20). It is positive if fðkÞ > 0, to ensure that the ground
state with all oscillators at zero occupancy has the minimal
energy. It is very important to notice that the c operators
are not canonically normalized. They are instead subject
to (23).
If we compare this Hamiltonian to a more regular boson,

the dispersion relation of the general boson is instead of the
more general form ω ¼ � ffiffiffiffiffiffiffiffiffi

fðkÞp
. The double-valuedness

allows one to have fðkÞ > 0 everywhere; there is both a
raising and a lowering operator for each value of k. In the
half-boson case described in this paper, it is either only a
single raising operator or only a single lowering operator at
each value of k. The conjugate variable to the one labeled
by k is still at −k, however. The points of symmetry of the
operation exchanging k → −k, namely k ¼ 0; π (remember
that k is periodic with modulus 2π) are self-conjugate; they
are neither raising nor lowering operators. Instead, they are
central elements in the algebra of raising/lowering oper-
ators; they commute with everything. This means that they
cannot evolve with H and therefore must get stuck at zero
frequency.

1. Parity symmetry

The quadratic simple model has a parity symmetry. This
is not obvious at first. The idea is that qn → q−n turns the
left mover into a right mover. We fix this by using the
qn → ð−1Þnqn transformation that turns a right-mover
Hamiltonian back into a left-moving presentation. The
consequence of this parity symmetry can be better
expressed in terms of the ck modes. It turns ck → cπ−k,
where π − k is evaluated modulo 2π. When we consider
Eq. (24), we find that the parity symmetry survives if
fðkÞ ¼ fðπ − kÞ. This condition is equivalent to

�
a0 þ

Xs
t¼1

2at cosðktÞ
�

¼
�
a0 þ

Xs
t¼1

2at cosððπ − kÞtÞ
�
:

ð25Þ

The two Fourier sums are the same if at ¼ 0 for t odd. That
is, the parity symmetry survives if we only have inter-
actions between even-even sites and odd-odd sites, but no
mixing between them. When the parity symmetry is
present, the infrared dispersion relation of the left movers
and the right movers gives the same IR speed of propa-
gation. In that case, the infrared physics is universal and
independent of most of the details. It coincides with a free
boson, unless one engineers the system so that the speed
of light in the infrared vanishes. Essentially, there are no
relevant translation invariant quadratic deformations of the
infrared physics associated to the q variables that also
preserve the parity symmetry. The most they can do is
change the speed of light, which can be undone by a
rescaling of the units of time.

B. Exact zero modes on finite lattices

So far I have described the infinite volume limit of the
half-boson lattice field theory. I will now consider what
occurs at finite volume with a periodic lattice of length L.
Let us consider the dispersion relation (15). The quantiza-
tion of k ¼ 2πs=L produces one zero mode if L is odd
(at s ¼ 0) and two zeros if L is even (at s ¼ 0, L=2).
At L large but finite, the spectrum of the left mover has

energies ωs ¼ 2 � ð2πsÞ=L for integers s, s ≥ 0. Basically,
we get a left boson with periodic boundary conditions. For
L even, the parity operator described previously is a
symmetry of the system and we get a similar spectrum
of right movers, also with periodic boundary conditions.
When L is odd, the region near s ≃ L=2 misses the zero by
a half-integer unit. The spectrum is therefore ωs ¼ 2 �
ð2πðsþ 1=2ÞÞ=L which gives antiperiodic boundary con-
ditions for the right-moving boson.
Here, there is a slight distinction between the right

moving and the left-moving Hamiltonians; the right mov-
ing Hamiltonian will produce a zero mode for the right
movers on a lattice with an odd number of sites and the left-
moving Hamiltonian will instead produce a zero mode for
the left moving modes. The right-moving Hamiltonian is
equivalent to the left moving Hamiltonian with antiperiodic
boundary conditions in an odd lattice. This is what takes
care of the sign difference when going around the circle.
Basically, there is a topological property of the UV

lattice that survives all the way to the infrared; if the lattice
has an even or an odd number of sites. This property
determines if the total number of zero modes is even or odd,
regardless of the boundary conditions being periodic or
antiperiodic.
This property can be traced back to the symplectic form

Ωij, which is an antisymmetric real matrix. The spectrum of
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eigenvalues of Ω is such that the eigenvalues are paired,
with opposite signs. If there is an odd number of eigen-
values, then one of them must necessarily vanish. If there
is an even number of eigenvalues, the number of zero
eigenvalues of Ω must be even. Also, there are sectors with
two zero modes (periodic boundary conditions on a lattice
of size 2L), or with no zero modes (antiperiodic boundary
conditions on a lattice of size 2L). This is somewhat
reminiscent of the problems of spin structures in string
theory; if one has Ramond or Nevwu-Schwarz boundary
conditions for left movers and right movers separately
from each other (see [14], Chapter 10 for a textbook
discussion).
We can also consider the same problem on an interval

(open boundary conditions). It is easy to check that we can
always turn a left moving Hamiltonian into a right mover in
this case, as the positions on the lattice are ordered and we
do not have to worry about how the phase winds around the
circle.
To the extent that there is a zero mode, it is equally shared

between the left and right movers. When the lattice has an
odd number of sites, there is a zero mode, by the same
argument on Ωij given above. If the sites go from 0;…; 2k,
the zero mode is c0 ¼ q0 þ � � � þ q2k which can be checked
to commute with all other q. This lis similar to having a
differential equation with Neumann-Neumann boundary
conditions. One can check that there is no zero mode if
the number of sites is even. This is similar to having problems
with Dirichlet-Neumann boundary conditions.2 This phe-
nomenology is reminiscent of theMajorana fermions studied
byKitaev [5], where the number of zeromodes depends on if
there is an even or an odd number of sites.

C. Projections from regular bosons to half bosons

In what sense is a regular lattice boson a combination of
two half bosons? More precisely, it is interesting to ask the
question in reverse; can one construct a half boson from a
projection of a regular boson? I will answer that question in
the affirmative. This will also explain some issues with zero
modes as to what is missing when we combine half bosons
together.
The idea is to start with regular bosons at lattice sites xi,

pi, with fxi; pjg ¼ δij. I want to generate a nontrivial
nearest-neighbor Poisson bracket. The q variables need to
be linear combinations of the x, p. To do that, consider the
following expression:

qi ¼ pi þ xiþ1: ð26Þ

One easily finds that

fqi; qiþ1g ¼ fxiþ1; piþ1g ¼ 1; ð27Þ

where we see that there is a perfect match with Eq. (9),
so this is a half boson. Consider also wi ¼ xi þ piþ1. It’s
easy to show that these two sets of variables commute
fwi; qsg ¼ 0. Moreover,

fwi; wiþ1g ¼ −1: ð28Þ

This shows that in the theory of a full boson, we find two
half bosons that commute with each other. One of them is
naturally a left mover and the other one is naturally a right
mover. It is also easy to check that c0 ¼

P
i qi ¼

P
i wi, so

the central elements of the zero modes match between
these. This also applies to the zero mode at half momentum
of the variables q̃i and w̃i that one could obtain, with a
difference in sign. Notice that on the other hand, the x, p
variables have a nondegenerate Poisson bracket. What this
means is that the projection of the boson to the two half
bosons leaves something out. What are actually missing the
conjugate variables to c0; cπ?
What this means is that if we combine two half bosons

together, we will not get a full boson. At best, the zero
modes of the half bosons are shared, but some modes will
be missing that are conjugate to the zero modes. This
explains why even though we are able to hybridize the
massless full bosons to remove the massless modes, this
will not be possible if we have two half bosons stitched
together. The half-boson zero modes will persist; their
conjugate variables are not part of the half-boson algebras.
We can say that the topological protection of the half
bosons is due to this absence, even in the presence of other
half-boson modes. The continuity argument of the
dispersion relation would not forbid two half bosons
combining to a full boson and gapping the theory.
There is a second projection we can consider; from a

boson on a lattice to a half boson on a lattice that is twice as
large. This would correspond to the 2N, x, p variables,
being mapped to 2N q variables. The idea is then to take

q2i ¼ pi;

q2iþ1 ¼ xiþ1 − xi: ð29Þ

One can easily check the commutation relations. The
Hamiltonian is invariant under shifts of x, with all x shifted
simultaneously. This would naturally be associated to a
shift symmetry being present and part of the low-energy
Lagrangian. Since the shift symmetry is nonlinearly real-
ized, one expects a Goldstone boson.
It is easy to check that the Hamiltonian is parity

invariant. Translation invariance on this lattice is more
subtle. The Poisson brackets relations are translation
invariant. However, in this projection there is only one
zero mode that is equally shared between the left movers
and right movers. One can easily check that the sum

2Both types of mixed boundary problems arise naturally in
string theory when discussing intersecting D-branes [15].
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P
qi ¼

P
q2i ¼

P
pi is the only zero mode. There is one

zero-mode linear combination that is identically equal to
zero if we insist that the x variables (rather than the q
variables) are periodic in L. In the theory of the x, p
variables, the zero mode that survives is the center-of-mass
momentum. The variables q are relative positions, so the
center-of-mass coordinate is missing.
Apart from the zero mode, the theory is translation in-

variant. If we take two steps, the theory is translation
invariant mod(2). This would be the ordinary translation
invariance of the lattice of the x, p variables. One can say
that the topological protection that the system enjoys has
arisen from a dynamical square root of the translation
operator that is present in the system. This is in lieu of
saying that one has a shift symmetry of all the x variables
simultaneously (the Goldstone-boson argument).
We can also insist on preserving the zero mode of the q.

From the point of view of the x variables, we find that the
sectors with the extra zero mode turned on differ by a shift
when one considers going around the circle in the xvariables.
One needs to solve the difference equation xiþ1 − xi ¼ const
consistent with a periodic condition on the q.
This is akin to winding modes for a boson theory (see

[16]). When both winding and momentum appear, one
can have symmetries that exchange them. This is called
T-duality in string theory. What we find is an instance
where the q variables at the classical level can lead to both
momentum and winding being continuous variables. There
is a certain sense in which the classical theory that appears
in the way I have described cannot distinguish the two
notions. When quantizing, only some combinations of
momentum and winding that are related to each other in
particular ways lead to modular invariant partition func-
tions (this is the problem studied more generally in [17]).
At this stage, there is no requirement of having a modular
invariant answer for the partition function in the infrared.
After all, the formulation of this dynamics was done
directly in a real-time first-order formulation of the theory.
One cannot immediately assume that there is a Euclidean

partition function that should satisfy modularity. This is
similar to the chiral boson; it is a consistent relativistic
theory in one dimension, but it does not have a modular
invariant partition function.

D. Coupling to noise and absence of Anderson
localization in the IR

Let us now consider the problem of coupling the half
bosons to noise. The idea is to consider a Hamiltonian of
the form

H ¼
X ηðiÞ

2
q2i ; ð30Þ

where η is a positive random variable. For simplicity, a
model where ηwill be chosen uniformly randomly between
0.7 and 1 is considered. This is a version of noise. A natural
question is if the modes of the system exhibit Anderson
localization [18] or not. In a sense, this is another way to
check if the phase of matter associated to the staggered
bosons is robust to noise or not.
This is checked this numerically in Fig. 1. On the left, we

see that the size of the amplitudes of the low-lying modes
stay fairly constant on the lattice at long distances. On the
right figure we see that for high-energy modes, the modes
decay very quickly from a position with high amplitude
towards regions that are far away in the lattice. The high-
energy modes (that in some sense are irrelevant for the
infrared description of the theory) display Anderson locali-
zation. In contrast, the low-energy modes do not. The
goal right now is to explain this lack of localization on the
long-wavelength excitations. This is some indication of
robustness of the staggered boson theory, similar to
topological order in quantum Hall systems that forbid
the modes from getting lifted by defects. A way to see
what is going on is to actually look at the numerical value
of the low-lying eigenvalues determining the frequencies of
the low-lying modes.
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Log(�A�) Log(�A�)
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FIG. 1. Logarithm of position amplitudes of modes from a model with 100 sites are shown. On the left, we consider the normal modes
near zero frequency. On the right we do the same for the highest-frequency modes.
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This is shown in Fig. 2. What is seen are two exact zero
modes (the same zero modes we have been discussing
above) and a spectrum that is nearly doubly degenerate at
each value, as well as evenly spaced. Such a spectrum
would arise from a conformal field theory on a circle; a left-
moving and a right-moving oscillator for each Fourier
mode on a circle.
I want to explain this result more intuitively. The idea is

that the model described by the Hamiltonian (10) is gapless
in the infrared and leads to a c ¼ 1 boson. In such a system,
we would have both a left-current density J ≃ ∂þχ and
right-handed one J̄ ≃ ∂−χ and the Hamiltonian would be of
the Sugawara form

H ≃
Z

dx

�
1

2
∶JðxÞJðxÞ∶þ 1

2
∶J̄ðxÞJ̄ðxÞ∶

�
: ð31Þ

The natural notion of the discretized current is Ji ≃
qi þ qiþ1, so that it couples mostly to the left movers. In
contrast J̄i ∼ q̃i þ q̃iþ1 couples mostly to the right movers.
The variables q alone are not slowly varying in the
procedure we use to get to the infrared, but Ji and J̄i
are. Because of the alternating signs between q̃i and qi, one
can check that the Hamiltonian (10) can also be written
as sums of squares H ∝ ðqi þ qiþ1Þ2 þ ðq̃i þ q̃iþ1Þ2. The
cross terms cancel. Let us now turn to the noise model (30).
A natural way to think about it in the J; J̄ variables would
be to take the form

H ≡
Z

dxηðxÞ
�
1

2
∶JðxÞJðxÞ∶þ 1

2
∶J̄ðxÞJ̄ðxÞ∶

�
; ð32Þ

where we have added a field ηðxÞ that varies locally and
has some noise. This is like coupling to a random metric on
the circle, but keeping time-translation invariance. With a
change of coordinates in x, we should be able to bring the
Hamiltonian back to the form (31) in the continuum limit.
This means that the spectrum should be the one of a c ¼ 1
conformal field theory on a circle whose size depends on η.

Also, since the system preserves the left-right symmetry of
expressions in terms of J; J̄ (when averaging over the η),
the left- and right-moving frequencies should be approx-
imately degenerate on any instance of the η. What we see is
that the conformal symmetry persists in the infrared and the
speed of light of left and right movers is the same. In
contrast, the UVmodes are near the cutoff; they can resolve
the lattice and do not average out the fluctuating lattice
properties. Fluctuations in η will be visible to these modes
and they can exhibit localization; they do so in the
example above.

V. ALGEBRAIC TRUNCATIONS
AND SPIN CHAINS

It is interesting to study more general models than
quadratic models in the 1 −D lattice. To warm up, let
us consider the following Hamiltonian, which only has
translation invariance modulo 2:

H ¼
X
i

1

2
q22i þ expðq2iþ1Þ: ð33Þ

Ifwegoback to themap froma single boson to theqvariables
(29), we see that we get the Hamiltonian for the Toda chain
[19]. We might worry that modifications of this Hamiltonian
might lead to different dynamics, with for example

H ¼
X
i

B
2
q22i þ C expðαq2iþ1Þ: ð34Þ

It is easy to check that the Poisson bracket is invariant
under the following staggered rescaling q2i → βq2i;
q2iþ1 → β−1q2iþ1, so we can remove α. Similarly, the zero
mode of the odd q,

P
i q2iþ1 lets us modify C by a global

translation of the oddq. Finally, ifwe change the units of time
we can change B, so we can go back to (33). We can now
write a translation-invariant modification of the Toda chain
as follows:

H̃ ¼
X
i

expðαqiÞ: ð35Þ

which is similar to the relativistic Toda chain (one can also
easily formulate the relativistic Toda chain Hamiltonian in
the conventions of [20]).
Unlike the case (33), in this case the coupling α is

physical as we can not just change it by a staggered
rescaling that keeps the Poisson bracket structure intact
while also preserving translation invariance.
In the classical limit this does not matter as we can

effectively rescale the Poisson bracket by changing the
units of time. In the quantum case this cannot be done.
We are therefore interested in the case where the variables q
are quantum variables rather than classical variables.
The commutation relations in natural units ℏ ¼ 1 are then

10 20 30 40
Mode
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FIG. 2. The numerical value of the frequencies of eigenvalues
near zero energy is shown.
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½qm; qj� ¼ iδm;j−1 − iδm;jþ1: ð36Þ

Now, we see that the new exponential Hamiltonian is
generated by new variables of the type Kj ¼ expðαqjÞ. We
want to understand the commutation relations of the Kj,
rather than the qj. We find, using the Baker-Campbell-
Hausdorff formula that

expðαqjÞ expðαqjþ1Þ ¼ expðαðqj þ qjþ1Þ þ iα2=2Þ
¼ expðαqjþ1Þ expðαqjÞ expðiα2Þ;

ð37Þ

so that

KjKjþ1 ¼ Kjþ1Kj expðiα2Þ: ð38Þ

The commutation results in a phase. For certain values of α
all of them commute with each other, or some powers of
Km

j ¼ expðmαqjÞ commute with the Hamiltonian. They
would then be a conserved charge that appears quantum
mechanically and is not immediately part of the classical
conserved charges. This indicates that in the quantum case
there can be a large center. This is suggestive that the full
Hamiltonian (35) could be integrable, even in the classical
limit. That problem is beyond the scope of the present work
and will be investigated elsewhere.
The most interesting case to study is when α is

imaginary, rather than real. The operator expðiαqÞ is
actually a type of translation operator and is unitary, since
q is as a self-adjoint operator. Notice that these are invariant
under translations of q → qþ 2π=α. These are symmetries
of the affine plane made of the q variables that can be
gauged. Basically, they preserve the Poisson brackets and
the reality of the q variables. We can therefore reduce the
algebra of operators to those that are gauge invariant.3

When we gauge the translation symmetries, we find that
the phase space becomes a 2L-dimensional torus if we have
2L lattice sites. For the time being we will ignore how zero
modes behave. At the classical level, this does not affect
much. Quantum mechanically the answer is different. This
becomes a phase space with finite volume and therefore it
should be associated to a Hilbert space of finite dimension.
In that sense, one should be able to encode it into a finite
number of qubits.
If α is quantized appropriately, the quantity expðiα2Þ is

an nth root of unity. This is a case where we have that the
Hamiltonian is invariant by finite translations in q →
qþ 2π=α, and that the gauge invariant variables Kj are
such that Kn

j is central. Since the center is large (commutes
with the Hamiltonian), the corresponding variables can be

chosen to be fixed (they can be diagonalized). That is,
expðinαqÞ is a c-number and the different eigenvalues of K
must be related to each other by roots of unity. The simplest
gauge fixing is requiring that they are all frozen to the
identity Kn

j ¼ 1.
This results in a reduction of effective degrees of

freedom. The Hamiltonian (35) would not be Hermitian
if α is purely imaginary. This lack of Hermiticity can be
remedied by adding the complex conjugate

H ¼ −
X
j

Kj þ K−1
j ≃ ¼ −

X
j

2 cosðαqjÞ; ð39Þ

where we insert a minus sign for convenience; after all, the
K are bounded operators, so the spectrum of H is bounded
both from above and below. The sign guarantees that the
minimal energy of the classical state is at qj ¼ 0. When
α → 0 (the periodicity is large), the Hamiltonian can be
expanded in Taylor series and we find that

H ≃
X
j

− 2þ α2q2j −
2

4!
ðα4q4jÞ þ…; ð40Þ

so the quadratic piece is the same as the one of the simple
model (10) and the quartic term is suppressed by α2 which
is small at the cutoff scale. In that case perturbation theory
should give a good approximation to the physics and the
zeros of the dispersion relation we have discussed will stay
in place; the model should be gapless at very small α and
have central charge c ¼ 1. We can actually do better by
noticing that the clock-shift matrices have similar root of
unity commutation relations. In analogy with the map to the
Toda chain, we should think of the even sites as having
expðiαpÞ and the odd sites as expðiαΔxÞ, as the map (29)
would suggest. The individual expðiαxÞ, expðiαpÞ are
magnetic translations and are realized by P, Q clock shift
matrices where PQ ¼ ωQP and ωn ¼ 1 and we add the
constraint Pn ¼ Qn ¼ 1. These P, Q are then given by
n × n matrices. That is, the Hilbert space of a single P, Q
pair is of dimension n. On a lattice of length L, these would
given rise to a Hilbert space of size nL. The map to a spin
chain gives

K2jþ1 ≃ Pj ⊗ P−1
jþ1;

K2j ≃Qj: ð41Þ

We can change left movers into right movers by changing
Q → Q−1. In this setup, we have the Hamiltonian

H ¼ −
X
j

½Qj þQ−1
j þ Pj ⊗ P−1

jþ1 þ P−1
j ⊗ Pjþ1�: ð42Þ

The terms P ⊗ P−1 þ c:c can be interpreted as hopping
terms, while the QþQ−1 are interpreted as a transverse

3We are not really allowed to gauge these in the other case
when the α quantity in the exponential is real rather than purely
imaginary.
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field. The non-Hermitian version of this model with the
Hamiltonian

H ¼ −
X
j

½Qj þ Pj ⊗ P−1
jþ1� ð43Þ

is actually a special case of the Baxter’s clock model (see
[21]) for details.
The original model in terms of the K variables lives on a

lattice of size 2L. The P, Q model has a lattice of size L.
There is a square root of the translation operator in theQ, P
lattice that effectively enhances the translation symmetry,
just like in the x, pmodel. Just as in that case, we only have
one zero mode rather than two. This is represented by the
gauge invariant operator

Ω ¼
Y
i

Qi ð44Þ

that commutes with Hamiltonian. It is such thatΩn ¼ 1 and
it is a conserved charge modulo n.
If we consider the special case of strong coupling ω2¼1,

the P,Qmatrices become Pauli matrices P ≃ σz,Q ≃ σx. In
that case the Hamiltonian (42) is exactly the critical Ising
model in a transverse magnetic field. Surprisingly, the
model is still gapless but the central charge is c ¼ 1=2. It
can be solved exactly by fermionization [22]. The next
special case is ω3 ¼ 1, which gives the critical three state
Potts model with c ¼ 4=5 (see [23]). At ω4 ¼ 1, one seems
to get to finally get to the central charge c ¼ 1 and that
seems to be the case for all ωn ¼ 1, with n ≥ 4. When
n ≥ 5 there seems to be states with the conformal weights
of J; J̄ in the infrared limit, when computing on a lattice
with periodic boundary conditions. One associates these to
a Berezinskii-Kosterlitz-Thouless (BKT) transition [24,25].
This is currently being investigated numerically [26] by

the same methods as in [27]. These Hamiltonians are very
similar to those that appear in [28] to study quantum
implementations of the Abelian Higgs model in one
dimension. They are also expected to lead to BKT
transitions at some values of the couplings [29].

VI. HIGHER-DIMENSIONAL MODELS
AND FRACTONS

Let us consider for simplicity a square lattice in two
dimensions. We want to develop a model that corresponds
to a half boson qi;j per site along the same ideas that we
used in one dimension. We want to have translation
invariance on the lattice and we want each site to commu-
nicate to all its nearest neighbors. Consider the following
Poisson bracket

fqi;j; ql;mg ¼ ðδi;l−1 − δi;lþ1Þδj;m þ δi;lðδj;m−1 − δj;mþ1Þ:
ð45Þ

This satisfies what we want; it has the right antisymmetry
and has nearest-neighbor behavior. Moreover, it essentially
copies what we did on rows and columns of the lattice. If
we then consider the Hamiltonian

H ¼
X
i;j

1

2
q2i;j; ð46Þ

we can check that it has the following symmetries. It admits
a parity reflection symmetry swapping the x, y directions,
basically Pswap∶ qi;j → qj;i. It also admits a parity along
the x-axis as follows:

PX∶qi;j → ð−1Þiq−i;j ð47Þ

combining Pswap and PX one finds that there is also a parity
in the Y direction. Together, they also generate a rotation
group of the lattice by 90°. Therefore, the system has a
hidden rotation invariance, even though the Poisson bracket
itself does not make it obvious. Computing the equations of
motion is straightforward. What is more important is the
actual dispersion relation, like in (15). We assume that
ql;m ¼ expðikxlþ ikym − ωtÞ and find that

ωðk1; k2Þ ¼ −2 sinðkxÞ − 2 sinðkyÞ: ð48Þ

The dispersion relation is shown in Fig. 3. The reader
should notice that the set of zero modes [the locus where
ωðk⃗Þ vanishes] is of codimension one. This arises because
ω is a single-valued function of k and the modes with
opposite momentum are canonical conjugates of each other
(this is required by translation invariance). As such if ωðkÞ
is positive for some k, then it is negative for (−k). For any
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FIG. 3. Dispersion relation of the half-boson model in two
dimensions.
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path that connects them, there must be a crossing of zero.
This requires that the set of zeros is in codimension one; the
boundary of the region positive wðkÞ, which is a level set
and cannot be just a critical point.
In this case, it consists of two lines in the torus crossing

each other. The first line goes through zero and is anti-
diagonal. The other one has slope one and crosses through
ðπ; 0Þ. The most interesting feature is the set of crossing
points at ð3π=2; π=2Þ and ðπ=2; 3π=2Þ where the two lines
intersect. We can expand around k⃗0 ¼ ð3π=2; π=2Þ as
follows:

ωðk⃗0þδk⃗Þ≃2cosðδkxÞ−2cosðδkyÞ∼−δk2xþδk2y: ð49Þ

We can equally well write this as

ωðk⃗0 þ δk⃗Þ≡ δkþδk− ð50Þ

so that we see that the dispersion relation is a polynomial of
the δk variables that vanishes on the two lines δkþ ¼ 0
or δk− ¼ 0.
This is similar to the continuous field theory derived in

[30] (see also [31]), which are written in Lagrangian form
and lead to a nontrivial dispersion relation with zeros on
lines. The vanishing of the dispersion relation should be
associated to nontrivial symmetries that have nontrivial
space dependence.
A similar conclusion follows from the other crossing

point. The degrees of freedom at the crossing are the
lightest ones apart from the zero modes, as they become
quadratic in δk. Around any other expansion point, the
dispersion relation moving away from the zero locus would
only be linear in momentum and such modes would be
heavier. After all, each factor of k counts as 1=L in the
lattice size. Notice that just like in the 1D system, the mode
ak⃗ is conjugate to a−k⃗. At the special locus, we find that that
the two crossing points share the raising and lowering
operators, as k⃗0 ¼ −k⃗00. The modes of one crossing trans-
form into the other by the parity symmetry swapping x, y.
The crossing points are at fixed points of the other parity
symmetries, since k0;x ¼ π − k0;x mod ð2πÞ.
Now we can ask; is there a way to see that the fracton

structure is associated to a symmetry? The answer is yes.
We have to go back to how the map from a boson to a half
boson on a lattice of twice the size worked; on one set of
lattice sites we had momenta, and on the alternating lattice
sites we had linear combinations of positions. We notice
that in that case the 1D lattice was bipartite: there was a
clear way to separate even and odd lattice sites. We want to
do the same here. The best way to see that the lattice is
bipartite is to think of it as the face centered square lattice,
with bonds on the diagonals. This is basically a rotation of
the square lattice by 45°.
The vertices of the square are one set of sites, and the

center of the faces is the other one. Let us place momenta at

the integer lattice sites qi;j ¼ pi;j. On the faces we want
to write linear combinations of positions that produce the
correct signs from (45). We see that if we choose

qkþ1=2;jþ1=2 ¼ −xk;j − xk;jþ1 þ xkþ1;j þ xkþ1;jþ1; ð51Þ

then the Poisson structure matches what we need. What are
the symmetries here? We get that the q are difference
functions along the horizontal direction and sums on the
vertical direction. Basically, we can translate all the xk;j
with k fixed by a set amount and none the q change. We can
do the same with the xk;j with j fixed, but because of sign
issues, the corresponding symmetry on the vertical direc-
tion requires that the shifts are Neel ordered (it would be the
equivalent of the q̃ variables that have the shift symmetry).
Basically, we have two types of shift symmetry on the x that
can be located either on the rows or the columns and that
can be effected with either arbitrary x dependence or y
dependence on the lattice. These symmetries with local
parameters in one direction are a characteristic property of
many fracton models. Here, the Poisson bracket of the q has
done it for us automatically.
We can also write models where the Hilbert space is

reduced locally to a Hilbert space with a finite number of
qubits per unit volume. The process is to replace p →
expðiαpÞ ∼Q and qkþ1=2;jþ1=2 → expðiαqiþ1=2;jþ1=2Þ≃
P−1
k;j ⊗ P−1

k;jþ1 ⊗ Pkþ1;j ⊗ Pkþ1;jþ1. These models are very
similar to those introduced in [32].
Notice that in terms of the P variables there is no

hopping between nearest neighbors, but something mode
complicated instead. Just like in the 1D model, the zero
modes (or equivalently charges)

Ωk ¼
Y
j

Qj;k Ω̃j ¼
Y
k

Qð−1Þk
j;k ; ð52Þ

commute with the Hamiltonian; the shift symmetries we
had in the x that are generated by linear combinations of the
p. These depend on one of the coordinates of the lattice.
The corresponding discrete exponentials that would pro-
duce the translations in (51) survive in a discrete form.

VII. CONCLUSION

In this paper the idea of a half-boson degree of freedom
on a lattice system was presented. The main idea is that the
degrees of freedom of the boson end up distributed on the
lattice and not located at a single site. This is encoded in
a nontrivial Poisson bracket between neighbors. This is
similar to the idea of staggered fermions, where various
components of a fermion field reside at different sites.
Here, I studied the simplest such system in one and two

dimensions; the systems were constrained in that all lattice
sites could be translated into each other and that the Poisson
bracket and the Hamiltonian was translation invariant.
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Under those conditions andassuming that the system is free, it
turned out that the dispersion relation was a single valued
function of the momentum. There is only either only one
raising or lowering operator at each k and they have opposite
frequencies. This property forces the system tohave crossings
of zero in the dispersion relation and leads to rich topological
features. In two dimensions it led to fracton phases of matter.
I also showed that when one considers bosonic degrees of
freedom that are periodic, the Hamiltonians one produces
automatically give rise to critical-spin chain models. Systems
that are generalizations of the Toda chain are found. It is
interesting to ask if these are integrable. That problem is
currently being looked at by the author.
The half boson models seem to have rich topological

features that mimic some of those present in systems of
Majorana fermions. The simplest topological features of
the model (models) have been noted but there is a lot more
to explore. Projections from regular boson degrees of
freedom to half bosons were found and they sometimes
miss some zero modes of the half bosons. They can also

have additional variables left over that do not belong to the
half bosons.
There should be interesting generalizations of this idea

that might be able to mimic other fermion models with
interesting topological features, like Kahler-Dirac fer-
mions, which can be put on arbitrary triangulations (see
for example [33]). Similarly, even some lattice sites that
have translation invariance, can be such that not all lattice
sites can be translated into each other: the fundamental cell
might contain more than one site. Models on half bosons on
these systems might display a richer topology than those
that require all lattice site to be equivalent. This is currently
under consideration by the author.

ACKNOWLEDGMENTS

I would like to thank many discussions with R. Brower,
S. Catterall, P. T. Lloyd, Y. Meurice, and S. Vijay. Research
supported in part by the Department of Energy under Grant
No. DE-SC0019139.

[1] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[2] S. Aoki, Y. Aoki, D. Becirevic, C. Bernard, T. Blum,
G. Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr,
H. Fukaya et al., Review of lattice results concerning
low-energy particle physics, Eur. Phys. J. C 77, 112
(2017).

[3] S. Aoki et al. (Flavour Lattice Averaging Group), FLAG
review 2019: Flavour Lattice Averaging Group (FLAG),
Eur. Phys. J. C 80, 113 (2020).

[4] J. B. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[5] A. Y. Kitaev, Unpaired Majorana fermions in quantum
wires, Phys. Usp. 44, 131 (2001).

[6] X. G. Wen, Gapless boundary excitations in the quantum
Hall states and in the chiral spin states, Phys. Rev. B 43,
11025 (1991).

[7] M. Stone, Edge waves in the quantum Hall effect, Ann.
Phys. (N.Y.) 207, 38 (1991).

[8] D. Berenstein, A toy model for the AdS=CFT correspon-
dence, J. High Energy Phys. 07 (2004) 018.

[9] A. P. Polychronakos, Chiral actions from phase space
(quantum Hall) droplets, Nucl. Phys. B705, 457 (2005).

[10] L. Maoz and V. S. Rychkov, Geometry quantization from
supergravity: The case of “Bubbling AdS”, J. High Energy
Phys. 08 (2005) 096.

[11] D. Berenstein and A. Miller, Code subspaces for LLM
geometries, Classical Quantum Gravity 35, 065003
(2018).

[12] H. B. Nielsen and M. Ninomiya, No go theorem for
regularizing chiral fermions, Phys. Lett. 105B, 219 (1981).

[13] S. Hellerman, D. Orlando, and M. Watanabe, Quantum
information theory of the gravitational anomaly, arXiv:
2101.03320.

[14] J. Polchinski, String Theory. Vol. 2: Superstring Theory and
Beyond (Cambridge University Press, Cambridge, England,
2007), ISBN 978-0-511-25228-0, 978-0-521-63304-8, 978-
0-521-67228-3.

[15] J. Polchinski, Dirichlet Branes, and Ramond-Ramond
Charges, Dirichlet Branes and Ramond-Ramond Charges,
Phys. Rev. Lett. 75, 4724 (1995).

[16] J. Polchinski, String Theory. Vol. 1: An Introduction to the
Bosonic String (Cambridge University Press, Cambridge,
England, 2007), ISBN 978-0-511-25227-3, 978-0-521-
67227-6, 978-0-521-63303-1.

[17] K. S. Narain, New heterotic string theories in uncompacti-
fied dimensions <10, Phys. Lett. 169B, 41 (1986).

[18] P. W. Anderson, Absence of diffusion in certain random
lattices, Phys. Rev. 109, 1492 (1958).

[19] M. Toda, Vibration of a chain with nonlinear interaction,
J. Phys. Soc. Jpn. 22, 431 (1967).

[20] Y. Hatsuda and M. Marino, Exact quantization conditions
for the relativistic Toda lattice, J. High Energy Phys. 05
(2016) 133.

[21] P. Fendley, Free parafermions, J. Phys. A 47, 075001 (2014).
[22] P. Fleury, The one-dimensional Ising model with a trans-

verse field, Ann. Phys. (N.Y.) 57, 79 (1970).
[23] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235 (1982);

55, 315(E) (1983).
[24] V. L. Berezinsky, Destruction of long range order in

one-dimensional and two-dimensional systems having a
continuous symmetry group. I. Classical systems, Sov.
Phys. JETP 32, 493 (1971).

STAGGERED BOSONS PHYS. REV. D 108, 074509 (2023)

074509-13

https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.43.11025
https://doi.org/10.1103/PhysRevB.43.11025
https://doi.org/10.1016/0003-4916(91)90177-A
https://doi.org/10.1016/0003-4916(91)90177-A
https://doi.org/10.1088/1126-6708/2004/07/018
https://doi.org/10.1016/j.nuclphysb.2004.10.053
https://doi.org/10.1088/1126-6708/2005/08/096
https://doi.org/10.1088/1126-6708/2005/08/096
https://doi.org/10.1088/1361-6382/aaa623
https://doi.org/10.1088/1361-6382/aaa623
https://doi.org/10.1016/0370-2693(81)91026-1
https://arXiv.org/abs/2101.03320
https://arXiv.org/abs/2101.03320
https://doi.org/10.1103/PhysRevLett.75.4724
https://doi.org/10.1016/0370-2693(86)90682-9
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1143/JPSJ.22.431
https://doi.org/10.1007/JHEP05(2016)133
https://doi.org/10.1007/JHEP05(2016)133
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.55.315


[25] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, J. Phys. C
6, 1181 (1973).

[26] D. Berenstein and P. T. Lloyd (to be published).
[27] A. Milsted and G. Vidal, Extraction of conformal data in

critical quantum spin chains using the Koo-Saleur formula,
Phys. Rev. B 96, 245105 (2017).

[28] A.Bazavov,Y.Meurice, S.W.Tsai, J.Unmuth-Yockey, and J.
Zhang,Gauge-invariant implementation of theAbelianHiggs
model on optical lattices, Phys. Rev. D 92, 076003 (2015).

[29] J. Zhang, Y. Meurice, and S. W. Tsai, Truncation effects in
the charge representation of the O(2) model, Phys. Rev. B
103, 245137 (2021).

[30] A. Paramekanti, L. Balents, and M. P. Fisher, Ring ex-
change, the exciton Bose liquid, and bosonization in two
dimensions, Phys. Rev. B 66, 054526 (2022).

[31] N. Seiberg and S. H. Shao, Exotic symmetries, duality, and
fractons in 2þ 1-dimensional quantum field theory, SciPost
Phys. 10, 027 (2021).

[32] S. Vijay, J. Haah, and L. Fu, Fracton topological order,
generalized lattice gauge theory and duality, Phys. Rev. B
94, 235157 (2016).

[33] S. Catterall, J. Laiho, and J. Unmuth-Yockey, Kähler-Dirac
fermions on Euclidean dynamical triangulations, Phys.
Rev. D 98, 114503 (2018).

DAVID BERENSTEIN PHYS. REV. D 108, 074509 (2023)

074509-14

https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.96.245105
https://doi.org/10.1103/PhysRevD.92.076003
https://doi.org/10.1103/PhysRevB.103.245137
https://doi.org/10.1103/PhysRevB.103.245137
https://doi.org/10.1103/PhysRevB.66.054526
https://doi.org/10.21468/SciPostPhys.10.2.027
https://doi.org/10.21468/SciPostPhys.10.2.027
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevD.98.114503
https://doi.org/10.1103/PhysRevD.98.114503

